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Abstract
Understanding patterns of variation from raw measurement data remains a central goal of shape analysis. Such an understanding
reveals which elements are repeated, or how elements can be derived as structured variations from a common base element. We
investigate this problem in the context of 3D acquisitions of buildings. Utilizing a set of template models, we discover geometric
similarities across a set of building elements. Each template is equipped with a deformation model that defines variations of a
base geometry. Central to our algorithm is a simultaneous template matching and deformation analysis that detects patterns
across building elements by extracting similarities in the deformation modes of their matching templates. We demonstrate that
such an analysis can successfully detect structured variations even for noisy and incomplete data.
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1. Introduction

Many applications involving digital cities, such as mapping and
navigation, heavily depend on three-dimensional (3D) models of
buildings. One way to create such content is to digitize real-world
scenes using different 3D acquisition technologies such as multi-
view stereo reconstruction (MVS) or 3D scanning. However, many
challenges arising from lighting variations, occlusions, specular sur-
faces still remain unsolved, and often result in noisy and partial
reconstructions.

A possible approach to provide effective priors to augment recon-
struction algorithms is to explore similarity patterns among building
elements. However, it is extremely challenging to recover such pat-
terns from noisy and incomplete raw acquisitions such as MVS or
3D scan data. In this paper, we present an algorithm to discover el-
ement similarities by directly analysing the given raw acquisitions.

∗Both the authors contributed equally.

We focus on detecting two types of element similarities that
are common in urban scenes. Given a common base geometry
and a structure-preserving deformation model, some elements are
derived via identical deformation parameters and thus exhibit full
similarity. Some elements, on the other hand, share only a subset of
the deformation parameters and thus exhibit partial similarity. Such
elements demonstrate structured variations of the base geometry, for
example, windows with identical arch but varying height. In order
to capture this general notion of similarity, we propose to utilize a
set of template models of common element types. Each template is
equipped with a deformation model that defines a rich set of varia-
tions of its base geometry. Given such a set of templates, we abstract
element similarities by similarities in template deformations.

Robust template matching and fitting is necessary to reliably
detect element similarities. However, noise and outliers in raw
reconstructions unfortunately prohibit this. One way to improve
template fitting is to propagate information across similar elements.
However, neither the template deformations nor element similarities
are known upfront. Hence, we propose an iterative algorithm to
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Figure 1: (Dataset 1) Given a 3D building acquisition, we detect
element similarities using a set of deformable templates. From an
initial pairwise element similarity matrix, we optimize to reveal
element clusters as shown in the final similarity matrix. We show
the selected templates (in blue) and the similarities detected across
the instances of these templates matching to each element cluster
(in green in the graph). For example, the blue window instances
have equal height but varying width and arch.

simultaneously perform template matching and fitting across
multiple elements. For each template, we discover the subset of its
parameters that are similar across multiple elements matching to this
template. We repeat the template deformation across these elements
by enforcing such parameters to stay similar. This way of coupling
the template deformation across multiple elements progressively
improves the robustness of template fitting. In addition, such
coupled parameters reveal both full and partial element similarities.

1.1. Contributions

Our key contribution is to extract similarity patterns among a set
of input elements by utilizing deformable templates. Such patterns
not only reveal replicated elements, but also expose structured vari-
ations among elements that are derived from the same base geome-
try. Central to our analysis is the coupling of template fitting across
multiple elements via the extracted deformation parameters. In con-
trast to prior work which focuses on individual template fitting, this
coupling enables our algorithm to handle challenging datasets with
significant amount of noise and missing data.

2. Related Work

2.1. Urban reconstruction

A vast body of research exists to digitize urban scenes. Pro-
cedural modelling is an efficient way to create high-quality
models [VAW*10], but obtaining a suitable generative procedure to

create a target shape is challenging. Image-based modelling [Qua10,
WKM15] and LiDAR scanning [MWA*13] are among the most
common approaches for reconstruction of existing architecture.
However, the output of such approaches is often incomplete and
noisy, and rarely exposes the structure of the original models. We
propose to analyse such raw output to reveal high-level structures
by utilizing deformable templates.

2.2. Template-based reconstruction

Buildings are often constructed from similar elements due to
economic and style considerations. In an early attempt, Dick
et al. [DTRC01] use a set of parameterized part templates to create
3D models from single images. Schindler et al. [Sch03] fit seg-
mented image measurements to a set of pre-defined shape templates
to create Computer-aided-design (CAD)-like 3D facade reconstruc-
tion; Pauly et al. [PMG*05] warp selected models from a database
of 3D shapes and combine suitable parts towards object completion;
Chen et al. [CKX*08] propose an interactive setup to lift freehand
sketches to 2.5D using a database of architectural elements. The
GlobFit system [LWC*11] proposes a primitive-based analyse and
reconstruct setting, where arrangements among primitives are dis-
covered. Lafarge et al. [LKBH13] has demonstrated a primitive-
based hybrid MVS reconstruction approach for large scale models.
Typical man-made objects have also been used for indoor scene un-
derstanding [KMYG12, NXS12]. Bao et al. [BCLS13] use anchor
points to deform and fit shape templates to poor quality scans. Kurz
et al. [KWW*14] propose a template deformation approach that
preserves symmetry properties of templates while fitting a scanned
object.

