Fast Global Pointcloud Registration via Smart Indexing

Nicolas Mellado1, Dror Aiger2, Niloy J. Mitra1

1University College London \quad 2Google Inc.
Problem Statement

- Estimate rigid transformation tr
 - Large search space (6DoF)
Problem Statement

• Estimate rigid transformation \mathbf{tr}
 • Local registration: from an input pose
 • ICP [BM92], [CM92], [RL01], [MGPG04]
 • Sparse ICP [BTP13]
 • Kinect Fusion [IKH*11]

$\mathbf{P} + \mathbf{tr}(\mathbf{Q})$
Problem Statement

• Estimate rigid transformation \mathbf{t}_R
 • Local registration: from an input pose
 • ICP [BM92], [CM92], [RL01], [MGPG04]
 • Sparse ICP [BTP13]
 • Kinect Fusion [IKH*11]
 • Global registration: arbitrary input pose
 • RANSAC [FB81], [IR96], [CH99]
 • and variants [GMGP05], [PB09], [PB11], [ART10], [RABT13]
 • 4 Point Congruent Set [AMCO08]

3 pairs of corresponding points are sufficient to define a rigid transformation
Problem Statement

RANSAC: $O(n^3)$

4 Point Congruent Set (4PCS): $O(n^2)$
Problem Statement

RANSAC: $O(n^3)$

4 Point Congruent Set (4PCS): $O(n^2)$

Our approach (Super 4PCS): $O(n)$

Difficult cases
Use Super4PCS
Work with 226 points
norm_max_dist: 5.000000
Initial LCP: 0.061947
Computation time (sec): 9.996068
Score: 0.451327

(Homogeneous) Transformation from input2.obj to input1.obj:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.978</td>
<td>-0.171</td>
<td>-0.118</td>
</tr>
<tr>
<td>0.071</td>
<td>0.808</td>
<td>-0.585</td>
</tr>
<tr>
<td>0.195</td>
<td>0.564</td>
<td>0.803</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

saving transform matrix to output_transform.mx
Merged object was written to output.obj

Demo
Overview

• 4PCS
• Super4PCS
• Results
4 Point Congruent Set

- Use planar 4-points basis in \(P \)
- Find congruent 4-points in \(Q \)

4-points Congruent Sets for Robust Surface Registration
Dror Aiger, Niloy J. Mitra, Daniel Cohen-Or
SIGGRAPH 2008
4 Point Congruent Set

• What does congruent mean?

• Similar under a given transformation class
 • Ratios r_1 and r_2

$$r_1 = \frac{||a - e||}{||a - b||}$$
4 Point Congruent Set

• What does congruent mean?

• Similar under a given transformation class
 • Ratios \(r_1 \) and \(r_2 \)
 • Distances \(d_1 \), \(d_2 \)
4 Point Congruent Set

- What does congruent mean?

- Similar under a given transformation class
 - Ratios r_1 and r_2
 - Distances d_1, d_2
 - Angle α

Rigid transformation
4 Point Congruent Set

Select Base

Extract pairs

Extract congruent superset

Filter congruent set

Verify and update transformation

Ratios
Distances

Filter congruent set

Ratios
Distances
Angles

False positives (non congruents)
4 Point Congruent Set

- Extract pairs
4 Point Congruent Set

- Extract pairs

\[d_1 \approx d_1 \approx d_1 \]

\[\varepsilon \quad d_1 \quad \varepsilon \]
4 Point Congruent Set

- Extract pairs

\[\mathbf{e}_1 = \mathbf{a} + r_1 (\mathbf{b} - \mathbf{a}) \]

\[\mathbf{e}_2 = \mathbf{a} + r_2 (\mathbf{b} - \mathbf{a}) \]
4 Point Congruent Set

- Extract pairs
4 Point Congruent Set

- Extract pairs
4 Point Congruent Set

- Extract pairs
- Extract congruent super-set
4 Point Congruent Set

- Extract pairs
- Extract congruent super-set
4 Point Congruent Set

- Extract pairs
- Extract congruent super-set
- Filter congruent set
4 Point Congruent Set

Select Base

Extract pairs

Extract congruent superset

Filter congruent set

Verify and update transformation

\(O(n^2) \)

\(O(m \log(m)) \)

\(O(k) \)

Ratios
Distances

Ratios
Distances

Angles

False positives (non congruents)

\(n \) points

\(m \) pairs

\(k \) congruent sets
Super 4PCS

- $O(n^2)$
 - $O(n)$
 - Verify and update transformation

- $O(m\log(m) + k)$
 - $O(m+k)$

Select Base
Extract pairs
Extract congruent set

No more false positive

n points
m pairs
k congruent sets
Super 4PCS

\[O(n^2) \quad O(m \log(m) + k) \]

\[O(n) \quad O(m+k) \]

Our smart indexing techniques produce the **same** congruent set as 4PCS but in linear time.
Super 4PCS

