Deep Learning for Graphics

Neural Network Basics

Niloy Mitra
UCL

Iasonas Kokkinos
UCL/Facebook

Paul Guerrero
UCL

Vladimir Kim
Adobe Research

Kostas Rematas
U Washington

Tobias Ritschel
UCL
Timetable

<table>
<thead>
<tr>
<th></th>
<th>Niloy</th>
<th>Iasonas</th>
<th>Paul</th>
<th>Vova</th>
<th>Kostas</th>
<th>Tobias</th>
<th>Ersin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NN Basics</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Supervised Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Unsupervised Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beyond 2D</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Outlook</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Introduction to Neural Networks
Goal: Learn a Parametric Function

\[f_\theta : \mathbb{X} \longrightarrow \mathbb{Y} \]

\(\theta \): function parameters, \(\mathbb{X} \): source domain \(\mathbb{Y} \): target domain

these are learned

Examples:

Image Classification:

\[f_\theta : \mathbb{R}^{w \times h \times c} \longrightarrow \{0, 1, \ldots, k - 1\} \]

\(w \times h \times c \): image dimensions \(k \): class count

Image Synthesis:

\[f_\theta : \mathbb{R}^n \longrightarrow \mathbb{R}^{w \times h \times c} \]

\(n \): latent variable count \(w \times h \times c \): image dimensions
Each data point has a class label:

\[
y^i = \begin{cases}
1 & (\bullet) \\
0 & (\circ)
\end{cases}
\]
Nonlinear decision boundaries

\[g : \mathbb{X} \rightarrow \mathbb{X}' \]

\[f_\theta(x) = \begin{cases}
1 & \text{if } w \cdot g(x) + b \geq 0 \\
0 & \text{if } w \cdot g(x) + b < 0
\end{cases} \]
Building A Complicated Function

Given a library of simple functions

\[\sin(x) \quad \cos(x) \quad \log(x) \quad x^3 \exp(x) \]

Compose into a complicated function

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
Building A Complicated Function

Given a library of simple functions

- $\sin(x)$
- $\cos(x)$
- $\log(x)$
- x^3
- $\exp(x)$

Compose into a complicated function

Idea 1: Linear Combinations
- Boosting
- Kernels
- ...

$$f(x) = \sum_{i} \alpha_i g_i(x)$$
Building A Complicated Function

Given a library of simple functions

\[
\begin{align*}
\sin(x) \\
\log(x) \\
\cos(x) \\
x^3 \\
\exp(x)
\end{align*}
\]

Compose into a complicated function

\[f(x) = g_1(g_2(\ldots(g_n(x)\ldots)))\]

Idea 2: Compositions

- Decision Trees
- Deep Learning
Building A Complicated Function

Given a library of simple functions

\[
\begin{align*}
\text{sin}(x) & \\
\text{cos}(x) & \\
x^3 & \\
\text{exp}(x) & \\
\text{log}(x) &
\end{align*}
\]

Compose into a complicated function

\[
f(x) = \log(\cos(\exp(\sin^3(x))))
\]

Idea 2: Compositions

- Decision Trees
- Grammar models
- Deep Learning
′Neuron′: Cascade of Linear and Nonlinear Function

basic building block

\[f \left(\sum_i w_i x_i + b \right) \]

Sigmoidal activation

\[f(x) = \frac{1}{1 + e^{-x}} \]
Activation functions

Step ("perceptron")

\[
g(a) = \begin{cases}
0 & a < 0 \\
1 & a \geq 0
\end{cases}
\]

Sigmoidal ("logistic")

\[
g(a) = \frac{1}{1 + \exp(-a)}
\]

Hyperbolic tangent

\[
g(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)}
\]

Rectified Linear Unit (ReLU)

\[
g(a) = \max(0, a)
\]

Image Credit: Olivier Grisel and Charles Ollion
Perceptrons (60’s)

XOR: perceptron killer

Fixed mapping

input units e.g. pixels

output units e.g. class labels

non-adaptive hand-coded features

Apple
Orange

Slide credit: G. Hinton
Multi-Layer Perceptrons (~1985)

\[u_i = g \left(\sum_{k \in N(i)} w_{k,i} g \left(\sum_{m \in N(k)} w_{m,k} u_m + b_k \right) + b_i \right) \]
Reminder: Non-linear decision boundaries

This is what the hidden layers should be doing!

\[g : X \rightarrow X' \]

\[f_\theta(x) = \begin{cases}
1 & \text{if } w g(x) + b \geq 0 \\
0 & \text{if } w g(x) + b < 0
\end{cases} \]
Nonlinear mapping $\mathbb{R}^2 \rightarrow \mathbb{R}^2$

Evolution of isocontours as parameters change

\[y_1 = g(w_{1,1}x_1 + w_{1,2}x_2 + w_{1,3}) \]
\[y_2 = g(w_{2,1}x_1 + w_{2,2}x_2 + w_{2,3}) \]

\[x = \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} \]

\[y = g(Wx) \]

From non-separable to linearly separable

- Non-linearly separable data
- Data mapped to learned space
- Decision function

Linearizing a 2D classification task (4 hidden layers)
Linearization: may need higher dimensions

Points in 1D, Decision in 2D

Linearization: may need higher dimensions
Linearization: may need higher dimensions

Hidden Layers: intuitively, what do they do?

