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Abstract

While learning models of intuitive physics is an increasingly active area of research,
current approaches still fall short of natural intelligences in one important regard: they
require external supervision, such as explicit access to physical states, at training and
sometimes even at test times. Some authors have relaxed such requirements by supple-
menting the model with an handcrafted physical simulator. Still, the resulting methods
are unable to automatically learn new complex environments and to understand physi-
cal interactions within them. In this work, we demonstrated for the first time learning
such predictors directly from raw visual observations and without relying on simulators.
We do so in two steps: first, we learn to track mechanically-salient objects in videos
using causality and equivariance, two unsupervised learning principles that do not require
auto-encoding. Second, we demonstrate that the extracted positions are sufficient to
successfully train visual motion predictors that can take the underlying environment into
account. We validate our predictors on synthetic datasets; then, we introduce a new
dataset, ROLL4REAL, consisting of real objects rolling on complex terrains (pool table,
elliptical bowl, and random height-field). We show that in all such cases it is possible
to learn reliable extrapolators of the object trajectories from raw videos alone, without
any form of external supervision and with no more prior knowledge than the choice of a
convolutional neural network architecture.

arXiv:1805.05086v1 |

1 Introduction

A striking property of natural intelligences is their ability to perform accurate and rapid pre-
diction of physical phenomena using only noisy sensory inputs. Even more remarkable is the
fact that such predictors are learned without explicit supervision; rather, natural intelligences
induce their internal representation of physics automatically from experiences.

Several authors have recently looked into the problem of learning physical predictors
using deep neural networks in order to partially mimic this functionality. Early attempts
predicted trajectories in hand-crafted spaces of physical parameters, such as positions and
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velocities, assuming that the ground-truth values of such parameters are fully observable
during training. Others have considered performing predictions from visual observations,
but used full supervision for training. Furthermore, while several papers [3, 5] make use of
simulators as a way to generate the required supervisory signals, limited work has been done
in transferring such models to real data.

In this paper, we also investigate learning physical predictors using deep neural network.
However, we do so in a fully unsupervised manner, learning from observations of unlabelled
video sequences. In contrast to approaches such as the recent de-animation method of [28],
we do not require synthetic data, nor do we rely on any handcrafted physical simulator for
prediction. Our models are built directly from real data and learn intuitive physics models
that empirically outperform more principled, but more brittle, models based on physical
parameters [21].

As a working example, we consider video footage of balls rolling on various surfaces,
such as pool tables, bowls and random height-fields. Balls interact with the underlying
environment and among themselves. For rigorous assessment, we contribute a new public
dataset, ROLL4REAL, containing a large number of such sequences captured in real-life.
We then make two technical contributions. First, inspired by [16], we show that an object
detector can be learned in an unsupervised manner by tuning a convolutional detector to
extract tracks that are maximally characteristic of the natural, causal ordering of the frames
in a video. Second, we use these trajectories to learn visual predictors that automatically
learn an internal representation of physics and can extrapolate the trajectory of the balls more
reliably than approaches such as Interaction Networks (IN) [3] that use direct measurements
of physical parameters.

Empirically, we show that these models more gracefully handle observation noise com-
pared to approaches such as [3, 5] that are learned using physical ground-truth parameters
extracted from simulated scenarions. We also show that the Visual Interaction Network
(VIN) of [15], which also propose a vision-based physical predictor, fails to account for the
interaction of the objects and their environment, whereas the other approaches succeed.

The rest of the paper is organized as follows. We discuss related work in section 2. We
then present the technical details of our approach in section 3. Next, we introduce the new
ROLL4REAL data in section 4 and use the latter as well as several existing synthetic datasets
to evaluate the approach in section 5. We summarise our findings in section 6.

