
Supplementary Document for “Designing Chain Reaction
Contraptions from Causal Graphs”

Anonymous Authors

1 PRIMITIVES
This section describes in more detail the primitives implemented
in our system. Please refer to the code for a complete description.

1.1 Simple primitives
Simple primitives describe single solid objects. Each such object
is instantiated with design parameters describing its dimensions
(e.g., width, length, height, etc.). Additionally, arbitrary physical
parameters can be provided (e.g., mass, friction, restitution, etc.).
Since simple primitives are constructed by combining rigid body
shapes from Bullet, please refer to the documentation [1] to find
available parameters. Importantly, a simple primitive without mass
will be static in the simulation (and conversely, defining a mass
makes it dynamic).

Most simple primitives are 3D: Ball, Box, OpenBox, Cylinder,
Capsule, Goblet, Track. There is a single 2D primitive, Plane, and
a ‘0D’ primitive, Empty, whose role is to serve as parent of other
primitives in the scene graph (similar to what exists in Blender).

1.2 Constraint primitives
Constraint primitives take one or two simple primitives and add
a Bullet constraint. Pivot, as the name suggests, adds a pivot con-
straint (one degree of freedom), while Fastener glues objects to-
gether (0 degrees of freedom).

1.3 Complex primitives
Complex primitives are created by combining any number of the
above primitives. For instance, Lever and Pulley respectively
combine Box and Cylinder with a Pivot. Meanwhile, DominoRun
provides an easier interface to define Boxes aligned along a path.
TensionRope combines several Bullet constraints with input prim-
itives to emulate the behavior of a rope in tension (although the
rope itself has no physical presence in the world, i.e., it is not in-
volved in collisions). Lastly, RopePulley is an even more complex
version combining input primitives with constraints and a callback
function approximating the effect of a rope-pulley system. As with
TensionRope, the rope is purely visual.

1.4 Primitives used in each scenario
The following simply provides the primitives involved in each of the
scenarios presented in the evaluation. Please see the configuration
files for a complete description.

• causalitySwitch: Ball, Box, DominoRun, Plane, Track
• ballRun: Ball, Box, Goblet, Lever, Track
• longChain: Ball, Box, Cylinder, DominoRun, Fastener,
Goblet, Lever, OpenBox, TensionRope, Track

• teapotAdventure: Ball, Box, Cylinder, Fastener, Goblet,
Lever, Pivot, RopePulley, Track

2 EVENTS
As described in the paper, the occurrence of events in the simulation
is checked with specific conditions based on rigid bodies’ spatial
transforms and their derivatives. Toppling simply requires one
of the Euler angles to be greater than a threshold, and NotMoving
checks that the position has not changed since the beginning. Mean-
while, Falling, Pivoting, Rising and Stopping all compare a
component of the body’s linear or angular velocity with a given
threshold. Contact and its opposite, NoContact, use the simula-
tor’s internal collision check. RollingOn combines Pivoting with
Contact. Lastly, Inclusion uses the simulator’s internal ray cast-
ing ability to check that one body is inside another.

3 LOCAL ROBUSTNESS
In the paper, we mention an evaluation dataset X ⊂ D created for
each scenario S with design space D, decomposed as X = X+ ∪

X− ∪X� (respectively successes, failures and impossible instances).
The local robustness ρl : D × [0, 1] → [0, 1] is then defined as

ρl (x, ϵ) =

{
|Bϵ (x)∩X + |

|Bϵ (x)∩{X +∪X − } |
if x ∈ D \ D�,

0 otherwise,

where Bϵ (x) is the ball of radius ϵ centered at x ∈ D.
In practice, the local robustness is computed differently depend-

ing on whether it is used as an objective function x 7→ ρl (x, 0.1)
for baseline methods (B2) and (B3), or as a function of the error
ϵ in Figures 15 and 16. In the former case, for each function call,
d2 physically valid points are uniformly sampled around x and
simulated on the fly (d being the number of layout parameters).
Therefore, the simulation budget B defined for the baselines directly
translates to a maximum number of function evaluations ⌊B/d2⌋.
In the latter case, as explained in the paper, the evaluation datasetX
is obtained by physically checking and simulating points for each
scenario; specifically, 100K points for causalitySwitch, and 1M
points for ballRun, longChain and teapotAdventure. These
points are drawn from the quasi-random Sobol sequence [2]. How-
ever, as there is little chance to find the solution x∗ of a method
in the evaluation dataset X , the value of ρl (x∗, 0) is very likely to
be 0, since the ball B0(x∗) is very likely to be empty. To counter
this, we give a ‘thickness’ to the ball: i.e., we use a slightly modified
local robustness ϵ 7→ ρl (x∗, ϵ + η). Then, for each solution x∗, we
sample and simulate 100 points in the local neighborhood Bη (x∗)
and temporarily add them to X . In our experiments, we used a
thickness η = 0.1lϵ , with lϵ the length of a plot step (lϵ = 1/30).

REFERENCES
[1] Erwan Coumans. 2018. Bullet Physics SDK. https://github.com/bulletphysics/

bullet3. Accessed: 2018-01-01.
[2] I.M Sobol’. 1967. On the distribution of points in a cube and the approximate

evaluation of integrals. U. S. S. R. Comput. Math. and Math. Phys. 7, 4 (1967), 86–112.
https://doi.org/10.1016/0041-5553(67)90144-9

https://github.com/bulletphysics/bullet3
https://github.com/bulletphysics/bullet3
https://doi.org/10.1016/0041-5553(67)90144-9

	1 Primitives
	1.1 Simple primitives
	1.2 Constraint primitives
	1.3 Complex primitives
	1.4 Primitives used in each scenario

	2 Events
	3 Local robustness
	References