Intuition: learn “dictionary” for objects

“Distributed representation”:
represent (and classify) objects by mixing & mashing reusable parts

[0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 ...] truck feature
Deep Learning = Hierarchical Compositionality

“car”
Deep Learning = Hierarchical Compositionality

Low-Level Feature → Mid-Level Feature → High-Level Feature → Trainable Classifier → “car”
MLP Demo: playground.tensorflow.org
Training and Optimization
Neural Network Training: Old & New Tricks

Old:

- Back-propagation algorithm
- Stochastic Gradient Descent, Momentum, “weight decay”

New: (last 5-6 years)

- Dropout
- ReLUs
- Batch Normalization
- Residual Networks
Training Goal

Our network implements a parametric function:

\[f_\theta : \mathbb{X} \rightarrow \mathbb{Y} \quad \hat{y} = f(x; \theta) \]

During training, we search for parameters that minimize a loss:

\[\min_{\theta} L_f(\theta) \]

Example: L2 regression loss given target \((x^i, y^i)\) pairs:

\[L_f(\theta) = \sum_i \| f(x^i; \theta) - y^i \|^2_2 \]
Gradient Descent Minimization Method

Initialize: θ_0

Update: $\theta_{i+1} = \theta_i - \alpha \nabla f(\theta_i)$

We can always make it converge for a **convex** function
Multiple Local Minima, based on initialization

Empirically all are almost equally good
Central research topic: how can this happen?

On to the gradients!
All you need is gradients

Forward

\[
\begin{align*}
X & \rightarrow Z \\
& \downarrow \theta
\end{align*}
\]

Backward

\[
\begin{align*}
\frac{\partial L}{\partial X} & \rightarrow \left\{ \frac{\partial Z}{\partial X}, \frac{\partial Z}{\partial \theta} \right\} & \frac{\partial L}{\partial Z} \\
& \downarrow \frac{\partial L}{\partial \theta}
\end{align*}
\]
Chain Rule

Given $y(x)$ and $\frac{dL}{dy}$, what is $\frac{dL}{dx}$?
Chain Rule

Given $y(x)$ and $\frac{dL}{dy}$, what is $\frac{dL}{dx}$?

$$\frac{dL}{dx} = \frac{dL}{dy} \cdot \frac{dy}{dx}$$
‘Another Brick in the Wall’

Given $y(x)$ and $\frac{dL}{dy}$, what is $\frac{dL}{dx}$?

$$\frac{dL}{dx} = \frac{dL}{dy} \cdot \frac{dy}{dx}$$
Toy example: single sigmoidal unit

\[f(w, x) = \frac{1}{1 + \exp(-(w_0x_0 + w_1x_1 + w_2))} \]

Composition of differentiable blocks:

\[f(x) = \frac{1}{x} \quad \rightarrow \quad f'(x) = -\frac{1}{x^2} \]
\[f_c(x) = c + x \quad \rightarrow \quad f'(x) = 1 \]
\[f(x) = e^x \quad \rightarrow \quad f'(x) = e^x \]
\[f_a(x) = ax \quad \rightarrow \quad f'(x) = a \]
Computation graph & automatic differentiation

Slide Credit: Justin Johnson
Multi-Layer Perceptrons

\[u_i = g \left(\sum_{k \in N(i)} w_{k,i} g \left(\sum_{m \in N(k)} w_{m,k} u_m + b_k \right) + b_i \right) \]
Multi-Layer Perceptrons

Compare outputs with correct answer to get error signal

Back-propagate error signal to get derivatives for learning

Slide Credit: G. Hinton
Back-propagation Algorithm
Training Goal

Our network implements a parametric function:

\[f_\theta : \mathbb{X} \rightarrow \mathbb{Y} \quad \hat{y} = f(x; \theta) \]

During training, we search for parameters that minimize a loss:

\[\min_\theta L_f(\theta) \]

Example: L2 regression loss given target \((x^i, y^i)\) pairs:

\[L_f(\theta) = \sum_i \| f(x^i; \theta) - y^i \|_2^2 \]
A Neural Network for Multi-way Classification

\[x_n \xrightarrow{V} a_n \xrightarrow{g} z_n \xrightarrow{W} b_n \xrightarrow{h} \hat{y}_n \]

