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Timetable
Niloy Iasonas Paul Nils Leonidas

Introduction 9:00 X

Neural Network Basics ~9:15 X

Supervised Learning in CG ~9:50 X

Unsupervised Learning in CG ~10:20 X

Learning on Unstructured Data ~10:55 X

Learning for Simulation/Animation ~11:35 X

Discussion 12:05 X X X X X



Unsupervised Learning

There is no direct ground truth for the quantity of interest

Focus on generative models:
• Variational Autoencoders (VAEs)
• Normalizing Flows
• Autoregressive Models (slides only)
• Generative Adversarial Networks (GANs)



Generative Models

• Assumption: the dataset are samples from an unknown distribution
• Goal: create a new sample from                  that is not in the dataset

?
Dataset Generated

…

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.



Generative Models

• Assumption: the dataset are samples from an unknown distribution
• Goal: create a new sample from                  that is not in the dataset

…
Dataset Generated

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.



Generative Models

Generative model
with parameters

Which model?

… …

How do we measure the similarity of             and                 ?

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.



Generative Models

How do we measure the similarity of             and                 ?

1) Likelihood of data
samples in 

2) Adversarial game

Variational Autoencoders (VAEs)

Normalizing Flows

Autoregressive Models

Generative Adversarial 
Networks (GANs)



Generative Models

How do we measure the similarity of             and                 ?

Image Credit: How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?, Ferenc Huszár

1) Likelihood of data
samples in 

2) Adversarial game



1) Sample from the generative model

Likelihood-Based Models: Two Goals
2) Evaluate the likelihood of a 

given sample in the model

Generative model
with parameters

Generative model
with parameters

Sample?
Evaluate?

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.



The Feature Space

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov

Data distribution in 2D feature space (colors are class labels)

Encoder

Features
(Latent variables)

Decoder



Autoencoders as Generative Models?

• Is a trained decoder a generative model?
• Can we generate a new sample               ?Decoder = Generator?

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov

ra
nd

om

random samplessample grid

data distribution
In feature space

We do not know the distribution          
in feature space

Sample?
Evaluate?



Latent Variable Model

data distribution
In feature space

• Define          as a known distribution
Generator with
parameters

sa
m

pl
e

Evaluate?
Sample?



Latent Variable Model

data distribution
In feature space

• Train generator with NLL of data as loss

• Can we compute the likelihood             ?

Generator with
parameters

sa
m

pl
e

(Negative log-likelihood)

Evaluate?
Sample?



Latent Variable Model

data distribution
In feature space

• Train generator with NLL of data as loss

• Can we compute the likelihood             ?

Generator with
parameters

sa
m

pl
e

(Negative log-likelihood)

Evaluate?
Sample?



Latent Variable Model: Monte-Carlo

…
…

…

• Can we compute the likelihood             ?

• Monte-Carlo integration to solve integral for 
each data sample

• Very expensive, or very inaccurate (depending 
on sample count)

Generator with
parameters

with non-zero

sa
m

pl
e

(Negative log-likelihood)

Evaluate?
Sample?



Variational Autoencoders (VAEs):
The Encoder

• During training, another network can learn to 
approximate the distribution

• should be much smaller than 
• Makes the computing the integral tractable

sa
m

pl
e 

fr
om

Encoder with
parameters 

Generator with
parameters

• Instead of integrating over all         ,
integrate over                   only

• A single random sample from                   per 
iteration is usually enough

Evaluate?

Loss: NLL of data

Sample?



Variational Autoencoders (VAEs):
Regularization

• The network can choose                  freely
• But it is regularized it to approximate 
• Neg. loss is a lower bound for the data’s 

likelihood in the generated distribution

sa
m

pl
e 

fr
om

Encoder with
parameters 

NLL of data as loss

Generator with
parameters

Evaluate?
Sample?



Generating Data
sa

m
pl

e

Generator with
parameters

sa
m

pl
e

VAE

Image Credit: Auto-Encoding Variational Bayes, Kingma and Welling

Autoencoder



Generating Data
ra

nd
om

Generator with
parameters

sa
m

pl
e

VAE Autoencoder



Feature Space of Autoencoders vs. VAEs
Autoencoder VAE

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov



Positives
• Creates a feature space
• Relatively stable to train

Negatives
• Likelihood evaluation can only be approximated
• Projection of sample into feature space can only be approximated
• Regularization makes the results a bit blurry

Summary: Variational Autoencoders (VAEs)



Normalizing Flows

Image Credit: DENSITY ESTIMATION USING REAL NVP:, Dinh et al.

