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Abstract

We are interested in learning models of intuitive physics similar to the ones that
animals use for navigation, manipulation and planning. In addition to learning
general physical principles, however, we are also interested in learning “on the fly”,
from a few experiences, physical properties specific to new environments. We do
all this in an unsupervised manner, using a meta-learning formulation where the
goal is to predict videos containing demonstrations of physical phenomena, such
as objects moving and colliding with a complex background. We introduce the
idea of summarizing past experiences in a very compact manner, in our case using
dynamic images, and show that this can be used to solve the problem well and
efficiently. Empirically, we show via extensive experiments and ablation studies,
that our model learns to perform physical predictions that generalize well in time
and space, as well as to a variable number of interacting physical objects.

1 Introduction

Many animals possess an intuitive understanding of the physical world. They use this understanding
to accurately and rapidly predict events from sparse sensory inputs. In addition to general physical
principles, many animals also learn specific models of new environments as they experience them
over time. For example, they can explore an environment to determine which parts of it can be
navigated safely and remember this knowledge for later reuse.

Authors have looked at equipping artificial intelligences (Als) with analogous capabilities, but
focusing mostly on performing predictions from instantaneous observations of an environment, such
as a few frames in a video. However, such predictions can be successful only if observations are
combined with sufficient prior knowledge about the environment. For example, consider predicting
the motion of a bouncing ball. Unless key parameters such as the ball’s elasticity are known a priori, it
is impossible to predict the ball’s trajectory accurately. However, after observing at least one bounce,
it is possible to infer some of the parameters and eventually perform much better predictions.

In this paper, we are interested in learning intuitive physics in an entirely unsupervised manner, by
passively watching videos. We consider situations in which objects interact with scenarios that can
only be partially inferred from their appearance, but that also contain objects whose parameters
cannot be confidently predicted from appearance alone. Then, we consider learning a system that can
observe a few physical experiments to infer such parameters, and then use this knowledge to perform
better predictions in the future.

Our model has four key goals. First, it must learn without the use of any external or ad-hoc supervision.
We achieve this by training our model from raw videos, using video prediction error as a loss.

Second, our model must be able to extract information about a new scenario by observing a few
experiments collapsed as dynamic images. We describe this as the inner learning problem in a
meta-learning formulation. Then, we propose a simple but extremely efficient representation of the
experiments. In this manner, in the outer learning problem, we can very efficiently learn to predict the
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Figure 1: Overview of our method. ¥ (bottom right block) acts as a meta-learning module. It takes
as input past experiments compressed into dynamic images alongside with the median image and
learn to optimise m and a to minimise the final loss. 7 (top-left yellow block) extracts states Xo.r,

which are carried forward with the auto-regressive predictor ®. Finally g renders frame I, from x;.

required physical parameters, much more so than approaching the problem with a standard recurrent
neural network.

Third, our model must learn “proper” physics. Since there is no explicit/external supervision, our
approach learns an implicit representation of physics, such a fact cannot be verified directly. Instead,
we look at three key properties to support this hypothesis. First, we show that the model can simulate
very long sequences, suggesting that the prediction logic is temporally invariant. Second, we show
that the model can extend to scenarios much larger than the ones used for training, indicating that
the logic is also spatially invariant. Third, we show that the model can generalize to several moving
objects, suggesting that predictions are local. Locality and time-space invariance are of course three
key properties of physical laws and thus we should expect any good intuitive model of physics to
possess them.

In order to support these claims, we conduct extensive experiments in simulated scenarios, including
testing the ability of the model to cope with challenging visual scenarios.

2 Related work

A first natural way to represent physics is to manually encode every object parameter and physical
property (mass, velocity, positions, efc.) and use supervision to make predictions. This has been
widely used to represent physics and propagate it [39} 40,13 (7,27, 132]]. If models like [39}40] also
estimate environment parameters, these works rely on a physic engine that assumes strong priors
about the scenario, while our approach does not require such constraint.