2 Related Work

Existing work in learning physics can be organised according to several axis. Nature of the
representation of physics: Approaches such as [4, 29] use fully-fledged physical simulators
to model physics and integrate dynamics. Some focus on representing a small subset of
physical parameters such as position and velocities [4, 22, 26, 27, 29]. Others learn an
implicit representation of physics, usually as activations in a deep neural network [7, 13, 25].
Hand-crafted vs learned dynamics: Some approaches [26], including simulation-based
ones [4, 29], extrapolate physics by explicitly integrating parameters such as velocities,
while others [4, 29], including methods using an implicit representation of physics, learn
recurrent predictors to do so. Physical vs visual observations: Many approaches assume
direct access to physical quantities such as positions and velocities for prediction, whereas
others [4, 9, 11, 13, 14, 22, 25, 29] take as input one or more video frames of a scene.
Qualitative vs quantitative predictions: While most of the papers discussed above consider
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quantitative predictions such as extrapolating trajectory, others have considered qualitative
predictions such as the stability of stacks of objects [4, 13, 14]. Other papers are in between,
and learn plausible if not accurate physical predictions [12, 17, 20, 24], often for 3D computer
graphics. Nature of the supervision: Most approaches are passive and supervised, as they
are passive observer of physical scenarios and use ground truth information about key physical
parameters (positions, velocities, stability) during training. This is contrasted by [2, 6] that
attempted to learn intuitive physics of objects through manipulation and hence is active and
unsupervised. Scenarios: Two favorite scenarios in such experiments are bouncing balls,
including billard-like environment [10], and block towers [13]. As a variant, [25] consider
balls subject to gravitational pulls, ignoring harder-to-model collisions. Most papers make use
of simulated data, with limited validation on real data. A different approach [18] is to predict
qualitative object forces and trajectories in fully-unconstrained natural images. The approach
of [2] considers instead learning from active poking using a real-life robot. In most cases
experiments are done on synthetic data. However, approaches such as [14, 27] also used real
data; [27] also contributed a dataset of videos of short physical experiments called Phys-101.

We relate to such previous work in that we also make physical predictions of the trajectory
of ball-like objects. However, we differ in two significant ways. First, our approach, while
using only passive observations, is fully unsupervised, and yet competitive if not more accurate
than supervised counterparts. In particular, while [22, 29] also do not use image labels, they
use a-priori knowledge of physics for training (a fully-fledged simulator and rendered in the
case of [29]). Second, we systematically test on several real-life scenarios, both in training
and testing, using our new ROLL4REAL. Compared to datasets such as Phys-101, ours allows
testing long-term ball-rolling prediction in complex scenarios.

3 Method

We first show how to learn to track objects in raw video sequences without any supervision or
any prior knowledge of physics (section 3.1). Then, we use the resulting object trajectories to
learn visual predictors that can extrapolate the object positions through time, thus implicitly
learning physics (section 3.2).

3.1 Unsupervised tracking of a mechanically-salient objects

Single-object detection. Let x, € R7*">3 be a video frame. We assume we are given video
sequences X = (Xp,...,Xy), initially containing a single object moving in an environment,
such as a single rolling ball. Our goal is to learn a detector function ®(x;) = u, € R? that
extracts the 2D position #, of the moving object at any given time (Fig. 1). The challenge is
to do so without access to any label for supervision.

We start by implementing ®(x,) as a shallow Convolutional Neural Network (CNN) that
extracts a scalar score f, € R for each image pixelve Q={1,...,H} x {1,...,W}. These
are then normalised to a probability distribution using the softmax operator s, = e/v /Y.co el
and the location u of the object is obtained as the expected value u =Y, vs, [9].

We learn @ by combining two learning principles. The first one is causality and is
inspired by [16]. Applied to a video sequence, the detector produces a trajectory ®(X') =
(D(x1),...,P(xy)). We expect that, when the detector locks properly on the rolling object,
the trajectory is physically plausible (e.g., causal/smooth); at the same time, if the frames are
shuffled by random permutation 7, the resulting trajectory should not be plausible anymore.
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We incorporate this constraint by learning a discriminator network D(® (X, ),...,P(Xz))
that, for a subsequence, can distinguish between the natural ordering of the frames and a
random shuffle (top row of Fig. 1). The permutation 7 is sampled with 50% probability as
a consecutive sequence of 5 frames (7m;11 = m;+ 1, i = 1,...,4) and with 50% uniformly at
random. The discriminator is a 3 layers multi-layer perceptron followed by a sigmoid and the
loss

ﬁdisc(D’n){—logD, T =m L=

—log(1—D), otherwise.