All such template-based approaches either assume that exact
shape templates are available, or only allow limited deviations from
the templates. Furthermore, multiple templates are fitted indepen-
dently across the scene making it challenging to ensure robustness
for partial inputs or a limited template database. Our key contribu-
tion is to perform template fitting across multiple elements simul-
taneously while coupling the deformation parameters of templates
detected as similar. This analysis not only enables to handle noisy
scans but also helps to understand structured variations based on the
correlation among the deformation parameters.

2.3. Symmetry analysis

Symmetry is ubiquitous in man-made environments and finding
symmetries in geometric data has received significant attention.
Transformation-space voting [MGP06, PMW*08] and spectral anal-
ysis [LCDF10] are among the common approaches proposed (see
the survey by Mitra et al. [MPWC13]). The method of Pauly
et al. [PMW*08] is only applicable for detecting regular repeti-
tions whereas our method does not make any assumption about the
spatial arrangement of repeated structures. The method of Mitra
et al. [MGP06] and Lipman et al. [LCDF10], on the other hand,
focus on detection of exact/approximate symmetries. In contrast,
our goal is to detect structured variations between input elements
by discovering partial similarities across deformed templates. This
is a problem that has not been addressed by any of the previous
methods.
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Symmetry results in redundant measurements and thus has been
effectively exploited in the context of urban modelling to consoli-
date and improve noisy reconstructions [ZSW*10, JTC11, LZS*11,
WFP11, CML*12]. Most of the proposed approaches, however, fo-
cus on detection of replicated elements, often arranged as regular
grids. In contrast, we focus on detection of full and partial element
similarities with no assumption on their spatial arrangement.

2.4. Pattern detection

A common practice for detecting patterns is to employ the input with
a set of descriptors. Leifman et al. [LT13] segment a given surface
into pattern and non-pattern vertices using a combination of point
feature and curvature histograms. Liu et al. [LMLR07] detect peri-
odic reliefs on triangle meshes based on the auto-correlation of cur-
vatures of the boundary points. Shechtman et al. [SI07] present local
self-similarity descriptors to match images based on self-similarity
of colour, edges and repetition patterns. In case of noisy and incom-
plete data, however, it is challenging to detect reliable descriptors.
Hence, we propose an iterative approach where element similarities
are abstracted by patterns in template deformations.

2.5. Co-analysis

Reconciling observations from multiple instances of data to ex-
tract reliable information is common in the literature. Learned-
Miller [LM06] jointly aligns a set of images in a process called
congealing. An affine transformation for each image in a stack is
computed to minimize the variance for each pixel location in the
stack. Faktor et al. [FI13] co-segment an object of interest in a given
set of images by aggregating information from corresponding im-
age patches. In the context of visual element discovery, Doersch
et al. [DSG*12] use a discriminative clustering approach to detect
distinctive image patches from a large set of geotagged imagery.
Similarly, we present a simultaneous analysis to detect deformation
patterns among a set of elements. We aggregate observations from
multiple deformable templates to extract reliable similarity patterns.

3. Overview

We present a template matching and deformation algorithm to un-
derstand structured variations between building elements. We use a
set of template models of common element types such as windows.
Each such template is characterized by a set of deformation parame-
ters that define its structured variations (see Figure 2). Our algorithm
operates on a 3D reconstruction (MVS or scan) of a building where
an element, for example, a window, constitutes the subset of the in-
put reconstruction falling inside its bounding box. For each of these
elements, we identify the best matching template and compute the
best fitting deformation of this template, which we call a template
instance. A key feature of the proposed algorithm is to reveal geo-
metric similarities among the elements by detecting patterns in the
deformation parameters of their matching template instances.

Typically, we observe two types of relations between given ele-
ments. First, elements that are replicas of the same geometry should
be matched to the same instance of the same template. Second, ele-
ments that exhibit variations of a base geometry, for example, win-
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Figure 2: For the template T equipped with the i-Wires deformation
model, we illustrate various instances (T 0, . . . , T 3) with different
parameters of the detected feature wires (shown in red). We also
show several column instances generated by a parametric model.
Each instance is visualized as a point in the corresponding defor-
mation space using multi-dimensional scaling projection.