Generator with
parameters

(known)

Variational Autoencoders (VAEs):

Evaluate?
Sample?



Normalizing Flows

Image Credit: DENSITY ESTIMATION USING REAL NVP:, Dinh et al.

Generator with
parameters

(known)

… times the local density 
change caused by 

Normalizing Flows:

Evaluate?
Sample?



Normalizing Flows: Chaining

… times the local density change 
caused by the chain of transformations

Evaluate?
Sample?



Invertible functions:
• Linear (1x1 conv) layer with weight matrix parameterized by its LU 

decomposition
• Affine coupling layer to propagate information between pixels

Example: Glow

Training: 40 GPUs, 2 weeks

Image Credit: Glow: Generative Flow with Invertible 1x1 Convolutions, Kingma and Dhariwal



Two flows: One to create the distribution of shape feature vectors, one for 
the distribution of points on a shape

Example: PointFlow

Image Credit: PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows, Yang et al.

Shape generation flow

Free shape generation Shape interpolation



Positives
• Creates a feature space
• Exact projection to feature space
• Exact likelihood evaluation

Negatives
• Only a limited set of functions (invertible and Jacobian easy to compute)
• Currently takes longer and needs more parameters than GANs for same 

quality

Summary: Normalizing Flows



• Create output step-by-step
• Each step depends on the output of all previous steps

Autoregressive Models

Video Credit: YouTube user karwan kalary, Bob Ross Time Lapse






• Create output step-by-step
• Each step depends on the output of all previous steps

Autoregressive Models

Video Credit: YouTube user karwan kalary, Bob Ross Time Lapse

Chain rule of probability:



Autoregressive Models

Video Credit: YouTube user karwan kalary, Bob Ross Time Lapse

Generator with
parameters

sam
ple

Generator with
parameters

…
…

• In each step, the model outputs
a low-dimensional prob. distribution
(e.g. over intensity values for one pixel)

Evaluate?
Sample?



Autoregressive Models

Image Credit: YouTube user karwan kalary, Bob Ross Time Lapse

Generator with
parameters

evaluate

Generator with
parameters

…
…

• In each step, the model outputs
a low-dimensional prob. distribution
(e.g. over intensity values for one pixel)

Evaluate?
Sample?



Example: PixelRNN and PixelCNN
• Recursive network that has an input and a state (LSTM)
• Only recent steps are used as input, the state summarizes older steps



Example: Graph Generation

Conditional Image Generation with PixelCNN Decoders, Oord et al.
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models, You et al.
Learning Deep Generative Models of Graphs , Li et al.

GraphRNN Learning Deep Generative Models of Graphs

Image Credit:

Training Set

GraphRNN

Baseline

Training Set

New model

Baseline



Positives
• Flexible output length
• Exact likelihood evaluation

Negatives
• No feature space
• Sequential generation (usually slow)

Summary: Autoregressive Models



Generative Models

How do we measure the similarity of             and                 ?

Image Credit: How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?, Ferenc Huszár

1) Likelihood of data
samples in 

2) Adversarial game



Generative Adversarial Networks (GANs)

Player 2: discriminator
Scores if it can distinguish
between real and fake

real/fake

from dataset

Player 1: generator
Scores if discriminator
can’t distinguish output
from real image

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.



Generative Adversarial Networks (GANs)

Player 2: discriminator
Scores if it can distinguish
between real and fake

Player 1: generator
Scores if discriminator
can’t distinguish output
from real image



Generator

z G(z)

cat credit: aleju/cat-generator

G

𝐺𝐺: generate fake samples that can fool 𝐷𝐷

slide credit: Phillip Isola & Jun-Yan Zhu



real or fake?

Discriminator

z G(z)

D
Generator

G

𝐺𝐺: generate fake samples that can fool 𝐷𝐷
𝐷𝐷: classify fake samples vs. real images

slide credit: Phillip Isola & Jun-Yan Zhu



min
𝐺𝐺

max
𝐷𝐷

𝔼𝔼𝑧𝑧,𝑥𝑥 log𝐷𝐷(𝐺𝐺 𝑧𝑧 ) + log(1 − 𝐷𝐷 𝑥𝑥 )
slide credit: Phillip Isola & Jun-Yan Zhu



fake 0.1

z G(z)

DG

min
𝐺𝐺

max
𝐷𝐷

𝔼𝔼𝑧𝑧,𝑥𝑥 log𝐷𝐷(𝐺𝐺 𝑧𝑧 ) + log(1 − 𝐷𝐷 𝑥𝑥 )
fake

slide credit: Phillip Isola & Jun-Yan Zhu



real 0.9

z G(z)

