Deep Learning for Graphics

Supervised Applications

Niloy Mitra
UCL

Iasonas Kokkinos
UCL/Facebook

Paul Guerrero
UCL

Vladimir Kim
Adobe Research

Kostas Rematas
U Washington

Tobias Ritschel
UCL
Timetable

<table>
<thead>
<tr>
<th></th>
<th>Niloy</th>
<th>Iasonas</th>
<th>Paul</th>
<th>Vova</th>
<th>Kostas</th>
<th>Tobias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NN Basics</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervised Applications</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsupervised Applications</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beyond 2D</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlook</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Fully-Convolutional Network (FCN)

Fast (shared convolutions)
Simple (dense)
FCN-CRFs: Deeplab

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille,
Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, PAMI 2016
Deeplab v2 results

Ground truth

FCN

FCN-DCRF
Deeplab v2 results

Ground truth FCN FCN-DCRF
Object Detection: Fast(er)-RCNN

- Fast/Faster R-CNN
 - Good speed
 - Good accuracy
 - Intuitive
 - Easy to use

Mask R-CNN

• Mask R-CNN = **Faster R-CNN** with **FCN** on RoIs
Mask R-CNN results on COCO
Mask R-CNN for Human Keypoint Detection

- 1 keypoint = 1-hot “mask”
- Human pose = 17 masks
- Softmax over **spatial locations**
 - e.g. 56^2-way softmax on 56x56
Mask R-CNN frame-by-frame
Mask R-CNN frame-by-frame
UberNet: a “universal” network for all tasks

https://github.com/jkokkin/UberNet

I. Kokkinos, UberNet: Training a Universal CNN for Low- Mid- and High-Level Vision, CVPR 2017
What is the ultimate vision task?

“Inverse graphics”: understand how an image was generated from a scene
If we focus on a single object category: surface-based models

UberNet: Universal Network

DensePose: Unified model
DenseReg: dense image-to-face regression

R. A. Guler, G. Trigeorgis, E. Antonakos, P. Snape, S. Zafeiriou, I. Kokkinos,
DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild, CVPR 2017
DensePose: dense image-to-body correspondence

R. A. Guler, N. Neverova, I. Kokkinos “DensePose: Dense Human Pose Estimation In The Wild”, CVPR’18
SFSNet: incorporating image formation in model

SfSNet: Learning Shape, Reflectance and Illuminance of Faces ‘in the wild' Soumyadip Sengupta Angjoo Kanazawa Carlos D. Castillo David W. Jacobs, CVPR 2018
Beyond single frames: end-to-end optical flow

FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, Thomas Brox
University of Freiburg, Germany

——— Supplementary Material ———
End-to-end Structure From Motion

- DeMoN: Depth and Motion Network for Learning Monocular Stereo, B. Ummenhofer, et al, CVPR 2017
- Unsupervised learning of depth and ego-motion from video, T Zhou, M Brown, N Snavely, DG Lowe, CVPR 2017
Monocular depth & normal estimation

- D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture, ICCV 2015
Graphics applications
Sketch Simplification

- *Deep Extraction of Manga Structural Lines*, Li et al., 2017
Sketch Simplification: Learning to Simplify
Sketch Simplification: *Learning to Simplify*

- Loss for thin edges saturates easily
- Authors take extra steps to align input and ground truth edges

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.
Image Decomposition

• A selection of methods:
 • *Direct Instrinsics*, Narihira et al., 2015
 • *Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition*, Zhou et al., 2015
 • *Decomposing Single Images for Layered Photo Retouching*, Innamorati et al. 2017
Image Decomposition: Decomposing
Single Images for Layered Photo Retouching
Colorization

• Concurrent methods:
 • *Let there be Color!*, Iizuka et al., 2016
 • *Colorful Image Colorization*, Zhang et al. 2016
 • *Learning Representations for Automatic Colorization*, Larsson et al., 2016
 • *Real-Time User-Guided Image Colorization with Learned Deep Priors*, Zhang et al. 2017
Colorization: Let There Be Color!

Let there be Color!: Iizuka et al.
Colorization: *Colorful Image Colorization*

Input:
- Direct regression
- Probability distribution

Output:
- Color ab
- Lab image

Image Credit: Colorful Image Colorization, Zhang et al.
Mesh Labeling / Segmentation

3D Mesh Labeling via Deep Convolutional Neural Networks, Guo et al. 2016

(a) candelabra (b) lamp (c) guitar
(d) armadillo (e) chair (f) fourleg
(g) ant (h) human (i) fish
Mesh Labeling / Segmentation

3D Mesh Labeling via Deep Convolutional Neural Networks, Guo et al.
LDR to HDR Image Reconstruction:

• Concurrently:
 • *Deep Reverse Tone Mapping*, Endo et al. 2017
 • *HDR image reconstruction from a single exposure using deep CNNs*, Eilertsen et al. 2017
Reflectance Maps

• Paint a sphere as if it is made of a material under a certain illumination of another object in a photo

Deep Reflectance Maps. Rematas et al. CVPR 2015
DeLight

• Factor BRDF and (HDR) Illumination

3D volumes form Xrays

Single-Image Tomography: 3D Volumes from 2D Cranial X-Rays. Henzler et al. EG 2018
Deep Shading

• Paint a z-buffer like a path tracer (AO, DOF, MB)

Deep Shading, Nalbach et al. EGSR 2017
Rendering Atmospherics

Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting Neural Networks, Kallweit et al. SIGGRAPH Asia 2017

Reference RPNN (9 min) Reference RPNN (9 min)

Speed up approx. 24 x Speed up approx. 24 x
Rendering Atmospherics: RPNN

In: Hierarchical representation of a cloud patch
Out: incoming indirect radiance at patch center
(incoming direct radiance is computed directly)

Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting Neural Networks, Kallweit et al. SIGGRAPH Asia 2017
Denoising Renderings

• Concurrent:
 • *Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings*, Bako et al. 2017
 • *Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder*, Chaitanya et al. 2017 (more on Autoencoders later)
Denoising Renderings:

Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al. SIGGRAPH 2017
Geometry Abstraction / Simplification

Learning Shape Abstractions by Assembling Volumetric Primitives, Tulsiani et al. 2016
Geometry Abstraction / Simplification:

Learning Shape Abstractions by Assembling Volumetric Primitives, Tulsiani et al. 2016
Procedural Parameter Estimation

Procedural Parameter Estimation: *Interactive Sketching of Urban Procedural Models*

Interactive Sketching of Urban Procedural Models, Nishida et al.
Audio-driven facial animation

Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion, Karras et al. 2017
3D Pose Estimation: VNect

VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera, Mehta et al., SIGGRAPH 2017
Thank you!

http://geometry.cs.ucl.ac.uk/dl4g/