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Abstract

While the basic laws of Newtonian mechanics are well understood, explaining
a physical scenario still requires manually modeling the problem with suitable
equations and associated parameters. In order to adopt such models for artificial
intelligence, researchers have handcrafted the relevant states, and then used neural
networks to learn the state transitions using simulation runs as training data. Un-
fortunately, such approaches can be unsuitable for modeling complex real-world
scenarios, where manually authoring relevant state spaces tend to be challenging.
In this work, we investigate if neural networks can implicitly learn physical states
of real-world mechanical processes only based on visual data, and thus enable long-
term physical extrapolation. We develop a recurrent neural network architecture
for this task and also characterize resultant uncertainties in the form of evolving
variance estimates. We evaluate our setup to extrapolate motion of a rolling ball
on bowl of varying shape and orientation using only images as input, and report
competitive results with approaches that assume access to internal physics models
and parameters.

1 Introduction

Animals can make remarkably accurate and fast predictions of physical phenomena in order to
perform activities such as navigate, prey, or burrow. However, the nature of the mental models used
to perform such predictions remains unclear and is still actively researched [9].

In contrast, science has developed an excellent formal understanding of physics; for example,
mechanics is nearly perfectly described by Newtonian physics. While the constituent laws are simple
and accurate, applying them to the description of a physical scenario is anything but trivial. First, the
scenario needs to be abstracted (e.g., by segmenting the scene into rigid objects, estimating physical
parameters such as mass, linear and angular velocity, etc., deciding which equations to apply, and so
on). Then, prediction still requires the numerical integration of complex systems of equations. It is
unlikely that this is the process of mental modeling followed by natural intelligences.

In an effort to develop model of physics that are more suitable for artificial intelligence, several
authors have looked at the problem of learning physical predictors using deep neural networks. As
a notable example, the recent Neural Physics Engine (NPE) [5] uses a neural network to learn the
state transition function of mechanical systems. The state itself is handcrafted and includes physical
parameters such as positions, velocities, and masses of rigid bodies. While this approach works well,
a limitation is that it does not allow the network to learn its own abstraction of the physical system.
This may prevent the model from learning efficient approximations of physics that are likely required
to scale to complex real-world scenarios.

In this work, we ask whether a representation of the physical state of a mechanical system can
be learned implicitly by a neural network, and whether this can be used to perform more accurate
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predictions. Compared to methods such as NPE, learning such a model is more challenging as no
direct observations of the state of the system are available for training. Instead, the state is a hidden
variable that must be inferred while solving a task for which supervision can be provided. As an
example of such a task, we consider here the problem of long-term physical extrapolation.

Our approach to extrapolation is to develop a recurrent neural network architecture that not only
contains an implicit representation of the state of the system, but is also able to evolve it through
time. This differs from methods such as NPE that predict instantaneous variations of the system
state, which are integrated in long-term predictions a-posteriori, after learning is complete. We show
that accounting for the integration process during learning allows the network to learn an implicit
representation of physics. Furthermore, we show that, in relatively complex physical setups, the
resulting predictions can be competitive to a modified version of NPE, even when the inputs to the
extrapolator are visual observations of the physical system instead of a direct knowledge of its initial
state.

Since physical extrapolation is inherently ambiguous, we allow the model to explicitly estimate its
prediction uncertainty by estimating the variance of a Gaussian observation model. We show that this
modification further improves the quality of long-term predictions.

Empirically, we push our model by considering scenarios beyond the “flat” ones considered in most
recent papers, such as objects sliding on planes and colliding, and look for the first time at the case of
an object rolling on a non-trivial 3D shape, namely a bowl of varying shape and orientation, where
both linear and angular momenta are tightly coupled.

As a final benefit of learning with long-term physical predictions, we show that our model is able, with
minimal modifications, to learn not only to extrapolate physical trajectories, but also to interpolate
them. Remarkably, interpolation is still obtained by computing the trajectory in a feed-forward
manner, from the first to the last time step.

