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Fig. 1. We present an image-based method to reconstruct wire objects from a few input images (3 views in our experiments). Our reconstructions faithfully

capture both the 3D geometry and the topology of the wires.

Objects created by connecting and bending wires are common in furniture

design, metal sculpting, wire jewelry, etc. Reconstructing such objects with

traditional depth and image based methods is extremely diicult due to their

unique characteristics such as lack of features, thin elements, and severe

self-occlusions. We present a novel image-based method that reconstructs a

set of continuous 3D wires used to create such an object, where each wire is

composed of an ordered set of 3D curve segments. Our method exploits two

main observations: simplicity - wire objects are often created using only a

small number of wires, and smoothness - each wire is primarily smoothly

bent with sharp features appearing only at joints or isolated points. In light of

these observations, we tackle the challenging image correspondence problem

across featureless wires by irst generating multiple candidate 3D curve
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segments and then solving a global selection problem that balances between

image and smoothness cues to identify the correct 3D curves. Next, we

recover a decomposition of such curves into a set of distinct and continuous

wires by formulating a multiple traveling salesman problem, which inds

smooth paths, i.e.,wires, connecting the curves. We demonstrate our method

on a wide set of real examples with varying complexity and present high-

idelity results using only 3 images for each object. We provide the source

code and data for our work in the project website.
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Fig. 2. While commodity depth sensors, such as the Microsot Kinect, fail to

provide reliable depth data for wire objects (notice how most of the flower is

perceived to be planar), PMVS (Furukawa and Ponce 2010), a state-of-the-art

multi-view stereo (MVS) method, generates a noisy and partial point cloud.

Curve skeleton extraction methods (L1 medial axis (Huang et al. 2013)) are

limited when applied to such MVS output.

1 INTRODUCTION

Wire art is an ancient art form that refers to creation of complex

shapes by bending and connecting wires. First introduced by the

Egyptians around 3000 BC (Ogden 1991), wire art is today practiced

both by expert designers and hobbyists and is common in furni-

ture design, metal sculptures, jewellery making, etc. Unlike other

surface-based objects, wire-based compositions are fundamentally

diferent as they consist entirely of 1D elements with ‘surfaces’ be-

ing perceptually illed in. This renders such objects more intriguing

and creates a desire to digitize them to enrich virtual worlds.

Digitizing wiry objects remains a challenging problem, even

though a multitude of depth and image based reconstruction meth-

ods exist. Such objects are composed of multiple thin wire structures

that occlude each other and are thus diicult to scan even with high-

end scanners. Moreover, the resolution of commodity depth sensors,

e.g., the Microsoft Kinect, is insuicient to produce reliable depth

data for thin features (see Figure 2). Thus, we resort to image-based

methods which provide higher resolution at a low-cost and a lexible

acquisition process. While signiicant advances have been made in

the domain of image based methods, there are two fundamental

problems in reconstructing wiry objects that we address.

Correspondence problem. The success of any image based recon-

struction method depends on detecting reliable correspondences,

i.e., identifying points across images that correspond to the same

3D point in the physical world. This is especially challenging in the

case of wiry objects due to the lack of distinctive image features

along thin wires of uniform color. As a result, traditional multi-view

stereo (MVS) approaches sufer from signiicant noise and missing

data (see Figure 2). Moreover, the resulting reconstructions have

only a low level representation, i.e., point clouds, without a global

curve topology required for a faithful representation. Although

there exist methods to extract curve skeletons from an input point

cloud (Huang et al. 2013), the amount of noise inMVS output renders

such methods impractical as shown in Figure 2.

We side-step from the issues of point-level correspondences by

utilizing high order curve primitives for image matching. In the

absence of distinctive image features, we rely on epipolar cues to

ind matches among 2D curve segments detected in each input

view. For each 2D curve segment detected in a reference view, there

are potentially multiple 2D curve segments in another view that

satisfy the epipolar constraints (Hartley and Zisserman 2004). The

number of conforming candidate matches is especially high for

wiry objects, which lack surface patches to hide the wires that are

in the background. In other words, curves at various depths are

simultaneously visible in each image and so result in prohibitively

many candidate matches (in our experiments, for each 2D curve

segment, we typically get 3-4 candidate matches).While it is possible

to locally choose one of these candidate matches based on a data

cost, e.g., by measuring the reprojection error of each selected 3D

curve segment to the input images, we observe that this is not

suicient to resolve all the ambiguities (see Figure 7). Instead we

propose a strategy that explores an additional smoothness cost that

favors consecutive 3D curve segments with smooth angles and small

gaps. We formulate a global selection problem to choose the desired

3D curve segments from a set of candidate 3D curve segments by

balancing between the data and smoothness costs.

Wire decomposition.Oncewe construct a set of 3D curve segments,

the next critical step is to recover the global topology of these

segments and obtain a decomposition of the input object into a set

of continuous wires. We observe that objects made of many pieces

of wires are often not stable and diicult to assemble, especially for

hobbyists. On the other hand, bending only a single piece of wire

to create sharp edges is also hard. In light of these observations,

we deine a graph where each (estimated) 3D curve segment is

represented by a vertex and vertices are linked by edges that are

assigned costs based on the angle and the distance between the

curves they connect. We then formulate an instance of the multiple

traveling salesman problem over this graph to ind low-cost path(s)

connecting all the graph vertices, where each vertex is covered by

exactly one path. By associating a cost to each introduced new path,

we balance between smoothness (i.e., low cost paths) and simplicity

(i.e., as few paths as possible).

