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Abstract

We propose a generative model of 2D and 3D natural
textures with diversity, visual fidelity and at high computa-
tional efficiency. This is enabled by a family of methods that
extend ideas from classic stochastic procedural texturing
(Perlin noise) to learned, deep, non-linearities. The key idea
is a hard-coded, tunable and differentiable step that feeds
multiple transformed random 2D or 3D fields into an MLP
that can be sampled over infinite domains. Our model en-
codes all exemplars from a diverse set of textures without
a need to be re-trained for each exemplar. Applications in-
clude texture interpolation, and learning 3D textures from 2D
exemplars. Project website: https://geometry.cs.
ucl.ac.uk/projects/2020/neuraltexture.

1. Introduction

Textures are stochastic variations of attributes over 2D
or 3D space with applications in both image understanding
and synthesis. This paper suggests a generative model of
natural textures. Previous texture models either capture a
single exemplar (e. g., wood) alone or address non-stochastic
(stationary) variation of appearance across space: Which
location on a chair should have a wood color? Which should
be cloth? Which metal? Our work combines these two
complementary views.

Requirements We design the family of methods with sev-
eral requirements in mind: completeness, generativeness,
compactness, interpolation, infinite domains, diversity, infi-
nite zoom, and high speed.

A space of textures is complete, if every natural texture
has a compact code z in that embedding. To be generative,
every texture code should map to a useful texture. This
is important for intuitive design where a user manipulates
the texture code and expects the outcome to be a texture.
Compactness is achieved if codes are low-dimensional. We
also demand the method to provide interpolation: texture
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Figure 1. Our approach allows casually-captured 2D textures (blue)
to be mapped to latent texture codes and support interpolation
(blue-to-red), projection, or synthesis of volumetric textures.

generated at coordinates between z1 and z2 should also be
valid. This is important for design or when storing texture
codes into a (low-resolution) 2D image, 3D volume or at
mesh vertices with the desire to interpolate. The first four
points are typical for generative modelling; achieving them
jointly while meeting more texture-specific requirements
(stochasticity, efficiency) is our key contribution.

First, we want to support infinite domains: Holding the
texture code e fixed, we want to be able to query this texture
so that a patch around any position x has the statistics of
the exemplar. This is important for querying textures in
graphics applications for extended virtual worlds, i. e., grass
on a football field where it extends the size of the texture.

Second, for visual fidelity, the statistics under which tex-
tures are similar to the exemplar. The Gram matrix of VGG
activations is one established metric for this similarity [5].

Third, infinite zoom means each texture should have vari-
ations on a wide range of scales and not be limited to any
fixed resolution that can be held in memory. This is required
to zoom into details of geometry and appreciate the fine vari-
ation such as wood grains, etc. In practice, we are limited by
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the frequency content of the exemplars we train on, but the
method should not impose any limitations across scales.

Fourth and finally, our aim is computational efficiency:
the texture needs to be queryable without requiring pro-
hibitive amounts of memory or time, in any dimension. Ide-
ally, it would be constant in both and parallel. This rules
out simple convolutional neural networks, that do not scale
favorable in memory consumption to 3D.

2. Previous Work
Capturing the variations of nature using stochastic on

many scales has a long history [14]. Making noise useful
for graphics and vision is due to Perlin’s 1995 work [17].
Here, textures are generated by computing noise at different
frequencies and mixing it with linear weights. A key benefit
is that this noise can be evaluated in 2D as well as in 3D
making it popular for many graphics applications.

Computer vision typically had looked into generating tex-
tures from exemplars, such as by non-parametric sampling
[4], vector quantization [25], optimization [12] or nearest-
neighbor field synthesis (PatchMatch [2]) with applications
in in-painting and also (3D) graphics. Typically, achieving
spatial and temporal coherence as well as scalability to fine
spatial details remains a challenge. Such classic methods
cater to the requirements of human texture perception as
stated by Julesz [9]: a texture is an image full of features
that in some representation have the same statistics.