The rest of the paper is organized as follows. The relation of our work to the literature is discussed
in section 2. The detailed structure of the proposed neural networks is given and motivated in section 3.
These networks are extensively evaluated on a large dataset of simulated physical experiments
in section 5. A summary of our finding can be found in section 6.

2 Related work

In this work we address the problem of long-term prediction from observation in a physical environ-
ment without voluntary perturbation, which is done by an implicit learning of physical laws. Our
work is closely related to a range of recent works in the machine learning community.

Learning intuitive physics. To the best of our knowledge [4] was the first approach to tackle
intuitive physics with the aim to answer a set of intuitive questions (e.g., will it fall?) using physical
simulations. Their simulations, however, used a sophisticated physics engine that incorporates prior
knowledge about Newtonian physical equations. More recently [17] also used static images and a
graphics rendering engine (Blender) to predict movements and directions of forces from a single RGB
image. Motivated by the recent success of deep learning for image processing (e.g., [12, 10]), they
used a convolutional architecture to understand dynamics and forces acting behind the scenes from a
static image and produced a “most likely motion" rendered from a graphics engine. In a different
framework, [14] and [15] also used the power of deep learning to extract an abstract representation
of the concept of stability of block towers purely from images. These approaches successfully
demonstrated that not only was a network able to accurately predict the stability of the block tower
but in addition, it could identify the source of the instability. Other approaches such as [2] or [7] also
attempted to learn intuitive physics of objects through manipulation. These approaches, however, do
not attempt to precisely model the evolution of the physical world.

Learning dynamics. Learning the evolution of an object’s position also implies to learn about
the object’s dynamics regardless of any physical equations. While most successful techniques
used LSTM-s [11], recent approaches show that propagation can also be done using a single cross-
convolution kernel. The idea was further developed in [27] in order to generate a next possible image
frame from a single static input image. The concept has been shown to have promising performance
regarding longer term predictions on the moving MNIST dataset in [6]. The work of [19] also shows
that an internal hidden state can be propagated through time using a simple deep recurrent architecture.
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These results motivated us to propagate tensor based state representations instead of a single vector
representation using a series of convolutions. Adversarial losses have also been used in [18] which
shows good results in video segmentation. In the future we also aim to experiment with approaches
inspired by [27].

Learning physics. The works of [26] and its extension [25] propose methods to learn physical
properties of scenes and objects. However, in [26] the MCMC sampling based approach assumes the
complete knowledge of the physical equations to estimate the correct physical parameters. In [25]
deep learning has been used more extensively to replace the MCMC based sampling but this work
also employs an explicit encoding and computation of physical laws to regress the output of their
tracker. [22] also used physical laws to predict the movement of a pillow from unlabelled data though
their approach was only applied to a fixed number of frames.

In another related approach [8] attempted to build an internal representation of the physical world.
Using a billiard board with an external simulator they built a network which observing four frames
and an applied force, was able to predict the 20 next object velocities. Generalization in this work was
made using an LSTM in the intermediate representations. The process can be interpreted as iterative
since frame generation is made to provide new inputs to the network. This can also be seen as a
regularization process to avoid the internal representation of dynamics to decay over time which is
different to our approach in which we try to build a stronger internal representation that will attempt
to avoid such decay.

Other research attempted to abstract the physics engine enforcing the laws of physics as neural
network models. [3] and [5] were able to produce accurate estimations of the next state of the world.
Although the results look plausible and promising, reported results show in [5] that accurate long-term
predictions are still difficult. Note, that their process is an iterative one as opposed to ours, which
propagates an internal state of the world through time similarly to [20].

Approximate physics with realistic output. Other approaches also focused on learning to generate
realistic future scenarios ([24] and [13]), or inferring collision parameters from monocular videos [16].
In these approaches the authors used physics based losses to produce visually plausible yet erroneous
results. They however show promising results and constructed new losses taking into account
additional physical parameters other than velocity. Note also that in [3] an energy-based loss has
been used. It can be seen as a way to explicitly incorporate a knowledge of physics in the network
while we aim to understand if we can make accurate prediction without explicit physics knowledge.