The second learning principle is equivariance, proposed in [19, 23], which suggests that
if a transformation g is applied to a frame x; (e.g., a £90 degrees rotation), then the output of
the detector should change accordingly: ®(gx;) = g®(x;). This is implemented as a Siamese
branch (bottom row in Fig. 1) extracting 2D positions ®(gX) = (®(gx),...,P(gxy)) from
the rotated frames and comparing them to the rotated 2D positions extracted from the orignal
frames using a L? 1oss: Lyian = ~ ¥, |87 @ (gx:) — P(x,)||*.

Furthermore, in order to encourage the softmax operator to produce peaky distributions,
we minimise the entropy of the resulting distribution L., = —Y,cq svlog(sy). The final
loss is therefore £ = Ay Lgise + AeLent + AsLsiam. In our experiment, 4; = 1, A, = 0.01, and
As = 0.001.

Multi-object tracking. We now extend the method from detection of single objects to
tracking of multiple objects. In order to do so, the network is fine-tuned to videos containing
two or more moving objects of different colors. Due to its structure, the network can only
detect a single object, which is also encouraged by the entropy loss. Importantly, however,
such detections are encouraged to be consistent across frames (as opposed to jumping around)
by the causality loss, which would be poor otherwise.

The resulting network therefore consistently tracks a single object selected at random
among the visible ones. Once this is done, in the next iteration, a second object is detected by
suppressing (setting to zero) a circular region of radius » around the first object location in the
activations f,, immediately preceding the softmax operator, and so on. Before the suppression
we also add a positive bias to the activations f; in order to consider the previously detected
objects as zero probabilities in the new heatmap.

3.2 Trajectory extrapolation networks

We consider existing network modules for physical prediction. While these modules use ex-
ternal supervision in the original papers, here we apply them to the output of the unsupervised
tracker making them fully unsupervised.

We experiment in particular with PosNet, DispNet, and ProbNet from [8], configuring
them to take as input the first four frames of a sequence and to produce as output the prediction
of future object positions. These models learn an implicit representation of physics, which is
extrapolated automatically by a recurrent propagation layer and used to extract estimates of the
object positions. The difference between the models is that PosNet regresses positions from
state, while DispNet and ProbNet regress displacements from state. Furthermore, ProbNet
produces a probability estimate over trajectories.

We also consider the Visual Interaction Network (VIN) module and its variant Interaction
Network from State (IFS) [25]. While VIN uses only visual inputs for prediction just like
the other networks, IFS works with an explicit state vector of physical parameters, which
we set as the stacking of the 2D positions for four past frames which start with positions
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Figure 1: Overview of our unsupervised object tracker. Each training point consists of a
sequence of five video frames. Top: the sequence is randomly permuted with probability
50%. The position extractor (a) computes a probability map s for the object location, whose
entropy is penalised by L,,;. The reconstructed trajectory is then fed to a causal/non-causal
discriminator network (b) that determines whether the sequence is causal or not, encouraged
by Lgisc- The bottom Siamese branch (c) of the architecture takes a randomly warped version
of the video and is expected by L. to extract correspondingly-warped positions in (d). Blue
and green blocks contain learnable weights and blue blocks are siamese shared ones. At test
time only @ is retained.

extracted from our tracker. Additionally, in the synthetic experiments (first part of Table 1),
IFS uses velocity and in BOWLS experiments the ground-truth ellipsoid axes parameters are
appended to the state to inform the model of the shape of the ground. IFS and VIN are trained
following [8]; in particular, this means that VIN uses the same setting as the original paper
(32 x 32 pixels images).

All such models are trained by showing the network four initial frames of a sequence and
the output of the unsupervised tracker up to time Tiin € {15,20} frames. At test time, the
networks, which are recurrent, are used to extrapolate the trajectory up to an arbitrary time 7,
also starting from four video frames. We test in particular 7 = Tizain and T >> Tiin to assess
the generalization capabilities of the models learned by the network.