The next level of quality was achieved when representa-
tions became learned, such as the internal activations of the
VGG network [22]. Neural style transfer [5] looked into the
statistics of those features, in particular, their Gram matrices.
By optimizing over pixel values, these approaches could
produce images with the desired texture properties. If these
properties are conditioned on existing image structures, the
process is referred to as style transfer. VGG was also used for
optimization-based multi-scale texture synthesis [20]. Such
methods require optimizations for each individual exemplar.

Ulyanov et al. [23] and Johnson et al. [8] have proposed
networks that directly produce the texture without optimiza-
tion. While now a network generated the texture, it was still
limited to one exemplar, and no diversity was demonstrated.
However, noise at different resolutions [17] is input to these
methods, also an inspiration to our work. Follow up work
[24] has addressed exactly this difficulty by introducing an
explicit diversity term i. e., asking all results in a batch to
be different. Unfortunately, this frequently introduces mid-
frequency oscillations of brightness that appear admissible
to VGG instead of producing true diversity. In our work,
we achieve diversity, by restricting the networks input to
stochastic values only, i. e., diversity-by-construction

A certain confusion can be noted around the term “tex-
ture”. In the human vision [9] and computer vision litera-
ture [4, 6], it exclusively refers to stochastic variation. In

computer graphics, e. g., OpenGL, “texture” can model both
stochastic and non-stochastic variation of color. For example,
Visual Object Networks [29] generate a voxel representation
of shape and diffuse albedo and refer to the localized color
appearance, e. g., wheels of a car are dark, the rim are silver,
etc., as “texture”. Similar, Oechsle et al. [16] and Saito et al.
[19] use an implicit function to model this variation of ap-
pearance in details beyond voxel resolution. Our comparison
will show, how methods tackling space of non-stochastic
texture variation [16, 29], unfortunately are not suitable to
model stochastic appearance. Our work is progress towards
learning spaces of stochastic and non-stochastic textures.

Some work has used adversarial training to capture the
essence of textures [21, 3], including the non-stationary case
[28] or even inside a single image [21]. In particular Style-
GAN [10] generates images with details by transforming
noise in adversarial training. We avoid the challenges of
adversarial training but train a NN to match VGG statistics.

Aittala et al. [1] have extended Gatsy et al.’s 2015 [5]
approach to not only generate color, but also ensembles of
2D BRDF model parameter maps from single 2D exemplars.
Our approach is compatible with this approach, for example
to generate 3D bump, specular, etc. maps, but from 2D input.

At any rate, none of the texture works in graphics or
vision [17, 5, 23, 4, 2, 26, 27] generate a space of textures,
such as we suggest here, but all work on a single texture
while the ones that work on a space of exemplars [29, 16]
do not create stochastic textures. Our work closes this gap,
by creating a space of stochastic textures.

The graphics community, however, has looked into gener-
ating spaces of textures [15], which we here revisit from a
deep learning perspective. Their method deforms all pairs of
exemplars to each other and constructs a graph with edges
that are valid for interpolation when there is evidence that
the warping succeeded. To blend between them, histogram
adjustments are made. Consequently, interpolation between
exemplars is not a straight path from one another, but a traver-
sal along valid observations. Similarly, our method could
also construct valid paths in the latent space interpolation.

Finally, all these methods require to learn the texture
in the same space it will be used, while our approach can
operate in any dimension and across dimensions, including
the important case of generating procedural 3D solid textures
from 2D observations [11] or slices [18] only.

Summary The state of the art is depicted in Tbl. 1. Rows
list different methods while columns address different as-
pects of each method. A method is “Diverse” if more than a
single exemplar can be produced. MLP [16] is not diverse as
the absolute position allows overfitting. We denote a method
to have “Detail” if it can produce features on all scales. CNN
does not have details, as, in particular in 3D, it needs to repre-
sent the entire domain in memory, while MLPs and ours are
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Table 1. Comparison of texture synthesis methods. Please see text
for refined definition of the rows and columns.
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• Perlin perlin X X X X 5 5 5