3 Method

In this section, we propose a new neural network model (see Fig. 1) that performs predictions in
mechanical systems. Let yt be a vector of physical measurements taken at time t, such as the position
of an object whose motion we would like to track. Physical systems satisfy a Markov condition, in the
sense that there exists a state vector ht such that 1) measurements yt = g(ht) can be predicted from
the value of the state and 2) the state at the next time step ht+1 = f(ht) depends only on the current
value of the state ht. Uncertainty in the model can be encoded by means of transition p(ht+1|ht) and
observation p(yt|ht) probabilities, resulting in a hidden Markov model.

Approaches such as NPE [5] start from an handcrafted definition of the state ht. For instance, in order
to model a scenario with two balls colliding, one may choose ht to contain the position and velocity
of each ball. In this case, the observation function g may be as simple as extracting the position
components from the state vector. The goal of NPE is then to learn a neural network approximator φ
of the transition function f . In practice, the authors of [5] suggest that it is often easier to predict a
rate of change ∆t for some of the physical parameters (e.g. the balls’ velocities), which can then be
integrated to update the state: ht+1 = f̃(ht,∆t) where f̃ is an hand-crafted integrator and the neural
predictor estimates the change ∆t = φ(ht).

While these approaches have several advantages [5], there are several limitations too. First, approaches
such as NPE require to handcraft the state representation ht. Even in the simple case of the colliding
balls, the choice of state is ambiguous; for example, one could include in the state the radius, mass and
elasticity and friction coefficients. In more complex situations, choosing a good state representation
may be rather difficult. Overall, this choice is best left to learning. Second, the state must be
observable during training in order to learn the transition function. Third, learning does not account
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Encoder network
(VGG)

Transition
Network

Decoder Network

ProbNetPhysNetInput images t = 0 . . . 3

Figure 1: Overview of our proposed pipeline. The first four images of a sequence first pass through a
partially pre-trained feature encoder network to build the concept of physical state. It then recursively
passes through a transition layer to produce long-term predictions about the future states of the
objects. It is then decoded to produce state estimates. While our PhysNet model is trained to regress
the next states, the ProbNet model trained with the log-likelihood loss is also able to handle the
notion of uncertainty thanks to its extended state space.

for the effect of accumulating errors through integration as integration is applied only after learning.
Finally, the initial value of the state h0 must be known in order to initialize the predictor, whereas
in many applications one would like to start from sensory inputs xt such as images of the physical
system [8].

We propose here an approach to address these difficulties. We assume that the state ht is a hidden
variable, to be determined as part of the learning process. Since the ht cannot be observed, the
transition function ht+1 = f(ht) cannot be estimated directly as in the NPE. Instead, it must be
inferred as a good explanation of the physical measurements yt. Since the evolution of the state ht
cannot be learned by observing measurement yt in isolation, we supervise the system by explaining
sequences y[0,T ) = (y0, . . . , yT−1). This requires to move the integration step inside the network,
which we do by mean of a recurrent neural network architecture. This has the added advantage of
making learning aware of the integration process, which helps improving accuracy.

The model is analogous to a Hidden Markov Model. Recall that such models are often learned
by maximizing the likelihood of the observations after marginalizing the hidden state.1 However,
since we are interested in extrapolating future observations from past ones, we consider instead
long-term extrapolation as supervisory signal. In order to do so we learn: 1) a transition function
ht+1 = φ(ht) that evolves the state through time, 2) a decoder function that maps the state ht to an
observation yt = φdec(ht), and 3) an encoder function that estimates the state ht = φenc(x(t−T0,t])
from the T0 most recent sensor readings (alternatively ht = φenc(y(t−T0,t]) can use the T0 most
recent observations).

In the experiments (section 5) we will show that the added flexibility of learning an internal state
representation automatically can still provide a good prediction accuracy even when the complexity
of the physical scenarios increases. The rest of the section discusses the three modules, encoder,
transition, and decoder maps, as well as the loss function used for training. Further technical details
can be found in section 5.