Having discovered the global curve topology, we perform a inal

reinement step to it a cubic B-spline to each 3D wire. We optimize

for the parameters of the splines so that consecutive curve segments

along a path are smoothly connected and the reprojection error to

the input images is minimized. This reinement step helps to ill

small gaps along paths caused by insuicient image information

and results in high idelity reconstructions as shown in Figure 1.

Such reconstructions enable easy manipulation or recreation using

wire bending machines (Miguel et al. 2016).

We evaluate our method on a variety of real and synthetic ex-

amples composed of both single and multiple wires and provide

comparisons with general purpose reconstruction methods and

demonstrate superior results (see Figure 8 and Section 6). Our main

contribution is a practical and efective method that reconstructs

wiry objects from a very few input images (3 in all the presented

examples). To our knowledge, no previous method can reconstruct

wire sculptures at the complexity of our examples. Our method

makes this possible by using high order curve primitives and global

(i.e., smoothness and simplicity) as well as local data cues.

2 RELATED WORK

Our work builds up on previous methods related to curve-based

structure-from-motion and multi-view stereo as well as modeling

of delicate structures from images and point clouds.
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2.1 Modeling of delicate structures.

With the many advances in acquisition technologies (e.g., struc-

tured light, LiDAR, and more recently commodity depth sensors),

we have seen substantial progress in the area of surface reconstruc-

tion (Berger et al. 2014) to extract high idelity surfaces from input

data. An equally important problem is to improve the acquisition

experience in terms of data coverage (Yan et al. 2014), quality (Wu

et al. 2014), and speed (Fan et al. 2016). These methods, however,

focus on objects with smooth surfaces while scanning thin wires

remains challenging due to the limited sensor resolution. In the spe-

ciic case of objects with delicate structures, several automatic and

interactive modeling methods have been presented. Li et al. (2010)

introduce the deformable model arterial snakes to reconstruct such

objects from high-quality dense 3D scans. An alternative approach

is to it generalized cylinders to image data (Chen et al. 2013) or

point clouds (Yin et al. 2014) where the itting process is guided by

a skeleton either deined manually as in 3-Sweep (Chen et al. 2013)

or extracted automatically (Huang et al. 2013). However, the fact

that wire objects do not have suicient thickness makes it extremely

challenging for a user to deine a section plane or a non-planar extru-

sion curve in a 2D image manually. Furthermore, 3D point data (e.g.,

obtained by MVS algorithms) is not reliable enough to automatically

detect curve skeletons as we show in our evaluations. Martin et

al. (2014) present a method to reconstruct thin tubular structures

from a dense set of images using physics-based simulation of rods

to improve accuracy. They use a 3D occupancy grid to disambiguate

2D crossings of cables. However, unlike the clean distribution of

occupied cells obtained for cable structures, for typical wiry objects

such a grid is very noisy: due to lack of surface occlusion, wires

from the front and back of an object are simultaneously visible in

each view and this results in ambiguities. Our method recovers the

topology of the wires in this challenging case by using a global

optimization.

More recently, some approaches to designing wire objects have

been proposed with a speciic focus on fabricating these designs.

Iarussi et al. (2015) tackle the problem of extracting the topology

of a wire jewelry from a single drawing. However, their method as-

sumes that the curves are planar and fully visible in the single image

input. Miguel et al. (2016) present an interactive system to convert a

closed surface mesh to a self-supporting wire sculpture. While both

approaches explore similar characteristics of wire objects, e.g., sim-

plicity, they fundamentally focus on a diferent problem of bringing

digital designs into life. Thus, our approach is complementary and

can provide input to these methods.

2.2 Curve-based Structure-from-Motion.

In recent years, a multitude of successful structure-from-motion

(SfM) (Snavely et al. 2006; Wu et al. 2011) and multi-view stereo

(MVS) (Furukawa and Ponce 2010; Goesele et al. 2007) algorithms

have been developed. These methods work on the general principle

of identifying point correspondences across images that represent

the same world-space surface locations. While these methods pro-

duce impressive results for objects with reliable texture information,

they perform poorly when there are insuicient discriminative point

features. Some researchers have tackled this limitation by exploring

the presence of higher order features such as lines (Baillard et al.

1999; Hofer et al. 2014, 2013; Jain et al. 2010) and curves (Xiao and Li

2005). We refer the reader to the recent work of Fabbri et al. (2016)

for a theoretical foundation of the multi-view geometry properties

of curves.

Curve-based reconstruction methods can be grouped according

to the simplifying assumptions they make: Berthilsson et al. (2001)

assume that each 3D curve is fully visible in each view with no self-

occlusions; Hong et al. (2004) focus on relective symmetric curves

that are fully visible in one or two images; assuming access to

the range of depth values in the reconstructed scene, Kahl and

August (2003) assign depth values to 2D curves, while Teney and

Piater (2012) design a probability distribution to model the space

of plausible curve reconstructions. Rao et al. (2012) explore known

correspondences between endpoints of planar curves to develop a

curve-based SLAM (simultaneous localization and mapping) system.

Similarly, Nurutdinova et al. (2015) assume that image curves are

already in correspondence and optimize for both camera calibration

and parameters of the reconstructed space curves.

In the absence of prior knowledge, a typical worklow, which we

also adopt, is to irst detect 2D curve segments in each image and

then utilize epipolar constraints to generate hypotheses of corre-

sponding curves across image pairs. This process typically results

in multiple ambiguous matches and an additional view is required

for veriication (Robert and Faugeras 1991). Recent work (Fabbri

and Kimia 2010; Usumezbas et al. 2016) uses this worklow to recon-

struct curvilinear structures in general scenes requiring a dense set

of images. Our work, in contrast, reconstructs wireframe objects

from as few as three input views.

