
Relationship Templates for Creating Scene Variations

Xi Zhao
Xi’an Jiaotong University

Ruizhen Hu
Shenzhen University

Paul Guerrero Niloy Mitra
University College London

Taku Komura
Edinburgh University

...
input synthesized variations

Figure 1: Our system synthesizes new scenes based on how objects interact with each other in the example scene. The method handles complex relationships
such as ‘hooked-on,’ ‘tucked-under,’ etc. and does not rely on classification or labeling of input objects.

Abstract

We propose a novel example-based approach to synthesize scenes
with complex relations, e.g., when one object is ‘hooked,’ ‘sur-
rounded,’ ‘contained’ or ‘tucked into’ another object. Existing rela-
tionship descriptors used in automatic scene synthesis methods are
based on contacts or relative vectors connecting the object centers.
Such descriptors do not fully capture the geometry of spatial inter-
actions, and therefore cannot describe complex relationships. Our
idea is to enrich the description of spatial relations between object
surfaces by encoding the geometry of the open space around objects,
and use this as a template for fitting novel objects. To this end, we
introduce relationship templates as descriptors of complex relation-
ships; they are computed from an example scene and combine the
interaction bisector surface (IBS) with a novel feature called the
space coverage feature (SCF), which encodes the open space in the
frequency domain. New variations of a scene can be synthesized ef-
ficiently by fitting novel objects to the template. Our method greatly
enhances existing automatic scene synthesis approaches by allowing
them to handle complex relationships, as validated by our user stud-
ies. The proposed method generalizes well, as it can form complex
relationships with objects that have a topology and geometry very
different from the example scene.

Keywords: Spatial Relationships, Scene Synthesis, Relationship
Templates

Concepts: •Computing methodologies→ Shape analysis;

1 Introduction

The ability to synthetically generate plausible 3D scene arrange-
ments is critical for many content-hungry applications like games,
movies and virtual worlds. Generated realistic 3D scenes can also
be used as training data for various scene understanding tasks like
classification and segmentation. A significant amount of time and
manual labor can be saved if production of these complex scenes
can be automated, starting from only a handful of example scenes.

Automatic scene synthesis, however, remains an elusive task. The
challenge lies in creating synthesized scenes that are realistic, i.e.,

ACM acknowledges that this contribution was authored or co-authored by
an employee, contractor or affiliate of a national government. As such, the
Government retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only. c©
2016 ACM.
SIGGRAPH Asia 2016, December 5-8, 2016, Macao, China
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2982410
This is the author’s version of the work.

ensuring that complex inter-object relations along with their spatial
configurations follow those observed in the real world. For example,
when creating a scene where a hat is hooked on a rack, position and
orientation of the hat must be set correctly such that it is physically
hooked, or when creating a person at a writing desk, the relative
arrangement of desk and chair with respect to the person should be
realistic.

Existing scene synthesis methods mainly rely on approaches where
objects in an example scene are replaced based on compatible key-
words along with a similarity based on simple geometric descriptors.
Inter-object relations are typically restricted to simple geometric con-
tacts [Fisher et al. 2011] and/or relative displacement vectors [Fisher
et al. 2012; Chen et al. 2014] between object centroids. Although
such descriptors can effectively capture simple spatial relations such
as an object on top of another, or objects next to each other, they
are not designed to capture complex relationships such as an object
‘hooked on’, ‘surrounded by’, or ‘tucked into’ another object. As a
result, objects in these relationships cannot be synthesized, limiting
the range of scenes that can be produced.

In complex relations, the geometry of objects and the spatial relations
between objects are often tightly coupled. Take the example in
Figure 2, where a chair is tucked into a desk. The chair must be
positioned to fit the empty space under the desk and leave enough
space for a person to sit. A simple geometric match of individual
objects is not sufficient for finding a good fit. With this insight,
descriptors such as Interaction Bisector Surface (IBS) [Zhao et al.
2014] and Interaction Context (ICON) [Hu et al. 2015] have recently
been proposed that analyze the space in-between two objects to
support relation-based retrieval.

In this paper, we go beyond retrieval to directly synthesize novel
scenes with objects interacting according to specified (complex)
relations, as shown in Figure 1. More specifically, we address a sub-
problem of scene synthesis: placing novel objects in scenes such
that they form given complex relations. This requires addressing two
related key challenges: (i) retrieving object pairs that can interact
similar to an example relationship; and (ii) arranging the retrieved
objects according to the example relations. To address these prob-
lems, we introduce relationship templates that are computed from

example scene correct synthesismatching objects individually

Figure 2: Object relations and geometry are tightly coupled. When synthe-
sizing scenes from a given example (left), only matching objects individually
gives incorrect results (center). The geometry of both objects needs to be
considered (right).

http://dx.doi.org/10.1145/2980179.2982410

input 1 3

...
shape database

object �tting scene synthesistemplate construction 2

Figure 3: Overview of our pairwise synthesis. Given two example objects, we compute a relationship template that describes the geometric relationship
between the two objects, shown in transparent blue. We can then fit objects from a database independently to each side of the template, guaranteeing that any
fitted object pair will be in a relationship similar to the exemplar.

an example scene and describe the relation between two objects.
Instead of matching object pairs to determine if their relations are
similar to the example, we can match objects to the relationship
template independently, reducing the complexity from quadratic to
linear. We base the template on IBS, augmented by a feature that
we call space coverage feature (SCF), which compactly encodes the
rich geometry of surrounding objects in the frequency domain. This
setup allows us to efficiently position and orient objects to match a
given template using a multi-step optimization procedure.

Our approach allows existing scene synthesis approaches to handle
complex relationships in their framework, which increases the range
of scenes they can synthesize. The relationship template can also
handle complex relations of more than two objects by introducing a
hierarchical structure. We show that our scheme can produce scenes
with complex relations such as flowers inside a vase, hats hooked
on racks, a person sitting on a chair in front of a desk, and a cup
with a toothbrush on a bathroom basin. These scenes are produced
by adding our method either to our own minimal scene synthesis
pipeline or to a more sophisticated existing synthesis pipeline [Fisher
et al. 2012]. We evaluate the proposed method via both qualitative
and quantitative evaluations, and compare against state-of-the-art
scene synthesis algorithms.

2 Related Work

Learning object structures. Several co-analysis methods have
been developed to discover the structure of man-made objects (see
survey [Mitra et al. 2013]). For example, Wang et al. [2011] com-
pute hierarchical pyramids of single objects based on the symmetry
and contact information; Kalogerakis et al. [2012] produce a proba-
bilistic model of the shape structure from examples; van Kaick et
al. [2013a] use a co-hierarchical analysis to learn models; Several
approaches [Zheng et al. 2013a; Su et al. 2016; Huang et al. 2016]
build a graph structure from an object based on the spatial relations
of the components. Researchers have also proposed new features
based on pairwise points to encode the spatial context of shapes [van
Kaick et al. 2013b; Zheng et al. 2013b]. The probabilistic models
learned by such methods can be applied for synthesizing novel ob-
jects [Kalogerakis et al. 2012; Zheng et al. 2013a]. We next describe
the above techniques that have been extended for scenes composed
of multiple objects.

Learning scene layouts. Research to learn the contextual and spa-
tial structures of living spaces is currently advancing due to the large
amount of room data available in the world, for example, in the Trim-
ble 3D Warehouse. Methods have been proposed to either synthesize
variations from such example scenes, or create new scenes based on
rules provided by an artist. Shao et al. [2012] match surface data
obtained from RGBD cameras to individual example objects using a
random forest classifier trained on features such as spin images and

geometry moments. Nan et al. [2012] also match data captured by
RGBD cameras with objects in the database, and produce discrete
versions of the scene. Matching individual objects works well if they
are clearly separated, but matching objects in close proximity or ob-
jects that have complex spatial interactions may result in collisions
and mismatches. In these cases it is necessary to take into account
the spatial relations between objects. Early work [Coyne and Sproat
2001; Coyne et al. 2010] manually annotated areas of interest in the
open space around an object to handle spatial relationships. More
recently, Yu et al. [2011] evaluate spatial relations of furniture based
on ergonomic factors, while Fisher et al. model spatial relations
in a scene using density estimation over relative distances [Fisher
and Hanrahan 2010] or a graph structure based on contact informa-
tion [Fisher et al. 2011]. These two approaches are further extended
in [Fisher et al. 2012] to handle more general relationship based
on relative centroid positions and orientations. Xu et al. [2014]
propose to classify scenes based on different focal points, where
a context-specific graph structure is produced based on the spatial
relations of a sub-set of the objects. Majerowicz et al. [2014] learn
the style of object alignment and symmetry from a single image
of a shelf and apply it to filling in new shelves with varied object
arrangements. Chen et al. [2014] also use contacts and relative cen-
troid locations as a spatial relationship representation and produce
scenes from RGBD camera data regularized by an example scene
database. Liu et al. [2014] learn the contextual grammar of scenes
formalized as scene graphs. Yeh et al. [2012] sample new scenes
using MCMC sampling in the null space of the constraints described
by collisions and spatial relations. However, these methods cannot
handle complex spatial relations due to their simple centroid-based
relationship representation. Additionally, several methods require
an extensive scene database as input, while we only work with a
single example scene. In Section 7, we show that our method could
be used to augment some of these methods.