Inspired by the recent successes of Convolutional Neural Networks (CNNs [21]]) and their application
to implicit representation of dynamics [29, 28} 18, 15]], others [38, [11} 119} 14] have tried to base their
approaches on visual inputs. They learn from several frames of a scene to regress the next physical
state of a system. In general these approaches try to learn an implicit representation of physics [[11}[38]]
as a tensor state from recurrent deep networks.

In most cases, models are supervised using ground-truth information about key physical parameters
(positions, velocities, density, etc.) during training. While these approaches require an expensive
annotation of data, other works have tried to learn from unsupervised data as well. Authors have
successfully learned unsupervised models either through active manipulation [2,9}13], using the laws
of physics [34]], using dynamic clues and invariances [16} 36] or features extracted from unsupervised
methods [12,[10]. Perhaps most related to our approach is the work of Wang et al. [37], where the



model is learnt using future image prediction on a simple synthetic task and then transferred to real
world scenarios. They also demonstrate long-term dynamic predictions.

In other works, models are taught to answer simple qualitative questions about a physical setup,
such as: the stability of stacks of objects [4} 23|24} [17], the likelihood of a scenario [30], the forces
acting behind a scene [41} 26] or properties of objects through manipulation [2, 9]]. Other papers
compromise between qualitative and quantitative predictions and focus on plausibility 3522, [25].

We differ from previous works by: the complete unsupervised nature of our system, the fact that
the model can develop its own internal representation that factors moving objects and background
obstacles, the ability to learn on-the-fly parameters of each scenario via experience, the overall
scalability of the architecture, and the ability to generalize well in space/time and number of moving
objects.

3 Method

We now describe our model (see also fig. [T, starting by formalizing the input and output data and
then describing the system’s components.

A scenario S is a physical environment that supports moving objects interacting with it. In this paper,
we take as scenarios 2.1D environments containing obstacles and we consider rolling balls as moving
objects. Hence, interactions are in the form of bounces. Formally, a scenario is defined over a lattice
Q={0,...,H -1} x{0,...,W — 1} and is specified by a list of obstacles S = {(0;,b;), j =
1,...,K}. Here O; C Q is the shape of an obstacle and b; € {B, A, U} is a flag that tells whether
the ball bounces against it (B), passes above it (A), or passes under it (U). Obstacles do not overlap.

Arunisatuple R = (S,y) associating a scenario S with a trajectory y = (y; € Q,t=0,...,7—1)
for the ball (this is trivially extended to multiple balls). Scenarios and runs are sensed visually. The
symbol I(S) : Q — R3**W denotes the image generated by observing a scenario (with no ball)
and I;(R) = I(S, y;) is the image generated by observing the ball at time ¢ in a run. The symbol
I(R) = (1;(R),t =0,...,T — 1) denotes the collection of all frames in a run, which can be thought
of as a video.

We are interested in learning intuitive physics with no explicit supervision on the objects’ trajectory,
nor an explicit encoding of the laws of mechanics that govern the motion of the objects and their inter-
actions and collisions with the environment. Hence, we cast this problem as predicting the video I(R)
of the trajectory of the objects given only a few initial frames Ip.7, (R) = (In(R), ..., I,-1(R)),
where Ty < T'.

We are of course not the first to consider a similar learning problem, although several prior works
do require some form of external supervision, which we do not use. Here, however, we consider
an additional key challenge, i.e. that the images Io.1, (R) do not contain sufficient information to
successfully predict the long-term objects’ motion. This is because these few frames tell us nothing
about the nature of the obstacles in the scenario. In fact, under the assumptions that obstacles of type
B, A and U have similar or even the same appearance, it is not possible to predict whether the ball
will collide, move above, or move under any such obstacle. This situation is representative of an
agent that needs to operate in a new complex environment and must learn more about it before it can
do so reliably.

Thus, we consider a modification of the setup described above in which the model can experience
each new scenario for a while, by observing the motion of the ball, before making its own predictions.
Formally, an experience is a collection of N runs £ = (R, ..., Ry) all relative to the same scenario
S with each a different trajectory y;. By observing such examples, the model must determine the
nature of the obstacles and then use this information to correctly predict the motion of the ball in the
future. We cast this as the problem of learning a mapping

o : (Iopy (R), I(€)) — I(R), (D

where I(£) = (I(R1),...,I(Ry)) are the videos corresponding to the runs in the experience. We
will call R the prediction run to distinguish it from the experience runs £.