Parameters: \(\theta = \{ V, W \} \)

Inputs

Outputs

Hidden layer
A Neural Network in Forward Mode

\[a = Vx \]

Inputs \[x_{nD}, x_{ni}, x_{n1} \]

Hidden layer \[z_{nH}, z_{nj}, z_{n1} \]

Outputs \[y_{nC}, y_{nk}, y_{n1} \]
A Neural Network in Forward Mode

\[z = g(a) \]

\[z_k = \frac{1}{1 + \exp(-a_k)} \]

Inputs

Outputs

Hidden layer
A Neural Network in Forward Mode

\[b = Wz \]

Inputs

Hidden layer

Outputs
A Neural Network in Forward Mode

\[\hat{y} = h(b) \]
Objective for linear regression

\[h(b) = b \]

\[\hat{y} = h(b) \quad y \]

\[
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}
\]

\[
l(\hat{y}, y) = \sum_{c=1}^{C} (y_c - \hat{y}_c)^2
\]
Objective for multi-class classification

Softmax unit

\[\hat{y}_k = \frac{\exp(b_k)}{\sum_{c=1}^{C} \exp(b_c)} \]

\[\hat{y} = h(b) \quad y \]

\[l(\hat{y}, y) = \sum_{c=1}^{C} y_c \log(\hat{y}_c) \quad \text{`Cross-entropy' loss} \]

Ground truth

\[
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}
\]
Neural network in forward mode: recap

Network output: \(\hat{y} = f(x; v, w) \)

Loss (prediction error): \(l(\hat{y}, y) \)

What we need to compute for gradient descent:

\[
\frac{\partial l(\hat{y}, y)}{\partial v_i} \quad \frac{\partial l(\hat{y}, y)}{\partial w_j}
\]
A Neural Network in Backward Mode

\[y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \]
A Neural Network in Backward Mode

Hidden layer

\[b = Wz \]

Outputs

\[y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \]

This we want

\[\frac{\partial l}{\partial w_{jk}} = ? \]
This we want?

\[\frac{\partial l}{\partial z_j} = ? \]

\[b = Wz \]

\[y \]

\[\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \]

Hidden layer

Outputs
Linear Layer in Forward Mode: All For One

\[b_m = \sum_{h=1}^{H} z_h w_{h,m} \]
Linear Layer in Backward Mode: One From All

\[b_m = \sum_{h=1}^{H} z_h w_{h,m} \]

\[\frac{\partial L}{\partial b_m} \]

\[\frac{\partial L}{\partial z_h} = \sum_{c=1}^{C} \frac{\partial L}{\partial b_c} \cdot \frac{\partial b_c}{\partial z_h} = \sum_{c=1}^{C} \frac{\partial L}{\partial b_c} w_{h,c} \]
Linear Layer Parameters in Backward: 1-to-1

\[b_m = \sum_{h=1}^{H} z_h w_{h,m} \]

\[\frac{\partial L}{\partial b_m} \]

\[\frac{\partial L}{\partial w_{h,m}} = \sum_{c=1}^{C} \frac{\partial L}{\partial b_c} \cdot \frac{\partial b_c}{\partial w_{h,m}} = \frac{\partial L}{\partial b_m} z_h \]
A Neural Network in Backward Mode

Hidden layer

\[b = Wz \]

\[y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \]

\[\frac{\partial l}{\partial w_{jk}} = \sum_m \left[\frac{\partial l}{\partial b_m} \frac{\partial b_m}{\partial w_{jk}} \right] = \frac{\partial l}{\partial b_m} z_j \]

This we want

This we have

This we computed
A Neural Network in Backward Mode

Hidden layer

\[b = Wz \]

\[y \]

\[\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \]

This we want

This we have

This we computed

\[\frac{\partial l}{\partial z_j} = \sum_m \frac{\partial l}{\partial b_m} \frac{\partial b_m}{\partial z_j} = \sum_m \frac{\partial l}{\partial b_m} w_{j,m} \]
A Neural Network in Backward Mode

$$z_k = \frac{1}{1 + \exp(-a_k)}$$

$$\frac{\partial l}{\partial a_k} = \sum_m \frac{\partial l}{\partial z_m} \frac{\partial z_m}{\partial a_k} = \frac{\partial l}{\partial z_k} g'(a_k) = \frac{\partial l}{\partial z_k} g(a_k)(1 - g(a_k))$$

Outputs

$$\begin{bmatrix} y \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
A Neural Network in Backward Mode

\[a = Vx \]

Hidden layer

\[z_k = \frac{1}{1 + \exp(-a_k)} \]