0

1

input elements mapping to deformation space similarity matrices

sim
ilarity m

atrix color bar

width

he
ig

ht T

(a)

width

he
ig

ht T

(b)

Figure 3: (a) In case of perfect input data, elements with the same
geometry are mapped to a single point in the 2D deformation space
of a rectangular template T . Elements with partial similarities,
that is, same width or height, form loose clusters (shown as dotted
ellipses). (b) The presence of noise and missing data avoids ob-
serving clear clusters in the deformation space. Similarity matrices
computed using the pairwise element distances in the deformation
space reveal this behaviour. The bars on the left and bottom of the
matrices identify the elements.

dows with the same arch but varying height, should be matched
to different instances of the same template. In this case, deforma-
tion parameters defining the instances will be partially the same.
An intuitive approach for detecting such relations is to compute
the matching template instance for each element independently and
then detect patterns across the resulting deformation parameters.
Assume a template is parameterized with k deformation parame-
ters. Each instance of this template is represented as a point in a
k-dimensional deformation space with nearby points representing
instances with similar deformation parameters. In the ideal case,
elements with the same geometry will map to a single point in this
space. Elements that are variations of a base geometry, however,
will map to nearby points (see Figure 3a). This is revealed in sim-
ilarity matrices computed based on pairwise element distances in
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the deformation space (see Figure 3, right). Elements that are exact
replicas are represented as red blocks whereas elements with partial
similarities are represented by colours closer to red.

In case of real data, however, due to noise and partial data even
elements that are exact replicas are often matched to different in-
stances of the same template (see Figure 3b) or, even worse, differ-
ent templates. Thus, similar elements map to scattered points in the
template deformation space, avoiding to observe clear clusters (see
Figure 9). To address this issue, we propose to analyse the input
elements simultaneously (see Figure 4). We begin by deforming a
set of templates to fit the given elements. We combine observations
from template deformations to map each element to a common sub-
space representation. Intuitively, similar elements are expected to
map to nearby points in this subspace resulting in small pairwise
element distances. Using these distances as constraints, we consis-
tently label each element with a deformed template instance. For
each template, we discover the subset of its parameters that are sim-
ilar across elements matching to different instances of the template.
We repeat template deformation by coupling these parameters, that
is, enforcing them to stay similar. Iterating between these steps pro-
gressively brings similar elements closer in the common subspace
and reveals clear clusters (see Figure 9). Being independent of the
specific choice of the deformation model, this iterative analysis ro-
bustly identifies which elements are replicas and which share partial
similarities.

4. Simultaneous Template Matching and Deformation

We propose to discover similarity patterns among a set of building
elements by abstracting the similarities via template deformations.
Our analysis is independent of the chosen deformation model (see
Section 5 for a collection of the deformation models we used in our
experiments). We now describe each stage of our analysis in detail.

4.1. Subspace analysis

Given a set of elements S := {si} and a set of templates T := {Tj },
our goal is to label each si with the tuple (T i, di) where T i is the best
matching template and di is the deformation parameters of the best
fitting instance of this template. (In the rest of the paper, a template
instance is specified by a subscript denoting the template index and a
superscript denoting the fitted element index.) To achieve this goal,
we first deform each template Tj to fit all the elements in S:

min
dj

∑

si∈S
Efit(Tj , di

j , si) + wsimEsim. (1)

di
j represents the deformation parameters of T i

j , that is, the instance
of Tj that best fits si . dj is a vector of deformation parameters
constructed by concatenating di

j for each element si . The first term
measures how well the template fits each element individually while
the second term minimizes the difference between the deformation
parameters of Tj detected as being similar across multiple elements.
Efit(Tj , di

j , si) is defined based on the chosen deformation model and
we refer the reader to the supplementary material for details. Esim

initially evaluates to 0 since we assume no prior knowledge about
element similarities.

The computed template deformations provide observations about
the element geometries. We represent such observations in a multi-

layer graph M . Each individual layer is a fully connected graph
Gj = (S,Ej , Wj ) and encodes the deformation parameters ob-
tained by fitting the template Tj to each element (see Figure 4).
Elements are represented as nodes and the edges Ej between the
nodes are weighted. An edge eik ∈ Ej connecting the nodes si and
sk is weighted by

wik(∈ Wj ) = e
−D(di

j
,dk

j
)/mD . (2)

D(di
j , dk

j ) measures the Euclidean distance between the deformation
parameters of the instances T i

j and T k
j . mD is the maximum of such

distances and is used for normalization.

Each graph layer in M captures different observations of the
element geometries obtained by the corresponding template defor-
mations. Our goal is to combine the information from each layer
of M to extract a set of consistent relations among the elements.
We achieve this goal by adopting the subspace analysis approach
of Dong et al. [DFVN14]. This method first computes a subspace
representation of each graph layer using the corresponding graph
Laplacian. Multiple subspaces are then combined into a single rep-
resentative subspace U by constructing a common graph Laplacian
(see the supplementary material). U summarizes the information
captured in each graph layer by mapping each element to a low di-
mensional form. In a subsequent step, we solve a labelling problem
by incorporating the relations captured in U as constraints.

4.2. Labelling problem

Each element si is mapped to the common low-dimensional space
U as s ′

i . Elements with geometric similarities map to nearby points
in U . Thus, pairwise element distances in this space (see Figure 4)
provide an indication of their degree of similarity. Our goal is to label
elements that have small pairwise distances with similar instances
of a template.