All the above mentioned previous works obtain a reconstruction

in the form of individual curve segments, which possibly sufers

from noisy measurements and gaps. Instead, we globally extract

continuous curve paths to produce more faithful representations of

wire objects. A similar path inding approach has been proposed in

the context of medical imaging (Delmas et al. 2015); however, no

previous approach has demonstrated results at the complexity of

the examples we show.

3 OVERVIEW

The input to our algorithm is a set of n (in our experiments n =

3) images, I = {I1, . . . ,In }, of a 3D wire model captured from

diferent viewpoints along with their camera parameters, K =

{K 1, . . . ,K n }. The output of our method is a set of k reconstructed

3D wiresW = {W1, . . . ,Wk }, where each wire is a continuous

path represented as a B-spline curve. We provide an overview of

this pipeline in Figure 3.

In a pre-processing stage, we extract a set of 2D curve segments

in each image. Speciically, we irst convert the images to the YCbCr

color space with histogram equalization on Y-channel (luminance

component) to increase the contrast of the wire regions relative to

the image background. Then, starting from an arbitrary pixel in the

perceived wire region, we utilize a looding method to extract all

the connected pixels that have a similar color and apply a thinning

algorithm to extract a one-pixel wide curve. Finally, we decompose

each such curve into segments such that no curve segment contains
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input images & 2D curves 3D Curve Reconstruction (Section 4) 3D Wire Decomposition (Section 5)

3D candidate curve generation 

(Section 4.1)

3D curve selection 

(Section 4.2) recovered curve ordering

Fig. 3. Given a set of input images of a wire object, our method first detects 2D curve segments in each image. We then generate a set of candidate 3D

curve segments corresponding to each 2D image curve (Section 4.1) and solve a global selection problem to choose one 3D curve from each candidate set

(Section 4.2). Finally, we recover the global topology of the 3D curve segments (as denoted by the dashed red arrows) and decompose the object into a set of

continuous wires (Section 5). We show this final reconstruction both in 3D and also how its projection (in red) aligns with the original image curves (in black).

any joint or branching point (Kovesi 2017). As a result, for each

image I j , we obtain a set of 2D curve segments denoted as cj = {c
j
i }.

Given a set of 2D curves extracted from each image, our irst

goal is to generate a corresponding set of candidate 3D curve seg-

ments. To accomplish this goal, we establish continuos correspon-

dences between matching 2D curve segments from diferent images.

input 3D output

We use a conservative

strategy when decompos-

ing 2D curves in each im-

age into segments free of

branching points to ensure

that no 2D curve segment

contains projections of dis-

joint 3D curves. The red

highlighted region in the

inset igure shows an ex-

ample, where each 2D curve segment is denoted with a diferent

color. Some of the branching points detected in the images may

have been created due to self-occlusions and separate 2D curve seg-

ments that are projections of a single continuous 3D curve. While

this conservative decomposition strategy results in the loss of such

continuity relations, they are recovered in the subsequent stages of

our algorithm. For example, the inal 3D result shown in the inset

consists of a single continuous wire.

For each 2D curve segment cri detected in a reference view I r ,

we generate a set of candidate 3D curve segments by establishing

correspondences with 2D curve segments in a neighboring view

that satisfy the epipolar constraints (Section 4.1). Once such sets of

candidate 3D curve segments are generated for all views, we formu-

late a global selection problem that solves a quadratic optimization

problem to choose one 3D curve segment from each candidate set

(Section 4.2). This optimization not only minimizes the re-projection

error of a selected 3D curve segment with respect to each view but

also favors consecutive 3D curve segments that form smooth angles.

As a result, we select a set of 3D curve segments, denoted as Copt.

Next, to extract a global curve topology among the individual

and disjoint 3D curve segments in Copt, we solve a multiple travel-

ing salesman problem (mTSP) to identify continuous and smooth

paths such that each 3D curve segment is contained in exactly one

path (Section 5). Each such path corresponds to a continuous wire

composed of a sequence of 3D curve segments which are a subset

of Copt . Finally, for a smooth and compact representation, we rep-

resent each wire as a smooth cubic B-spline curve and optimize for

its parameters using a itting procedure to minimize its projection

error with respect to the input images.

Next, we describe the respective steps in detail.

4 3D CURVE RECONSTRUCTION

The 3D curve reconstruction step of our method irst generates a set

of candidate 3D curve segments and then solves a global selection

optimization to identify the correct 3D curves among these candi-

dates. Without loss of generality, we irst explain this process for a

given pair of reference and neighboring views (Ir ,In ) and then

describe how it can be easily extended to multiple views.

4.1 3D Candidate Curve Generation

Given a set of curve segments cr = {cri } detected in a reference view

Ir , we represent each cri as a sequence of densely sampled image

points,pri, j , j = 1, 2, . . . , s . For each cri , starting from the irst sample

point pri,1, we compute its corresponding epipolar line, lr→n
i,1 , in a

p
i,1

r

p
i,j

r

p
i,s

r

I
r

I
n

c
i

r

R1

R2

(reference view) (neighboring view)

epipole
l

i,1

r   n

l
i,j

r   n

l
i,s

r   n

Fig. 4. We show a 2D curve segment cri in Ir along with sample points (pri,1,

pri, j , p
r
i,s ) and their corresponding epipolar lines (l r→ni,1 , l r→ni, j , l r→ni,s ) in In .