DG

D

x

fake 0.1

fake
min
𝐺𝐺

max
𝐷𝐷

𝔼𝔼𝑧𝑧,𝑥𝑥 log𝐷𝐷(𝐺𝐺 𝑧𝑧 ) + log(1 − 𝐷𝐷 𝑥𝑥 )
real

slide credit: Phillip Isola & Jun-Yan Zhu



Update G
min
𝐺𝐺

max
𝐷𝐷

𝔼𝔼𝑧𝑧,𝑥𝑥 log𝐷𝐷(𝐺𝐺 𝑧𝑧 ) + log(1 − 𝐷𝐷 𝑥𝑥 )

fake 0.3

z G(z)

DG

D

x

real 0.9

slide credit: Phillip Isola & Jun-Yan Zhu



Generated Distributions of GANs vs ML
sa

m
pl

e

:generator

discriminator

… …

sa
m

pl
e

:generator

…

GANs
VAEs or 

Norm. Flows

maximize
likelihood

Evaluate?
Sample?



Additional Tricks:
• Coarse-to-fine training
• Transformation of

to a more complex distr.
• ...

StyleGAN
content

st
yl

e

Image credit: A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al.



Positives
• Creates a feature space
• Currently highest-quality results

Negatives
• Can be unstable to train
• Not guaranteed to cover all of the data distribution
• Cannot evaluate likelihood

Summary: GANs



• More control
• Irregular data
• GAN training convergence
• Evaluating GANs

Open Problems



Conditional GAN: Pix2Pix

Image-to-image Translation with Conditional Adversarial Nets 
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros.  CVPR 2017

slide credit: Phillip Isola & Jun-Yan Zhu



real or fake?

Discriminator

z G(z)

D
Generator

G

min
𝐺𝐺

max
𝐷𝐷

𝔼𝔼𝑧𝑧,𝑥𝑥 log𝐷𝐷(𝐺𝐺 𝑧𝑧 ) + log(1 − 𝐷𝐷 𝑥𝑥 )
slide credit: Phillip Isola & Jun-Yan Zhu



real or fake?

Discriminator

x G(x)

D
Generator

G

min
𝐺𝐺

max
𝐷𝐷

𝔼𝔼𝑥𝑥,𝑦𝑦 log𝐷𝐷(𝐺𝐺 𝑥𝑥 ) + log(1 − 𝐷𝐷 𝑦𝑦 )
slide credit: Phillip Isola & Jun-Yan Zhu



Real!
Discriminator

x G(x)

D
Generator

G

min
𝐺𝐺

max
𝐷𝐷

𝔼𝔼𝑥𝑥,𝑦𝑦 log𝐷𝐷(𝐺𝐺 𝑥𝑥 ) + log(1 − 𝐷𝐷 𝑦𝑦 )
slide credit: Phillip Isola & Jun-Yan Zhu



Discriminator

x G(x)

D
Generator

G Real too!

min
𝐺𝐺

max
𝐷𝐷

𝔼𝔼𝑥𝑥,𝑦𝑦 log𝐷𝐷(𝐺𝐺 𝑥𝑥 ) + log(1 − 𝐷𝐷 𝑦𝑦 )
slide credit: Phillip Isola & Jun-Yan Zhu



min
𝐺𝐺

max
𝐷𝐷

𝔼𝔼𝑥𝑥,𝑦𝑦 log𝐷𝐷(𝑥𝑥,𝐺𝐺 𝑥𝑥 ) + log(1 − 𝐷𝐷 𝑥𝑥,𝑦𝑦 )

real or fake pair ?

x G(x)

G

D

match joint distribution p G x , y ∼ p(x, y)
fake pair real pair



Edges → Images
Input Output Input Output Input Output

Edges from [Xie & Tu, 2015]

slide credit: Phillip Isola & Jun-Yan Zhu



Sketches → Images
Input Output Input Output Input Output

Trained on Edges → Images
Data from [Eitz, Hays, Alexa, 2012]

slide credit: Phillip Isola & Jun-Yan Zhu



Decomposition into Steps: FrankenGAN

input

Slide Credit: FrankenGAN, Kelly and Guerrero et al.



Decomposition into Steps: FrankenGAN

input

1st step:
window/door

layout …8 more steps… 

Slide Credit: FrankenGAN, Kelly and Guerrero et al.






Manual Control

Slide Credit: FrankenGAN, Kelly and Guerrero et al.