Relevant to our work, Zhao et al. [2014] compute the Interaction
Bisector Surface (IBS) that describes the open space between objects
to represent complex relations such as enclosure and hooking. Hu et
al. [2015] extend the idea with a feature called interaction context to
estimate the functionality of a 3D object in a given scene and further
develop this idea to co-analyze the functionality of object categories
and localize surface areas where interactions take place [Hu et al.
2016]. In this work, we go beyond analysis to directly generate
scenes with complex spatial relations, taking a step towards applying
these methods in example-based scene synthesis.

Human-Object relations for scene analysis and synthesis. Re-
searchers have also augmented scene descriptions with human-object
relations as indoor scenes are typically designed with human activ-
ities in mind. Jiang et al. [2013] learn human object relationships
from the data and apply them to label novel objects in point clouds;
while, Savva et al. [2014] decompose objects into primitive struc-

tures such as cuboids and make use of human activity data to predict
the likelihood of activities being performed at scene locations. More
recently, affordance of objects has been utilized to analyze and pop-
ulate 3D scenes. Kim et al. [2014] consider the local geometry
of the contact area with the human body, the object symmetries,
the human body articulation and postures in the example data as
additional factors to evaluate whether a human can perform certain
actions with an object. Fisher et al. [2015] and Savva et al. [2016]
synthesize novel scenes based on the interactions of a human proxy
with the environment. These approaches focus on relationships of
objects with human actors. In this work, we support object-object
relationships, which require a different approach than human-centric
relationships.

3 Overview

Given an example scene with complex object interactions and a 3D
object database, our goal is to synthesize new scenes by replacing
objects in the example scene with database objects that preserve the
nature of the original spatial relations. The three main stages of the
algorithm are described next. Figure 3 provides an overview.

Template construction. We first build a relationship template
for the input exemplar. The template consists of a set of cells and
cell features. Each cell corresponds to one object in the scene, and
describes the open space between the object and neighboring scene
objects. We augment the cell by a set of features, including a novel
feature called Space Coverage Feature (SCF), that describes the
spatial relations between individual points in space and surrounding
objects (see Section 4.4).

Object fitting. In order to synthesize new scenes, we match novel
database objects to each template cell. To reduce the search space
for a matching pose, we start with a heuristic search for volumes
where the SCF features around the novel object statistically match
the template cell, filtering out large volumes that are unlikely to
contain good matches (see Section 5.3). This approach is especially
useful for objects with many potential matches. The novel object is
then fit to the template cell by matching the open space around it
to the features stored in the template. This initial match is refined
by optimizing translation and orientation of the novel object with
respect to the cell boundary (see Section 5.5).

Scene synthesis. After matching novel objects to each cell of the
template, we combine them to build the final scene (see Section 6),
restoring detected contact relations. We also present a hierarchical
approach for larger-scale scene synthesis, such as room layouts.

4 Relationship Template

In order to synthesize novel scene variations from an example scene,
we need to extract a descriptor of the example scene and use it
as a guidance for synthesis. To this end, we introduce a concise
relationship template, which encodes the rich spatial relationships
between objects and can be applied for scene synthesis, as well as
quantitatively rating the similarity of relationships in synthesized
scenes.

4.1 Definitions

We start by introducing definitions and notations related to the rela-
tionship template and give an overview of its structure.

• Scene: A scene is an entity that is composed of N 3D objects
located in the Cartesian space. An isolated object can be
considered as a special scene.

cell 1 cell 3

cell 2

p

b1 b2 b3

Figure 4: The IBS divides the scene space into one cell per scene object.
We compute features on the boundaries of these cells to describe object
relationships. Based on these features, new objects can be fit into each cell
to synthesize new scene variations.

• Interaction Bisector Surface (IBS): The IBS of a scene is a
surface consisting of the set of points equidistant from neigh-
boring objects in a scene (see Section 4.2).

• Open Space: The open space of a scene is defined as the free
space outside the objects. We crop the infinite open space
using a box surrounding the scene as in [Zhao et al. 2014].

• Cell: The IBS divides the open space of the scene into N
subspaces, which we refer to as cells. Each cell corresponds to
one object in the scene, and its boundary is a subset of the IBS
(see Section 4.2).

• Template: The relationship template consists of a group of
cells and their features. The computation process of the cell
features is described in Section 4.3.

Figure 4 shows an example of a template in a scene that contains
three objects: a table, a chair and a cup. Cells of the template are
shown in blue, green and red background colors. The lines between
the cells illustrate the IBS of the scene. The relationship template
can be considered as a ‘connector’ or an ‘adaptor’ of objects in a
scene. Each cell is one ‘joint’ of the connector/adaptor and defines
how an object connects to the template.

4.2 IBS and Cell Construction

Here we briefly review how we compute the IBS and construct all
cells in the scene. The IBS describes interactions between objects
and was used for scene classification and relation-based 3D object
retrieval in Zhao et al. [2014]. The IBS is the set of points that are
equidistant from the two neighboring objects, i.e., it is a subset of
the external medial axis, or the Voronoi diagram. We compute IBS
via the quickhull algorithm [Barber et al. 1996]. Points are sampled
on the surface of scene objects and a set of polygons named ridges
that are equidistant from the sample points are extracted and merged
to approximate the medial axis. Among these ridges, those produced
by points from two different objects are used to form the IBS. Thus
the IBS describes the open space between interacting objects. Recall
that each cell ci corresponds to an object. The boundary bi of the cell
is the IBS subset produced by this object, shown in Figure 4 in the
same color as the cell. We store only the boundaries bi (i ∈ [1, N])
of the cells.

4.3 Cell Features

In order to provide a descriptive representation of each cell, we first
sample a set of points on the cell boundary and then compute several
point-wise features for each sample point.

0

1

volume diameter
functiondistance function

L = 0

L = 1

L = 2

L = 3

frequency
decomposition

SCF
coeff.

... ...

2

2

2

2

=

=

=

=
longitude

la
tit

ud
e

0.83

0.85

0.66

0.40

Figure 5: SCF computation steps. To compute the SCF at the red point
(left), we sample the boundary distance around the point and normalize it to
get the volume diameter function. Our SCF coefficients are the power of this
function in each frequency band.

Sampling on boundary. We first sample the entire IBS of the scene
with 200× (N − 1) points, following the approach in [Zhao et al.
2014]. Intuitively, sampling density is higher where the distance
between the IBS and the object is shorter and the angle between the
IBS normal and the closest point on the objects is smaller. We call
these sample points template points. Note that each template point
is used for the two cells on both side of the boundary.

Feature computation. Next, we compute a set of features for each
template point on boundary bi that describe the spatial relation to the
object contained in the corresponding cell. For example, in Figure 4,
we compute features at template point p that describe its relation to
the table. Three types of features are computed for each template
point p with respect to the corresponding object:

the shortest distance between p and the object (denoted here by fdis),
the direction from p to the closest point on the object (denoted here
by fdir), and the SCF feature at point p with respect to the object
(denoted here by fscf), which we will describe next.

4.4 Space Coverage Feature (SCF)

The space coverage feature (SCF), effectively quantifies the relation-
ship between a point in open space and a nearby object. Figure 5
provides an overview of the computation steps. The key of the SCF
feature is to encode the geometry of the open space around objects
in the frequency domain using spherical harmonics; a similar fea-
ture has been applied for describing object geometry [Saupe and
Vranic 2001; Kazhdan et al. 2003; Kazhdan et al. 2009], but not for
relationships.