(i) Encoder map: from images to state. The goal of the encoder map is to take T0 consecutive video
frames recording the beginning of the object motion and to produce an estimate h0 = φenc(x(−T0,0])

1 Formally, the Markov model is given by p(y[0,T )],h[0,T )) =

p(h0)p(y0|h0)
∏T−2

t=0 p(ht+1|ht)p(yt+1|ht+1); traditionally, p can be learned as the maximizer of the
log-likelihood maxp Ey[logEh[p(y,h)]], where we dropped the subscripts for compactness. Learning to
interpolate/extrapolate can be done by considering subsets ȳ ⊂ y of the measurements as given and optimizing
the likelihood of the conditional probability maxp Ey[logEh[p(y,h|ȳ)]].
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of the initial state of the physical system. In order to build this encoder, we follow [8] and concatenate
the RGB channels of the T0 images in a single Hi×Wi× 3T0. The latter is passed to a convolutional
neural network φenc outputting a feature tensor s0 ∈ RH×W×C , used as internal representation of the
system. We also add to the state a vector p0 ∈ R2 to store the 2D projection of the object location on
the image plane, so that ht = (st, pt).

(ii) Transition map: evolving the state. The state ht is evolved through time by learning the
transition function φ : ht 7→ ht+1, where h0 is obtained from the encoder map, so that ht =
φt(φenc(x(−T0,0])). The state st is updated by using a convolutional network st+1 = φs(st) whereas
pt is updated incrementally as pt+1 = pt + φp(st), where φp(st) is estimated using a single layer
perceptron regressor. Hence (st+1, pt+1) = φ(st, pt) = (φs(st), pt + φp(st)). We found that
explicitly incorporating an additive update significantly improves the performance of the model.

(iii) Decoder map: from state to probabilistic predictions. Since we added for convenience the
projected object position pt to the state, the decoder map ŷt = φdec(st, pt) = pt simply extracts and
returns that part of the state. Training optimizes the average L2 distance between ground truth yt and
predicted ŷt positions 1

T

∑T−1
t=0 ‖ŷt − yt‖2.

Since extrapolation is inherently ambiguous, the L2 prediction error increases with time, which
may unbalance learning. In order to address this issue, we allow the model to explicitly and
dynamically express its prediction uncertainty by outputting the mean and variance (µt,Σt) of a
bivariate Gaussian observation model. The L2 loss is then replaced with the negative log likelihood
− 1
T

∑T−1
t=0 logN (yt;µt,Σt).

In order to estimate µt and Σt, the incremental state component pt = (µt, λ1,t, λ2,t, θt) is extended
to include both the mean as well as the eigenvalues and rotation of the variance matrix Σt =
R(θt)

> diag(λ1,t, λ2,t)R(θt). In order to ensure numerical stability, eigenvalues are constrained
to be in the range [0.01 . . . 100] by setting them as the output of a scaled and translated sigmoid
λi,t = σλ,α(βi,t), where σλ,α(z) = λ/(1 + exp(−z)) + α.

4 Experimental setup

In our experimental setup (Fig. 2), we consider a sphere rolling inside a 3D (bowl) surface. When the
bowl is a hemisphere we refer to the setup as ‘Bowl,’ and in the more general case as ‘Ellipse’ (see
Table 1).

We use p = (px, py, pz) ∈ R3 to denote a point in 3D space or a vector (direction). The camera
center is placed at location (0, 0, cz), cz > 0 and looks downward along vector (0, 0,−1) using
orthographic projection such that the point (px, py, pz) projects to a pixel (px, py) in the image.

(0, 1, 1)

(0, 0, cz)

(0, 0, 0)
(a, 0, 1)

(a) (b) (c)

Figure 2: We consider the problem of understanding and extrapolating mechanical phenomena with
recurrent deep networks. (a) Experimental setup: an orthographic camera looks at a ball rolling in a
3D bowl. (b) Example of a 3D trajectory in the 3D bowl simulated using Blender 2.77’s OpenGL
renderer. (c) An example of a rendered frame in the ‘Ellipse‘ experiment that is fed to our model as
input.