In addition, for some experiments on single object we also consider linear and quadratic
extrapolators as baselines. In both cases we fit a first (respectively second) order polynomial
to the 10 first positions given as input (hence with a significant advantage compared to the
networks which only observe four frames).

4 ROLL4REAL: A New Benchmark Dataset

In the absence of a suitable real-world dataset to evaluate intuitive physics on objects rolling
on complex terrains, we created a new benchmark, ROLL4REAL (R4R).

Dataset content. R4R consists of 1118 short 256 x 256 videos containing one or two balls
rolling on three types of terrains (Fig. 2): a flat pool table (POOLR), a large ellipsoidal ‘bowl’
(BOWLR), and an irregular height-field (HEIGHTR). More specifically, there are 151 videos
(avg. 99 frames/video) for the POOLR dataset with one ball; 216 videos (522 frames/video)


Citation
Citation
{Ehrhardt, Monszpart, Vedaldi, and {J. Mitra}} 2017{}


6 : UNSUPERVISED INTUITIVE PHYSICS FROM VISUAL OBSERVATIONS

ca selup camera view 3 Camera view
(a) Pool table (b) Ellipsoidal bow! (c) Heightfield

setup mera view

Figure 2: Physical setup. In each of the three real-world scenarios (POOLR, BOWLR,
HEIGHTR), we show the experimental setup (left) and a sample data frame (right).

for the BOWLR dataset with one ball; 543 videos (356 frames/video) for the HEIGHTR
dataset with one ball; and 208 videos (206 frames/video) for the HEIGHTR dataset with two
balls. We rolled a total of 7 differently colored balls for the HEIGHTR and BOWLR datasets,
varying from 3.5 cm to 7 cm in diameter. The height-field surface fits into a 70 x 70 x 28 cm?
bounding box, with 76 cm diameter. The bowl was created using a 70 cm diameter ball, and
is 60 cm high. Videos were randomly split into train, validation, and test sets. Ground-truth
annotations are provided for the test split.

Dataset collection. Both the bowl and height-field terrains were modeled using paper maché
on scaffolds, using a large inflatable ball and a custom-made wire-mesh frame, respectively.
For the the POOLR dataset, balls were rolled on the table, while for the other settings, balls
were manually dropped from a small height and allowed to roll on. The setup was imaged
using a fixed camera (Samsung Galaxy S8) from the top. The POOLR dataset was captured at
30fps (due to low light), while all the others at 240fps in order to reduce motion blur and later
downsampled to 80fps. Videos were cropped to only focus on the scenario of interest, i.e.,
ball(s) and terrain, and trimmed to retain the portion of the video containing motion.

In order to create ground-truth tracks for the ball centers, we used a template-based tracker
using zero-normalized cross-correlation in the LAB colorspace, and tracked each frame along
with a smoothness term over time. The setup was manually initiated by providing suitable
template. The raw results were then manually inspected, corrected, and saved as ground-truth.

5 Results and Discussion

Implementation details. We used Tensorflow [1] on a single NVIDIA Titan X GPU for
all the experiments. All the networks were initialised with a learning rate of 10~# that was
progressively decreased by a factor of 10 when no improvements were found over K epochs
(K = 100 for the synthetic datasets). Training was stopped when the loss did not decrease for
2K consecutive epochs. Before processing images, we resized all dataset images to 128 x 128
pixels to fit in the GPU memory.

5.1 Unsupervised tracker

We first evaluate our unsupervised tracker. In addition to POOLR, BOWLR, and HEIGHTR
from ROLL4REAL, we also consider two synthetic datasets from [8]: BOWLS for the ellip-
soidal bowl with one or two balls and HEIGHTS for the random height-fields. Fig. 3-left
reports the mean and 99" percentile pixel error of the extracted object positions against
ground-truth averaged over multiple runs of our experiments.