Given a point P in open space, a spherical depth map is computed
at P . We define a unit sphere centered at P and sample the distance
d from P to all surrounding surfaces. Rays are cast from P in a
set of directions obtained by uniformly sampling n points along the
latitude and longitude of the sphere, for a total of n× n rays. The
north pole points towards the object’s closest point and we set n to
30 in our experiments. If a ray does not hit an object, d is set to
infinity. This approach is inspired by Shapira et al. [2008] where
the rays are cast within the object to produce a feature of the object
shape; here we cast from outside to produce a feature of the open
space between objects.

Next, we define a discrete spherical function called the volume
diameter function for P as

Fvdf (i, j) :=

{
dmin + e

d(i, j) + e
| 0 ≤ i, j ≤ n− 1

}
, (1)

where i, j are the ray indices along the longitude and latitude direc-
tions, respectively, dmin is the minimum distance among all rays
and used for normalization, and e is an offset whose value is set

L = 0 L = 1 L = 2 L = 3 L = 4

1

0

Figure 6: SCF coefficients in the open space around different objects are
shown as color maps. Values are clamped to 1 to preserve contrast for
smaller coefficients. In each row, we show coefficient values of bands 0 to 4
for the object shown in the foreground.

to the mean of all non-infinite distances. We use e to keep Fvdf
descriptive even when P is sampled at the surface of the object.
Note that the value range of Fvdf is [0, 1] due to the normalization,
which makes the feature scale invariant. Infinite ray results in a value
of 0, while the ray with minimum distance gets a value close to 1.

Our SCF feature vector is the rotation-invariant power spectrum
of the volume diameter function. Similar to [Kazhdan et al.
2003], we first compute the spherical harmonics expansion Fvdf =∑∞
l=0

∑
|m|≤l al,mY

m
l , where al,m are the spherical harmonics co-

efficients of Fvdf and Y ml are the spherical harmonics at frequency
l. We then define the SCF features as:

SCF (Fvdf) = {a0, a1, . . . , an}, (2)

where al is the power of the function in frequency band l:

al = ‖
∑
|m|≤l

al,mY
m
l ‖2 =

√∑
|m|≤l

(al,m)2. (3)

Note that the last equality holds due to the orthonormality of spheri-
cal harmonics. In practice, we use SpharmonicKit [Kostelec 2008]
for computing the spherical harmonics coefficients.

Describing the open space in the frequency domain makes our de-
scriptor more robust to small variations in the geometry and topology
of the open space. In Figure 6, we visualize the first five frequency
bands for three different objects. Note that the coefficients are sim-
ilar for objects of similar type (first two rows), even though their
geometry and topology is slightly different; while objects of different
type (last row), have a larger difference in their coefficients.

5 Fitting a Novel Object to a Cell

Scenes with complex relations are synthesized by fitting novel ob-
jects into template cells. A template cell of the input scene is used
as a ’connector’ that only accepts objects with suitable geometry.
Fitting a novel object to a cell is done by searching for a rigid trans-
formation of the object that maximizes the similarity between the
cell features computed for the transformed object and the cell fea-
tures stored from the example scene. Note that this is equivalent to
rigidly transforming the template to match the novel object. In this
section, we will use these concepts interchangeably, as suitable. We
first define a similarity function that measures the fitting quality (see

Section 5.1), and then find an object pose that maximizes this simi-
larity in a three-step optimization procedure. As a pre-computation
step, we compute features in a uniform grid around the novel object
(see Section 5.2). This allows reducing our search space to so-called
regions of interest (ROIs - see Section 5.3), and to efficiently get a
coarse initial match to the template (Section 5.4), before optimizing
for feature similarity (see Section 5.5).

5.1 Similarity Function

We define a similarity function that evaluates how well a novel object
with a given rigid transformation fits the template. This similarity is
based on comparing the cell features for the novel object to the cell
features for the example scene:

Sfinal := (1− ddis)(1− ddir)(1− dscf), where (4)

ddis =
1

Ni

Ni∑
j=1

|f jdis − f
′j
dis|

αdis
,

ddir =
1

Ni

Ni∑
j=1

l
(
∠(f jdir, f

′j
dir) < αdir

)
,

dscf =
1

Ni

Ni∑
j=1

‖f jscf − f
′j
scf‖2

αscf
, with

(5)

Ni being the number of template points on the boundary of cell ci,
(f jdis, f jdir , f jscf) are the distance, direction, and SCF features at the
template point pj in the original scene, and (f ′

j
dis, f ′jdir , f ′jscf) are

the features computed for the transformed novel object. l(χ) is an
indicator function that returns 1 if χ is true and 0 otherwise, and αdir
is an angular threshold within which the orientation is considered
similar, which is set to π/2. We normalize ddis and dscf with the
upper bounds αdis and αscf to keep them in [0, 1]; see Appendix B
for details of these bounds.

5.2 Precomputing Features

We precompute two quantities to improve the efficiency of our search
for good relative transformations between template and novel object:
statistics over the template features to focus our search on regions
that are likely to contain good candidates, and features values at a
uniform grid of points in the open space around the novel object,
referred to as open space points.

Representative template points. In order to reduce the cost of
matching the template points with the open space points, we cluster
the template points based on their SCF feature using k-means clus-
tering, and compute the average SCF feature and distance feature for
each cluster. The cluster number M is set to 5 in all our experiments
and represent them as,

cibsscf = {c1scf , c2scf , ..., cMscf}

cibsdis = {c1dis, c2dis, ..., cMdis}.
(6)

Open space points. We first compute tight axis-aligned bounding
box of the novel object and then extend each edge to 2 max(cibsdis).
Open space points are uniformly sampled and their SCF, distance,
and direction features are computed. Note that the resolution of
sampling the open space points affects the performance: a sparse
sampling may lead to bad matching results while a dense sampling
leads to heavy computation cost. We determine the sampling interval
dx based on the distribution of the distance feature on the template.
If there are many points where the distance is small, we need to

Figure 7: Regions of interest. To reduce the search space for poses with
relationships similar to the exemplar (left), we heuristically choose regions
of interest that potentially contain good candidate poses (right) and discard
all poses outside these regions.

sample more densely to precisely fit the novel object, where a coarse
sampling is fine when the distance is always large. In practice, we
set the interval of uniform sampling as half the average distance
feature of the template.

5.3 Region of Interest

We reduce our search space to regions that are likely to contain
good candidates. This is similar to the bag of visual words con-
cept [Fei-Fei and Perona 2005], where the goal is to search for a
volume that contains point sets with high matching score. We use a
‘sliding window’ to test all different sub-regions of the open space.
Specifically, we use sphere shaped windows with radius r set to half
the the longest edge of the cell’s axis-aligned bounding box (see
Figure 7 - for clearer illustration we show cubes instead of spheres).

Window matching score. In each window, H candidate open
space points are selected for computing the similarity to the cluster
averages cmdis and cmscf . A high similarity score means the point
is more likely to fit the template around the cluster. So we first
compute the matching score between an open space point and a
cluster average as:

smi :=

{
0 |f idis − cmdis| > θdis

1− ‖f
i
scf−c

m
scf‖

αscf
otherwise,

(7)

where αscf normalizes the matching score, similar to Eq. 5. Now,
assume the number of template points is Ntotal, and the number of
template points in each cluster isNm(m = 1, ...M). In the window,
for the m-th template point cluster, we select hm candidate points
with the best matching score smi , where hm = H × Nm

Ntotal
. The

window matching score is then given as:

S :=
∑

m∈[1,M]

∑
i∈w

smi /hm, (8)

where w is the number of candidates picked for a cluster. Higher
values for S increase the chance of finding a good fit in the window.

Sliding window. The window slides across the open space along
the x, y, and z axes and the interval is set to be r/5. We compute the
similarity score for all the windows, keep the best ROI and restrict
our search to this region. This process can be repeated to pick a
different ROI when the matching fails or there are multiple possible
matching locations in the novel object. Each time we exclude all
windows that have already been used before and recompute the score
for all remaining windows.