Outputs

\[
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}
\]
Neural Network Training: Old & New Tricks

Old:

- Back-propagation algorithm
- **Stochastic Gradient Descent, Momentum, “weight decay”**

New: (last 5-6 years)

- Dropout
- ReLUs
- Batch Normalization
Training Objective for N training samples

\[L(W) = \frac{1}{N} \sum_{i=1}^{N} l(y^i, \hat{y}^i) + \sum_l \sum_{k,m} \lambda_l (W_{k,m}^l)^2 \]

Per-sample loss
Per-layer regularization

Gradient descent:

\[W_{t+1} = W_t - c \nabla_W L(W_t) \]

(l,k,m) element of gradient vector:

\[\frac{\partial L}{\partial W_{k,m}^l} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial l(y^i, \hat{y}^i)}{\partial W_{k,m}^l} + 2\lambda_l W_{k,m}^l \]

Back-prop for i-th example

If N=10^6, we will need to run back-prop 10^6 times to update W once!
Stochastic Gradient Descent (SGD)

Gradient: \(\text{Batch: } [1..N] \)

\[
\frac{\partial L}{\partial W^l_{k,m}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial l(y^i, \hat{y}^i)}{\partial W^l_{k,m}} + 2\lambda_l W^l_{k,m}
\]

Noisy (‘Stochastic’) Gradient: \(\text{Minibatch: } \) B elements \(b(1), b(2), ..., b(B) \): sampled from \([1,N]\)

\[
\frac{\partial L}{\partial W^l_{k,m}} \sim \frac{1}{B} \sum_{i=1}^{B} \frac{\partial l(y^{b(i)}, \hat{y}^{b(i)})}{\partial W^l_{k,m}} + 2\lambda_l W^l_{k,m}
\]

\(\text{Epoch: } \) N samples, N/B batches
Code example

Gradient Descent
vs
Stochastic Gradient Descent
Regularization in SGD: Weight Decay

Gradient: **Batch: [1..N]**

\[
\frac{\partial L}{\partial W^l_{k,m}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial l(y^i, \hat{y}^i)}{\partial W^l_{k,m}} + 2\lambda_l W^l_{k,m}
\]

Noisy (‘Stochastic’) Gradient: **Minibatch: B elements b(1), b(2),…, b(B): sampled from [1,N]**

\[
\frac{\partial L}{\partial W^l_{k,m}} \sim \frac{1}{B} \sum_{i=1}^{B} \frac{\partial l(y^{b(i)}, \hat{y}^{b(i)})}{\partial W^l_{k,m}} + 2\lambda_l W^l_{k,m}
\]

Epoch: N samples, N/B batches

Back-prop on minibatch

“Weight decay”
Learning rate

\[W_{t+1} = W_t - \epsilon \nabla_W L(W_t) \]
Gradient Descent
(S)GD with adaptable stepsize

Too small: converge very slowly

Too big: overshoot and even diverge

Reduce size over time

\[\epsilon_t = \frac{C}{t} \]
Main idea: retain long-term trend of updates, drop oscillations

(S)GD

\[W_{t+1} = W_t - \epsilon_t \nabla_w L(W) \]

(S)GD + momentum

\[V_{t+1} = \mu V_t + (1 - \mu) \nabla_w L(W_t) \]

\[W_{t+1} = W_t - \epsilon_t V_{t+1} \]
Code example

Multi-layer perceptron classification
Step-size Selection & Optimizers: research problem

- Nesterov’s Accelerated Gradient (NAG)
- R-prop
- AdaGrad
- RMSProp
- AdaDelta
- Adam
- ...
Neural Network Training: Old & New Tricks

Old: (80’s)
 Stochastic Gradient Descent, Momentum, “weight decay”

New: (last 5-6 years)
 Dropout
 ReLUs
 Batch Normalization
Linearization: may need higher dimensions

\[a = Vx \quad \text{and} \quad b = Wz \]

Reminder: Overfitting, in images

Classification

Underfitting

just right

Overfitting

Regression
Previously: l2 Regularization

\[L(W) = \frac{1}{N} \sum_{i=1}^{N} l(y^i, \hat{y}^i) + \sum_{l} \lambda_l \sum_{k,m} (W^l_{k,m})^2 \]

Per-sample loss
Per-layer regularization
Each sample is processed by a ‘decimated’ neural net

Decimated nets: distinct classifiers
But: they should all do the same job
Dropout block

Figure 3: Comparison of the basic operations of a standard and dropout network.

\[
\begin{align*}
 z_i^{(l+1)} &= w_i^{(l+1)} y_i^{(l)} + b_i^{(l+1)}, \\
 y_i^{(l+1)} &= f(z_i^{(l+1)}),
\end{align*}
\]

\[
\begin{align*}
 r_{i,j}^{(l)} &\sim \text{Bernoulli}(p), \\
 \tilde{y}^{(l)} &= r^{(l)} \ast y^{(l)}, \\
 z_i^{(l+1)} &= w_i^{(l+1)} \tilde{y}^{(l)} + b_i^{(l+1)}, \\
 y_i^{(l+1)} &= f(z_i^{(l+1)}).
\end{align*}
\]

‘Feature noising’
Test time: Deterministic Approximation

[Diagram showing the relationship between the number of samples used for Monte-Carlo averaging and test classification error percentage.]