Epipolar lines corresponding to sample points between pri,1 and p
r
i, j result

in two intersection points in In (R1) and generate two candidate matching

2D curve segments (pink and purple). Starting with pri, j , epipolar lines result

in three intersection points (R2). Thus we break cri into two segments at pri, j
such that for the segment between pri, j and p

r
i,s three candidate matching

2D curve segments (pink, blue, and orange) are generated.
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I
q

I
q

viewport

Fig. 5. Given a candidate 3D curve segment, we project it to a third view

Iq and find the 2D curve segment in Iq that has the smallest aggregated

closest point distance with its projection. We compute a confidence cost for

the 3D curve segment which measures both the distance and the angular

deviation between such closest points. 3D curve segments (in orange) which

receive a high confidence cost can be pruned, while others (in blue) are kept

as a candidate.

neighboring view In . Each epipolar line lr→n
i,1 is likely to intersect

multiple disjoint 2D curve segments in In , each being a possible

match for cri (see Figure 4) 1. We expect the epipolar lines corre-

sponding to consecutive sample points pri, j to result in intersections

with the same set of candidate matching curve segments due to the

continuity of image curves. Thus, we trace out these intersections

as long as the number of intersections for consecutive sample points

stays constant. If we reach a sample point pri, j on c
r
i whose epipolar

line intersects a diferent number of 2D curve segments in In (e.g.,

due to a discontinuity resulting from self-occlusions), we break cri
into two segments consisting of sample points {pri,1,p

r
i,2, . . . ,p

r
i, j−1}

and {pri, j ,p
r
i, j+1, . . . ,p

r
i,s }, respectively. By repeatedly tracing the

intersection points of the consecutive epipolar lines and splitting

cri as necessary, we obtain a resulting set of 2D curve segments cr

in Ir , where for each cri we have a set of matching candidate 2D

curve segments cr→n
i, j , j = 1, 2, . . . ,m in the neighboring view In .

Given a curve segment cri in Ir and its candidate matching curve

segments cr→n
i, j in In , j = 1, 2, . . . ,m, we generate a set of 3D curve

segments Cri, j , j = 1, 2, . . . ,m, each represented by a sequence of

3D points reconstructed by triangulating the corresponding sample

points in Ir and In . Each Cri, j is potentially the correct 3D curve

segment for cri ∈ I
r and is also compatible with In by construction.

We use a third viewIq to help assess the likelihood of each ofCri, j to

be the correct 3D curve segment corresponding to cri (see Figure 5).

In particular, we project each Cri, j to I
q and ind the 2D curve

segment in Iq that is closest to its projection. We compute this clos-

est 2D curve segment by establishing closest point correspondences

between each sample on the projection ofCri, j and the sample points

on each c
q
o ∈ I

q and choosing the c
q
o that results in the smallest

aggregated distance between such correspondences. Given a set of

point correspondences (u,v ), where u lies along the projection of

the 3D curve segmentCri, j to I
q andv is its closest point correspon-

dence on the 2D curve segment c
q
o ∈ I

q , we compute a conidence

1We note that there may be degenerate cases where an epipolar line is locally almost
parallel to a 2D curve segment making it diicult to compute robust intersections. We
refer the reader to the Appendix for a discussion of how we handle these cases.

cost, S (Cri, j ), as:

S (Cri, j ) =

∑

(u,v )

(

(

‖u −v ‖/diaд(Iq )
)

+ η
(

1 −|tu · tv |
)

)

s
, (1)

where we measure both the distances between the corresponding

points and the deviation between their tangential directions, (tu , tv )

(see Figure 5). η denotes the relative weighting between the two

measures and is set in the range (0.001 − 0.004) in our experiments.

We normalize the distance measures by the length of the diagonal

of the image, diaд(Iq ), and normalize the aggregated distance and

tangential deviation by s , the number of sample points onCri, j . This

conidence cost is used in the subsequent stage of our method to

identify the correct 3D curve segments.

4.2 3D Curve Selection

In the previous step, for each 2D curve segment cri , we reconstruct

a set of 3D curve segments, Cr
i = {C

r
i, j }, composed of multiple

candidates satisfying the epipolar constraints (see Figure 6) (in our

experiments we often have 3-4 candidates for each curve segment).

Next, we explore two type of cues to choose one 3D curve segment

for each cri as its true 3D proxy. First, for each cri , we want to se-

lect the 3D curve segment that matches image observations well.

However, due to many self-occlusions, image observations alone

are not suicient to resolve all the ambiguities. Therefore, we also

explore pairwise relations between 3D curve segments. Since the

true 3D curve segments are assumed to be taken from an object

created by bending continuous wires, consecutive curve segments

along this wire are smoothly connected. Thus, pairs of nearby 3D

curve segments with smooth angles are more likely to exist together,

which provides an efective pairwise cue. We formalize these cues

in an optimization problem as follows. First, for ease of notation,

we denoteAr
= ∪iC

r
i , the union of all candidate 3D curve segment

sets Cr
i . For each 3D curve segment inAj ∈ A

r , we deine a binary

indicator variable x j where x j = 1 if the corresponding curve seg-

ment is selected and x j = 0 otherwise. We denote by X the vector

formed by concatenating all such binary variables. Since, our goal

2D curve segments

in reference view

candidate

3D curve segments

selected 

3D curve segments

Fig. 6. Ater the 3D candidate curve generation step, for each 2D curve

segment we obtain multiple candidates (e.g., for the highlighted 2D curve

segment, we obtain 3 candidate curves in 3D (in pink)). The 3D curve selec-

tion process identifies the correct 3D curve among such candidates solving

a global selection problem.
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is to select only one 3D curve segment from each candidate set, we

deine the linear constraint,
∑

Aj ∈C
r
i
X(j ) = 1 for each Cr

i .

