

General Problem

Most component-wise image generation techniques assume **independence** between individual objects. We overcome this limitation by proposing a model which learns interactions between objects in images.

Our Method

We start from a 2D version of BlockGAN [1] where individual scene components background and foreground objects – are represented by appearance z_0 and pairs of appearance and pose vectors $(z_i, \hat{\theta}_i)$, respectively. Each appearance vector is converted to a tensor by a module Ψ . We augment the model with a relationship module Γ that adjusts the independently sampled $\hat{\theta}_i$ to enhance physical plausibility of the scene. The structured scene tensor W is finally transformed by the generator network G to produce an image.

RELATE: Physically Plausible Multi-Object Scene Synthesis Using Structured Latent Spaces

Sébastien Ehrhardt, Oliver Groth, Áron Monszpart, Martin Engelcke, Ingmar Posner, Niloy J. Mitra, Andrea Vedaldi

Scene Editing

RELATE is also amenable to scene editing. The model allows to edit a scene's **background** or an object's **appearance or position**. The car examples also exemplify how the change of the background also affects the rendering of the shadows.

RELATE allows for immediate generalization to **fewer or more objects** by simply *adding* or removing components in latent space. Γ ensures global spatial consistency.

[1] Thu et al, BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images, NeurIPS 2020. [2] Radford et. al, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016. [3] Kodali et. al, On Convergence and Stability of Gans. arXiv:1705.07215 2017.

[4] Engelcke et. al, Genesis: Generative Scene Inference and Sampling with Object-Centric Latent Representations. ICLR 2016. [5] Anciukevicius et. al, Object-Centric Image Generation with Factored Depths, Locations, and Appearances. arXiv:2004.00642 2020.

lat

obj

RELATE can be extended to generate video sequences. In this case, Γ models **relations** over space and time and the discriminator D operates on the sequence level.

UNIVERSITY OF OXFORD

Generation Results

As measured by **FID (lower is better)**, RELATE **outperforms SOTA object-centric** models in image generation. Its performance is also on par with monolithic GAN **baselines** such as DRAGAN while generating images with higher (128x128) resolution.

		CLEVR5-vbg	CLEVR	ShapeStacks	RealTraffic
monolithic ent spaces	DCGAN [2]	361.8	247.8	197.6	47.6
	DRAGAN [3]	84.4	108.0	57.2	38.8
	GENESIS [4]	169.4	151.3	233.0	167.1
	OCF [5]	83.1	N/A	N/A	N/A
ject-centric ent spaces	BlockGAN2D [1]	53.3	78.1	99.3	57.9
	RELATE (ours)	36.4	62.9	95.7	42.0

Ablation

Our module Γ captures the relation between objects and background (top) and other objects (bottom), e.g. by constraining positions or resolving object intersections.

Temporal Extension

Please visit our project page to find our datasets, source code, pre-trained models and video results.