- Present with probability p
- Always present

(a) At training time
(b) At test time
Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.
Neural Network Training: Old & New Tricks

Old: (80’s)
 Stochastic Gradient Descent, Momentum, “weight decay”

New: (last 5-6 years)
 Dropout
 ReLUs
 Batch Normalization
‘Neuron’: Cascade of Linear and Nonlinear Function

Sigmoidal ("logistic")

\[g(a) = \frac{1}{1 + \exp(-a)} \]

Rectified Linear Unit (RELU)

\[g(a) = \max(0, a) \]
Reminder: a network in backward mode

$$z_k = \frac{1}{1 + \exp(-a_k)}$$

Gradient signal from above

$$\frac{\partial l}{\partial a_k} = \sum_m \frac{\partial l}{\partial z_m} \frac{\partial z_m}{\partial a_k}$$

Output scaling: <1 (actually <0.25)

$$g'(a_k) = \frac{\partial l}{\partial z_k} g(a_k) (1 - g(a_k))$$
Vanishing Gradients Problem

Gradient signal from above
\[
\frac{\partial l}{\partial a_k} = \sum_m \frac{\partial l}{\partial z_m} \frac{\partial z_m}{\partial a_k} = \frac{\partial l}{\partial z_k} g'(a_k) = \frac{\partial l}{\partial z_k} g(a_k)(1 - g(a_k))
\]

scaling: <1 (actually <0.25)

Do this 10 times: updates in the first layers get minimal
Top layer knows what to do, lower layers “don’t get it”
Sigmoidal Unit: Signal is not getting through!
Vanishing Gradients Problem: ReLU Solves It

Gradient signal from above

\[
\frac{\partial l}{\partial a_k} = \sum_m \frac{\partial l}{\partial z_m} \frac{\partial z_m}{\partial a_k} = g'(a_k)
\]

Scaling: \(\{0, 1\}\)

\[
g(a) = \max(0, a)
\]

\[
g'(a) = \begin{cases}
1 & a > 0 \\
0 & a < 0
\end{cases}
\]
Neural Network Training: Old & New Tricks

Old: (80’s)
 Stochastic Gradient Descent, Momentum, “weight decay”

New: (last 5-6 years)
 Dropout
 ReLUs
 Batch Normalization
External Covariate Shift: your input changes

10 am

2pm

7pm
“Whitening”: Set Mean = 0, Variance = 1

Photometric transformation: \(I \rightarrow aI + b \)

- Make each patch have zero mean:
 \[
 \mu = \frac{1}{N} \sum_{x,y} I(x, y)
 \]
 \[
 Z(x, y) = I(x, y) - \mu
 \]

- Then make it have unit variance:
 \[
 \sigma^2 = \frac{1}{N} \sum_{x,y} Z(x, y)^2
 \]
 \[
 ZN(x, y) = \frac{Z(x, y)}{\sigma}
 \]

Original Patch and Intensity Values

Brightness Decreased

Contrast increased,
Internal Covariate Shift

Neural network activations during training: moving target
Batch Normalization

Whiten-as-you-go:

- Normalize the activations in each layer within a mini-batch.
- Learn the mean and variance (γ, β) of each layer as parameters.
Batch Normalization: used in all current systems

- Multi-layer CNN's train faster with fewer data samples (15x).
- Employ faster learning rates and less network regularizations.
- Achieves state of the art results on ImageNet.
Convolutional Neural Networks
Example: 200x200 image
40K hidden units
~2B parameters!!!