5.4 Initial Matching

We now describe how to establish an initial match between the tem-
plate cell and the extracted ROI in the open space around the novel

objects. A good match of the open space can be obtained even when
the fine geometry of the object is different from that of the original
scene, thanks to the abstraction provided by our frequency domain
representation. We adopt geometric hashing [Wolfson and Rigoutsos
1997], which is a generalization of the RANSAC algorithm and is
robust against outliers. (Note that alternate matching schemes can
be applied in this step.)

Selecting the candidate points. After extracting the ROI, the H
candidate points used for computing Eq. 8 are used for fitting the
novel object to the cell. We set H = 90 in all our experiments. The
H points are labeled with the id of the corresponding cluster and the
label is used for voting in geometric hashing.

Matching by geometric hashing. Individual steps for geometric
hashing are similar to Gal et al. [2006], where geometric hashing is
applied to partial matching of 3D surface data:

(i) All the template points are used to build the geometric hashing
table. More specifically, all the triplets of template points are used
as ‘bases’ and other points are labelled with the base id and inserted
into the hash table.

(ii) Each triplet in the candidate points then votes in the hash table. A
triplet of the template points and a triplet of the candidate points are
selected, and a transformation from the object to the template cell is
computed. Using this transformation, all the rest of the candidate
points are transformed to the coordinates of the template triplet. For
each candidate point, if both its location and cluster id match with a
point in the hash table, the candidate point is considered as an inlier,
and the vote for the triplet is increased by 1.

(iii) All triplets of the candidate points are tested, and the triplet with
the largest vote (number of inliers) is selected as the best fit.

This fitting process only produces an approximate match due to the
finite sampling density of open space points. Next, we describe how
to further refine the relative transformation between relationship
template and novel object.

5.5 Refinement

We iteratively refine the coarse matching results in Section 5.4 by
maximizing the similarity function in Eq. 4. Similar to Zheng et
al. [2009], at every iteration, we find an ideal location for each
template point using the following method. We treat the distance
feature of the open space points as a distance field and decide to
move the template either in the positive or negative gradient direction
by comparing fdis and f

′
dis: if fdis > f

′
dis, we move towards the

object, otherwise we move away from it. This decision is made
individually for each template point. We fit a rigid transformation
of the template to the updated template point locations and use this
transformation as input for the next iteration. We iterate until Sfinal
becomes stable using an updating scheme described in Appendix A.

Note that this refinement process is local, and during the refinement,
the SCF feature of each template points does not change much.
This simplifies the optimization. Specifically, we consider the SCF
feature to be fixed, only update the state based on the distance feature
and move the template points along the gradient of the distance field.
We use an average step size of approximately 0.1% of the scene’s
longest side.

We show an example of applying the above method in Figure 8. In
this example, the table is the novel object. The chair is from the
original scene and keeps its relative location with respect to the cell
boundary. The location of the cell boundary is updated iteratively
with the chair, as it moves towards a location that produces the
same spatial relationship as in the original scene. Although the

... ...

initial matching re�ned matching

Figure 8: Snapshots of the refinement process. Given an initial matching,
we iteratively refine the template pose to optimize its fit to the table.

initial matching puts the chair only roughly in front of the table, its
location is improved after a few iterations.

6 Synthesizing Scenes

We now describe how to use our approach to synthesize variations of
a scene that includes complex relations. For this purpose, we build a
simple scene synthesis pipeline around our method. Alternatively,
we can include our method in existing synthesis pipelines, as we
will show in Section 7. Given an example scene, we replace the
individual scene objects by database objects to generate new scenes
with similar inter-object relationships. If there are only two objects
in the scene, we simply apply the fitting approach described in
Section 5 to both cells. Relationships in larger-scale scenes are
often structured hierarchically such as a set of objects put into a
basket that is hanging off a handle; or a box with a stack of towel is
on top of a shelf (see Section 6.1). We describe extensions of our
method to capture semantic constraints of scenes (see Section 6.2),
and spatially repeated relationships, such as many hats/caps hung
on a cap holder (Section 6.3).

6.1 Hierarchies for Larger-scale Scenes

For scenes composed of more than two objects, directly placing
objects into the template cells can be overly restrictive. Take for
example a pushcart carrying a pot and a basket hooked on the handle
(Figure 12 (d)); we cannot directly exchange the cart with a wider
or shorter handle cart, because it would not fit the cell delimited by
both pot and basket. In the real world however, the pot and basket
positions can easily be changed to accommodate the new cart.

To allow for more flexibility in larger-scale scene synthesis, we
build a hierarchy on our cells based on the distance and area of
the cell boundary, following the approach in Zhao et al. [2014]. In
this hierarchy, siblings are usually smaller objects placed near a
larger parent object. To decompose scene synthesis into a sequence
of pairwise synthesis problems, we establish an ordering among
siblings and consider one pairwise relationship at a time, starting at
the leaves and working our way up breadth-first towards the root.
In the pushcart scene, we first synthesize the sub-scene consisting
of cart and pot, then we synthesize the basket containing food, and
finally hook the basket with food onto the cart with pot. In each step,
we only use the template part corresponding to the current pair’s
relationship, avoiding the problem of overly constrained placements.
Note that the synthesized scene might have a different relationship
template than the exemplar, but with similar pairwise relationships.

The scenes in our experiments are usually not sensitive to the sibling
order. For example, the order of placing the lamp and book in the
desk scene (Figure 12 (e)) is not relevant, so siblings can often be
ordered arbitrarily. Some cases are possible where the ordering
among siblings influences the final result. In this case the order can
be defined manually. We consider the the problem of determining
the order automatically a separate research problem that is out of
scope of this paper.

6.2 Capturing Scene Semantics

Realistic scenes usually contain constraints that are not captured
purely by the geometry of relationships. Since the focus of our
method lies on geometry, we either model these semantic constraints
explicitly or let the user input additional information to get semanti-
cally plausible scenes.

Resolving placement ambiguity. For a template such as a book
placed on a table, there are many candidate locations over the new
table that can produce a similar relationship. In this case, the choice
of location depends on the semantics of the object being placed. To
capture these semantics, the user can specify the relative vector be-
tween the object center and the IBS center as an additional attribute.
Such a relative vector is encoded into the scene hierarchy and used
as an additional criterion for selecting the ROI in Section 5.3: The
matching score of each candidate window is multiplied by a factor
inversely proportional to the distance between the preferred relative
vector and the vector from novel object center to the window center.
This option is effective for synthesizing examples such as putting a
book on the right-hand side over the table.

Contact constraints. Since novel objects are usually not a per-
fect match for the distance values stored in the template, contacts
between objects on both sides of the template can not always be
reproduced accurately. To ensure preservation of desired contacts,
the user can indicate if a contact between two objects should be
preserved. For these object pairs, we find and store a contact point
on the relationship template as the closest point to both of the objects
(note that closest point to the first object is also the closest point to
the second object). As a post-processing step after the refinement
stage in Section 5.5, we project the contact point back to the synthe-
sized objects along the template normal and register these projected
points with the contact point, thus restoring (near-)contact between
the synthesized object pair, if allowed by their geometry.

Upright constraint. We assume that objects come with prede-
fined upright directions, and always impose this constraint unless
explicitly released by the user. We examine how much the object
deviates from being upright after geometric hashing. If the rotation
angle is larger than a threshold (set to π/6 in our tests), we discard
the variation, otherwise we rotate the object back to the upright
direction.

Floor constraint. The floor constraint enforces the lowest point
of the object to be on to the floor and is applied to objects such as
furniture. Whether the floor constraint should be imposed can be
deduced from the input scene: objects with the lowest point within
a threshold of the floor surface at height 0 are constrained. We set
the threshold to 1 (the height of a normal desk is about 21) in our
experiments. After the refinement, we check if the lowest points of
constrained objects are on the ground level. Results with objects
that exceed the threshold are discarded. Otherwise, object positions
are slightly nudged to make contact with the floor. Optionally, floor
constraints can be turned off for objects that are not supported by
the floor but are placed close to the floor level.

Collision constraint. This is imposed to ensure that objects do
not inter-penetrate. Although the novel object fits well to a cell
boundary at one side, it may collide with other objects on the other
side. Again, the results are discarded if such collisions persist after
fitting objects to both sides of the template.

