Objective

Goal: Learn unsupervised predictors of physical states directly from raw observations and without relying on a simulator in two steps:

(i) **Unsupervised learning** of dynamically-salient objects from videos.

(ii) Train a predictor using the tracker’s detection as supervisory signal.

We validate our method on synthetic data and real data of scenarios of balls rolling on various surfaces.

Single Object Detection

Key ideas:

1. **Causality** (L_{disc}): Inspired by [1]. The discriminator D ensures that extracted positions are plausible trajectories and identify temporal reshuffling.

2. **Equivariance** (L_{siamese}): Detection should be equivariant w.r.t random rotation g, i.e. $\Phi(gx_T) = g\Phi(x_T)$.

3. **Low entropy** (L_{ent}): Makes sure that detection is spatially localized and locks properly onto one single object.

Unsupervised Detection and Tracking of Dynamic Objects

- **1118 videos containing balls rolling on complex terrains.**
- **Dataset split into three types of terrain:**
 - **POOLR**: Flat pool table; 151 videos (1 ball)
 - **BOWLR**: Paper mâché Ellipsoidal Bowl; 216 videos (1 ball)
 - **HEIGHTR**: Paper mâché heightfield; 543 videos (1 b.), 208 (2 b.)
- 8 different types of balls used across all scenarios.
- **Annotations** of objects positions are provided for every test set.

Evaluation of Our Method

- **Extension to Multiple Objects**
 - Even when multiple objects are present, our tracker is always able to consistently track one object thanks to the entropy constraint.
 - After learning the first objects, we sequentially train a new tracker where we mask previously detected objects on the extracted heatmaps.

Tracker Error on Different Dataset

- **Our tracker performs well across synthetic and real datasets and different types of objects and terrains.**
- **Variance of the error is low, tracking never fails.**

Ablation Study

- **BOWLR (1b.) Ablation Study**

Extrapolation with Unsupervised Data

- **We use our tracker to train an extrapolator such as IFS [2] and {Pos, Disp, Prob}Net[3].**

- **Models are trained to predict the next $T=\{15,20\}$ steps observing $T_0=4$ frames.**

- **Best results are obtained with *Net models which use tensor state representations.**

References