We evaluate the compatibility of each 3D curve segment using the

conidence cost deined in Equation 1. We concatenate the conidence

scores of all the 3D curve segments Aj ∈ A
r in a vector U such

that Uj = S (Aj ).

Next, in order to evaluate the pairwise relations between 3D curve

segments Ai and Aj , we deine a pairwise cost d (Ai ,Aj ):

d (Ai ,Aj ) = e (Ai ,Aj ) + µ f (Ai ,Aj ). (2)

e (Ai ,Aj ) measures the distance in 3D between the closest end-

points of Ai and Aj and f (Ai ,Aj ) = (1 − cosα )/2, where α is

the angle between the tangent directions of these closest endpoints.

Here µ denotes the relative importance between the distance and

angle terms (µ = 1 in our experiments). We aggregate all pairwise

relations in a square matrix V of dimension b × b where b is the

cardinality of Ar (i.e., the total number of candidate 3D curve seg-

ments). We set Vi j = d (Ai ,Aj ) for all non-diagonal entries and set

the diagonal entries to zero.

Given U and V, we optimize for X⋆ that minimizes the following:

X⋆ := argmin
X

UTX + λXTVX,

subject to ∀Cr
i :
∑

Aj ∈C
r
i

X(j ) = 1 (3)

where λ determines the relative weighting of the unary and binary

cues and is set to 0.1-0.2 in our experiments (based on thickness

and size of the object). We solve Equation 3 using the quadratic

programming package in Matlab (The MathWorks 2016) and obtain

an optimized set of 3D curve segments Copt which contains exactly

one 3D curve segment as the true 3D proxy for each 2D curve

segment cri .

While it is possible to solve Equation 3 over all of the candidate

3D curve segments, in cases where this becomes computationally

ineicient (due to a very large number of unknowns), it is possi-

ble to employ a pruning strategy where 3D curve segments with

a conidence cost greater than a threshold (0.0015-0.008 in our ex-

periments) are pre-iltered. Finally, there may be isolated 3D curve

segments that have small conidence costs but are far away from the

the rest of the curve segments. Such isolated curves are typically

candidate

3D curve segments

3D curve selection

with smoothness

3D curve selection

without smoothness

Fig. 7. For a given set of candidate 3D curve segments, using only the unary

data term results in the selection of many wrong 3D curve segments. This

shows the necessity of a global optimization with additional smoothness

priors.

outliers and can be removed by thresholding its distance to its near-

est 3D curve segment. Finally, in order to show the importance of

utilizing both unary and binary cues, for a given set of candidate 3D

curve segments, we solve Equation 3 twice, with and without the

binary term. As shown in Figure 7, using only unary terms results in

selection of many wrong candidates. This proves the efectiveness

of our global selection strategy.

4.3 Taking Alternative Reference Views

We have described the 3D curve segment reconstruction step that

generates 3D candidate curves from a pair of reference and neighbor

views and uses a third view for veriication. When there are more

views, we utilize an incremental reconstruction strategy. Starting

from a pair of reference and neighbor views, we reconstruct a set

of 3D curves for each 2D curve segment in the reference view as

just described. We then choose a new view as reference view and

ind a compatible neighboring view (a view with a good range of

parallax as proposed by Goesele et al. (2007)). We project all the 3D

curve segments reconstructed so far to the reference view and mark

all (parts of) 2D curve segments that are covered by a projection

as processed. A 2D curve segment is considered to be covered by

a projection of a 3D curve segment if the aggregated distance and

tangent deviation between the closest points among the 2D segment

and the projection is below a certain threshold (0.02-0.05% compared

to bounding box diagonal). We perform the same reconstruction

step for all the unprocessed 2D curve segments in the new reference

view. We repeat this step until all views have been considered as a

reference view.

5 3D WIRE DECOMPOSITION

Once we have constructed a set of 3D curve segments, Copt, as

explained in the previous section, our next goal is to recover the

global topology of these curves and decompose them into a set

of distinct continuous wires. To perform this decomposition, we

exploit two unique features of wire objects we consider as input.

First, such objects are often composed of only a small number of

wires because it is not trivial to stably connect many pieces of wires.

Second, it is hard to bendwires to create sharp angles due to physical

resistance. Therefore, we expect each output wire to be as smooth as

possible. In light of these considerations, we formulate the 3D wire

decomposition as a multiple traveling salesman problem (mTSP) as

described in the following.

Given the set of 3D curve segments, Copt = {Ci }, i = 1, 2, ...b, we

construct a directed graphG = (V, E), where each Ci is represented

as a vertexVi ∈ V . We deine an additional start node,V0, such that

each path deined over this graph starts and ends at this node. A

directed edge ei j ∈ E going from the node Vi to Vj is assigned a

costwi j based on the pairwise relation between the corresponding

3D curve segments Ci and Cj . Precisely,wi j = d (Ci ,Cj ) as given in

Equation 2. The edge costs are deined symmetrically, i.e.,wi j = w ji .