- Spatial correlation is local
- Waste of resources
- We have not enough training samples anyway.
Locally-connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good when input image is registered (e.g., face recognition).
Locally-connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good when input image is registered (e.g., face recognition).
Convolutional Layer

Share the same parameters across different locations (assuming input is stationary):

Convolutions with learned kernels
Convolutional Layer
Fully-connected layer

\[
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
 \vdots \\
 y_K
\end{bmatrix}
= \begin{bmatrix}
w_{1,1} & w_{1,2} & w_{1,3} & w_{1,4} & \cdots & w_{1,K} \\
w_{2,1} & w_{2,2} & w_{2,3} & w_{2,4} & \cdots & w_{2,K} \\
w_{3,1} & w_{3,2} & w_{3,3} & w_{3,4} & \cdots & w_{3,K} \\
w_{4,1} & w_{4,2} & w_{4,3} & w_{4,4} & \cdots & w_{4,K} \\
\vdots \\
w_{K,1} & w_{K,2} & w_{K,3} & w_{K,4} & \cdots & w_{K,K}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\vdots \\
x_K
\end{bmatrix}
\]

#of parameters: K^2
Convolutional layer

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
\vdots \\
y_K
\end{bmatrix} =
\begin{bmatrix}
w_0 & w_1 & w_2 & 0 & \ldots & 0 \\
0 & w_0 & w_1 & w_2 & \ldots & 0 \\
0 & 0 & w_0 & w_1 & \ldots & 0 \\
0 & 0 & 0 & w_0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & w_0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\vdots \\
x_K
\end{bmatrix}
\]

#of parameters: size of window
Convolutional layer
Code example

Learning an edge filter
Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters
Convolutional layer

\[h_i^n = \max \left\{ 0, \sum_{j=1}^{\text{#input channels}} h_{j}^{n-1} * w_{i,j}^{n} \right\} \]

output feature map
input feature map
kernel

\[h_1^{n-1}, h_2^{n-1}, h_3^{n-1} \rightarrow \text{Conv. layer} \rightarrow h_1^n, h_2^n \]
Convolutional layer

\[h_i^n = \max \left\{ 0, \sum_{j=1}^{\text{#input channels}} h_{j}^{n-1} \ast w_{ij}^n \right\} \]

output feature map
input feature map
kernel
Convolutional layer

\[h_i^n = \max \left\{ 0, \sum_{j=1}^{\text{#input channels}} h_{j}^{n-1} \ast w_{ij}^n \right\} \]

output feature map
input feature map
text kernel

\[h_{1}^{n-1}, h_{2}^{n-1}, h_{3}^{n-1}, h_{2}^{n} \]
Pooling layer

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?
Pooling layer

By “pooling” (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.
Pooling layer: receptive field size

If convolutional filters have size $K \times K$ and stride 1, and pooling layer has pools of size $P \times P$, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: $(P+K-1) \times (P+K-1)$
Pooling layer: receptive field size

If convolutional filters have size $K \times K$ and stride 1, and pooling layer has pools of size $P \times P$, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: $(P+K-1) \times (P+K-1)$
Receptive field
Receptive field: layer 1
Receptive field: layer 2
Receptive field: layer 3
Receptive field: layer 4
Receptive field: layer 5
Receptive field: layer 6
Receptive field: layer 7
Receptive field: layer 8
Modern Architectures
CNNs, late 1980’s: LeNet

Gradient-based learning applied to document recognition.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998

https://www.youtube.com/watch?v=FwFduRA_L6Q
What happened in between?

deep learning = neural networks (+ big data + GPUs) + a few more recent tricks!
Code example

Convolutional Network and Filter Visualizations
Parameter Initialization

• All zero initialization: All parameters get the same gradient and same updates
 \[w = 0 \]

• Random initialization: Is sometimes used in practice, but variance of output depends on number of inputs, which may cause instability early on
 \[w \sim \mathcal{N}(\mu = 0, \sigma = 0.01) \]

• Kaiming initialization: divide standard deviation by number of inputs
 \[w \sim \mathcal{N}(\mu = 0, \sigma = \frac{0.01}{n}) \]
 \(n \): number of inputs (fan-in)
Code examples

Parameter initialization
CNNs, 2012

AlexNet
CNNs, 2014: VGG

Karen Simonyan, Andrew Zisserman (=Visual Geometry Group)
Very Deep Convolutional Networks for Large-Scale Image Recognition,
arxiv, 2014.
CNNs, 2014: GoogLeNet

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
Going Deeper with Convolutions, CVPR 2015
CNNs, 2015: ResNet

ResNet
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,
Deep Residual Learning for Image Recognition
CVPR 2016
The Deeper, the Better

- Deeper networks can cover more complex problems
 - Increasingly large receptive field size & rich patterns

Revolution of Depth

ImageNet Classification top-5 error (%)
Going Deeper

- From 2 to 10: 2010-2012
 - ReLUs
 - Dropout
 - ...
Going Deeper

- From 10 to 20: 2015
 - Batch Normalization
Going Deeper

- From 20 to 100/1000
 - Residual networks
Plain network: deeper is not necessarily better

- Plain nets: stacking 3x3 conv layers
- 56-layer net has higher training error and test error than 20-layer net
Residual Network

