
Learning a Neural 3D Texture Space from 2D Exemplars

Philipp Henzler1

p.henzler@cs.ucl.ac.uk

Niloy J. Mitra1,2

n.mitra@cs.ucl.ac.uk

Tobias Ritschel1

t.ritschel@ucl.ac.uk

1University College London 2Adobe Research

Abstract

We propose a generative model of 2D and 3D natural
textures with diversity, visual fidelity and at high computa-
tional efficiency. This is enabled by a family of methods that
extend ideas from classic stochastic procedural texturing
(Perlin noise) to learned, deep, non-linearities. The key idea
is a hard-coded, tunable and differentiable step that feeds
multiple transformed random 2D or 3D fields into an MLP
that can be sampled over infinite domains. Our model en-
codes all exemplars from a diverse set of textures without
a need to be re-trained for each exemplar. Applications in-
clude texture interpolation, and learning 3D textures from 2D
exemplars. Project website: https://geometry.cs.
ucl.ac.uk/projects/2020/neuraltexture.

1. Introduction

Textures are stochastic variations of attributes over 2D
or 3D space with applications in both image understanding
and synthesis. This paper suggests a generative model of
natural textures. Previous texture models either capture a
single exemplar (e. g., wood) alone or address non-stochastic
(stationary) variation of appearance across space: Which
location on a chair should have a wood color? Which should
be cloth? Which metal? Our work combines these two
complementary views.

Requirements We design the family of methods with sev-
eral requirements in mind: completeness, generativeness,
compactness, interpolation, infinite domains, diversity, infi-
nite zoom, and high speed.

A space of textures is complete, if every natural texture
has a compact code z in that embedding. To be generative,
every texture code should map to a useful texture. This
is important for intuitive design where a user manipulates
the texture code and expects the outcome to be a texture.
Compactness is achieved if codes are low-dimensional. We
also demand the method to provide interpolation: texture

Casual 2D capture

InterpolaƟon

Space of 
textures

3D texturing

Texture exemplar set

Figure 1. Our approach allows casually-captured 2D textures (blue)
to be mapped to latent texture codes and support interpolation
(blue-to-red), projection, or synthesis of volumetric textures.

generated at coordinates between z1 and z2 should also be
valid. This is important for design or when storing texture
codes into a (low-resolution) 2D image, 3D volume or at
mesh vertices with the desire to interpolate. The first four
points are typical for generative modelling; achieving them
jointly while meeting more texture-specific requirements
(stochasticity, efficiency) is our key contribution.

First, we want to support infinite domains: Holding the
texture code e fixed, we want to be able to query this texture
so that a patch around any position x has the statistics of
the exemplar. This is important for querying textures in
graphics applications for extended virtual worlds, i. e., grass
on a football field where it extends the size of the texture.

Second, for visual fidelity, the statistics under which tex-
tures are similar to the exemplar. The Gram matrix of VGG
activations is one established metric for this similarity [5].

Third, infinite zoom means each texture should have vari-
ations on a wide range of scales and not be limited to any
fixed resolution that can be held in memory. This is required
to zoom into details of geometry and appreciate the fine vari-
ation such as wood grains, etc. In practice, we are limited by

https://geometry.cs.ucl.ac.uk/projects/2020/neuraltexture
https://geometry.cs.ucl.ac.uk/projects/2020/neuraltexture


the frequency content of the exemplars we train on, but the
method should not impose any limitations across scales.

Fourth and finally, our aim is computational efficiency:
the texture needs to be queryable without requiring pro-
hibitive amounts of memory or time, in any dimension. Ide-
ally, it would be constant in both and parallel. This rules
out simple convolutional neural networks, that do not scale
favorable in memory consumption to 3D.

2. Previous Work
Capturing the variations of nature using stochastic on

many scales has a long history [14]. Making noise useful
for graphics and vision is due to Perlin’s 1995 work [17].
Here, textures are generated by computing noise at different
frequencies and mixing it with linear weights. A key benefit
is that this noise can be evaluated in 2D as well as in 3D
making it popular for many graphics applications.