3.1 A meta-learning perspective

The setup we have described above can be naturally described as meta-learning. Namely, eq. (I)) can
be thought of as incorporating a “local” learning rule M that maps the experience £ to a scenario-
specific predictor ® on the fly: ®(-) = ®(-,I(£)) = MII(E)]. Hence M must extract from the
experience as much information as possible about the underlying scenario and transfer it to the

scenario-specific predictor ®. In order to learn M, we consider meta-samples of the type (S, R, €)
comprising a scenario S, a prediction run R and N experience runs £. Given a dataset D of such
meta-samples, meta-learning searches for the mapping M that minimizes the error on the prediction
runs:

M = arguin ﬁ S UIR), dom(R), &= MI(E). @)
(S,R,E)ED

3.2 Compressed dynamic experiences

Concretely, we parameterised the scenario-specific predictor ci)(, w, m) using parameters w, which
is fixed and scenario-independent, and m, which is scenario-specific. The latter is extracted by a
network m = ¥, (I(£)) from the experience videos I(£). Since we expect m to provide information
about the nature of the obstacles in the scenario, we let m € RY*Z*W pe a tensor with the same
spatial resolution as the scenario and interpret it as an “obstacle mask™.

Given that the function W, takes as input a number of video sequences, it is natural to implement it as
a recurrent neural network; however, recurrent networks are expensive and difficult to train, especially
in a meta-learning context. Instead, we propose to construct ¥, based on a compact representation of
the experience which leads to a much more efficient design.

For this, we use the concept of dynamic image [6l], which encodes a video as a weighted average

of its frames: f1(Io,...,Ir_1) = ZtT;()l o I; with oy = ZiT;tl % Since the dynamic
image is only sensitive to changes in the video, we complement it by computing also the median
image f2(Xo, ..., Ipr_1) = median,—o__ 7—1 I, and combine the two functions f; and f; in a single
representation f by stacking the respective outputs along the channel dimension. With this design,

we can rewrite the map W as follows:

m =V, (I(€)) = mgcpo}c;l\@l(f(I(R,z)))- 3)

Here the map Wy : ROXH*W _y RIXHXW \which can be implemented as a standard CNN, takes as
input the dynamic/median image and produces as output the obstacle mask m. The pooling operator

summarizes the information extracted from multiple runs into a single mask m.

5

We also consider a second similar map Wy : ROXHXW _y ROXHXW {4 extract an “appearance’

tensor a. The latter helps the generator to render obstacles above or underneath the moving ob-
jects as needed. The response of this function is also max-pooled over runs, but channel-wise:
[pOOIk:I,A..,N apleou = [ak(c)]cvu where k(c) = argmaxyp—j N > ou (TR

In practice, Uy and W5 are implemented as a single neural network ¥ : R6XH*W _y RU+C)xHxW

where W is the first output channel and \ilg the others.

Optional obstacle mask supervision. In the experiments, we show that the map U can be learned
automatically without any external supervision. We contrast this with supervising U, with an oracle
rendition of the obstacle map. To this end, we define the tensor my for a scenario S to be the
indicator mask of whether a pixel contains a solid obstacles (including the perimetral walls) and then
minimize the auxiliary loss £(mg, U1 (I(£))) = [[me — U1 (I(E)) .

3.3 Auto-regressive predictor

The predictor ® is designed as an RNN that takes as input Ty past states X¢— 7.t = (X¢—Tps - - -y Xt—1)
and outputs a new state x,. Each state variable is in turn a distributed representation of the physical
state of the system, in the form of a “heatmap” x; € R¥*W  Considering Tj past states allows the
model to auto-regressively represent the dynamics of the system if so learning chooses to do.



Figure 2: Dataset samples. Pairs of sample data from left to right: R2, C, C+T.