• Perlin + transform perlinT X X X X 5 5 5

• CNN cnn 5 5 5 5 X 5 5

• CNN + diversity cnnD X 5 5 5 5 5 5

• MLP mlp 5 5 X X 5 5 X
• Ours + position oursP 5 X X X 5 X X
• Ours - transform oursNoT 5 5 X X X X X
• Ours ours X X X X X X X

point operations. “Speed” refers to computational efficiency.
Due to high bandwidth and lacking data parallelism, a CNN,
in particular in 3D, is less efficient than ours. This prevents
application to “3D”. “Quality” refers to visual fidelity, a sub-
jective property. CNN, MLP and ours achieve this, but Perlin
is too simple a model. CNN with diversity [24] have decent
quality, but a step back from [23]. Our approach creates a
“Space” of a class of textures, while all others only work with
single exemplars. Finally, our approach allows to learn from
a single 2D observation i. e., 2D-to-3D. MLP [16] also learn
from 2D images, but have multiple images of one exemplar,
and pixels are labeled with depth.

3. Overview
Our approach has two steps. The first embeds the ex-

emplar into a latent space using an encoder. The second
provides sampling at any position by reading noise fields at
that position and combining them using a learned mapping
to match the exemplar statistics. We now detail both steps.
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Figure 2. Overview of our approach as explained in Sec. 3.

Encoder The encoder g maps a 2D texture exemplar image
y to a latent texture code z = g(y). We use a convolutional
neural network to encode the high number of exemplar pixels
into a compact latent texture code z.

Sampler Sampling s(x|z) of a texture with code z at indi-
vidual 2D or 3D positions x has two steps: a translator and
a decoder, which are both described next.

Decoder Our key idea is to prevent the decoder f(n|e)
to access the position x and to use a vector of noise val-
ues n instead. Each ni = noise(Ti2

i−1x|ξi) is read at
different linear transformations Ti2

i−1x of that position x
from random fields with different seeds ξi. The random field
noise(x|ξi) is implemented as an infinite, single-channel
2D or 3D function that has the same random value for all
continuous coordinates x in each integer lattice cell for one
seed ξi. The factors of 2i−1 initialize the decoder to behave
similar to Perlins’s octaves for identity Ti. Applying Ti2

i−1

to x is similar to Spatial Transformer Networks [7]. (Fig. 3).
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Figure 3. Noise field for different octaves and transformations T.

These noise values are combined with the extended tex-
ture code e in a learned way. It is the task of the translator,
explained next, to control, given the exemplar, how noise is
transformed and to generate an extended texture code.
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Figure 4. Translator.

Translator The trans-
lator h(z) = {e,T}
maps the texture code z
to a tuple of parameters
required by the decoder:
the vector of transfor-
mation matrices T and
an extended texture code
vector e. The matrices
T are used to transform
the coordinates before reading the noise as explained be-
fore. The extended texture parameter code e is less compact
than the texture code z, but allows the sampler to execute
more effectively, i. e., do not repeat computations required
for different x as they are redundant for the same z.

See Fig. 4 where for example two 2× 2 transformation
matrices with 8 DOF are parameterized by three parameters.

Training For training, the encoder is fed with a random
128 × 128 patch Pe of a random exemplar y, followed by
the sampler evaluating a regular grid of 128 × 128 points
x in random 2D slices of the target domain to produce a
“slice” image Ps (Fig. 5). The seed ξ is held constant per
train step, as one lattice cell will map to multiple pixels,
and the decoder f relies on these being consistent. During
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inference changing the seed ξ and keeping the texture code
e will yield diverse textures.
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Figure 5. Sliced loss for learning 3D procedural textures from
2D exemplars: Our method, as it is non-convolutional, can sample
the 3D texture (a) at arbitrary 3D positions. This enables to also
sample arbitrary 2D slices (b). For learning, this allows to simply
slice 3D space along the three major axes (red, yellow, blue) and
ask each slice to have the same VGG statistics as the exemplar (c).

The loss is the L2 distance of Gram matrix of VGG fea-
ture activations [5, 8, 24, 23, 1] of the patches Pe and Ps.

If the source and target domain are the same (synthesizing
2D textures from 2D exemplars) the slicing operation is the
identity. However, it also allows for the important condition
in which the target domain has more dimensions than the
source domain, such as learning 3D from 2D exemplars.