Computer vision typically had looked into generating tex-
tures from exemplars, such as by non-parametric sampling
[4], vector quantization [25], optimization [12] or nearest-
neighbor field synthesis (PatchMatch [2]) with applications
in in-painting and also (3D) graphics. Typically, achieving
spatial and temporal coherence as well as scalability to fine
spatial details remains a challenge. Such classic methods
cater to the requirements of human texture perception as
stated by Julesz [9]: a texture is an image full of features
that in some representation have the same statistics.

The next level of quality was achieved when representa-
tions became learned, such as the internal activations of the
VGG network [22]. Neural style transfer [5] looked into the
statistics of those features, in particular, their Gram matrices.
By optimizing over pixel values, these approaches could
produce images with the desired texture properties. If these
properties are conditioned on existing image structures, the
process is referred to as style transfer. VGG was also used for
optimization-based multi-scale texture synthesis [20]. Such
methods require optimizations for each individual exemplar.

Ulyanov et al. [23] and Johnson et al. [8] have proposed
networks that directly produce the texture without optimiza-
tion. While now a network generated the texture, it was still
limited to one exemplar, and no diversity was demonstrated.
However, noise at different resolutions [17] is input to these
methods, also an inspiration to our work. Follow up work
[24] has addressed exactly this difficulty by introducing an
explicit diversity term i. e., asking all results in a batch to
be different. Unfortunately, this frequently introduces mid-
frequency oscillations of brightness that appear admissible
to VGG instead of producing true diversity. In our work,
we achieve diversity, by restricting the networks input to
stochastic values only, i. e., diversity-by-construction

A certain confusion can be noted around the term “tex-
ture”. In the human vision [9] and computer vision litera-
ture [4, 6], it exclusively refers to stochastic variation. In

computer graphics, e. g., OpenGL, “texture” can model both
stochastic and non-stochastic variation of color. For example,
Visual Object Networks [29] generate a voxel representation
of shape and diffuse albedo and refer to the localized color
appearance, e. g., wheels of a car are dark, the rim are silver,
etc., as “texture”. Similar, Oechsle et al. [16] and Saito et al.
[19] use an implicit function to model this variation of ap-
pearance in details beyond voxel resolution. Our comparison
will show, how methods tackling space of non-stochastic
texture variation [16, 29], unfortunately are not suitable to
model stochastic appearance. Our work is progress towards
learning spaces of stochastic and non-stochastic textures.

Some work has used adversarial training to capture the
essence of textures [21, 3], including the non-stationary case
[28] or even inside a single image [21]. In particular Style-
GAN [10] generates images with details by transforming
noise in adversarial training. We avoid the challenges of
adversarial training but train a NN to match VGG statistics.

Aittala et al. [1] have extended Gatsy et al.’s 2015 [5]
approach to not only generate color, but also ensembles of
2D BRDF model parameter maps from single 2D exemplars.
Our approach is compatible with this approach, for example
to generate 3D bump, specular, etc. maps, but from 2D input.

At any rate, none of the texture works in graphics or
vision [17, 5, 23, 4, 2, 26, 27] generate a space of textures,
such as we suggest here, but all work on a single texture
while the ones that work on a space of exemplars [29, 16]
do not create stochastic textures. Our work closes this gap,
by creating a space of stochastic textures.

The graphics community, however, has looked into gener-
ating spaces of textures [15], which we here revisit from a
deep learning perspective. Their method deforms all pairs of
exemplars to each other and constructs a graph with edges
that are valid for interpolation when there is evidence that
the warping succeeded. To blend between them, histogram
adjustments are made. Consequently, interpolation between
exemplars is not a straight path from one another, but a traver-
sal along valid observations. Similarly, our method could
also construct valid paths in the latent space interpolation.

Finally, all these methods require to learn the texture
in the same space it will be used, while our approach can
operate in any dimension and across dimensions, including
the important case of generating procedural 3D solid textures
from 2D observations [11] or slices [18] only.