Recall that we want to label each element si with a tuple (T i, di)
consisting of both the matching template and the deformation pa-
rameters defining the matching instance. Even though we have a
set of discrete labels with respect to the template type, the defor-
mation parameters are defined in a continuous deformation space.
It is possible to discretize each deformation space by sparsely sam-
pling it. However, it is challenging to obtain a good coverage of
the large deformation space with a sparse set of samples while en-
suring the samples are sufficiently close to the instances matching
the given elements. Yet, the deformation parameters obtained by
fitting templates to the input elements provide a good set of initial
labels. Therefore, we formulate this labelling problem as a Markov
Random Field (MRF) optimization [DOIB10] where the label set
L = {(Tj , di

j )} consists of the current set of template instances ob-
tained by fitting each template Tj to each element si . (We choose the
best three template instance for each element in our experiments.)
The MRF optimization consists of data, smoothness and label costs:

∑

si

Ed (si , Li) + ws

∑

si ,sk

αikEs(si , sk, Li, Lk) +
∑

Tj

λTj
EL. (3)

The data term, Ed (si , Li), measures the cost of fitting the template
instance defined by the label Li to the element si . It is defined
as the average distance between the closest point correspondences
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Figure 4: Given a 3D acquisition (e.g. MVS) of a building, we utilize a set of deformable templates to match its elements, that is, windows.
We combine observations from multiple template deformations via a subspace analysis to extract relations among the elements. Using
these relations as constraints, we label each element with a deformed template instance (same instances are denoted in same colour). We
repeat template deformation by consolidating observations across elements matched to similar template instances. Performing this analysis
iteratively reveals which elements are replicas of the same geometry (represented as red blocks in smoothness weight matrices) or share
partial similarities (highlighted in green on the matching templates).

established between the deformed template instance and si . The
smoothness term, Es(si , sk, Li, Lk), evaluates the consistency of the
labelling of each pair of elements. If two labels belong to the same
template, this term measures the Euclidean distance between the
deformation parameters of the two instances of the template. Oth-
erwise, a fixed smoothness cost (two times the maximum distance
between any two instances of the same template in our experiments)
is assigned. The smoothness weights

αik = e−‖s′
i
−s′

k
‖2/σ 2

(4)

are determined from the distances between the elements mapped
to U . Intuitively, similar elements have small pairwise distance in
U resulting in high smoothness weights (revealed as colours closer
to red in pairwise smoothness weight matrices shown in Figures 4
and 11). These elements are expected to be assigned to similar la-
bels, that is, instances of the same template. The constant σ > 0
determines how rapidly the smoothness weight drops with increas-
ing pairwise element distances and is set to 0.1 in our experiments.
The last term in Equation (3) penalizes each unique template that
appears in the final labelling. Specifically, we group the candidate
labels coming from the same templates into subsets and a fixed label
cost EL (equal to 1/5th of the average data cost in our experiments)
is induced if at least one label is used from such a subset. The indi-
cator variable λTj

is set to 1 if an instance of the template Tj appears
in the final labelling.

Due to noise and partial data, replicated elements often map to
scattered points in the representative subspace U . The smoothness
term progressively enforces these elements to be assigned to the
same label and thus brings them closer. This leads to the formation of
red blocks in the pairwise smoothness matrices in the final iterations
of our algorithm (see Figure 11). ws determines the relative weight
of this term can be adapted based on the input data quality (see
Section 6). If there are similar templates, similar elements might get

Table 1: The table shows the number of input images (Ni ), the number of
user selected elements (Ns ), the total number of detected elements (Ne), the
numbers of templates selected by the independent analysis (Td ) and with the
coupled analysis (Tc) and the total number of template instances discovered
(Ti ). Note that for Dataset 8 we use a parametric model considered as a
single template.

Ni Ns Ne Td Tc Ti

Dataset 1 120 7 32 8 3 7
Dataset 2 60 3 39 10 2 3
Dataset 3 160 8 32 12 4 10
Dataset 4 299 10 99 22 7 9
Dataset 5 70 13 25 7 5 9
Dataset 6 129 6 57 13 3 4
Dataset 7 126 7 17 7 4 8
Dataset 8 – 36 36 – – 10

assigned to instances of different templates. The label cost favours
the use of as few unique templates as possible and thus enables a
consistent labelling. Both smoothness and label costs enforce the
selection of fewer templates. Hence, elements that exhibit variations
of a base geometry are matched to different instances of the same
template (see Table 1).

4.3. Similarity detection

Once each element is labelled with a matching template instance,
we evaluate the labels to extract a set of similarity relations
R = {r} among the elements. In particular, if elements si and sk

are matched to two instances of template Tj , we define the rela-
tion r = (si , sk, cj , Tj ). cj is a binary vector of size equal to the
number of deformation parameters of Tj . It contains a 1 for the de-
formation parameters of the matching template instances that have a

c© 2016 The Authors
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Euclidean distance below a certain threshold (0.5% of the length of
the diagonal of the bounding box of the input reconstruction). Such
coupled parameters indicate partial similarities between si and sk

with respect to template Tj . In subsequent iterations of our algo-
rithm, we enforce the coupled parameters to stay similar during
template deformation. A vector cj consisting of all ones (cj = 1)
indicates that si and sk are exact replicas. In this case, we define an
additional relation for these elements for all other templates with
cj = 1.