We model the bowl as the bottom half of an ellipsoid given by x2/a2 + y2 + (z − 1)2 = 1 with
its axes aligned to the XYZ axes and its bottom point being at the origin. We vary the ellipsoid
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shape by sampling a ∈ U [0.5, 1] for the ‘Ellipse’ case and setting a = 1 (i.e., a hemisphere) for the
‘Bowl’ case. The bowl is given a checker board pattern. Finally, the bowl is given a random rotation
γ ∈ U [−π/2, π/2] only about the z-axis to randomly orient it.

We consider a rolling object in the form of a ball with radius ρ = 0.04 with its center of mass at
time t being located at qt = (qtx, q

t
y, q

t
z), so that its center of mass is imaged at pixel (qtx, q

t
y) at any

time t. The ball has a fixed color texture attached to its surface, so it appears as a painted object. We
initially position the ball at angles (θ, φ) with respect to the the bowl center, where the elevation θ
is uniformly sampled in the range θ ∈ U [−9π/10,−π/2] and the azimuth φ ∈ U [−π, π]. We set
the minimum elevation to −9π/10 to avoid starting the ball at the bottom of the bowl. In the end,
the ball will be resting on the bowl surface. The ball is either textured with random color patches or
uniformly colored in white in order to study the impact of observing the ball rotation.

We set the initial orientation of the ball by uniformly sampling its xyz Euler angles in [−π, π]. We set
its initial velocity v by first sampling vx, vy uniformly in the range [5, 10], assigning each of vx, vy a
random sign, and then projecting vector (vx, vy, 0) so that the resulting velocity vector is tangential
to the underlying supporting bowl.

Note that, while several parameters of the ball state are included in the observation vector yα[−T0,T ),
these are not part of the state of the neural network, which is inferred automatically. The network
itself is tasked with predicting part of these measurements, but their meaning is not hardcoded.

Simulation setup. For efficiency, we extract multiple sub-sequences xα[−T0,T ) form a single longer
simulation (training, test, and validation sets are completely independent). The simulator runs at
120fps for accuracy, but the data is subsampled to 40fps. We use Blender 2.77’s OpenGL renderer
and the Blender Game Engine (relying on Bullet 2 as physics engine). The ball is a textured sphere
with unit mass. We found that changing the friction parameter of the bowl or the ball does not
influence the motion. Therefore, we added translation and rotation damping (both set to 0.1 in
Blender) to the sphere’s animation properties in order to simulate energy loss due to friction. The
simulation parameters were set as: max physics steps = 5, physics substeps = 3, max logic steps = 5,
FPS = 120. Rendering used white environment lighting (energy = 0.7) and no other light source. The
object color was set to a colored checkerboard texture in order to enable the visual perception of
rotation. We used 70% the data for training, 15% for validation, and 15% for test. During training
we start observation at a random time while it is fixed for test. The output images were stored as
128× 128 color JPEG files.

5 Experiments

5.1 Baselines

Least squares fit. We compare the performance of our methods to two simple least squares baselines:
Linear and Quadratic. In both cases we fit two least squares polynomials to the screen-space
coordinates of the first T = 10 frames, which are not computed but rather given as inputs. The
polynomials are of first and second degree(s), respectively. Note, that being able to observe the first
10 frames is a large advantage compared to the networks, which only see the first T0 = 4 frames.

NPE. NPE [5] training was done using available online code. We used the same training procedure
as reported in [5]. NPE++ additionally takes angle and angular velocities as parameters and also
predicts angular velocity. In the case of the elliptic bowl, both scaling and bowl rotation angle are
given as input to the networks. In this case NPEs methods carry forward the estimated states via the
network.