- Naïve solution
 - If extra layers are an identity mapping, then training errors can not increase
Residual Modelling: Basic Idea in Image Processing

- Goal: estimate update between an original image and a changed image
Residual Network

• Plain block
 - Difficult to make identity mapping because of multiple non-linear layers
Residual Network

• Residual block
 – If identity were optimal, easy to set weights as 0
 – If optimal mapping is closer to identity, easier to find small fluctuations

Appropriate for treating perturbation as keeping a base information

\[H(x) = F(x) + x \]
Residual Network: deeper is better

- Deeper ResNets have lower training error
Residual Network: deeper is better
CNNs, 2017: DenseNet

Densely Connected Convolutional Networks, CVPR 2017
Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

Recently proposed, better performance/parameter ratio
Image-to-Image
Image-to-image

• So far we mapped an image image to a number or label
• In graphics, output often is “richer”:
 – An image
 – A volume
 – A 3D mesh
 – ...
• Architectures
 – Encoder-Decoder
 – Skip connections
Fully-convolutional Neural Networks
Fully-convolutional Neural Networks

FCNN
Fully-convolutional Neural Networks
Fully-convolutional Neural Networks

→ FCNN
Fully-convolutional Neural Networks

Fast (shared convolutions)
Simple (dense)

FCNN
Fully Convolutional Neural Networks in Practice

32-fold decimation
224x224 to 7x7

Fast (shared convolutions)
Simple (dense)
Low resolution

FCNN
Receptive field arithmetic

https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
Atrous convolution

downsampling x 2

convolve

‘implant’ in image coordinates

S. Mallat, An introduction to wavelets, 1989
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, Alan L. Yuille
Atrous convolution = Dilated Convolution

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3. (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7. (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15. The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

F. Yu, V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016
Graphics: Multiresolution
Encoder-decoder
Interpretation

- Turns image into vector
- This vector is a very compact and abstract “code”
- Turns code back into image
Encoder-decoder

Code example

Colorization Network
Up-sampling

- We saw
 - ... how to keep resolution
 - ... how to reduce it with pooling
- But how to increase it again?
- Options
 - Interpolation
 - Padding (insert zeros)
 - Transpose convolutions
Encoder-decoder + Skip connections

- **1st**: Reduce resolutions as before
- **2nd**: Increase resolution
- Transposed convolutions

U-Net: Convolutional Networks for Biomedical Image Segmentation. Ronneberger et al. 2015
Encoder-decoder with skip connections
Interpretation

- Turns image into vector
- Turns vector back into image
- At every step of increasing the resolution, check back with the input to preserve details
- Familiar trick to graphics people
 - (Haar) wavelet
 - Residual coding
 - Pyramidal schemes (Laplacian pyramid, etc.)
Deep Learning Frameworks
Main frameworks

- TensorFlow™ (Python, C++, Java)
- Keras (Python, backends support other languages)
- PyTorch (Python)
- Caffe (C++, Python, Matlab)

Currently less frequently used

- Chainer (Python)
- Theano (Python)
- Caffe2 (Python, C++)
- CNTK (Python, C++, C#)
- MATLAB (Matlab)
- DL4J (Python, Java, Scala)
- mxnet (Python, C++, and others)
Popularity

Google Trends for search terms: “[name] github”

Google Trends for search terms: “[name] tutorial”
Typical Training Steps

```python
for i = 1 .. max_iterations

    input, ground_truth = load_minibatch(data, i)

    output = network_evaluate(input, parameters)

    loss = compute_loss(output, ground_truth)

    # gradients of loss with respect to parameters
    gradients = network_backpropagate(loss, parameters)

    parameters = optimizer_step(parameters, gradients)
```
Tensors

- Frameworks typically represent data as tensors
- Examples:

4D input data: $B \times C \times H \times W$

4D convolution kernel: $OC \times IC \times KH \times KW$

- Feature channels C
- Spatial width W
- Spatial height H
- Batches B
- Input channels IC
- Kernel height KH
- Kernel width KW
- Output channels OC
What Does a Deep Learning Framework Do?

• Tensor math
• Common network operations/layers
• Gradients of common operations
• Backpropagation
• Optimizers
• GPU implementations of the above
• usually: data loading, network parameter saving/loading
• sometimes: distributed computing
Automatic Differentiation & the Computation Graph

parameters = (weight, bias)
output = σ(weight * input + bias)
loss = (output - ground_truth)^2

gradients of loss with respect to parameters
gradients = backpropagate(loss, parameters)

Since loss is a scalar, the gradients are the same size as the parameters
Automatic Differentiation & the Computation Graph

\[\text{outputs} = \text{forward}(\text{inputs}, \text{parameters}) \]

\[\frac{\partial \text{loss}}{\partial \text{inputs}}, \frac{\partial \text{loss}}{\partial \text{parameters}} = \text{backward}(\frac{\partial \text{loss}}{\partial \text{outputs}}) \]
Static vs Dynamic Computation Graphs