Given G = (V, E), our goal is to ind k distinct paths that start

and end at V0 such that each Vi (i > 0) is contained in exactly one

path. Each of these paths corresponds to a continuous 3D wire used

to create the input wire model. Since each path is uniquely deined

by the edges it is composed of, each edge ei j ∈ E is assigned a

binary variable xi j : xi j = 1 if ei j is contained in a path and xi j = 0
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otherwise. Furthermore, each node Vi ∈ V is assigned an auxiliary

integer variable ui ∈ N to denote the order in which Vi is visited

along a path, u0 = 0 for the dummy start nodeV0. We formulate our

path inding problem as minimizing the total cost of the selected

edges and the number of paths:

{k⋆,x⋆i j } := argmin
{k,xi j }

∑

i, j

xi jwi j + ξk . (4)

ξ is a ixed cost associated with using a unique path. In order to

ensure each path is valid (i.e., each vertex is visited by exactly one

path and no path is composed of disconnected cycles), Equation 4

is solved subject to the following constraints.

To ensure each nodeVi (i > 0) is visited by a path, exactly one of

the incoming and outgoing edges of a node needs to be selected in

the solution:

∀i > 0 :
∑

j, j,i

x ji = 1,

∀i > 0 :
∑

j, j,i

xi j = 1. (5)

Each of the k paths is required to start and end at the start node V0:
∑

j, j>0

x j0 = k,

∑

j, j>0

x0j = k . (6)

In order to avoid paths composed of disconnected cycles, subtour

elimination constraints as proposed by Kara and Bektas (2006) are

deined:

∀i > 0 :

ui + (b − 1 − k )x0i − xi0 ≤ b − k,

ui + x0i ≥ 2,

∀i, j > 0, i , j :

ui − uj + (b − k + 1)xi j + (b − 1 − k )x ji ≤ b − k . (7)

We use the Gurobi optimization package (Gurobi Optimization

2016) to solve the binary-integer optimization problem given in

Equation 4 with respect to the constraints deined in Equations 5, 6,

and 7. As a result, we obtain a set of k continuous wires,W =

{W1, . . . ,Wk }, where eachWi is composed of an ordered set of

3D curve segments.

We note that ξ , the cost of using a unique wire, provides a trade-

of in the number of wires included in a decomposition. Increasing

this cost prefers decompositions composed of fewer wires. In our

experiments, we found setting ξ = 1/10th of the maximum edge

cost provides a good balance. We also experimented with optimizing

Equation 4 with known number of wires, i.e. manually setting k .

In the special case of k = 1 (i.e., for objects composed of a single

wire), this formulation reduces to the standard travelling salesman

problem where the goal is to ind a single path that visits each node.

Finally, while Equation 4 can be optimized over a fully connected

graph G, some edges with very high costs can be pre-pruned for

better computational eiciency.

5.1 Image-guided Curve Smoothing

At this stage, we have fully recovered all the 3D proxy information

we need to represent the input object. Due to instabilities in lifting

very small 2D curve segments to 3D, there may be small gaps be-

tween the 3D curve segments along a given wire decomposition.

Thus, in a inal stage, we represent each wireWi with a cubic B-

spline and optimize for its parameters so that the projection of the

resulting 3D wire matches the image observations. In particular

given a wireWi , we represent it as:

Wi = B (t ) =

д∑

j=1

Xjϕ j (t ), (8)

whereXj are the control points and ϕ j are ixed cubic B-spline basis

functions. If the total number of points sampled along all the 3D

curve segments contained inWi is h, we deine д = h/10 control

points. We irst it a B-spline to the set of all sample points alongWi

with each sample point ua , a = 1, 2, . . .h associated with a ixed

parameter value along this spline, B (ta ), 0 ≤ ta ≤ 1.

Given this initial B-spline itting curve in 3D, we next perform an

iterative optimization to obtain a reined set of control points X⋆

j

that minimizes the following energy:

X⋆

j := argmin
Xj

h∑

a=1

n∑

o=1




K o (B (ta )) − p

o



2
+

ω

h−1∑

a=2




B (ta−1) − 2B (ta ) + B (ta+1)





2
. (9)

The irst term minimizes the distance between K o (B (ta )), the

projection of a 3D sample point ua to image Io , and its closest

point correspondence po ∈ Io . We project each sample point to

the images it is visible in. The second term imposes a Laplacian

smoothness penalty between consecutive sample points and ω (set

to 103 in our experiments) deines the relative importance between

the data and smoothness terms.

We solve Equation 9 in an iterative manner, re-establishing the

correspondences between the projections of 3D sample points and

2D sample points in the images at each iteration. Typically, this

process converges in 5-15 iterations and the resulting B-spline rep-

resentation of each wire is free of gaps and provides an accurate,

smooth, and compact reconstruction of the object.

6 RESULTS

We evaluate our method on a wide set of examples with varying

complexity. For each of these examples we utilize 3 images of the

wire object taken from diferent viewpoints as input, together with

their camera parameters. We use the open-source structure-from-

motion (SfM) tool, VisualSFM (Wu 2011; Wu et al. 2011), to obtain

the camera parameters in a pre-calibration step. Note that we make

use of nearby textured objects to ensure that a suicient number of

image correspondences are detected for reliable SfM computation.

For each of our examples, we provide a sample input image

and a rendering of our inal reconstruction in Figure 8 and re-

fer to the accompanying video and supplementary material for

more closeups. Our examples have varying complexities, each being

composed of 1-3 wires. For each of these examples, our method
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Fig. 8. We evaluate our method on several objects of varying complexity. For each object, we provide one of the input images and our final 3D reconstruction.