6.3 Spatially Repeated Relationships

For synthesizing scenes where the same spatial relations can be
found at various locations, such as hats hung at multiple hat-holders,
and books kept in a bookshelf, we find multiple candidate locations

around a novel object. To this end, we scan the scene after each
object placement to find a new ROI that does not intersect a volume
that is already occupied. Specifically, the open space points within
the occupied ROIs are excluded from computing the matching score
(Eq. 8) in subsequent rounds.

7 Experimental Results and Evaluation

In this section, we provide qualitative and quantitative evaluation
of our synthesis results. We show several examples of pairwise
synthesis results, compare them with a baseline method and demon-
strate synthesis with spatially repeated relationships. Complex scene
synthesis is evaluated in a user study that compares the plausibility
of our results with a state-of-the-art method. Finally, we evaluate
the effect of SCF parameter settings on our results.

Pairwise synthesis. Pairwise scenes are produced by computing a
relationship template from a given example object pair and fitting
novel objects to both sides of the template. We synthesize results
from four different example pairs, shown in Figure 9 (leftmost
pairs of each type). Novel objects are retrieved from a database
of unlabeled objects based on their fitting score to the exemplar’s
template (see Equation 4). We synthesize all possible combinations
of retrieved object pairs and rank them based on their combined
fitting score. We established a ground truth by manually labeling
synthesized pairs as correct or incorrect. Since there is usually
very little ambiguity in the correct/incorrect decision and there was
practically no disagreement between our choices, we opted not to
conduct a Mechanical Turk user study. Figure 9 shows our labels
for the 10 best results of each query and labels for the full dataset
are available in the supplementary material; highlighted objects are
incorrect. The total number of correct pairs in the database is set to
the number of pairs having the same type as the input exemplar.

Our method successfully retrieves and synthesizes similar pairs from
the database, based only on their fit to the relationship template. Re-
sults are shown in Figure 9 to the right of each example scene. Note
that similar relationships can be produced even though objects ex-
hibit large variations in their geometry and topology. The relatively
few false positives (e.g. the toothbrush in the vase) mainly occur
due to object pairs of different types being separated by a similar
open space as in the input exemplar. In this experiment, we always
place objects at the optimal poses our method can find, therefore the
objects in the shelf scene are placed at similar locations in results
with similar shelves. Note that semantic constraints are imposed on
the results, as discussed in Section 6.2.

Table 1 shows which constraints are applied to at least one of the
objects in each of the scenes. Most constraints are applied auto-
matically. An exception is the contact constraint, which is enabled
manually, since it depends on the semantics of the contact. In the
vase-flower scene, the collision constraint is disabled manually, since
the input contains near-collisions and results contain some borderline
collisions as well, due to the limited open space sampling density.

scenes contact upright floor collision
hook-bag X X

desk-chair X X X
vase-flower X
shelf-object X X X X

bench X X X X
cart X X X X

study X X X X
kitchen X X X X

bathroom X X X X
Table 1: Semantic constraints that were applied to at least one of the
objects in a scene are indicated with a checkmark.

S
ha

pe
S

P
H

ou
r

m
et

ho
d

S
ha

pe
S

P
H

ou
r

m
et

ho
d

S
ha

pe
S

P
H

ou
r

m
et

ho
d

S
ha

pe
S

P
H

ou
r

m
et

ho
d

sh
ap

e
da

ta
ba

se
ex

am
pl

es

305 30
0

1
desk-chair

our method precision

ShapeSPH precision
our method recall

ShapeSPH recall
1

pr
ec

is
io

n
an

d
re

ca
ll

pr
ec

is
io

n
an

d
re

ca
ll

pr
ec

is
io

n
an

d
re

ca
ll

pr
ec

is
io

n
an

d
re

ca
ll

n best results
0

1 shelf-object

51 n best results51 300

1
hook-bag

n best results 5 30
0

1 vase-flower

1 n best results

Figure 9: Pairwise object synthesis results in four different types of complex relationships. We compare to traditional shape matching using Shape-
SPH [Funkhouser et al. 2004] as a baseline. Models are taken from a mixed shape database, a few examples are shown in the top row. Below, we show the four
relationship exemplars on the left, followed on the right by the 10 best results of both our method and the baseline. Incorrect results have a purple background.
In the bottom row, we provide precision and recall for up to the 30 best results of both methods.

We compare our results to a baseline shape matching method
that does not take relationship between example objects into ac-
count. Objects in the example pair are replaced separately with
database objects using global shape alignment with Wigner-D func-
tions [Funkhouser et al. 2004]. We rank the resulting scenes by
the minimum correlation score between fitted objects and exemplar.
Results are shown in Figure 9 under those of our method. As a result
of taking into account the geometry of individual example objects
only, this method produces a large number of false positives.

We provide quantitative comparisons in Figure 9, bottom. Taking
the example relationship into account allows our method to achieve
significantly higher performance than our baseline that fits individual
objects only. The reason is easy to see in the desk-chair example:
aligning two different desks with the baseline method may cause the
space for the chair to be at a place different from the exemplar, result-
ing in badly mismatched desk-chair pairs. A quantitative evaluation
of pose synthesis without object retrieval, is shown in Figure 10,
where we only retrieve objects from the subset of the database with
the correct object type. Our method finds a correct pose in almost all
of the results, while the baseline performs significantly worse due to
not accounting for spatial relations.

Spatially repeated pairwise relations. Next we show examples
where a given relationship is synthesized at multiple locations, such

as hats and caps hung on hat holders and objects held in shelves. As
discussed in Section 6.3, we search for multiple ROIs, giving us mul-
tiple candidates for object poses that produce similar relationships.
Results of two example scenes are shown in Figure 11. Objects are
correctly placed in shelves, and caps and hats are successfully hung
at multiple locations on a stand despite the wide variation in object
geometry.

Larger-scale scene synthesis. Scenes with more than two objects
are synthesized by replacing individual objects in a given input
scene using our scene hierarchy (see Section 6.1). Results of scenes
synthesized from 5 different input scenes are shown in Figure 12 (c-
g). Inputs range from relatively simple scenes with three objects, like
the ‘garden’ scene to larger scenes like the ‘kitchen’ or ‘bathroom’
scenes. In Figure 12 (a) and (b), we also include two pairwise
synthesis results to get a wider range of object counts and to examine
how complex scene synthesis quality compares to pairwise synthesis
quality. For each scene type, we synthesize 10 scenes, a subset of
which are shown in Figure 12. Please refer to the supplementary
material for the complete set of synthesized scenes.

We compare our results against results obtained from Fisher et
al. [2012] using the same input scene. In the interest of a fair
comparison, we only use parts of Fisher’s method concerned with
object placement: the arrangement and layout models (described

n best results 25
0

5125
0

51

5
0

1

1

pr
ec

. /
 r

ec
al

l 1

pr
ec

. /
 r

ec
al

l

1

pr
ec

. /
 r

ec
al

l 1

pr
ec

. /
 r

ec
al

l

n best results 25 510 n best results 25

desk-chair

shelf-object

hook-bag

vase-flower

precision
our method

recall

precision
ShapeSPH

recall

n best results

Figure 10: Precision and recall of pairwise object synthesis using only
objects of correct type. Our method (red) finds significantly better poses than
the baseline method (green).

in Sections 7 and 8 of their paper). The list of objects to be used
in each synthesized scene is selected by our method and used in
Fisher’s method as well. Note that this gives a slight advantage to
Fisher’s method, as only objects that are guaranteed to geometri-
cally fit the scene are used. The arrangement model, capturing the
distribution of object poses, is trained on the input scene using data
augmentation, as described in Fisher et al. [2012]. Our objects are
not always supported by a planar surface, therefore we extend the ar-
rangement model to include full 3D orientations for objects without
planar supporting surface. Results are displayed in the second row
of each scene type in Figure 12. Objects on planar contact surfaces
are placed correctly, but more complex contact surfaces like the
woven baskets in Figure 12 (g) or the stack of plates in Figure 12
(f) cannot be handled by Fisher’s method and result in several float-
ing and misplaced objects. Since pairs are placed as close to their
original relative pose as possible, relationships that strongly depend
on the geometry of object pairs, like the chair-desk relationship in
Figure 12 (e), result in sub-optimal placements.

For the bathroom and kitchen scenes (f and g), we combine our ap-
proach with Fisher’s method to show that our method can be used as
a component of existing scene synthesis pipelines. Fisher’s method
is used as described above, but objects in complex relationships,
such as the stack of plates or the baby in the bathtub, are synthesized
by our method, then merged and placed as single objects into the
scene using Fisher’s method. The input scene with similarly merged
objects is used to train Fisher’s method.