Spaces-of Our method can be used to either fit a single
exemplar or an entire space of textures. In the single mode,
we directly optimize for the trainable parameters θ = {θd}
of the decoder. When learning the entire space of textures,
the full cascade of encoder g, translator h and sampler s
parameters are trained, i. e., θ = {θg, θh, θd} jointly.

4. Learning stochastic space coloring
Here we will introduce different implementations of sam-

plers s : Rn → R3 which “color” 2D or 3D space at position
x. We discuss pros and cons with respect to the requirements
from the introduction, ultimately leading to our approach.

Perlin noise is a simple and effective method to generate
natural textures in 2D or 3D [17], defined as

s(x|z) =
m∑
i=1

noise(2i−1x, ξi)⊗ wi, (1)

where h(z) = {w1, w2, . . .} are the RGB weights for m
different noise functions noisei which return bilinearly-
sampled RGB values from an integer grid. ⊗ is channel-wise
multiplication. Here, e is a list of all linear per-layer RGB
weights e. g., an 8×3 vector for the m = 8 octaves we use.
This is a simple latent code, but we will see increasingly
complex ones later. Also our encoder g is designed such that
it can cater to all decoders, even Perlin noise i. e., we can
also create a space of textures with a Perlin noise back-end.

Coordinates x are multiplied by factors of two (octaves),
so with increasing i, increasingly smooth noises are com-
bined. This is motivated well in the spectra of natural signals
[14, 17], but also limiting. Perlin’s linear scaling allows the
noise to have different colors, yet no linear operation can
reshape a distribution to match a target. Our work seeks to
overcome these two limitations, but tries to retain the desir-
able properties of Perlin noise: simplicity and computational
efficiency as well as generalization to 3D.

Transformed Perlin relaxes the scaling by powers of two

s(x|z) =
m∑
i=1

noise(Ti2
i−1x, ξi)⊗ wi (2)

by allowing each noise i to be independently scaled
by its own transformation matrix Ti since h(z) =
{w1,T1, w2,T2, . . .}. Please note, that the choice of noise
frequency is now achieved by scaling the coordinates read-
ing the noise. This allows to make use of anisotropic scaling
for elongated structures, different orientations or multiple
random inputs at the same scale.

CNN utilizes the same encoder g as our approach to gen-
erate a texture code that is fed in combination with noise to
a convolutional decoder similar to [24].

s(x|z) = cnn(x|e, noise(ξ)) (3)

The CNN is conditioned on e without additional translation.
Their visual quality is stunning, CNNs are powerful and
the loss is able to capture perceptually important texture
features, hence CNNs are a target to chase for us in 2D in
terms of quality. However, there are two main limitations of
this approach we seek to lift: efficiency and diversity.

CNNs do not scale well to 3D in high resolutions. To
compute intermediate features at x, they need to have access
to neighbors. While this is effective and output-sensitive in
2D, it is not in 3D: we need results for 2D surfaces embedded
in 3D, and do so in spatial high resolution (say 1024×1024),
but this requires CNNs to compute a full 3D volume with
the same order of pixels. While in 2D partial outputs can be
achieved with sliding windows, it is less clear how to slide a
window in 3D, such that it covers all points required to cover
all 3D points that are part of the visible surface.

The second issue is diversity: CNNs are great for produc-
ing a re-synthesis of the input exemplar, but it has not been
demonstrated that changing the seed ξ will lead to variation
in the output in most classic works [23, 8] and in classic style
transfer [5] diversity is eventually introduced due to the ran-
domness in SGD. Recent work by Ulyanov and colleagues
[24] explicitly incentivizes diversity in the loss. The main
idea is to increase the pixel variance inside all exemplars
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produced in one batch. Regrettably, this often is achieved by
merely shifting the same one exemplar slightly spatially or
introducing random brightness fluctuations.