While the previously mentioned methods start from state inputs, note that our models work with
raw images as direct observation of the world. Physical properties are then deduced from the
observation and then integrated through our Markov model. Thus we do not need a simulator to
estimate parameters of the physical worlds (such as scaling and rotation angle in the NPE case) and
can train our model on changing environment without requiring additional external measurements of
the underlying 3D spaces.
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5.2 Results

Implementation details. The encoder network φenc is obtained by taking the ImageNet-pretrained
VGG16 network [21] and retaining the layers up to conv5 (for an input image of size (Hi,Wi) =
(128, 128, 3) this results in a (8, 8, 512) state tensor st). The filter weights of all layers except conv1
are retained for fine-tuning on our problem. conv1 is reinitialized as filters must operate on images
with 3T0 channels. The transition network φs(st) uses a simple chain of two convolution layers (with
256 and 512 filters respectively, of size 3× 3, stride 1, and padding 1 interleaved by a ReLU layer.
Network weights are initialized by sampling from a Gaussian distribution.

Training uses a batch size of 50 using the first 20 or 40 positions (and angular velocity when explicitly
mentioned) of each video sequence using RMSProp [23]. In our methods we start with a learning rate
of 10−5 and decrease learning rates by a factor of 10 when no improvements of the L2 position loss
have been found after 100 consecutive epochs. Training is halted when the L2 loss hasn’t decreased
after 200 successive epochs; 2,000 epochs were found to be usually sufficient for convergence. Note
here than in every cases where we estimate the angular velocity the corresponding L2 loss on the
latter is simply added to the network’s existing loss.

Since during the initial phases of training the network is very uncertain, the model using the Gaussian
log-likelihood loss was found to get stuck on solutions with very high variance Σ(t); to solve this
issue, the regularizer λ

∑
t det Σ(t) was added to the loss, setting λ = 0.01.

In all our experiments we used Tensorflow [1] r0.12 on a single NVIDIA Titan X GPU. In the
following we will refer to our model that has been trained optimizing on the L2 loss over positions as
PhysNet otherwise ProbNet for log-likelihhod loss. When also predicting angular velocities the suffix
‘++’ is added to the name of the model.

Table 1: Long term predictions. The PhysNet and ProbNet models observed the T0 = 4 first frames
as input. PhysNet ++ and ProbNet ++ additionally estimate angular velocity at each time step adding
a L2 angular velocity loss to our position loss. All networks have been trained to predict the T = 20
first positions, except for the NPE and NPE++ which were given T0 = 4 states as input and train to
predict state at time T0 + 1. We report here results for time T = 20 and T = 40. For each time we
report on the left L2 position loss and L2 angular loss on the right. Perplexity (loge values shown in
the table) is defined as 2−E[log2(p(x))] where p is the estimated posterior distribution.

Bowl Ellipse Ellipse (no ball texture)
Method Images L2 (Perplexity) L2 (Perplexity) L2 (Perplexity)

20 40 20 40 20 40
Linear No 39.2 7.5 127.5 17.9 61.9 23.3 20.1 – – – – –

Quadratic No 164.3 18.4 120.1 861.2 11.7 14.8 93.1 70.6 – – – –
NPE No 2.6 – 6.0 – 3.2 – 6.1 – – – – –

NPE++ No 2.9 0.8 8.1 2.0 5.7 1.7 17.5 3.1 – – – –
PhysNet Yes 3.0 – 29.7 – 2.5 – 20.6 5.2 – 44.6 –

PhysNet ++ Yes 3.5 15.9 15.9 11.9 2.1 1.0 16.1 4.4 1.6 1.0 16.2 3.8

ProbNet Yes 2.9 – 24.2 – 2.9 – 21.8 – 3.1 – 24.0 –
(4.5) (21.9) (32.1) (54.0) (5.0) (12.7)

ProbNet ++ Yes 3.4 1.2 15.3 3.4 4.0 1.8 16.7 3.8 4.3 1.3 15.0 3.5
(4.7) (9.2) (4.5) (9.3) (4.5) (8.2)

Extrapolation. Table 1 and Fig. 3 compare the baseline predictors and the four networks on the
task of long term prediction of the object trajectory. All methods observed only the first T0 = 4
inputs (whether frames or object states) except for the linear and quadratic baselines, and aimed
to extrapolate the trajectory to 40 time steps. In that sense predictions can be seen as ”long terms”
relative to the number of inputs.