We rated plausibility of each synthesized scene via a user study.
Users are shown images of two randomly picked scenes and asked
to judge which object arrangement is more realistic. Using the
Bradley-Terry Model [Hunter 2004], we obtained a ‘realism’ or
‘plausibility’ score for each image from the results of these pairwise
comparisons, as well as probabilities for each image to be judged
more realistic than any other image in the dataset. The study was
performed in Mechanical Turk. For each scene type (e.g., ‘bathroom,’
‘kitchen,’ etc.), we exhaustively compared all scene pairs taken from
a pool of both our and Fisher’s method, with 5 different users per
pair, for a total of 950 comparisons per scene type. Results are
shown in Figure 12, bottom row. The histograms show that our
results are likely to be judged more plausible (probability> 0.5) in a
significantly larger set of pairwise comparisons than Fisher’s method.
Since Fisher’s method does not take object geometry into account,
complex relationships different from support surface relationships,
such as persons sitting at a desk or stacks of plates in a kitchen can
not be handled.

Evaluation of SCF features. The SCF features we introduce in
this work provide additional information that is not captured by IBS
features proposed in [Zhao et al. 2014] alone. Each SCF captures
geometric information from a large part of the model, not only from
the closest point, making the SCF features more discriminative. This

Figure 11: Instead of synthesizing a single object for each object in the
exemplar, we can synthesize multiple objects that have similar relations to the
scene as the exemplar. This allows us to quickly populate scenes containing
objects like shelves or stands with correctly placed objects.

score: 0.62

score: 0.31

object fitting final resultfinding the ROI

w
ith

S
C

F
 fe

at
ur

es
w

ith
ou

t
S

C
F

 fe
at

ur
es

Figure 13: Evaluating the impact of SCF features. In the top row we
show the results of the ROI search step and the object fitting step, as well as
the final result for our method without using SCF features (i.e. only using
IBS features). IBS features alone are not discriminative enough for feature
pooling in our ROI search step, resulting in a poor choice of ROI. SCF
features (bottom row) provide the information necessary to find a good ROI.

allows us to use a fast feature pooling approach to efficiently identify
regions of interest. We demonstrate this advantage in Figure 13,
where we compare synthesis results of the vase-flower scene with
and without using SCF features. Regions of interest found without
SCF features are incorrect, due to the limited discriminative power
of IBS features. Distance features alone do not carry enough infor-
mation to distinguish between the stem and other parts of the flower
in our feature pooling approach.

There are two parameters that can be tuned when computing SCF
features: the sample density n used to sample the surrounding ge-
ometry and compute the spherical harmonics (SH) coefficients, and
the number of SH bands L, corresponding to the frequency band-
width of the resulting SCF features. We performed experiments on a
small dataset consisting of 30 models typical for our scenes to de-
termine the best bandwidth setting. Results are shown in Figure 14.
Bandwidths that are too low miss important geometric detail, while
too high bandwidths are not robust to small geometric variations.
Our experiments suggest that L = 10 performs best and we use
this value in our experiments. The sample density n needs to be
high enough to capture all frequencies representable with the given
number of SH bands. Since the maximum frequency representable
with L bands is L, we could set n = 2L (the Nyquist rate), but we
prefer n = 3L to increase robustness to sampling noise.

Impact of semantic constraints. To evaluate the impact of seman-
tic constraints on our results, we provide a qualitative evaluation

0 0.5 1

18
cart (d)

0 0.5 1

25
bathroom (g)

0 0.5 1

90
vase-flower (a)

our method

Fisher et al.

0 0.5 1

80
bench (c)

0 0.5 1

90
hook-bag (b)

0 0.5 1

35
kitchen (f)

0 0.5 1

40
study (e)

probability of being judged more realistic

nu
m

be
r

of
 p

ai
rw

is
e

sc
en

e
co

m
pa

ris
on

s
ou

rs
 +

 F
is

he
r

F
is

he
r

et
 a

l.
in

pu
t

sc
en

es
a b c d e f g

ou
r

m
et

ho
d

F
is

he
r

et
 a

l.

cba d e

f g

Figure 12: Larger-scale scene synthesis results. We synthesize scenes from 5 different input exemplars (c-g) and compare to a state-of-the-art scene synthesis
method [Fisher et al. 2012]. For completeness, we also include two pairwise synthesis results (a and b). In the top row, we show the input exemplars, followed
below by several results from both our and Fisher’s method. Note the geometrically complex relationships, like sitting persons and hanging baskets, that are
difficult to handle with previous methods. Results of a user study comparing the plausibility of synthesized scenes is shown in the bottom row. We compute the
probability that synthesis results from either our method (red) or Fisher’s method (green) will be judged more realistic by study participants and construct
histograms over all pairs of synthesis results in one scene type.

of a study area scene (Figure 12 (e)) synthesized with and without
using semantic constraints in Figure 15. Without contact constraints,
objects like the lamp and person (encircled in red) may float slightly
above contact surfaces, due to our limited open space sampling reso-
lution; without upright constraint, all objects may be slightly tilted,
since the difference in geometry between example scene and novel
object may cause a slight tilt to result in a better fit; and for the same
reason, objects like the chair and the desk may be floating slightly
above or below the floor when not using floor constraints. These
changes are geometrically minor, but do improve the realism of the
synthesized scenes.

Comparison to brute-force fitting. We compare our fitting ap-
proach to a brute-force approach that evaluates a full regular grid
of poses in the open space around an object. We use a regular grid
with nx × ny × nz × nθ equally spaced samples. The number of
directions nθ is fixed to 100. We increase the spatial grid resolution,
which improves the score and increases the fitting time, and compare
to our method with increasing open space point density. In Figure 16,
we show the objective score vs. time required for both approaches.
The brute-force approach quickly becomes unfeasible at grid densi-
ties that are necessary for acceptable scores. Our approach allows
finding high-scoring poses much more efficiently.

Timings. The elementary operation of our synthesis system is

fitting an object to a cell. We can divide this process into two main
parts: (1) precomputation of open space features, and (2) matching
which includes ROI search, initial matching and refinement. Around
60% of fitting times goes to the precomputation part, 32.1 seconds
on average in our experiments. The time required for the second
part takes around 13 seconds on average. For example, in Figure 9,
the table-chair scene takes 9.58 seconds for matching on average
while the vase-flower scene takes 15.06 seconds on a computer with
i7-2600 CPU, 3.4Hz and 16G RAM.

As we replace each object in the input scene to produce new scene
variations, the complexity of synthesizing a new scene is approx-
imately linear in the number of objects of the input scene. More
specifically, for an input scene with n objects and a hierarchy which
defines n− 1 pairwise combinations of these objects, the complex-
ity is O(2 (n− 1)) for both the precomputation and the matching
steps. Synthesis of spatially repeated relationships usually takes less
time. When building a new scene with n objects, we have 1 base
object that interacsts with all other objects (e.g. the shelf), and the
remaining n− 1 objects (e.g. the objects on the shelf) only interact
with one object. The complexity of the precomputation step is only
O(n) and the matching step has a complexity of O(2(n− 1)).

5 30
0

1 desk-chair

5 300

1 hook-bag

5 30
0

1 vase-flower

5

1 1

1 1 30
0

1 average

n best resultsn best results

n best resultsn best results

F
1

sc
or

e

F
1

sc
or

e

F
1

sc
or

e

F
1

sc
or

e

L = 2
L = 4
L = 6

L = 12
L = 10
L = 8

Figure 14: Evaluation of the bandwidth parameter L of the SCF features.
We show the F1 score up to the 30 best results of three input exemplars under
different bandwidth settings. The average over all three input exemplars is
shown on the bottom right. In our experiments we use a value of L = 10.

without semantic constraints with semantic constraints

Figure 15: Semantic constraints introduce small geometric changes to our
synthesis results that make scenes semantically more realistic. They ground
floating objects (encircled in red), make sure objects on the floor are placed
at the correct height and keep objects like the chair or table upright.