MLP maps a 3D coordinate to appearance:

s(x|z) = mlp(x|e) (4)

where h(z) = e. Texture-fields [16] have used this approach
to produce what they call “texture”, detailed and high-quality
appearance decoration of 3D surfaces, but what was prob-
ably not intended is to produce diversity or any stochastic
results. At least, there is no parameter that introduces any
randomness, so all results are identical. We took inspiration
in their work, as it makes use of 3D point operations, that
do not require accessing any neighbors and no intermedi-
ate storage for features in any dimensions, including 3D. It
hence reduces bandwidth compared to CNN, is perfectly
data-parallel and scalable. The only aspect missing to make
it our colorization operator, required to create a space and
evolve from 2D exemplars to 3D textures, is stochasticity.

Ours combines the noise from transformed Perlin for
stochasticity, the losses used in style and texture synthe-
sis CNNs for quality as well as the point operations in MLPs
for efficiency as follows:

s(x|z) = f(noise(T1 20 x, ξ1 ), . . . ,

noise(Tm2m−1x, ξm)|e) (5)

Different from MLPs that take the coordinate x as input,
position itself is hidden. Instead of position, we take mul-
tiple copies of spatially smooth noise noise(x) as input,
with explicit control of how the noise is aligned in space ex-
pressed by the transformations T. Hence, the MLP requires
to map the entire distribution of noise values such that it
suits the loss, resulting in build-in diversity. We chose num-
ber of octaves m to be 8, i. e., the transformation matrices
T1, . . . ,Tm require 8 × 4 = 32 values in 2D. The texture
code size e is 64 and the compact code z is 8. The decoder
f consists of four stacked linear layers, with 128 units each
followed by ReLUs. The last layer is 3-valued RGB.

Non-stochastic ablation seeks to investigate what hap-
pens if we do not limit our approach to random variables,
but also provide access to deterministic information x:

s(x|z) = f(x,noise(20 x, ξ1 ), . . . ,

noise(2m−1x, ξm)|e) (6)

is the same as MLP, but with access to noise. We will see
that this effectively removes diversity.

Non-transformed ablation evaluates, if our method were
to read only from multi-scale noise without control over how
it is transformed. Its definition

s(x|z) = f(noise(20 x, ξ1 ), . . . ,

noise(2m−1x, ξm)|e) (7)

5. Evaluation
Our evaluation covers qualitative (Sec. 5.2) and quantita-

tive (Sec. 5.3) aspects as well as a user study (Sec. 5.4).

5.1. Protocol

We suggest a data set that for which we explore the rela-
tion of different methods, according to different metrics to
quantify texture similarity and diversity.

Data set Our data set contains four classes (WOOD, MAR-
BLE, GRASS and RUST) of 2D textures, acquired from inter-
net image sources. Each class contains 100 images.

Methods We compare eight different methods that are
competitors, ablations and ours.

As five competitors we study variants of Perlin noise,
CNNs and MLPs. perlin implements Perlin noise (Eq. 1,
[17]) and perlinT our variant extending it by a linear
transformation (Eq. 2). Next, cnn is a classic TextureNet
[23] and cnnD the extension to incentivise diversity ([24],
Eq. 3). mlp uses an MLP following Eq. 4.

We study three ablations. First, we compare to oursP
that is our method, but with the absolute position as input
and no transform. Second, oursNoT omits the absolute
position as input and transformation but still uses Perlin’s
octaves (Eq. 7). The final method is ours method (Eq. 5).

Metrics We evaluate methods in respect to three metrics:
similarity and diversity and a joint measure, success.

Similarity is high, if the result produced has the same
statistics as the exemplar in terms of L2 differences of VGG
Gram matrices. This is identical to the loss used. Similarity
is measured on a single exemplar.

Diversity is not part of the loss, but can be measured
on a set of exemplars produced by a method. We measure
diversity by looking at the VGG differences between all
pairs of results in a set produced for a different random
seed. Note, that this does not utilize any reference. Diversity
is maximized by generating random VGG responses, yet
without similarity.

