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General Problem

Compositional Generation
Most component-wise image generation techniques assume independence between

individual objects. We overcome this limitation by proposing a model which learns
interactions between objects in images

Generation Results
RELATE represents a scene component-wise. Below are renderings of the latent
vectors of generated images from all experimentation datasets
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As measured by FID (lower is better), RELATE outperforms SOTA object-centric
. models in image generation. Its performance is also on par with monolithic GAN

baselines such as DRAGAN while generating images with higher (128x128) resolution
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RealTraffic
monolithic DCGAN [2] 361.8 P47.8 197.6 47.6
alentspaces 1 prAGAN [3] 84.4 108.0 57.2 38.8
" |GENESIS [4] 169.4 151.3 233.0 167.1
OCF [5] 83.1 N/A N/A N/A
Our MethOd object-centric | BlockGAN2D [1] 53.3 78.1 99.3 57.9
latent spaces
We start from a 2D version of BlockGAN [1] where individual scene components — RELATE (ours) 36.4 62.9 95.7 42.0
background and foreground objects - are represented by appearance z, and
pairs of appearance and pose vectors (Z;, éi), respectively. Each appearance -
vector is converted to a tensor by a module W. We augment the model with a
relationship module I' that adjusts the independently sampled 6; to enhance physical

plausibility of the scene. The structured scene tensor W is finally transformed by the

RELATE is also amenable to scene editing. The model allows to edit a scene’s
generator network G to produce an image

background or an object’s appearance or position. The car examples also exemplify
how the change of the background also affects the rendering of the shadows

. Ablation
Original  Ch. Background Change one object Original | Move one object J Our module [ captures the relation between objects and background (top) and
other objects (bottom), e.g. by constraining positions or resolving object intersections
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~ T RELATE allows for immediate generalization to fewer or more objects by simply adding over space and time and the discriminator D operates on the sequence level
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video results.