Once we extract a set of relations, R, we repeat template deforma-
tion using these relations as additional constraints. When deforming
a template Tj to fit the elements in S, we minimize the energy given
in Equation (1) with

Esim =
∑

(r)∈R

Edist(r). (5)

Edist(r) = cT
j (di

j − dk
j )2 for r = (si , sk, cj , Tj ) measures the differ-

ence between the coupled deformation parameters of the instances
of Tj that fit si and sk , wsim (set to 10.0 in all our evaluations) defines
the weight of this term. With the new deformation parameters, we
update the multi-layer graph M and repeat the subspace analysis
and the MRF optimization.

We iterate between these steps until no change is observed in the
final labelling (typically five to six iterations). Intuitively, enforcing
the coupled parameters of a template to stay equal when deforming
the template to fit multiple elements can be considered as consol-
idating observations across these elements. This consolidation of
observations improves the candidate label set for the subsequent
MRF optimization step of our algorithm. Also, potential element
clusters in template deformation spaces become more pronounced
as similar elements are progressively pulled closer (see Figure 9).
In our evaluations, we demonstrate the benefits of such a simultane-
ous template fitting approach over fitting templates to each element
individually (see the supplementary material).

5. Template-Based Deformation

Given a deformation model, we have presented a template matching
algorithm. We evaluate this algorithm by adopting two deformation
models suitable for architectural data (see Figure 2). For element
types with dominant feature lines such as windows we adopt the
structure-aware i-Wires deformation model [GSMCO09]. We also
demonstrate an example of a parametric model on curved columns.
We provide a brief description of these deformation models and
refer the reader to the supplementary material for more details.

5.1. i-Wires deformation model

For each template model, in a pre-processing stage, we extract fea-
ture lines, called wires, based on the dihedral angles between the
edges (see [GSMCO09]). Each feature wire is a collection of atomic
wires that can be one of the straight line, circular or elliptic arc
types. Atomic wires are defined by a set of parameters such as the
length and the direction of a straight line, or the centre, radius and
the opening angle of a circular arc. Each template is parameterized
with the union of the parameters of its atomic wires.

The goal of template deformation is to compute the parameters of
the atomic wires of a template that best fit an element. We identify
the inter- and intra-wire relations of the template, that is, equal
length, orthogonality, planarity and symmetry, and preserve them
during deformation [GSMCO09].

5.2. Parametric deformation model

We use a parametric deformation model to demonstrate our analysis
on element types such as curved columns. Our parametric model is
based on a helical structure, that is, a circle swept along a 3D helix
curve. A variety of columns can be generated by applying CSG
operations, that is, union or difference, to a set of helixes. Each
helical structure is characterized by the pitch, radius and start angle
of its helix and the radius of its swept circle.

We consider this parametric model as a single template where
each column generated by a different set of parameters is an in-
stance of this template. We first generate a set of candidate column
instances by fitting helical structures to each input element (see
the supplementary material). Our algorithm then deforms these in-
stances to match the input elements and detects patterns in the
resulting deformation parameters.

6. Evaluation

Datasets. We demonstrate our algorithm both on MVS data (we
compute camera parameters using the VisualSFM tool [Wu13] and
the dense reconstruction by PMVS [FP09]) and scans acquired with
Microsoft Kinect (using the software Skanect [ska]).

Element selection. Our algorithm detects similarity patterns
among a set of building elements. Even though there exist auto-
matic facade parsing methods exploiting the presence of horizon-
tal and vertical splitting lines and regular grids [MWA*13], we
observe that such methods fail to identify the elements of more
complex architectural scenes. Instead, we utilize a semi-automatic
approach. For MVS reconstructions, we adopt the method of Ceylan
et al. [CMZP14] which requires the user to roughly mark an element
of interest, for example, a window frame, in only one of the input
images and automatically detects its repetitions. We revert to user
input to mark any missing element in case of strong variation or
large occlusions. For scan data, we require the user to mark the ele-
ments in 3D by defining their bounding boxes. Table 1 provides the
number of user marked elements for each of our examples. Please
note that although additional user input to cluster similar elements
may improve the results, this is not sufficient to detect partial simi-
larities across the clusters. Such similarities are difficult to manually
specify as they may not be obvious by visual inspection and require
the user to mentally solve the template selection and deformation
problems simultaneously. Therefore, once elements are identified,
we revert to our automatic analysis with no use of prior information
to detect both full and partial element similarities.