Table 1 reports the average L2 errors at time Ttest = 20 and 40 for the different estimated parameters.
However all of the methods can perform arbitrary long predictions. In particular our methods are only
trained to predict 20 first positions and reveal to be still competitive with NPEs methods at T = 40.

Our networks perform reasonably well compared to the NPEs methods using only images as inputs.
In our scenario we can see the different NPEs as upper limits of our experiments since they do
have access to the state space (complete or not). Furthermore adding angular velocity has shown to
improve performances of our models while it decreases the accuracy of the NPE++ predictions in
that case. Besides probability based losses show that our models were also able to predict uncertainty
in its outputs even in the case of unobserved scenarios.

7



0 5 10 15 20 25 30 35 40
Times

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
L2

 re
sid

ua
l (

pi
xe

ls)
Ellipse

Linear
Quadratic
NPE
NPE++
PhysNet
PhysNet++
ProbNet
ProbNet++

0 5 10 15 20 25 30 35 40
Times

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

L2
 re

sid
ua

l (
an

gu
la

r v
el

oc
ity

)

Ellipse
Linear
Quadratic
NPE++
PhysNet++
ProbNet++

(a) (b)

Figure 3: Quantitative results. error evolution on Ellipse experiments for all time steps up to 40.
Error bars denote 25th and 75th percentiles of the L2 loss. (a) L2 position loss in pixels. (b) L2

angular velocity loss.

In addition training on a dataset where angular velocity was not explicitly seen (Ellipse no-texture
in Table 1) shows that our models can still provide encouraging results in that case. It managed to
accurately deduce angular velocity without seeing the ball spinning.

Interpolation. In order to remove ambiguity of a short term observed motion one can just indicates
the final desired state. In this experiment we concatenate to the first T0 = 4 input frames the last
frame observed at T = 40 and give it as an input to a model with the same architecture as PhysNet.
This model was then trained using the same aforementioned method with the only difference that we
also extract last positions from the first extracted feature. While this idea is fairly simple it shows to
be very efficient in practice as shown in Table 2 as it efficiently removed the motion ambiguity.

Table 2: Interpolation. InterpNet is essentially the same as PhysNet but takes as input a concatenation
of first T0 = 4 frames and last frame at T = 40. All networks have been trained to predict the T = 40
first positions. InterpNet predicts T = 40 positions using the first extracted feature.

Bowl Ellipse
Method L2 L2

10 20 30 40 10 20 30 40
InterpNet 1.37 1.84 1.65 1.02 1.03 1.60 1.35 0.65
PhysNet 2.19 3.64 3.94 4.99 1.40 2.39 2.71 3.00

6 Conclusions

In this paper we studied the possibility of abstracting the knowledge of physics using a single neural
network with a recurrent architecture for long term predictions. We compared our model to strong
baselines on the non-trivial motion of a ball rolling on a 3D bowl with different possible shapes. As
opposed to other concurrent approaches we do not integrate physical quantities but implicitly encode
the states in a feature vector that we can propagate through time.

Our experiments on synthetic simulations indicate that we can still make reasonable predictions
without requiring an explicit encoding of the state space. Besides they are also able to estimate
a distribution over such parameters to account for uncertainty in the predictions. While keeping
the same architecture we also show that we were able to remove motion ambiguity by showing the
network its targeted final states. However, the internal state propagation mechanism is still limited by
its ability to make accurate long term predictions outside observed regimes.

In the future we will aim to bring more robustness to our models by enforcing invariance to observed
regimes to enable longer accurate predictions. Besides, a next obvious step will also be to test the
framework on video footage obtained from real-world data in order to assess the ability to do so from
visual data affected by real nuisance factors.
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