- $\mathcal{O}(n^2)$
 - $O(n)$
 - $O(n^2)$
 - $O(m\log(m) + k)$

Select Base

Extract pairs

Extract congruent set

Verify and update transformation

n points
m pairs
k congruent sets
Pair extraction

• Reporting incidences: all valid pairs generated from a sphere
Pair extraction

- Reporting incidences using sphere rasterization
 - Complexity depends only on \(\epsilon \) and \(d_1 \)
Pair extraction

- Reporting incidences using sphere rasterization
- With an adaptive grid

Note: using a pre-computed tree is not optimal
Pair extraction

- Reporting incidences using sphere rasterization
- With an adaptative grid
- Simultaneously for all points
Pair extraction

• Reporting incidences using sphere rasterization
• With an adaptative grid
• Simultaneously for all points
• Theoretical complexity: $O(n)$
 (see details in the paper)
Pair extraction

- Reporting incidences using sphere rasterization
- With an adaptative grid
- Simultaneously for all points
- Theoretical complexity: $O(n)$
- In practice
 - Runtime: linear
 - Minimal memory overhead

![Graph showing time in seconds for different samples]
4PCS
Congruent set extraction

- Original approach
 - Represent a pair by 2 invariants
4PCS
Congruent set extraction

- Original approach
 - Represent a pair by 2 invariants
 - Use \textit{kd-tree} to find closest invariants

\[O(m \log(m) \quad k \text{ congruent sets}) \]
4PCS
Congruent set extraction

- Original approach
 - Represent a pair by 2 invariants
 - Use \textbf{kd-tree} to find closest invariants
 - Filter non congruent quadriplets

\[O(m \log(m) + k) \]
Congruent set extraction

- Efficient indexing
 - Represent pairs as invariant + direction
Congruent set extraction

- Efficient indexing
 - Represent pairs as invariant + direction
 - Hash pairs by position and direction
Congruent set extraction

- Efficient indexing
 - Represent pairs as invariant + direction
 - Hash pairs by position and direction
- Query
 - Hash positions (closest invariants)
Congruent set extraction

- Efficient indexing
 - Represent pairs as invariant + direction
 - Hash pairs by position and direction
- Query
 - Hash positions (closest invariants)
Congruent set extraction

- **Efficient indexing**
 - Represent pairs as invariant + direction
 - Hash pairs by position and direction
- **Query**
 - Hash positions (closest invariants)
 - Theoretical complexity: $O(n)$

 \[
 \text{(see details in the paper)}
 \]
Congruent set extraction

- Efficient indexing
 - Represent pairs as invariant + direction
 - Hash pairs by position and direction

- Query
 - Hash positions (closest invariants)
 - Theoretical complexity: \(O(n) \)
 - In practice
 - Runtime: linear
 - Memory overhead: similar to kd-tree
Results
Outliers

Before ICP

After ICP

Input 1.4 sec 15 sec 30 sec

35k points
Low overlap

(no ICP)
32k points
Low overlap

Other examples

<table>
<thead>
<tr>
<th>Model</th>
<th>Points (x1000)</th>
<th>Overlap (%)</th>
<th>4PCS (in sec)</th>
<th>Super 4PCS (in sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubba</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>Buddha</td>
<td>37</td>
<td>20</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td>Hippo</td>
<td>32</td>
<td>25</td>
<td>11</td>
<td>0.5</td>
</tr>
</tbody>
</table>

![10k points](image1.png) ![37k points](image2.png) ![32k points](image3.png)
Low overlap + featureless

2,500 points
Multi-modal models

- **P**: 2.5M points, multiview stereo
- **Q**: 2.5M points, LIDAR
Range Images alignment

Top: Input
Bottom: initial pose

SUPER 4PCS, no ICP
Top: 0.5 sec
Bottom: 11 sec

ICP
Top: 16 sec
Bottom: 28 sec

Sparse-ICP ($p = 1$)
Top: 12 sec
Bottom: 43 sec

Sparse-ICP ($p = 0.5$)
Top: 71 sec
Bottom: 60 sec
Kinect scans

- Chaining pairwise registration (5/6 frames)
Limitations

• Sampling sensitivity
 • Region Of Interest (ROI)
 • Cannot match *between* the points

• Metric

Select Base Extract pairs Extract congruent set Verify
Conclusion

• Global matching algorithm
 • Running in linear time
 • Unstructured point clouds without normals
 • Can be combined with local descriptors

• Future work
 • Real-time using GPGPU programming
 • Alternative to Kinect Fusion
Thank you for your attention

• Super 4PCS
 • Global matching running in linear time

• Acknowledgements
 • Feedback&discussion: Duygu Ceylan, Aron Monszpart
 • SparseICP data and comparisons: Sofien Bouaziz, Andrea Tagliasacchi
 • Pisa dataset: Matteo Dellepiane

• Funding
 • Marie Curie Career Integration Grant
 • ERC Starting Grant SmartGeometry
 • Adobe Research

Code and data goo.gl/uQrhJU
github.com/smartgeometry-ucl/Super4PCS

Features:
• C++
• Based on Eigen
• Structures implemented in arbitrary dimensions