Template set. In our evaluations, we mainly focus on window el-
ements as they often exhibit full and partial similarities. We use
a template set consisting of 60 window models downloaded from
the Digimation Model Bank and Trimble 3D Warehouse. For com-
putational efficiency, we deform each pair of templates to fit the

c© 2016 The Authors
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Figure 5: The amount of variation among the elements affects the
final choice of template instances. For different sets of templates
(with feature wires shown in red) and elements, we show the se-
lected template instances based on data term only and additionally
considering the smoothness term.

other and group them based on their deformation capabilities: arch,
rectangle, triangle-top and circular windows. Given a grouping of
the templates, for each element we first identify the best matching
group with respect to a similarity transformation and consider the
templates only in its matching group in the rest of the analysis.

6.1. Performance on synthetic data

We evaluate our algorithm by changing the amount of variation
across input elements, the number of utilized templates and the data
quality. In order to assess each factor independently, we perform
evaluations on synthetic data using a fixed set of parameters.

6.1.1. Effect of element deformations

Our algorithm labels each input element with a matching template
instance by incorporating data and smoothness terms. While the

data term evaluates the individual label assignments, the smooth-
ness term favours similar labels for similar elements. Due to this
coupling, the amount of variation among the elements affects the
final choice of labels. We illustrate this effect on a set of synthetic
elements created by gradually increasing the variation among them
(see Figure 5). When the template set includes a template capable
of capturing all of these variations, all elements are labelled with
different instances of this template (Figure 5a), that is, the smooth-
ness term has no effect. When we remove this template, however,
none of the remaining templates is capable of perfectly capturing the
element variations. We first consider the first six elements, where
four of them prefer the first template based on the data term only.
Even though the fifth and sixth elements prefer the second template
based on the data term, the smoothness term enforces them to pick
labels from the first template (Figure 5b). We then add two more
elements that also prefer the second template individually. This is
perceived as a strong indication that the second template is also a
likely assignment. Thus the last three elements are now assigned to
labels from the second template (Figure 5c).

6.1.2. Effect of number of templates

Since templates deform similarly to fit similar elements, each tem-
plate contributes to detection of element similarities. We illustrate
this on a synthetic house model with two types of windows showing
variation in height and width (see Figure 6). We run our algorithm
using an increasing template set size of 1, 10 (selected templates
are shown in the supplementary material) and 60 (organized as four
groups). In each case, we show the pairwise element smoothness
weights in colour-coded matrices. For each block of identical ele-
ments, the side colour bars denote the colour of the corresponding
matching template instance. We show the partial similarities de-
tected between such instances in a graph by highlighting the coupled
parts of templates in green.

We observe that even a single template is capable of distinguishing
the variation among the elements resulting in the selection of four
distinct template instances (Figure 6a). With additional templates,
the two window types are identified resulting in the selection of
two instances of each template (Figure 6b). When using a grouping

input model (a) template set size: 60 (b) template set size: 10 (c) template set size: 1

Figure 6: We show the selected template instances for a synthetic house model (consisting of 38 narrow triangle-top, 4 wide triangle-top, 23
long arch and 23 short arch windows) when using different number of templates. For each case, we also show the colour-coded smoothness
matrices and the partial similarities detected between the elements (highlighted in green). Note that the removal of the triangle-top template
selected in (c) results in a selection of another triangle-top window in (b).

c© 2016 The Authors
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(a) (b)

Figure 7: We evaluate our algorithm on MVS reconstructions ob-
tained from rendered images of a synthetic model. Due to loss of
fine details, we cannot recover the subtle variation in width of the
triangle-top windows in blue (a) and the occlusion by a large tree
results in wrong template assignments for some elements (b).

among the templates (Figure 6c), the two type of window elements
are initially matched to different template groups resulting in no
smoothness relation between them, that is, blue blocks in the cor-
responding smoothness matrix. With a single rectangular template,
however, the similarity between the height of the triangle-top and
long arch windows is reflected as a reasonably high smoothness
weight, that is, orange block in the corresponding matrix.

6.1.3. Effect of data quality

The input data quality has a direct impact on template deforma-
tions. We compare the performance of our algorithm on synthetic
data (Figure 6c) and a MVS reconstruction obtained from the ren-
dered images of the model (Figure 7). We observe two main sources
of error that potentially influence our results. First, due to the chal-
lenges in correspondence search or limited sensor resolution, 3D
reconstructions exhibit a general degradation in data quality which
might lead to failure in capturing fine details. Even though our al-
gorithm selects the same templates as in the ground truth case, it
fails to capture the subtle variation in the width of the two instances
of triangle-top windows (Figure 7a). Second, factors such as large
occlusions result in local degradation in data quality. Thus, when
we place a large tree model in front of the house, we cannot recover
the correct template assignments for the windows occluded by this
tree (Figure 7b).

6.2. Performance on real data

We evaluate our algorithm on various real datasets with different
style and varying complexity (Figures 1, 4, 11 and 8). Table 1
shows the statistics of our algorithm on each dataset. We summarize
our main findings and refer the reader to the supplementary material
for a more complete set of results.

6.2.1. Performance on MVS output

In our evaluations, we mainly focus on challenging MVS output
that suffers from significant amount of noise and missing data.

