
Key ideas:
1.Causality (Ldisc): Inspired by [1]. The 

discriminator D ensures that extracted 
positions are plausible trajectories and identify 
temporal reshuffling.

2.Equivariance (Lsiam): Detection should 

be equivariant w.r.t random rotation g, i.e
Ф(gxT) = g Ф(xT).

3.Low entropy (Lent): Makes sure that 

detection is spatially localized and locks 
properly onto one single object.

Goal: Learn unsupervised predictors of 
physical states directly from raw 
observations and without relying 
on a simulator in two steps:
(i) Unsupervised learning of 
dynamically-salient objects from videos. 
(ii) Train a predictor using the tracker’s 
detection as supervisory signal.
We validate our method on synthetic 
data and real data of scenarios of balls 
rolling on various surfaces.
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ROLL4REAL: Our New Benchmark Dataset

• 1118 videos containing balls rolling on complex terrains.
• Dataset split into three types of terrain:
 POOLR: Flat pool table; 151 videos (1 ball)
 BOWLR: Paper mâché Ellipsoidal Bowl; 216 videos (1 ball)
 HEIGHTR: Paper mâché heightfield; 543 videos (1 b.), 208 (2 b.)

• 8 different types of balls used across all scenarios.
• Annotations of objects positions are provided for every test set. 

Evaluation of our Method

• Our tracker performs well across synthetic and real 
datasets and different types of objects and terrains.

• Variance of the error is low, tracking never fails.

• We use our tracker to 
train an extrapolator 
such as IFS [2] and 
{Pos, Disp, Prob}Net[3].

• Models are trained 
to predict the next 
T={15,20} steps 
observing T0=4 frames.

• Best results are 
obtained with *Net 
models which use 
tensor state 
representations.
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Synthetic Real

• Even when multiple objects are present, our tracker is 
always able to consistently track one object thanks to the 
entropy constraint.

• After learning the first objects, we sequentially train a 
new tracker where we mask previously detected objects on 
the extracted heatmaps.
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