The predictor also takes as input the scenario representation m given by eq. (3). The first T}, state
variables are initialized from observations Iy.7, (R) via an initialization function 7 : R3*#*W _,
RHE>*W We thus have

x0:1, = [N(T:(R))]i=0:1 (initialization) 4)
x; = D(x¢_730:6, M) (auto-regressive prediction) (®)]

In short, this model estimates recursively the evolution of the system dynamics from the visual
observations of the first Tj; samples.

Conditional generator. Variable x; contains information about the state of the moving objects
(balls). This is then converted into a prediction of the corresponding video frame, combining also the

appearance tensor a and the median of the first 7y images in the sequence I= medians—o,... 7, —1 1.
This is formulated as a conditional generator network I; = g(xy, a, I).

Video reconstruction loss. Next, we discuss the nature of the loss (2). Owing also to the static
background, the conditional video generation task is relatively simple provided that the dynamics are
estimated correctly. As a consequence, the generated videos are likely to closely approximate the
ground truth ones, so the loss function ¢ in (2) does not require to be complex. In our experiments,
we combine the L? image loss with the perceptual loss of [18]). The latter is obtained by passing the
ground-truth and predicted images through the first few layers of a pre-trained deep neural network e,
VGG-16 [33]] in our case, and then comparing the resulting encodings in L? distance. The overall
loss is then given by ¢(I;,1;) = A1||T: — L||* + Aplle(I:) — e(I:)||* (details in the sup. mat.). The
perceptual loss is robust to small shifts in the image reconstructions that may arise from imperfect
physics predictions and favors reconstructing a sharp image; by comparison, the L? loss alone would
result in blurrier images by regressing to the mean. In practice, trading-off the L? and perceptual
losses results in qualitatively better images as well as in better trajectory prediction.

State space integrity. An issue with the recursion (3) is that the state x; may, in the long run,
falls outside the space of meaningful states, leading to a catastrophic failure of the simulation. This
is especially true for simulations longer than the ones used for training the model. In order to
encourage the recursion to maintain the integrity of the state over time, we add a self-consistency
loss [|x; — n(I:(R))||*>. Here the network 7 is the same that is used to extract the state space from
the initial frames of the video sequence in (@) which weights are fixed. In practice, we find that our
learned recursion can maintain the integrity of the state nearly indefinitely.

4 Experimental setup

Data. A scenario S is generated by sampling a certain number of obstacles of different types m;
and shapes O; (either rectangular or custom), placing them at random locations and orientations
on a 2D board. We consider boards with either two rectangular obstacles (denoted R2), a random
number from 3 to 4 rectangular obstacles (R4) or two curved shapes (C). Scenarios are rendered
by painting the background and a wall around it. Then, all obstacle are painted in a solid colour,
randomly picked from a fixed palette to ensure sufficient contrast. The background is also painted in
solid color (general case) or by using a texture image (only curved shapes, denoted C+T). Crucially,
there is no correlation between an obstacle’s type and its shape, location and color, so its type cannot
be inferred by appearance alone. Runs R are generated by placing one or more dynamic objects
(“balls”) with a random initial location and a random momentum oriented towards the obstacles,
simulating the 2.1D physics, and rendering the balls as circles with constant (pink) color.



For each scenario S, we sample NV + 1 runs, using the first as a prediction run and the others as
experience runs, forming triplets (S, R, £). Unless otherwise stated, we set N = 7 and let each run
evolve for 60 frames (experiment run’s length is kept fixed to 60 frames throughout this work). For
training, samples (S, R, £) are drawn in an on-line fashion and are thus unlimited. For testing, we
use a fixed set of 200 samples. We generate boards of size 64 x 64 and 128 x 128, but use the latter
only for testing purposes to evaluate generalization. Otherwise explicitely mentionned the board size
is assumed to be 64 x 64.

Evaluation metrics. We report the video prediction error as average Lo image loss. In order to
assess the ability of the method to predict good trajectories, we note that blobs tend to emerge in the
heatmaps x; in correspondence of the tracked objects. Hence, we handcrafted a simple blob detector
h(x;) that detects the blobs contained in the heatmaps x; (see sup. mat.). We then report the number
of detected blobs vs the actual number of moving objects and, for each, the distance in pixel space of
the predicted blob center and ground-truth object center, averaged over the different scenarios. For
each experiment we report mean and standard deviation across all sampled scenarios.