Our algorithm discovers both replicated elements and partial ele-
ment similarities. Figures 1 and 11 illustrate many such similarities
detected which would have been difficult to capture otherwise. For
example, for Dataset 1, our algorithm discovers five instances of the
same template for 30 window elements (Figure 1) whereas template
fitting for each element individually results in the selection of five
different templates (Figure 9).

Our analysis makes no assumption about the presence of any
specific type of spatial arrangement such as 2D grids. Yet, we
can successfully detect similarities between elements that are ro-
tationally symmetric (Figure 11, Dataset 7), arranged as 1D grids
(Figure 11, Dataset 6) and located across different facades of a
building (Figure 11, Dataset 5). Even though noise in MVS re-
constructions makes it difficult to initialize transform domain grid
fitting as proposed by Pauly et al. [PMW*08], template instances
detected by our algorithm enables the discovery of grid-like spa-
tial arrangements between the elements. We use such relations to
spatially snap the template instances in our results.

6.2.2. Performance on scan data

We also evaluate our algorithm on a scan of an indoor scene contain-
ing curved columns (see Figure 8) using a parametric deformation
model. This deformation model captures the properties of the indi-
vidual helical structures each column is composed of. Starting from
a candidate set of columns fitted individually to each element, we
discover similarities across these individual helical structures by our
simultaneous template deformation framework: identical, reflected
(i.e. with opposite rotation direction) and sharing the same pitch
angle only. We also apply our algorithm to analyse the window ele-
ments in the MVS reconstruction of the same scene (obtained from
400 images) and detect that they are identical.

To evaluate the robustness of our algorithm, we have synthetically
added noise to this dataset and re-performed our analysis (see the
supplementary material). Even though some of the fine details are
not captured due to noise, our analysis is stable and recovers the
expected similarity patterns.

6.2.3. Comparison to naive clustering

Due to noise and partial data, an independent analysis of each ele-
ment often results in the selection of different templates for elements
that are derived from the same base geometry (Figure 9a, left). Even
if we annotate the correct template selection, replicated elements
are mapped to scattered points in the template deformation space.
Thus, standard clustering algorithms such as k-means fail to identify
the correct element clusters (Figure 9b, left). Our iterative analysis,
however, progressively consolidates observations across similar el-
ements and reveals distinct element clusters (Figure 9b, right). For
this dataset, compared to ground truth clustering by visual inspec-
tion, the clustering of our algorithm achieves a mutual information
score [VEB09] of 0.876 with one mislabelled element whereas the
clustering based on independent analysis has a score of 0.468.

6.2.4. Comparison to Kurz et al. [KWW*14]

For the dataset shown in Figure 9, we also evaluate the method
of Kurz et al. [KWW*14]. This method presents a template

c© 2016 The Authors
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Figure 8: We use a parametric deformation model to match the helical columns in a 3D scan of a museum. We show the smoothness matrices
in the first (top-left) and final (bottom-left) iterations of our algorithm. We omit the elements in the bottom floor, which have been detected
as identical, from these matrices for visualization purposes. The side colour bars denote the colour of the matching column instance of the
corresponding block of identical elements. Each column instance is composed of a number of individual helical structures that we show in
gray (e.g. the red instance is composed of four helical structures). We show the similarities detected across these substructures in solid edges:
identical (blue), reflected (orange), same pitch only (purple).

   naive selection of 
emplates

template instances selected 
          by our algorithm

   clustering with individual 
      template deformations

   clustering with coupled
    template deformations

  input
images

  selected
 template

(a)

(b)

  selected
templates

  selected
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Figure 9: (a) Individual template fitting for a set of elements results
in the selection of five different templates whereas our algorithm as-
signs the elements to five different instances of the same template.
(b) Given a template selection, we visualize each element in the
low-dimensional deformation space of the template (replicated ele-
ments are shown in same colour) using the deformation parameters
obtained by individual fitting versus our algorithm. The clusters
generated by the k-means (k = 5) algorithm are indicated by differ-
ent symbols. Note how clusters on the left span different template
instances and lead to misclassification.

deformation model that explicitly considers the symmetric features
of the templates. Even with such an advanced deformation model,
independent template fitting for each element maps the replicated
elements to scattered points (Figure 10, left) whereas our analysis
successfully produces tight clusters (Figure 10, right). Please note
that the method of Kurz et al. is complementary to our analysis since
it can be used as the input template deformation model.

6.2.5. Effect of parameters

Our analysis involves a small set of parameters that are listed in
Table 2. For most of these parameters, we use the default values
introduced in Section 4 in all of our evaluations. The only param-

template deformation of 
Kurz et al. [KWW*14]

coupled template
deformation

Figure 10: Given the correct template selection, the template de-
formation model of Kurz et al. [KWW*14] maps replicated elements
to scattered points as a result of individual fitting. Our simultane-
ous analysis, on the other hand, forms tight clusters. The method of
Kurz et al. provides a free-form deformation. Thus, we parameterize
the deformed templates by the width and height of their bounding
boxes.