Success of the entire method is measured as the product of
diversity and the maximum style error minus the style error.
We apply this metric, as it combines similarity and diversity
that are conflicting goals we jointly want to maximize.
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Figure 6. Quantitative evaluation. Each plot shows the histogram of a quantity (from top to bottom: success, style error and diversity) for
different data sets (from left to right: all space together, WOOD, MARBLE, GRASS). For a discussion, see the last paragraph in Sec. 5.2.

Memory and speed are measured at a resolution of 128
pixels/voxels on an Nvidia Titan Xp.

5.2. Quantitative results

Table 2. Efficiency in terms of compute time and memory usage in
2D and 3D (columns) for different methods (rows).

Method Time Memory

2D 3D 2D 3D

perlin • 0.18 ms 0.18 ms 65 k 16 M
perlinT • 0.25 ms 0.25 ms 65 k 16 M

cnn • 1.45 ms 551.59 ms 8,000 k 646 M
cnnD • 1.45 ms 551.59 ms 8,000 k 646 M
mlp • 1.43 ms 1.43 ms 65 k 16 M

oursP • 1.44 ms 1.44 ms 65 k 16 M
oursNoT • 1.24 ms 1.24 ms 65 k 16 M

ours • 1.55 ms 1.50 ms 65 k 16 M

Time 3D [ms]Time 2D [ms] Memory 2D [log KB] Memory 3D [log KB] 
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Efficiency We first look at computational efficiency in
Tbl. 2. We see that our method shares the speed and memory
efficiency with Perlin noise and MLPs / Texture Fields [16].
Using a CNN [23, 24] to generate 3D textures as volumes
is not practical in terms of memory, even at a modest reso-
lution. Ours scales linear with pixel resolution as an MLP
is a point-estimate in any dimension that does not require
any memory other than its output. A CNN has to store the
internal activations of all layers in memory for information
exchange between neighbors.

Table 3. Similarity and diversity for methods on different textures.

Method ALL WOOD GRASS MARBLE

Sim Div Suc Sim Div Suc Sim Div Suc Sim Div Suc

perlin • 20.6 48.0 7.0 23.8 37.9 4.9 24.6 72.8 18.1 13.3 31.8 7.84
perlinT • 19.6 48.2 7.2 18.4 39.6 5.02 25.9 65.6 13.8 14.2 38.4 8.03

cnn • 5.4 0.5 7.5 13.4 0.5 0.07 1.9 0.5 0.14 1.1 0.3 0.08
cnnD • 3.9 48.2 7.75 3.9 35.2 5.19 4.8 59.2 20.9 3.6 48.8 8.5
mlp • 14.1 0.0 7.98 15.7 0.0 0.0 16.7 0.0 0.0 9.6 0.0 0.0

oursP • 5.4 93.4 8.23 9.7 67.4 5.33 4.8 126 21.5 1.8 84.5 9.0
oursNoT • 8.4 94.5 8.54 18.3 74.7 5.40 5.1 120 21.7 1.9 87.0 9.3

ours • 12.1 99.7 8.82 13.3 72.5 5.48 13.6 127 22.1 9.4 98.2 9.6
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Fidelity Fig. 6 and Tbl. 3 summarize similarity, diversity
and success of all methods in numbers. oursmethod (black)
comes best in diversity and success on average across all
sets (first column in Tbl. 3 and top first plot in Fig. 6). cnn
(yellow) and cnnd (green) have better similarity than any of
our methods. However, no other method combines similarity
with diversity as well as ours. This is visible from the overall
leading performance in the final measure, success. This is
a substantial achievement, as maximizing for only one goal
is trivial: an identity method has zero similarity error
while a random method has infinite diversity.

When looking at the similarity, we see that both a cnn
and its diverse variant cnnD can perform similar. Perlin
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Figure 7. Different methods and the exemplar (columns), as defined in Sec. 5.2, applied to different exemplars (rows). Each row shows,
arranged vertically, two re-synthesises with different seeds. Please see the text for discussion.

noise produces the largest error. In particular, perlinT has
a large error, indicating it is not sufficient to merely add a
transform. Similar, mlp alone cannot solve the task, as it has
no access to noise and need to fit exactly, which is doable
for single exemplars, but impossible for a space. oursNoT
has error similar to ours, but less diversity.