8 Discussion

As shown in the experimental results, our method is not a scheme
to replace existing scene synthesis approaches, but is rather com-
plementary to them. For example, when used as a component of an
existing synthesis pipeline, our method enables scenes with more
complex relations. We also do not aim to learn scene semantics
from large databases in a data-driven manner, instead our goal is to
describe, search for, and synthesize complex geometrical relations
from a single exemplar.

A possible alternative to our approach is to apply 3D shape matching
to the individual objects and swap them if they match. In our experi-
ments, however, we have shown that simple global shape matching
does not work well when objects are in close proximity, since all
other objects in the scene are ignored. In contrast, our method uses
the shape of the open space between objects as the representation of
their interactions. This is along the line of techniques such as spin
images [Johnson and Hebert 1999], where a depth image produced
at each vertex of the object are used as a feature. The main difference
of our method is that the feature is computed from outside the object,
at a location where the context is occurring. When looking at similar
interactions, the shape of this open space is often more consistent
than the object geometry, due to functional or ergonomic require-
ments of the objects’ interacting geometry. We also convert it into a
multi-scale representation such that the influence of high frequencies
can be eliminated, especially when the objects are farther away.

The pose of objects in real scenes might be caused by various physi-

0.72 0.74 0.86 0.88

102

103 example scene �tting a new desk

our method
brute-force

to
ta

l �
tti

ng
 ti

m
e

(s
)

similarity score Sfinal

Figure 16: Comparison to a baseline method. Brute-force object fitting
using a regular grid of sample poses exhibits an exponential increase in
fitting time (note the log-scale) to achieve scores comparable to our method,
due to the required grid density. Our method performs significantly better.

Figure 17: A limitation of our method is the restriction to rigid IBS. The
person in the chair on the right can not be matched to the exemplar on the
left, since that would require deforming the IBS.

cal and semantic (i.e. human) factors. For example, in a hat-stand
scene similar to Figure 11, the pose of a hat might be caused by the
position where the hat was ‘let go’ and subsequent forces acting on
it to find a physically stable resting pose on the hook. Our example-
based approach tries to make the synthesis problem tractable by cir-
cumventing the extremely difficult problem of simulating all these
semantic and physical factors and focusing instead on finding a
geometrically similar end result.

Limitations. Currently, we only consider rigid IBS when con-
structing the relationship template. Therefore, it is difficult to fit
objects that would produce contextually similar relationships but
have shapes which are significantly different. An example is given in
Figure 17, where a person is sitting on a chair. It is difficult to replace
this object pair with a person lying in a reclining seat. Adding some
constrained form of flexibility to the template, allowing adaption of
the shape to the geometry of new objects, may enable these edits
and could be an interesting extension to our work.

Another problematic scenario for our method is the restoration of
contacts for objects with multiple separate contact surfaces, like
handrails, or very small contact surfaces, like in the hook-bag ex-
ample. In the first case, it may be hard to decide which contact to
restore, in the second case it is often hard to find any contact at all,
due to our limited sample density.

9 Conclusion and Future Work

We propose a method for synthesis of scenes with complex rela-
tionships, i.e. scenes where relationships are tightly coupled to the
geometry. We have shown that our method based on a robust de-
scription of the open space between objects is useful for describing,
searching for, and synthesizing scenes with complex relationships.
Our method can be used to augment existing methods that focus on
other areas of scene synthesis and performs significantly better than
the state-of-the-art for scenes with complex relationships.

Avenues for future work include adding flexibility to the relationship

templates to allow handling a wider range of contextually similar
relationships, or to learn a parametric model of the relationship
template from multiple example scenes.

Acknowledgements

We thank the anonymous reviewers for their comments and
constructive suggestions, and the anonymous Mechanical Turk
users. This work was supported in part by the China Post-
doctoral Science Foundation (2015M582664), the National Sci-
ence Foundation for Young Scholars of China (61602366),
NSFC(61232011, 61602311), Guangdong Science and Technology
Program (2015A030312015, 2016A050503036), Shenzhen Innova-
tion Program (JCYJ20151015151249564), the ERC Starting Grant
SmartGeometry (StG-2013-335373), Marie Curie CIG 303541, the
Open3D Project (EPSRC Grant EP/M013685/1), the Topology-
based Motion Synthesis Project (EPSRC Grant EP/H012338/1) and
the FP7 TOMSY.

References

B A R B E R , C . B . , D O B K I N , D . P. , A N D H U H D A N PA A , H .
1996. The quickhull algorithm for convex hulls. ACM Trans.
Math. Soft. 22, 4, 469483.

C H E N , K . , L A I , Y. - K . , W U , Y. - X . , M A R T I N , R . , A N D
H U , S . - M . 2014. Automatic semantic modeling of indoor
scenes from low-quality rgb-d data using contextual information.
ACM TOG 33, 6.

C O Y N E , B . , A N D S P R O AT , R . 2001. Wordseye: An automatic
text-to-scene conversion system. In ACM SIGGRAPH, ACM,
New York, NY, USA, 487–496.

C O Y N E , B . , S P R O AT , R . , A N D H I R S C H B E R G , J . 2010.
Spatial relations in text-to-scene conversion. In Computational
Models of Spatial Language Interpretation, at Spatial Cognition
2010.

F E I - F E I , L . , A N D P E R O N A , P. 2005. A bayesian hierarchical
model for learning natural scene categories. In IEEE CVPR,
vol. 2, IEEE, 524–531.

F I S H E R , M . , A N D H A N R A H A N , P. 2010. Context-based
search for 3d models. In ACM SIGGRAPH Asia, 182:1–182:10.

F I S H E R , M . , S AV VA , M . , A N D H A N R A H A N , P. 2011.
Characterizing structural relationships in scenes using graph ker-
nels. ACM TOG 30, 4, 34.

F I S H E R , M . , R I T C H I E , D . , S AV VA , M . , F U N K H O U S E R ,
T. A . , A N D H A N R A H A N , P. 2012. Example-based synthesis
of 3d object arrangements. ACM TOG 31, 6, 135.

F I S H E R , M . , S AV VA , M . , L I , Y. , H A N R A H A N , P. , A N D
N I E\S S N E R , M . 2015. Activity-centric scene synthesis for
functional 3d scene modeling. ACM TOG 34, 6, 179.

F U N K H O U S E R , T. , K A Z H D A N , M . , S H I L A N E , P. , M I N ,
P. , K I E F E R , W. , TA L , A . , R U S I N K I E W I C Z , S . , A N D
D O B K I N , D . 2004. Modeling by example. ACM TOG 23, 3,
652–663.

G A L , R . , A N D C O H E N - O R , D . 2006. Salient geometric
features for partial shape matching and similarity. ACM TOG 25,
1, 130–150.

H U , R . , Z H U , C . , VA N K A I C K , O . , L I U , L . , S H A M I R ,
A . , A N D Z H A N G , H . 2015. Interaction context (icon): To-

wards a geometric functionality descriptor. ACM TOG 34, 4,
83:1–83:12.

H U , R . , VA N K A I C K , O . , W U , B . , H U A N G , H . , S H A M I R ,
A . , A N D Z H A N G , H . 2016. Learning how objects function
via co-analysis of interactions. ACM SIGGRAPH 35, 4 (July),
47:1–47:13.

H U A N G , S . S . , F U , H . , W E I , L . Y. , A N D H U , S . M . 2016.
Support substructures: Support-induced part-level structural rep-
resentation. IEEE TVCG 22, 8 (Aug), 2024–2036.

H U N T E R , D . R . 2004. Mm algorithms for generalized bradley-
terry models. Ann. Statist. 32, 1 (02), 384–406.

J I A N G , Y. , K O P P U L A , H . S . , A N D S A X E N A , A . 2013.
Hallucinated humans as the hidden context for labeling 3d scenes.
In IEEE CVPR.

J O H N S O N , A . E . , A N D H E B E RT , M . 1999. Using spin images
for efficient object recognition in cluttered 3d scenes. IEEE PAMI
21, 5, 433–449.

K A L O G E R A K I S , E . , C H A U D H U R I , S . , K O L L E R , D . ,
A N D K O LT U N , V. 2012. A probabilistic model for component-
based shape synthesis. ACM TOG 31, 4, 55.

K A Z H D A N , M . , F U N K H O U S E R , T. , A N D
R U S I N K I E W I C Z , S . 2003. Rotation invariant spheri-
cal harmonic representation of 3 d shape descriptors. In
SGP.