Baselines. We compare with two baselines. The first is a version of the Interaction Networks [3l],
trained with perfect knowledge of the object locations, background and object generation. The
baseline works directly on the object positions and regresses object positions. The ground truth
obstacle map is given as input and transformed into a vector thanks to a pre-trained VGG-16
architecture. Our second baseline amounts to running the ground-truth physics simulator after
removing the obstacles from the board (and thus results in perfect predictions for trajectories that do
not hit solid obstacles).

Implementation details. Networks ® and 7 share very similar auto-encoder type architecture, the
network U uses a U-Net-like architecture [31]. As stated in [37]] intuitively ¥ would better preserve
appearance while the structure of ® would loose some appearance structure and put an inductive
bias on dynamic predictions. g is a fully-convolutional 6-layers stack. Our implementation uses
TensorFlow 1.9[1]] and the Adam optimizer([20] with learning rate 10~* and Xavier initialization [15].
We used a batch size of 10 samples (S, R, £). Models are first trained for 110,000 using only the L?
and self-consistency losses for eq. (2), and then optionally fine-tuning for further 1,000 iterations
using the perceptual loss as well. For the C+T scenarios, we first train the model using flat colour R2
scenarios and then fine-tune for 55,000 iterations using the textured data. Unless otherwise specified,
models are trained in a fully unsupervised fashion. Full details can be found in the sup. mat.

5 Results

Full system. Table[[|rows 1-4 report the prediction accuracy of our system on the 200 simulated
test sequences using one moving object. In the table, we distinguish three durations: T = 4 is the
number of frames to bootstrap the prediction of a test runs, Ty, = 20 is the length of prediction
runs observed during meta-training and Tiesy = kTiqin is the length of the runs observed during
meta-testing, where k = 1, 3, 5. We test both 64 x 64 boards (which is the same size used for training)
and larger 128 x 128 boards to test spatial generalization. We also compare training using the L? or
the L2+perceptual loss for video prediction supervision. We report the number of detected objects
(which should be 1 in this experiment), the video prediction error, and the position prediction error.

We find that switching from the L? to the L?+perceptual loss for training (rows 1 vs 3 and 2 vs 4)
increases the L, video prediction error (as might be expected) but reduces significantly the trajectory
prediction error . We also find that generalization through time is excellent: prediction errors
accumulate over time (as it is unavoidable), but the recursion evolves without collapsing well beyond
Tirain (qualitatively we found that the recursion can be applied indefinitely). This should be contrasted
with prior work on intuitive physics [[14] where recursion was found to be unstable in the long term.

Spatial generalization to larger boards (rows 2,4,6) is also satisfactory if the perceptual loss is used.
However, we did notice the emergence of a few artifacts in this case (see video in sup. mat.).

In rows 5-6 we use external supervision to train the obstacle map predictor as suggested in section [3.2]
(the rest of the system is still unsupervised). Supervision improves the trajectory prediction accuracy
for boards of the same size as the ones seen in training. However, generalization to larger boards is
poorer, suggesting that explicit supervision causes the model to overfit somewhat.



Table 1: Predicting one moving object. Obst. is the obstacle type (R2, R4, C). The test board size
can be either 64 x 64 (same as in training) or 128 x 128 and we consider using either no supervision
or obstacle supervision. We test the average prediction error at Tisy = 20, 60, 100 well above the
duration Ti,;, = 20 observed during training. Position errors were normalized by the board size
diagonal. Video errors were normalized to board size 642 where larger. L? loss on positions is used
for (14)-(15).

Trest = Ttrain = 20 Trest = 3X Tirain Trest = 5X Tirain

Test Train

No. Obst. Sup. brd. size  loss

#o0bj. Vid. Lo  Pos.err. #o0bj. Vid. Lo Pos.err. #o0bj. Vid. Lo Pos.err.