When looking at diversity, it is clear that both cnn and
mlp have no diversity as they either do not have the right
loss to incentivize it or have no input to generate it. perlin
and perlinT both create some level of diversity, which
is not surprising as they are simple remappings of random
numbers. However, they do not manage to span the full VGG
space, which only ours and its ablations can do.

Generating 3D textures from the exemplar in Fig. 7, we
find that our diversity and similarity are 44.5 and 1.48, which
compares favorable to Perlin 3D Noise at 14.9 and 7.11.

5.3. Qualitative results

Visual examples from the quantitative evaluation on a
single exemplar for different methods can be seen in Fig. 7.
We see that some methods have diversity when the seed is
changed (rows one vs. two and three vs. four) and some do
not. Diversity is clear for Perlin and its variant, CNNs with
a diversity term and our approach. No diversity is found for
MLPs and CNNs. We also note, that CNNs with diversity
produce typically shifted copies of the same exemplar, so
their diversity is over-estimated by the metric.

A meaningful latent texture code space should also allow
for interpolation as seen in Fig. 8, where we took pairs of
texture codes (left and right-most exemplar) and interpolated
rows in-between. We see, that different paths produce plau-
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Figure 8. Interpolation of one exemplar (left) into another one
(right) in latent space (first three rows) and linear (last row).

sible blends, with details appearing and disappearing, which
is not the case for a linear blend (last row).

CubicOurs

Figure 9. Zoom.

Our method does not work on an ex-
plicit pixel grid, which allows to zoom
into arbitrary fine details as show in
Fig. 9, comparing favorable to cubic
upsampling. This is particularly useful
in 3D, where storing a complete volume
to span multiple levels of detail requires
prohibitive amounts of memory while
ours is output-sensitive.

Fig. 10 shows a stripe re-synthesized
from a single exemplar. We note that
the pattern captures the statistics, but does not repeat.

Fig. 12 documents the ability to reproduce the entire
space. We mapped exemplars unobserved at training time to
texture codes, from which we reconstruct them, in 2D. We
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Figure 10. Stripes of re-synthesized textures from exemplars on the left. See the supplemental for more examples.
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2D

3D (ours)2D
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Figure 11. 3D texturing of different 3D shapes. Insets (right) compare ours to 2D texturing. See supplemental for 3D spin.
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Figure 12. Our reconstruction of WOOD, GRASS, RUST, and
MARBLE. The first row shows different input exemplars. The
second and third row show our reconstruction with different seeds.

find that our approach reproduces the exemplars faithfully,
albeit totally different on the pixel level.

Our system can construct textures and spaces of textures
in 3D from 2D exemplars alone. This is shown in Fig. 11.
We first notice, that the textures have been transferred to 3D
faithfully, inheriting all the benefits of procedural textures
in image synthesis. We can now take any shape, without
a texture parametrization and by simply running the NN at
each pixel’s 3D coordinate produce a color. We compare to a
2D approach by loading the objects in Blender and applying
its state-of-the-art UV mapping approach [13]. Inevitably,
a sphere will have discontinuities and poles that can not be
resolved in 2D, that are no issue to our 3D approach while
both take the same 2D as input.

5.4. User study

Presenting M = 144 pairs of images produced by either
perlinT, cnnD, mlp, oursP, oursNoT and ours for
one exemplar texture to N = 28 subjects and asking which
result “they prefer” in a two-alternative forced choice, we
find that 16.7% prefer the ground truth, 4.9% perlin, 7.7%
perlinT, 14.3% cnn, 8.8% cnnD, 9.4% mlp, 10.8%
oursNoT, 12.9% oursP and 14.5% ours (statistical sig-
nificance; p < .1, binomial test). Given ground truth and
cnn are not diverse, out of all methods that synthesize infi-
nite textures our results are preferred over all other.

6. Conclusion
We have proposed a generative model of natural 3D tex-

tures. It is trained on 2D exemplars only, and provides
interpolation, synthesis and reconstruction in 3D. The key
inspiration is Perlin Noise – now more than 30 years old –
revisited with NNs to match complex color relations in 3D
according to the statistics of VGG activations in 2D. The
approach has the best combination of similarity and diversity
compared to a range of published alternatives, that are less
computationally efficient.