We also provide comparisons with PMVS (Furukawa and Ponce 2010) and Line3D++ (Hofer et al. 2016) run on a set of input images consisting of 15 views.

Finally, we evaluate the L1-medial skeleton extraction method of Huang et al. (2013) on the point clouds generated by PMVS.We also run the mTSP formulation

on the output of Line3D++ output to demonstrate how small variations can lead to large topological errors with significant errors in the final output.
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provides a faithful 3D geometry and a plausible wire decomposi-

tion. We note that during wire decomposition a speciic challeng-

ing case is when four curve segments come together (see inset).

(i) (ii)

In this case, there are two pos-

sible options for connecting

these curves, i.e. (i) a cross-

ing, or (ii) or a continuous

path with sharp bends, both

resulting in plausible decom-

positions. Our method prefers smooth crossings since we utilize the

smoothness prior. If this is not the desired decomposition, the user

may want to reclassify junction points.

6.1 uantitative Evaluations

In order to quantitatively evaluate our algorithm, we reconstruct a

synthetic wire object (similar in complexity to the CAT example)

from its renderings using ground truth camera parameters. Further-

more, we generate reconstructions by adding noise to the camera

parameters. We represent the rotation of the camera with Euler

angles and add random noise to each of the angles sampled from a

normal distribution with mean zero and standard deviation of one

degree. For translation, we add random noise by sampling from a

normal distribution of mean zero and a standard deviation of 0.1%,

0.2%, and 0.3% of the length of the diagonal of the bounding box

of the synthetic model in 3D. In each case, we measure the closest

point distances between the ground truth and the reconstructed

model in 3D. We report the average and maximum of such closest

point distances in Table 1. We note that we report the errors as a

percentage of the length of the diagonal of the bounding box of

synthetic model in 3D.

We also quantitatively evaluate the performance of our approach

on real examples. We compute a re-projection error by sampling

points on the reconstructed 3D wires, projecting these samples to

the input views, and measuring the distance between the projected

points and the closest points sampled on the 2D curves for each view.

We report the average and maximum of such re-projection errors

for each input view in Table 2. We note that we report the errors as

a percentage of the length of the diagonal of the 2D bounding box

of the wiry object in the corresponding view.

6.2 Performance

We measure the execution time of diferent stages of our algorithm

on a machine with Intel i7 3.46 GHz CPU with 24 GB RAM. While

3D curve reconstruction (Section 4) takes about 10 to 22 seconds;

Table 1. We reconstruct a synthetic model from its rendering both using

ground truth camera parameters (no noise) and by adding random noise to

the camera parameters. We report the error as the average and maximum of

the closest point distances between the ground truth and the reconstructed

model in 3D. Distances are reported as a percentage of the length of the

diagonal of the bounding box of synthetic model in 3D.

no noise 0.1% noise 0.2% noise 0.3% noise

avg 0.17 0.35 0.54 0.6

max 0.98 1.02 2.06 2.89

Table 2. For real examples, we compute a re-projection error by sampling

points on the reconstructed 3D wires, projecting these samples to each

input view, and measuring the distance between the projected points and

the closest points sampled on the 2D curves in the view. We report the

average and maximum of such re-projection errors for each input view as

a percentage of the length of the diagonal of the 2D bounding box of the

wiry object in the corresponding view.

view 1 view 2 view 3

avg max avg max avg max

HUMAN 0.29 1.70 0.37 0.92 0.37 1.85

BIKE 0.19 0.94 0.19 1.36 0.22 1.65

BIRD 0.13 0.58 0.14 0.88 0.14 0.78

ELEPHANT 0.18 0.85 0.21 2.47 0.17 1.14

CAT 0.26 1.28 0.40 3.66 0.24 1.50

FLOWER 0.51 3.99 0.47 3.43 0.41 3.53

HORSE 0.24 1.11 0.24 2.01 0.21 1.56

CART 0.16 0.59 0.18 1.05 0.21 1.78

TURTLE 0.26 2.45 0.57 3.18 0.29 1.86

3D curve decomposition (Section 5) takes about 50 to 60 seconds for

simple models (e.g.,HUMAN) and a fewminutes for complex models

(e.g., CART). The complexity of a wire sculpture is not directly based

on the number of wires it is composed of, instead it depends on

the density of the wires since denser conigurations result in large

number of candidate 3D curves.

6.3 Comparisons

We compare our approach to PMVS (Furukawa and Ponce 2010), a

state-of-the-art multi-view stereo (MVS) algorithm, and Line3D++,

a recent line-based MVS algorithm (Hofer et al. 2016) developed for

scene abstraction. We run each of these methods on an input image

set composed of 15 views including the original 3 views we use for

out method where the calibration is obtained by VisualSFM. (We

run the same comparison on an input image set of 10 views and

provide the results in the supplementary material.) As illustrated

in Figure 8, even when using substantially more views, both ap-

proaches still sufer from noise and signiicant amount of missing

data. Furthermore, neither point- nor individual line-based repre-

sentations can capture the global topology of the wires and thus are

not suitable for any post-processing operations. We evaluate the

recent L1-medial skeleton extraction method (Huang et al. 2013) on

the point clouds generated by PMVS (we include the parameters we

use for this method in the supplementary material). As shown in

Fig. 9. Our method is not designed to handle very dense wire sculptures

that are closer to surfaces instead of 1D elements.©Pinterest
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Figure 8, due to noise and missing data in the PMVS output, this

approach fails to recover a complete and accurate curve skeleton

in many cases demonstrating the impracticality of utilizing similar

approaches as a post-processing step.