We note that our method was able to track the objects with good accuracy in all cases.
This is very encouraging especially for challenging real datasets containing less training data
and larger variations of the environment (lighting conditions, height-field/ellipsoid vibrations
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Figure 3: Tracker errors and Ablation study. Left: Tracker errors on different dataset. The
errors are consistently small across dataset and show that out tracker can perform well on
a different range of real situations. Right: Ablation study. We try different combination of
tracker losses on the BOWLR dataset. ‘Const.” indicates that we are predicting a constant
point at the center of the image for reference. For left and right, position errors are reported in
pixels. The number of balls in the datasets is appended to the name of the dataset.

and movements). The 99" percentile plots also show that the error is consistent across all
experiments. These results show that our method learns to track object robustly in a diverse
range of complex scenarios.

We also conducted an ablation study on the BOWLR dataset to measure the impact of
each loss term. Fig. 3-right shows that, while each loss contributes to the final results, the
best performance is obtained when all the terms are used.

5.2 Extrapolation

Supervised vs unsupervised (single ball synthetic datasets). We now compare training
predictors using either ground-truth object positions or the output of the unsupervised tracker.
All predictors observe only Ty = 4 frames as input (either positions or video frames) except
VIN which uses Ty = 6 and the least squares baselines which use Ty = 10. All the networks
are trained to predict Tj,,;, positions and Table 2 reports the average errors at time 7,4, and
2T:rqin to measure the ability of predictors to generalise beyond the training regime.

We see that the Net models (ProbNet, DispNet, PosNet) perform well using ground-truth
positions or the unsupervised tacker outputs (e.g. PosNet error for BOWLS/HEIGHTS is
2.9/6.4 supervised vs 4.9/6.9 unsupervised), whereas IFS does not handle the transition well
(3.3/10.4 to 13.3/23.1) and Linear, Quadratic and VIN are not competitive.

The main weakness of the Net models is that their performance degrades beyond the
training regime at 27;,,,, whereas IFS is more resilient. However, in this case, ProbNet
indicates that the model is uncertain with its estimation.

Synthetic vs real (one ball datasets). On real datasets (Table 2), the Net models uniformly
outperform others at both 7;,4, and 27;,4i,,, with errors comparable to the synthetic case. Note
that the real datasets in ROLL4REAL are particularly challenging due to the non-idealities of
the surface (e.g. the BOWLR surface is slightly elastic and wobbles as the ball rolls).

One vs multiple balls (real and synthetic datasets). Finally, we move to cases where the
balls are interacting with the environment and with each others due to collisions. This is
particularly challenging when no ground-truth is used as multiple object tracking is much
harder to achieve in an unsupervised setting than tracking a single object.

As shown in Table 3, the Ner models still perform well. Due to memory limitations,
models were trained for a slightly shorter time span 7;,4;,; since the corresponding predictions
are shorter term, their errors are a little lower than before. Overall, the results show that
neither perfect ground-truth annotations nor a very large dataset is required to train a reliable
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IFS PosNet DispNet ProbNet

Synthetic Data

pool table

ellipsoidal bowl

Real Data

complex heightfield

DispNet

ProbNet

Figure 4: Qualitative performance comparison for the various methods against ground-truth
trajectories. Top-to-bottom: two balls colliding on an ellipsoidal bowl; single ball colliding
against the walls of a pool table; single ball rolling on an ellipsoidal bow; single ball rolling
on complex height-field; and two balls rolling on complex height-field. The top row is on
synthetic data, while the other rows are on real-data. The green ellipsoids in the last column
show the variance of the predictions estimated by ProbNet at selected locations.

physical extrapolator. Still, we noticed that collisions were difficult to predict in the HEIGHTR
dataset (see the bottom row of Fig. 4), probably because such events are rare during training.
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Table 1: Long term predictions compared on synthetic datasets with model trained with
ground-truth from simulator. All the models (except VIN, Linear, and Quadratic) are given
Tp = 4 frames as input and train to predict first 7;,4;, positions. We report the average pixel
error and perplexity for PosNet model at two different times. Perplexity, shown in bracket, is
defined as 2~ Ello22(r¥)] where p is the estimated posterior distribution. Stare shows either
the carried forward state is a physical quantity (Exp.), or an implicit vector or tensor (Imp.)