Reshaping noise to match VGG activations using MLPs
can be a scalable solution to other problems in even higher
dimensions, such as time, that are difficult for CNNs.
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A. Network Architecture
A.1. Encoder

The architecture for the encoder network remains consis-
tent for both ours and competitor methods. Depending on
training for space, single, w/o transform the parameter N
changes accordingly.

Table 4. Network architecture for encoder.
Layer Kernel Activation Shape # params
Input — — 3 x 128 x 128 —
Conv 3x3 IN+LReLU 32 x 128 x 128 ∼1k
Conv 4x4 IN+LReLU 64 x 64 x 64 ∼32k
Conv 4x4 IN+LReLU 128 x 32 x 32 ∼130k
Conv 4x4 IN+LReLU 256 x 16 x 16 ∼524k
Conv 4x4 IN+LReLU 256 x 8 x 8 ∼1M
Conv 4x4 IN+LReLU 256 x 4 x 4 ∼1M
Linear — — 8 ∼32k
Linear — — N ∼0.5k
# params — — ∼2.8M

A.2. Sampler

The sampler architecture used for both our and the mlp
[16] method consists of following convolutional architecture
with 1x1 kernels emulating Linear layers:

Table 5. Network architecture for sampler.

Layer Kernel Activation Shape # params
Input — — N x 128 x 128 —
Conv 1x1 ReLU 128 x 128 x 128 ∼10k
Conv 1x1 ReLU 128 x 128 x 128 ∼16.5k
Conv 1x1 ReLU 128 x 128 x 128 ∼16.5k
Conv 1x1 ReLU 128 x 128 x 128 ∼16.5k
Conv 1x1 ReLU 128 x 128 x 128 ∼16.5k
Conv 1x1 ReLU 3 x 128 x 128 ∼400
# params — — ∼77k

A.3. CNN

For cnn and cnnD competitors we use a similar architec-
ture to the proposed method of [24]:

Table 6. Network architecture for convolutional methods.
Layer Kernel Activation Shape # params
Input — — (32) + 256 —
Linear — — (32) + 256 ∼80k
Linear — — 256 ∼70k
Reshape — — 16 x 4 x 4 —
ConvT 4x4 ReLU 128 x 8 x 8 ∼32k
ConvT 4x4 ReLU 128 x 16 x 16 ∼260k
ConvT 4x4 ReLU 128 x 32 x 32 ∼260k
Upsample — — 128 x 64 x 64 —
Conv 3x3 ReLU 64 x 64 x 64 ∼70k
Upsample — — 64 x 128 x 128 —
Conv 3x3 ReLU 3 x 128 x 128 ∼2k
# params — — ∼790k

B. Results
Additional results of stripe images and interpolations are

displayed below.
A webpage containing more results for all four classes

(WOOD, MARBLE, GRASS and RUST) including competi-
tors can be accessed online: https://geometry.cs.
ucl.ac.uk/projects/2020/neuraltexture.
Additionally, videos of rotating shapes textured by our
method are provided. Our code is available at: https:
//github.com/henzler/neuraltexture
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Figure 13. Results derived from the encoded WOOD space.

Figure 14. Results derived from the encoded MARBLE space.
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Figure 15. Results derived from the encoded GRASS space.

Figure 16. Results derived from the encoded RUST space.
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Figure 17. Latent space interpolation from one ground truth wood exemplar (left) into secondary ground truth exemplar (right). Each row
corresponds to independent interpolations.

Figure 18. Latent space interpolation from one ground truth grass exemplar (left) into secondary ground truth exemplar (right). Each row
corresponds to independent interpolations.
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Figure 19. Latent space interpolation from one ground truth marble exemplar (left) into secondary ground truth exemplar (right). Each row
corresponds to independent interpolations.

Figure 20. Latent space interpolation from one ground truth rust exemplar (left) into secondary ground truth exemplar (right). Each row
corresponds to independent interpolations.
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