Table 2: The table shows the parameters involved in our analysis and their
values used in our evaluations.

MVS data Scan data

wsim (Equation 1) 10 10
EL (Equation 3) 1/5th of avg. data cost 1/5th of avg. data cost
ws (Equation 3) 0.1 0
σ (Equation 4) 0.1 0.1

eter that requires adjustment is ws , the weight of the smoothness
term involved in the MRF optimization. An inherent challenge in
analysing raw data measurements as obtained from MVS or scan-
ning is to distinguish noise from fine details. Our algorithm solves a
labelling problem consisting of data and smoothness terms to reflect
this tradeoff. A lower ws helps to capture high frequency details in
case of reliable data. In case of noisy and partial data, for example,
MVS data, however, the data term becomes unreliable and a higher
ws allows consolidating observations across multiple elements. In

c© 2016 The Authors
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Figure 11: For each data set, we show the smoothness matrices in the first (top left) and final (bottom left) iterations of our algorithm. Colour
bars at the sides of the matrices denote the colour of the matching template instances of the corresponding block of identical elements. Partial
similarities detected between different element blocks are shown on the corresponding templates in green. We denote the elements matched to
wrong template instances with dotted circles. Please refer to Table 1 and supplementary material for details.
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without additional prior with additional prior

without additional prior with additional prior

Figure 12: Our algorithm fails to match the windows indicated in
orange to the correct template instances due to large occlusions. It is
possible to augment our analysis with additional priors, for example,
incorporating smoothness constraints among elements arranged in
a grid, to resolve such failures. We show the element smoothness
matrices with and without use of such priors.

our evaluations, we set ws = 0.1 for all the MVS examples. We dis-
able the smoothness term for the scan data since the data quality is
reliable and there are subtle variations across the elements we would
like to capture (e.g. the dark and light green columns in Figure 8).

6.2.6. Performance evaluation

We run our experiments on a 2.8 GHz Intel Core i7 machine. Our
analysis is iterative where each iteration begins with the template
deformation stage. We group the template models based on their
deformation capabilities and identify the best matching group of
each input element. For each element, we deform the templates only
in its matching group. Given n input elements and k templates in
each template group in average (15 in our evaluations), we perform
O(nk) template deformations. We then map the observations from
the deformations to a common space using the subspace analysis.
This step is almost instantaneous and has negligible time complexity
(700 ms in average). We then perform the labelling optimization to
label each input element with a deformed template instance. We
choose the best three fitting template instances for each element to
construct a label set of 3n labels. Given n elements and 3n labels,
this step takes 80 s in average. Finally, the similarity detection
step extracts the coupled template parameters across the selected
template instances. This step also has negligible time complexity
(80 ms in average). For all of our datasets, our analysis converges
in five to six iterations. The computational complexity is dominated
by the template deformation step where the time spent for each
deformation depends on the choice of the deformation model. Please
note that, this step could easily be parallelized by deforming each
template to the input elements in parallel.

6.2.7. Limitations

Due to limited sensor resolution, 3D reconstructions often fail to
capture fine details, for example, in the substructures of the elements.
Such missing details or the lack of a more suitable template might
result in selection of a template different than a user-intended one.
For Dataset 4, the closest template has been selected to capture the
two-arch structure of the windows shown in green (see Figure 11).
For Dataset 8, we have failed to capture the subtle details in the

column shown by the blue rectangle and our parametric model is
not capable of generating the details on the column shown by the
green rectangle (see Figure 8).

Severe local degradations in data quality, for example, due to large
occlusions, prevent reliable template deformation and is another
source of failure for our algorithm. In our examples, we indicate
such failures by dotted ellipses (Figures 1 and 11). In Figure 12, we
demonstrate two challenging cases, where almost half of the indi-
cated windows are occluded. Even though our algorithm identifies
the correct template, it discovers the wrong (shorter) instance.

7. Conclusion

We presented an algorithm to discover similarity patterns among
a set of elements by using deformable template models. Our tem-
plate matching and deformation analysis identifies the best fitting
template instance of each element and detects patterns in the de-
formation modes of these instances. Even though it is possible to
incorporate additional priors, we assumed no additional information
to demonstrate the effectiveness of the approach. Our approach is
independent of the choice of the deformation model. Thus, it can be
adopted to other problem settings by defining other context-specific
templates.

In our evaluations, we utilized a simple template grouping strat-
egy. Considering a more sophisticated organization, for example, a
hierarchical grouping, is an interesting future direction. Exploring
additional priors, for example, style-annotated templates, both in
template organization and deformation can aid tasks such as discov-
ering similarities across different buildings.

Accompanying our algorithm with a deformation model that sup-
ports discrete parameters will enable to capture discrete changes
among elements, for example, in their substructures.

We have adopted a semi-automatic approach to identify the el-
ements of a building. Learning common element deformations to
enable automatic detection of building elements is an interesting
future direction.
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