We also run our mTSP formulation on the output of Line3D++

and observe that small variations lead to large topological errors in

the inal output. This demonstrates the importance of our 3D curve

selection formulation (Section 4.2).

Finally, in Figure 2, we provide an example depth map of a wiry

object captured from a commodity depth sensor (Microsoft Kinect).

Even though we paint the originally black wire model with a difuse

paint, the sensor fails to provide any useful depth information for

the thin wires that is required for surface reconstruction.

6.4 Limitations

Our method provides an efective and practical solution to a very

challenging problem: we digitize wire objects from as few as 3 im-

ages in the form of a global curve network readily available for post

processing and fabrication. Nevertheless, there are certain limita-

tions we would like to address in future work. Failures in extracting

reliable 2D image curves, e.g., due to cluttered background or insui-

cient contrast between the object and the background, will degrade

the performance of our approach like any other image-basedmethod

operating at the level of curves. We assume the camera parameters

of the input images to be given and rely on surrounding texture

objects to obtain this information. Signiicant deviations from the

true camera parameters will potentially result in noisy 3D curve

segment reconstructions and failures in the wire decomposition. A

joint framework that optimizes both for the camera parameters and

the 3D wires is an interesting research direction. Finally, our method

is not designed to handle very dense wire sculptures such as shown

in Figure 9. Such examples are closer to surfaces instead of 1D el-

ements and other modeling paradigms (e.g., procedural modeling)

would be more suitable.

7 CONCLUSION AND FUTURE WORK

We present an image-based reconstruction method of wire objects

using as few as 3 images as input. Our method exploits unique

characteristics of wire objects (simplicity ś the object is composed of

a few wires, and smoothness ś each wire is bent smoothly) to recover

the global 3Dwire decomposition.We represent each wire as a curve

in our reconstructions to facilitate editing and physical fabrication of

the results. Combined with the power of wire sculpting, we believe

that this paves the road to using wires as a rapid prototyping tool

to bring creative ideas into the digital design process.

In addition to addressing the limitations of our method discussed

in the previous section, there are several exciting future research

directions. For our experiments, we utilized 3 input views for each

example, which all together provide a full coverage of the input ob-

ject. Exploring strategies for next best view selection in the context of

wire objects is a promising reserch direction. Our current approach

focuses on objects made by bending and connecting multiple wires.

While bending is one of the most prominent techniques used in

wire art, there are other techniques, e.g., twisting two wires as seen

in the bird example in Figure 9 and wrapping thin wires around

thicker ones. Exploring such techniques as additional priors in the

reconstruction method (e.g., physical stability of the reconstructed

object) is a promising direction likely to expand the scope of the

objects that can be captured accurately. Finally, other future direc-

tions include combining our work with an iWires (Gal et al. 2009)

type of deformation tool to explore editing options and applying

the proposed techniques to medical imaging where reconstruction

of thin structures from a few views is necessary.
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APPENDIX

When a particular epipolar line becomes tangent to or overlaps

with a 2D curve segment, multiple intersection points close to each

other on the same curve are generated. These cluttered intersections

do not deine meaningful disjoint curves and cause diiculty in

reconstructing 3D curve segments in the concerned region. We

propose a curve itting strategy to handle such degenerate cases.
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Fig. 10. In case an epipolar line becomes tangent or overlaps with a 2D

curve segment, we solve the resulting degenerate case by a curve fiting

strategy.

When an epipolar line, ℓ, is tangent to a smooth curve at a point

of non-vanishing curvature, the part of the curve in a neighbor-

hood of the tangent point lies entirely on the same side of ℓ. Given

the epipolar line ℓ that passes through a point p sampled on a 2D

curve segment, we identify p as a tangent point if them-nearest

samples (m = 25) of p on the curve all lie on the same side of ℓ. This

neighborhood is unstable to compute exact intersections with ℓ.

Given a 2D curve segment cri in a reference view Ir , assume the

epipolar line, ℓr→n
i,s , of a sample point pri,s on cri in a neighboring

view In is at a threshold distance (λ = 8) from a tangent point

detected on a curve segment cnj in In (see Figure 10). We denote

the two intersection points between ℓr→n
i,s and cnj as pni,s and p

n
j,t .

Moving along cri will yield another point pri,t whose epipolar line

will be the same as ℓr→n
i,s . Under epipolar constraints, pnj,s and p

n
j,t

have the same epipolar line in Ir and this line passes through pri,s

and pri,t . Thus the curve region,
�pri,sp

r
i,t in I

r and the curve region,

�pnj,sp
n
j,t in I

n are corresponding regions.

There are two possible pairings between the matching regions
�pri,sp

r
i,t and

�pnj,sp
n
j,t for subsequent 3D curve reconstruction, that

is: (i) (pri,s ,p
n
j,s ) for one end and (pri,t ,p

n
j,t ) for the other end; or (ii)

(pri,s ,p
n
j,t ) for one end and (pri,t ,p

n
j,s ) for the other end. For each

pairing, we irst compute the 3D positions of the paired endpoints

and then it a polyline between these 3D endpoints that is smooth

and matches the two image observations as in Equation 9. We keep

both of the results as part of the candidate 3D curve segment set.

If an epipolar line is tangent to a curve at an inlection point,

we detect the unstable neighborhood by checking if them-nearest

points of the intersection point lie within a narrow strip centered

around the epipolar line. The remaining curve region process re-

mains unchanged.
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