(1) R2 None 642 L?  1.04£02 25426 .036+.096 03405 4.6+33 .404+241 0.14£03 47433 5264180
(2) R2 None 1282 L? 07404 1.7+13 .179+236 0.1403 1.741.1 484428 0.0+0.1 17411 .5314.209
(3) R2 None 642  Percep. 1.0+£02 25429 .0284.073 1.0+02 53440 .145+.148 1.0+02 55440 .286+.168
(4) R2 None 1282 Percep. 0.9+04 17414 .104+.170 1.04£04 20414 2274179 1.0+04 2.0+14 3204172

(5) R2 Obst. 642 Percep. 1.0+0.1 3.0433 .018+.023 1.0+02 5.74+44 .112+.086 1.0+£03 5.8+42 .231+.141
(6) R2 Obst. 1282 Percep. 8.3+33 24+19 .323+.064 26.5+64 5.6+40 .355+.054 25.846.3 5.8+4.1 .363+.133

(@] C None 642 Percep. 1.0+0.1 29435 .040+.086 1.1+03 5.4+4.1 .175+£.160 1.0+£03 5.4+4.0 .265+.155
®) C None 1282 Percep. 0.9+04 1.7+14 .104+.170 1.0+04 2.0+14 .227+.179 1.0+£04 5.6+4.6 .320+.172
) C  Obst 642 Percep. 1.0+0.1 29431 .0244+.072 1.0+0.1 5.74+42 .128+.114 1.0+£02 5.5+4.1 .247+.141

(10) C+T None 642 Percep. 1.0+0.1 3.4429 .017+.044 1.0£02 6.14£34 .094+£.076 1.0+02 62429 .222+.147
(11) C+T None 1282 Percep. 1.0+£0.1 .675+£.685 .0124+.033 1.0+£02 1.4+.814 .057+£.065 0.9+03 1.4+.750 .121+.088

Ablation : removing the median and dynamic images, repsectively (see text)
(12) R2 None 642 Percep. 1.0+03 4.0+4.0 .074+.115 0.8405 5.1+4.0 .302+.202 0.6+0.5 5.0+£3.8 .357+.212
(13) R2 None 642 Percep. 1.4406 32434 .0544.062 1.8+08 55442 .268+.151 1.7408 5.6+4.2 .3264.136

Baselines: Interaction Network (14-16) and Ground Truth Simulator minus Obstacles (16-17)

(14) R2 Full 1282 L2 Pos. - - .038+.027 - - .1664.088 - - 331+.152
(15 C Full 1282 L2 Pos. - - .038+.031 - - 171£.095 - - 3494203
(16) R2 - 642 - - - .060+.099 - - 2294224 - - 2244209
an ¢ - 642 - - - 1055+.099 - - 2194217 - - 2324228

Rows 7-11 show results for more complex shapes (C) and appearances (C+T). Prediction accuracy is
only slightly worse than with the simpler obstacles (e.g. rows 3 vs 7 or 9 vs 10).

We report two ablation experiments, suppressing respectively the median image (row 12) and
dynamic image (row 13) in the feature extractor f summarizing the experiences. We notice a sensible
deterioration of performance compared to row 3, suggesting that both components are important.

Comparison Compared to the fully-supervised IN (rows 14-15), our unsupervised method is highly
competitive, especially for longer simulation times (rows 4,8). The method also outperforms (except
for very long simulations where drift prevails) the ground-truth simulator that ignores the obstacles
(rows 16,17).

The importance of experience. We investigate how much information the model extracts from the
experiences &£ by ablating the number of runs NV in it. For the special case N = 0, since there are no
runs, we generate an pseudo experience run by copying the first frame Io(R) of the prediction run R.

Table 2: Importance of experience. For the unsupervised model, we report the trajectory prediction
error at T' = 40 (rows 1-3) and the obstacle mask Lo prediction error (rows 4-6) for different obstacle
types. The number of runs N in the experiences is varied from O to 50. For the obstacle mask
prediction error, we also report the trivial baseline |72y — Muion||2 (see text). Position errors were
normalized by the board size (64?) diagonal. T, = 20.