Summary The state of the art is depicted in Tbl. 1. Rows
list different methods while columns address different as-
pects of each method. A method is “Diverse” if more than a
single exemplar can be produced. MLP [16] is not diverse as
the absolute position allows overfitting. We denote a method
to have “Detail” if it can produce features on all scales. CNN
does not have details, as, in particular in 3D, it needs to repre-
sent the entire domain in memory, while MLPs and ours are

2



Table 1. Comparison of texture synthesis methods. Please see text
for re�ned de�nition of the rows and columns.

Method D
iv

er
se

D
et

ai
ls

S
pe

ed

3D Q
ua

lit
y

S
pa

ce

2D
-t

o-
3D

� Perlin perlin X X X X 5 5 5
� Perlin + transformperlinT X X X X 5 5 5
� CNN cnn 5 5 5 5 X 5 5
� CNN + diversity cnnD X 5 5 5 5 5 5
� MLP mlp 5 5 X X 5 5 X
� Ours + position oursP 5 X X X 5 X X
� Ours - transform oursNoT 5 5 X X X X X
� Ours ours X X X X X X X

point operations. “Speed” refers to computational ef�ciency.
Due to high bandwidth and lacking data parallelism, a CNN,
in particular in 3D, is less ef�cient than ours. This prevents
application to “3D”. “Quality” refers to visual �delity, a sub-
jective property. CNN, MLP and ours achieve this, but Perlin
is too simple a model. CNN with diversity [24] have decent
quality, but a step back from [23]. Our approach creates a
“Space” of a class of textures, while all others only work with
single exemplars. Finally, our approach allows to learn from
a single 2D observation i. e., 2D-to-3D. MLP [16] also learn
from 2D images, but have multiple images of one exemplar,
and pixels are labeled with depth.

3. Overview

Our approach has two steps. The �rst embeds the ex-
emplar into a latent space using anencoder. The second
providessamplingat any position by reading noise �elds at
that position and combining them using a learned mapping
to match the exemplar statistics. We now detail both steps.

Figure 2. Overview of our approach as explained in Sec. 3.

Encoder The encoderg maps a 2D texture exemplar image
y to a latent texture codez = g(y ). We use a convolutional
neural network to encode the high number of exemplar pixels
into a compact latent texture codez.

Sampler Samplings(x jz) of a texture with codez at indi-
vidual 2D or 3D positionsx has two steps: atranslatorand
adecoder, which are both described next.

Decoder Our key idea is to prevent the decoderf (nje)
to access the positionx and to use a vector of noise val-
uesn instead. Eachni = noise (T i 2i � 1xj� i ) is read at
different linear transformationsT i 2i � 1x of that positionx
from random �elds with different seeds� i . The random �eld
noise (x j� i ) is implemented as an in�nite, single-channel
2D or 3D function that has the same random value for all
continuous coordinatesx in each integer lattice cell for one
seed� i . The factors of2i � 1 initialize the decoder to behave
similar to Perlins's octaves for identityT i . Applying T i 2i � 1

to x is similar to Spatial Transformer Networks [7]. (Fig. 3).

Figure 3. Noise �eld for different octaves and transformationsT.

These noise values are combined with the extended tex-
ture codee in a learned way. It is the task of the translator,
explained next, to control, given the exemplar, how noise is
transformed and to generate an extended texture code.

Figure 4. Translator.

Translator The trans-
lator h(z) = f e; Tg
maps the texture codez
to a tuple of parameters
required by the decoder:
the vector of transfor-
mation matricesT and
an extended texture code
vectore. The matrices
T are used to transform
the coordinates before reading the noise as explained be-
fore. The extended texture parameter codee is less compact
than the texture codez, but allows the sampler to execute
more effectively, i. e., do not repeat computations required
for differentx as they are redundant for the samez.

See Fig. 4 where for example two2 � 2 transformation
matrices with 8 DOF are parameterized by three parameters.

Training For training, the encoder is fed with a random
128� 128patchPe of a random exemplary , followed by
the sampler evaluating a regular grid of128� 128points
x in random 2D slices of the target domain to produce a
“slice” imagePs (Fig. 5). The seed� is held constant per
train step, as one lattice cell will map to multiple pixels,
and the decoderf relies on these being consistent. During

3