K A Z H D A N , M . , S I M A R I , P. , M C N U T T , T. , W U , B . ,
JA C Q U E S , R . , C H U A N G , M . , A N D TAY L O R , R . 2009.
A shape relationship descriptor for radiation therapy planning. In
MICCAI 2009. Springer, 100–108.

K I M , V. G . , C H A U D H U R I , S . , G U I B A S , L . , A N D
F U N K H O U S E R , T. 2014. Shape2Pose: Human-centric shape
analysis. ACM TOG 33, 4.

K O S T E L E C , P. J ., 2008. SpharmonicKit.

L I U , T. , C H A U D H U R I , S . , K I M , V. G . , H U A N G , Q . - X . ,
M I T R A , N . J . , A N D F U N K H O U S E R , T. 2014. Creating
consistent scene graphs using a probabilistic grammar. ACM TOG
33, 6.

M A J E R O W I C Z , L . , S H A M I R , A . , S H E F F E R , A . , A N D
H O O S , H . H . 2014. Filling your shelves: Synthesizing diverse
style-preserving artifact arrangements. IEEE TVCG 20, 11, 1507–
1518.

M I T R A , N . J . , WA N D , M . , Z H A N G , H . , C O H E N - O R , D . ,
A N D B O K E L O H , M . 2013. Structure-aware shape processing.
In EUROGRAPHICS State-of-the-art Report.

N A N , L . , X I E , K . , A N D S H A R F , A . 2012. A search-classify
approach for cluttered indoor scene understanding. ACM TOG
31, 6, 137.

S A U P E , D . , A N D V R A N I C , D . V. 2001. 3d model re-
trieval with spherical harmonics and moments. In 23rd DAGM-
Symposium on Pattern Recognition, Springer-Verlag, 392–397.

S AV VA , M . , C H A N G , A . X . , H A N R A H A N , P. , F I S H E R ,
M . , A N D N I E SS N E R , M . 2014. Scenegrok: Inferring action
maps in 3d environments. ACM TOG 33, 6.

S AV VA , M . , C H A N G , A . X . , H A N R A H A N , P. , F I S H E R ,
M . , A N D N I E SS N E R , M . 2016. Pigraphs: Learning interac-
tion snapshots from observations. ACM SIGGRAPH 35, 4 (July),
139:1–139:12.

S H A O , T. , X U , W. , Z H O U , K . , WA N G , J . , L I , D . , A N D
G U O , B . 2012. An interactive approach to semantic modeling
of indoor scenes with an rgbd camera. ACM TOG 31, 6, 136:1–
136:11.

S H A P I R A , L . , S H A M I R , A . , A N D C O H E N - O R , D . 2008.
Consistent mesh partitioning and skeletonisation using the shape
diameter function. The Visual Computer 24, 4 (Apr.), 249–259.

S U , X . , C H E N , X . , F U , Q . , A N D F U , H . 2016. Cross-class
3d object synthesis guided by reference examples. Computers &
Graphics 54, 145 – 153.

VA N K A I C K , O . , X U , K . , Z H A N G , H . , WA N G , Y. , S U N ,
S . , S H A M I R , A . , A N D C O H E N - O R , D . 2013. Co-
hierarchical analysis of shape structures. ACM TOG 32, 4, 69:1–
69:10.

VA N K A I C K , O . , Z H A N G , H . , A N D H A M A R N E H , G . 2013.
Bilateral maps for partial matching. In CGF, Wiley Online Li-
brary.

WA N G , Y. , X U , K . , L I , J . , Z H A N G , H . , S H A M I R , A . ,
L I U , L . , C H E N G , Z . - Q . , A N D X I O N G , Y. 2011. Symme-
try hierarchy of man-made objects. CGF 30, 2, 287–296.

W O L F S O N , H . J . , A N D R I G O U T S O S , I . 1997. Geometric
hashing: An overview. Computational Science & Engineering,
IEEE 4, 4, 10–21.

X U , K . , M A , R . , Z H A N G , H . , Z H U , C . , S H A M I R , A . ,
C O H E N - O R , D . , A N D H U A N G , H . 2014. Organizing
heterogeneous scene collection through contextual focal points.
ACM TOG 33, 4.

Y E H , Y. - T. , YA N G , L . , WAT S O N , M . , G O O D M A N ,
N . D . , A N D H A N R A H A N , P. 2012. Synthesizing open
worlds with constraints using locally annealed reversible jump
mcmc. ACM TOG 31, 4, 56.

Y U , L . - F. , Y E U N G , S . K . , TA N G , C . - K . , T E R Z O P O U -
L O S , D . , C H A N , T. F. , A N D O S H E R , S . 2011. Make it
home: automatic optimization of furniture arrangement. ACM
TOG 30, 4, 86.

Z H A O , X . , WA N G , H . , A N D K O M U R A , T. 2014. Indexing
3d scenes using the interaction bisector surface. ACM TOG 33, 5.

Z H E N G , B . , I S H I K AWA , R . , O I S H I , T. , TA K A M AT S U , J . ,
A N D I K E U C H I , K . 2009. A fast registration method using IP
and its application to ultrasound image registration. IPSJ Trans.
Comp. Vis. and App. 1, 209–219.

Z H E N G , Y. , C O H E N - O R , D . , A N D M I T R A , N . J . 2013.
Smart variations: Functional substructures for part compatibility.
CGF 32, 2pt2, 195–204.

Z H E N G , Y. , TA I , C . - L . , Z H A N G , E . , A N D X U , P. 2013.
Pairwise harmonics for shape analysis. IEEE TVCG 19, 7, 1172–
1184.

A Configuration Update

Assuming there are N points sampled on the template in the k-th
step, the next state of the template points can be computed as:

Xk+1 = Xk + M, (9)

where Xk is a 3×N matrix encoding the location of all the template
points x in the k-th step, Xk+1 a matrix representing the goal
positions in the next iteration, and M a 3×N matrix encoding the

direction vectors at each point. The columns of M are computed by
mi = ai g(xki), where g(x) is the gradient vector of the distance
field corresponding to the open space distance feature at the point
x, and signed ai is called a move parameter, whose sign indicates
whether the move is in the gradient direction or in the negative
gradient direction.

The optimal rigid transformation to register Xk to Xk+1 is com-
puted by first computing a cross-covariance matrix A:

A = (Xk − X̄k)(Xk+1 − X̄k+1)T , (10)

where X̄ is a matrix whose columns are x̄. x̄ is the mean location
of all points in X. We apply a singular value decomposition to A
as A = USVT . The rotation matrix of the rigid transformation is
obtained by R = UVT , and the translation vector can be computed
by: x̄k − x̄k+1.

The rigid transformation is applied to Xk to get the updated location
of the template points, which are fed into Xk in Equation 9 for the
next iteration. After every iteration, we compute D and check if it is
small enough. We stop the iteration when either D or the update in
D are smaller than thresholds.

B Normalizing Cell Feature Distances

To normalize the absolute difference of distance features, we use the
upper bound αdis = maxfSDFdis −minfCELLdis where maxfSDFdis

are the maximum values of the novel object’s open space point
distance features and minfCELLdis is the minimum distance feature
of cell ci.

The L2 distance between two SCF features can be bounded by
αscf = 2

√
π, to see this, let Fvdf (i, j) and Gvdf (i, j) be two

spherical functions. The corresponding scf features of them can be
denoted as:

fscf = SCF (Fvdf) = {‖f0(θ, φ)‖, . . . , ‖fn(θ, φ)‖}

gscf = SCF (Gvdf){‖g0(θ, φ)‖, . . . , ‖gn(θ, φ)‖}

with
fl(θ, φ) =

∑
|m|≤l

al,mY
m
l (θ, φ). (11)

We can then bound their squared L2 distance as:

‖fscf − g
′
scf‖2 =

n∑
l=0

(‖fl(θ, φ)‖ − ‖gl(θ, φ)‖)2

6
∞∑
l=0

(‖fl(θ, φ)‖ − ‖gl(θ, φ)‖)2

6
∞∑
l=0

(‖fl(θ, φ)− gl(θ, φ)‖)2

= ‖Fvdf −Gvdf‖2

=

∫
θ

∫
φ

|Fvdf −Gvdf |2 dθdφ

6
∫
θ

∫
φ

1 dθdφ

= 4π

(12)