No Err. Obst. Oracle N =0 1 2 5 7 10 20 50

(1) Pos. R2 — A462+.136  .1444.157 .108+.136 .083+.128 .077+.120 .071+.114 .070+.116 .070+.104
(2) Pos. R4 — S502+.151  .1894.169 .158+.164 .1224.155 .110+.149 .1144.130 .110+.154 .114+.152
(3) Pos. C — A459+.124 1614172 .125+.158  .099+.139  .099+.146 .099+.144 .101+.144 .106+.143

(4) Obs. R2 1324111 24.6+164 103495 7.6+84 42454  38+47  35+33  3.6+35  3.8437
(6) Obs. R4 1684133 23.6+151 14.1£109 115499 7.7480 74473 73472  74+72 84483
(5) Obs. C 94489 2784158 10.1482 7.0470 54456 53452 51452 57456 60459




Table 3: Predicting the obstacles: supervision vs no supervision. The table reports the obstacle
mask prediction error (Ls) for a network trained with or without supervision for the obstacles (see
text). The last column shows a multi-ball predictor operated with 3 balls in each run. Ti,;, = 20.

Supervision R2 R4 C C+T R2 (3 balls)

Obstacle 2.7+44 6.3+78 3.5+49 2.6439  2.6+39
None 3.9+47 74473 53452 4.0+52 3.9435

In table 2] we report the trajectory prediction accuracy for different obstacle types (row 1-3). We
also test the ability to predict the obstacle mask myg (defined in section E[) Since the model is
unsupervised, the learned mask 1 will not in general be an exact match of mg (e.g. the mask range
is arbitrary); hence, after fixing all the parameters in the model, we train a simple regression network
that maps m to my and report the prediction accuracy of the latter on the test set (see sup. mat. for
details). As a point of comparison, we also report the error |1, — Tqj1.0n||2 Of the trivial baseline
that predict a mask m,,, where all objects are highlighted, regardless of their flag.

We note that there is a very large improvement when we move from zero to one experience runs, and
a smaller but non-negligible improvement until N = 10. Furthermore, comparing the results with
predicting 1., shows that the system can tell from the experiences which obstacles are solid and
which are not.

7 N
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Figure 3: Qualitative results. We show time lapse images for the trajectory predicted for the ball
colliding with obstacles of type U (permeable; left) and B (solid; right). We test three variants of
the model: (1) the model supervised with ground-truth obstacle masks, (2) the unsupervised model
and (3) the model after suppressing the dynamic image that summarizes the experience (ablation).
Qualitatively, (1,2) produce plausible predictions but (3) does not.

Supervised obstacle regression. Table 3| compares our unsupervised method to using full obstacle
map supervision in order to predict the obstacle map 1 from the experiences £. For the unsupervised
system, the obstacle map is estimated as explained in the paragraph above. As expected, supervised
learning achieves a lower error, but the unsupervised method is still much better than the trivial
baseline of table 2]

Multiple moving objects. We also test whether the system trained with a single moving object can
generalize to multiple ones. In table A.2 (see sup. mat.) we show that the network can simulate the
motion properly until balls collide, after which they merge (see videos in the sup. mat.). This indicates
that, just as physical laws, the rules learned by the model are local. We also train a model (scenario
R2) showing it from 1 to 3 balls in each run. This model is able not only to correctly handle ball
collisions, but is also able to generalize correctly to several more objects on the board. Furthermore,
as shown in table[3] this model still predicts correctly the obstacle masks from experiences, despite
the act that the latter are much more crowded.

6 Conclusions

We have demonstrated a system that can learn an intuitive model of physics in an unsupervised
manner. Differently from most prior works, our system is also able to learn on-the-fly and very
efficiently some physical parameters of new scenarios from a few experiences. Prediction results are
strong, competitive with fully-supervised models, and predictors generalize well over time space, and
an arbitrary number of moving objects. Our next challenge is to apply the system to more difficult
scenarios, including non-frontal views of the physical worlds. For this, we plan to learn a function to
summarize past experiences in a more general manner than the dynamic image could.
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