Question: How does a GAN create an image? What do individual neurons do?
Insight: Neurons are specialized to create objects of specific types

GAN Dissection 

Image Credit:GAN Dissection: Visualizing and Understanding Generative Adversarial Networks, Bau et al.



• More control
• Irregular data
• GAN training convergence
• Evaluating GANs

Open Problems



Space of chairs?

GRASS

Slide Credit: GRASS: Generative Recursive Autoencoders for Shape Structures, Li et al.



Part bounding boxes and their relationships represent a shape

GRASS

Adjacency Translational
symmetry

Rotational
symmetry

Reflectional
symmetry

Slide Credit: GRASS: Generative Recursive Autoencoders for Shape Structures, Li et al.



VAE using a hierarchical encoder and decoder

GRASS Training

RvNN decoder RvNN encoder 

𝑛𝑛-D root code

𝐿𝐿 = 𝑋𝑋 − 𝑋𝑋𝑋 2

𝑋𝑋 𝑋𝑋𝑋

Slide Credit: GRASS: Generative Recursive Autoencoders for Shape Structures, Li et al.



GRASS Hierarchical Encoder

𝑓𝑓𝑠𝑠(𝑥𝑥, p)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑠𝑠(𝑥𝑥, p)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

Refl. sym.Refl. sym.
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Adjacency 
encoder

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

Slide Credit: GRASS: Generative Recursive Autoencoders for Shape Structures, Li et al.



GRASS Hierarchical Encoder

𝑓𝑓𝑠𝑠(𝑥𝑥, p)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑠𝑠(𝑥𝑥, p)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

Refl. sym.Refl. sym.
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ng

Adjacency 
encoder

𝑓𝑓𝑎𝑎(𝑥𝑥1, 𝑥𝑥2)

Root code

Slide Credit: GRASS: Generative Recursive Autoencoders for Shape Structures, Li et al.



GRASS Results

3-fold

4-fold

4-fold 5-fold

5-fold 6-fold4-fold

5-fold

interpolation

free generation

Slide Credit: GRASS: Generative Recursive Autoencoders for Shape Structures, Li et al.



• Consistent structure across the dataset

StructureNet

…

Image Credit: StructureNet: Hierarchical Graph Networks for 3D Shape Generation , Mo and Guerrero et al.



• Consistent structure across the dataset
• Richer structure

StructureNet

Image Credit: StructureNet: Hierarchical Graph Networks for 3D Shape Generation , Mo and Guerrero et al.



Hierarchical Graph Networks as Encoder and Decoder

Image Credit: StructureNet: Hierarchical Graph Networks for 3D Shape Generation , Mo and Guerrero et al.



StructureNet Results

interpolation free generation

Image Credit: StructureNet: Hierarchical Graph Networks for 3D Shape Generation , Mo and Guerrero et al.



• More control
• Irregular data
• GAN training convergence
• Evaluating GANs

Open Problems



GAN Training Convergence
GAN training can be unstable
• Generator and discriminator do now always converge (Nash equilibrium)
• Vanishing discriminator gradients
• Mode Collapse

Image Credit: Wasserstein GAN, Arjovsky et al.



Image Credit: Amortised MAP Inference for Image Super-resolution, Sønderby et al.

Roth et al. suggest an analytic convolution with a gaussian:
Stabilizing Training of Generative Adversarial Networks
through Regularization, Roth et al. 2017

Instance noise: adding noise to generated and real images Wasserstein GANs: EMD as distance between      and 

Standard

Vanishing Discriminator Gradients



Mode Collapse

after n training steps

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

only covers one or a few modes of 

Image Credit: Wasserstein GAN, Arjovsky et al.
Unrolled Generative Adversarial Networks, Metz et al.



Mode Collapse
Solution attempts:
• Minibatch comparisons:  Discriminator can compare instances in a 

minibatch (Improved Techniques for Training GANs, Salimans et al.)

• Unrolled GANs: Take k steps with the discriminator in each iteration, and 
backpropagate through all of them to update the generator

after n training steps

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Standard GAN
Unrolled GAN with k=5

after n training steps

Unrolled Generative Adversarial Networks, Metz et al.



Summary
• Autoencoders

• Can create a feature space, but bad generators
• VAEs

• Lower quality generated samples (usually blurry)
• Relatively stable to train

• Normalized Flows
• Better quality generated samples
• Invertible
• Relatively stable, but expensive to train

• GANs
• Can not find a latent representation for a given sample (no encoder)
• Usually better generators than VAEs
• Currently unstable training (active research)



Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/
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