- Static analysis allows optimizations and distributing workload
- Dynamic graphs make data-driven control flow easier
- In static graphs, the graph is usually defined in a separate ‘language’
- Static graphs have less support for debugging

Static

```python
x = Variable()
loss = if_node(x < parameter[0],
               x + parameter[0],
               x - parameter[1])
```

```python
for i = 1 .. max_iterations
  x = data()
  run(loss)
  backpropagate(loss, parameters)
```

Dynamic

```python
for i = 1 .. max_iterations
  x = data()
  if x < parameter[0]
    loss = x + parameter[0]
  else
    loss = x - parameter[1]
  backpropagate(loss, parameters)
```
Tensorflow

- Currently the largest community
- Static graphs (dynamic graphs are in development: Eager Execution)
- Good support for deployment
- Good support for distributed computing
- Typically slower than the other three main frameworks on a single GPU
PyTorch

- Fast growing community
- Dynamic graphs
- Distributed computing is in development (some support is already available)
- Intuitive code, easy to debug and good for experimenting with less traditional architectures due to dynamic graphs
- Very Fast
Keras

- A high-level interface for various backends (Tensorflow, CNTK, Theano)
- Intuitive high-level code
- Focus on optimizing time from idea to code
- Static graphs
Caffe

- Created earlier than Tensorflow, PyTorch or Keras
- Less flexible and less general than the other three frameworks
- Static graphs
- Legacy - to be replaced by Caffe2: focus is on performance and deployment
 - Facebook’s platform for Detectron (Mask-RCNN, DensePose, ...)

EG Course Deep Learning for Graphics
Converting Between Frameworks

- Example: develop in one framework, deploy in another
- Currently: a large range of converters, but no clear standard
- Standardized model formats are in development

<table>
<thead>
<tr>
<th>convertor</th>
<th>tensorflow</th>
<th>pytorch</th>
<th>keras</th>
<th>caffe</th>
<th>caffe2</th>
<th>CNTK</th>
<th>chainer</th>
<th>mxnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>tensorflow</td>
<td>-</td>
<td>pytorch-tf/ MMdnn</td>
<td>model-converters/ nn_toolsconvert-to-tensorflow/MMdnn</td>
<td>MMdnn/ nn_tools</td>
<td>None</td>
<td>crosstalk/MMdnn</td>
<td>None</td>
<td>MMdnn</td>
</tr>
<tr>
<td>pytorch</td>
<td>MMdnn/ nn-transfer</td>
<td>-</td>
<td>Pytorch2keras/ nn-transfer</td>
<td>Pytorch2caffe/pytorch-caffe-darknet-convert</td>
<td>onnx-caffe2</td>
<td>ONNX</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>keras</td>
<td>MMdnn/ nn-transfer</td>
<td>-</td>
<td>-</td>
<td>MMdnnnnn_tools</td>
<td>None</td>
<td>MMdnn</td>
<td>None</td>
<td>MMdnn</td>
</tr>
<tr>
<td>caffe</td>
<td>MMdnn/nn_tools/caffe-tensorflow</td>
<td>MMdnn/ pytorch-caffe-darknet-convert/ pytorch-resnet</td>
<td>caffe_weight_converter/ caffe2keras/nn_tools/kerascaffe2keras/Deep_Learning_Model_Converter/MMdnn</td>
<td>-</td>
<td>CaffeToCaffe2</td>
<td>crosstalkcaffe/CaffeConverter/MMdnn</td>
<td>None</td>
<td>MMdnn</td>
</tr>
<tr>
<td>caffe2</td>
<td>None</td>
<td>ONNX</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>-</td>
<td>ONNX</td>
<td>None</td>
</tr>
<tr>
<td>CNTK</td>
<td>MMdnn</td>
<td>ONNX</td>
<td>MMdnn</td>
<td>MMdnn</td>
<td>ONNX</td>
<td>-</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>chainer</td>
<td>None</td>
<td>chainer2pytorch</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>mxnet</td>
<td>MMdnn</td>
<td>MMdnn</td>
<td>MMdnn</td>
<td>MMdnn/MMXNet2Caffe/MMnet2Caffe</td>
<td>None</td>
<td>MMdnn</td>
<td>None</td>
<td>-</td>
</tr>
</tbody>
</table>
ONNX

- Standard format for models
- Native support in development for Pytorch, Caffe2, Chainer, CNTK, and MxNet
- Converter in development for Tensorflow

MMdnn

- Converters available for several frameworks
- Common intermediate representation, but no clear standard
The end