BOWLS- Tirain= 20 HEIGHTS- Tigin= 20
Method Input | State Pixel error (Perplexity) at T' Pixel error (Perplexity) at T
T =Tain T = 2X Tigain T =Tirain T = 2X Tipain
With positions from simulator
Linear 2D pos. | Exp. 61.9 20.1 21.3 61.9
Quadratic | 2D pos. | Exp. 11.7 93.1 26.7 126.0
IFS 2D pos. | Exp. 3.3 8.9 10.4 27.6
VIN Visual | Imp. 24.0 30.2 42.6 42.7
PosNet Visual | Imp. 1.6 24.4 7.2 24.6
DispNet | Visual | Imp. 2.5 20.6 7.7 25.8
ProbNet | Visual | Imp. 2.9 (32.1) 21.8 (54.0) 6.4 (9.5) 22.5 (12.7)
‘With positions from unsupervised tracker
TFS 2D pos. | Exp. 13.3 23.6 23.1 38.3
VIN Visual | Imp. 24.7 30.3 45.8 48.0
PosNet Visual | Imp. 4.3 29.9 6.6 25.6
DispNet | Visual | Imp. 3.9 25.6 6.8 22.7
ProbNet | Visual | Imp. 4.9 (6.3) 27.0 (20.6) 6.9 (8.3) 23.3 (13.4)

Table 2: Long term predictions using one ball and real data. The table has the same
format as Table 1. All models are trained using the unsupervised tracker.

POOLR-T}yin = 15 HEIGHTR- T},4i, = 20 BOWLR- T}4in =20
Method Input | State Pix. err. (Perplexity) at T’ Pix. err. (Perplexity) at 7' Pix. err. (Perplexity) at T’
T =Tivain T = 2XTiruin T =Tivain T = 2xTiain T =Tivain T =2xTirain
1FS 2D pos. | Exp. 26.0 37.5 48.0 58.1 26.2 39.1
VIN Visual | Imp. 50.9 40.8 40.2 47.3 339 33.0
PosNet | Visual | Imp. 4.6 21.4 5.6 29.0 5.6 23.0
DispNet | Visual | Imp. 3.8 23.6 5.6 28.5 6.5 22.6
ProbNet | Visual | Imp. 4.7(6.3) 16.3(11.3) 5.7(5.8) 30.0(22.5) 6.8(6.8) 23.5(13.8)

6 Conclusions

We presented a method that can learn to track physical objects such as balls rolling on
complex terrains using only raw video sequences and no supervision. Combined with recent
neural networks that can learn an implicit representation of physics, such a system is able
to extrapolate object trajectories over time while accounting for object-environment and
object-object interactions. To the best of our knowledge, this is the first time that learning
long-term physics extrapolation without access to supervision or handcrafted simulators has
been demonstrated.

We also contributed a new dataset, ROLL4REAL, of real-life video sequences for complex
scenarios such as ball rollings on pool tables, bowls, and height-field, showing that all such
methods are applicable to the real world. This data will be made publicly available.

In the future, we plan to train the tracker and the extrapolator end-to-end, further im-
proving tracking of multiple objects. We also aim at improving the generalisation of our
predictor beyond the training regime; we believe that the key is to factor knowledge about the
environment and the object dynamics to allow the models to remember the first better over
longer time spans.
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Table 3: Long term predictions using two balls on real and synthetic data. Table layout
and measures are the same as Table 1. Models are trained with positions from tracker.

BOWLS 2b.-T}4in = 15 HEIGHTR 2b.-T},4in = 15
Method Input | State Pix. err. (Perplexity) at 7 Pix. err. (Perplexity) at 7
T =Tiain T = 2X Tirain T =Tirain T = 2X Titain
1FS 2D pos. | Exp. 18.4 30.0 15.6 26.6
VIN Visual | Imp. 41.3 45.8 45.9 39.8
PosNet | Visual | Imp. 5.0 13.4 54 12.5
DispNet | Visual | Imp. 5.5 24.7 6.2 15.4
ProbNet | Visual | Imp. 5.6 (7.3) 20.6 (13.7) 6.8 (7.9) 16.9 (12.4)
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