Course Timetable

		Niloy	lasonas	Paul	Nils	Leo
Introduction	9:00	х				
Neural Network Basics	~9:15		х			
Supervised Learning in CG	~9:50	х				
Unsupervised Learning in CG	~10:20			х		
Learning on Unstructured Data	~10:55					х
Learning for Simulation/Animation	~11:35				Х	
Discussion	12:05	Х	Х	х	х	х

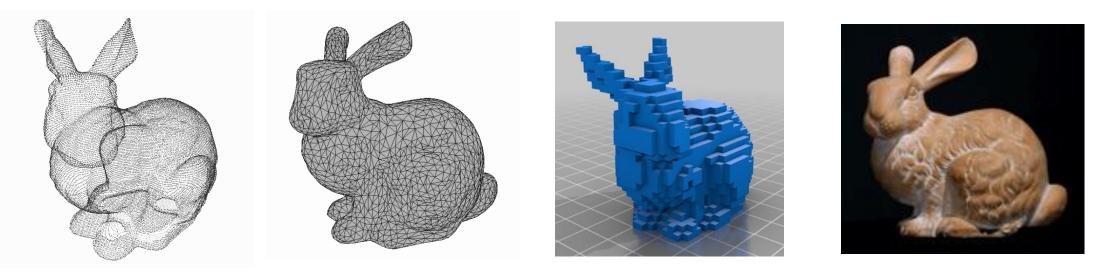
Deep Learning for Point Cloud Data **This ANGELES** • 28 JULY - 1 AUGUST

Leonidas Guibas Stanford University Facebook AI Research

Leonidas Guibas Laboratory

Geometric Computing

Multiple 3D Representations

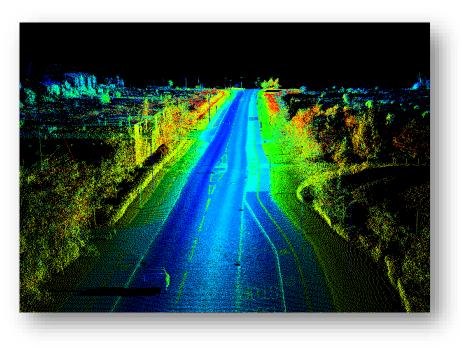


Point Cloud Surface Mesh

Volumetric

Multi-View Images RGB(D)

Point Clouds



Structure from motion (Microsoft)

Lidar point clouds (LizardTech)

Depth camera (Intel)

A Common 3D Representation: Point Cloud

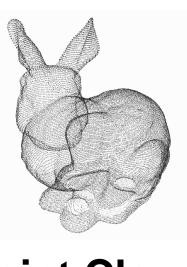
Point clouds are close to raw sensor data

Point clouds are representationally simple

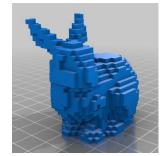
Surface Mesh

LiDAR

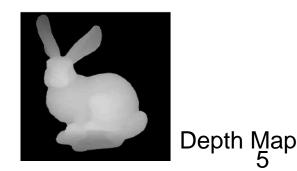
Depth Sensor



Point Cloud

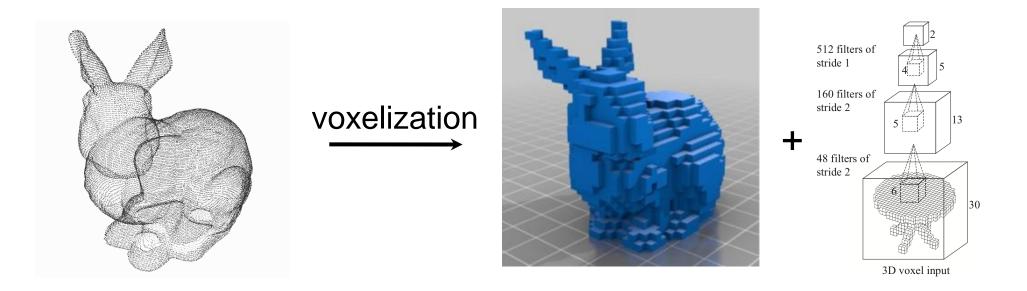


Volumetric



Early Work on 3D Learning

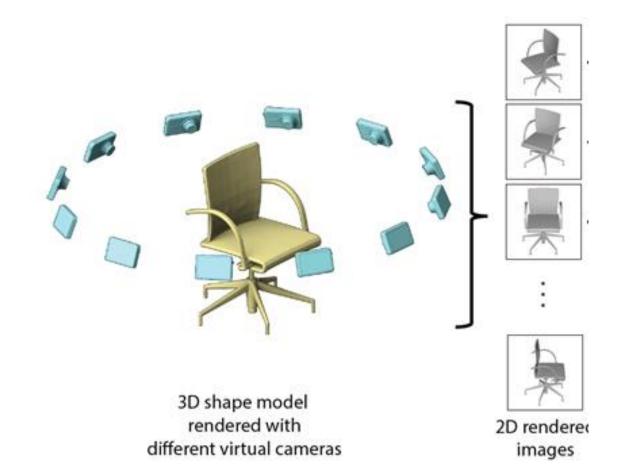
Point clouds were **converted to other regular representations** before input to a deep neural network



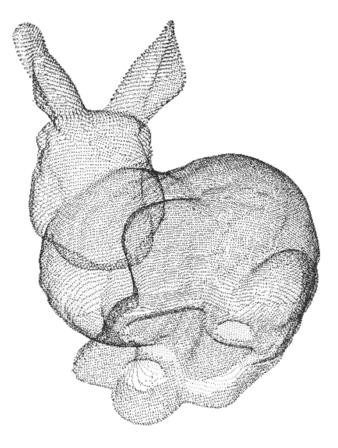
Con: High space & time complexity -- 3D convolution $O(N^3)$ Quantization errors in voxelization

Earlier Work

Point clouds were **converted to other regular representations** before input to a deep neural network



Multiview Images



Research Question:

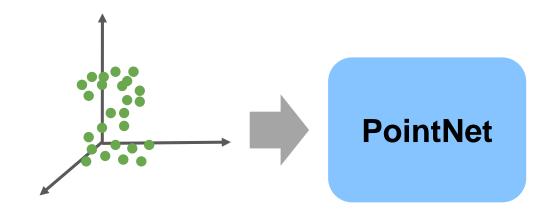
Can we achieve effective feature learning directly on irregular point clouds?

Talk Ouline

- Survey of PointNet, PointNet++ architectures (~2017)
- Since the original PointNet work, an explosion of activity in this area -- very brief survey
- Applications to outdoor and indoor object detection and navigation, point cloud synthesis

PointNet Architeture Review

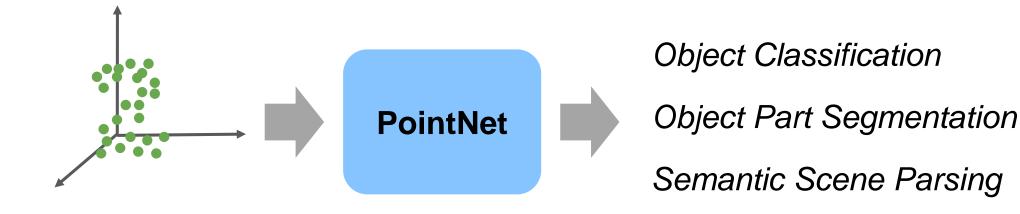
End-to-end learning for irregular point data



Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. (CVPR'17)

End-to-end learning for irregular point data

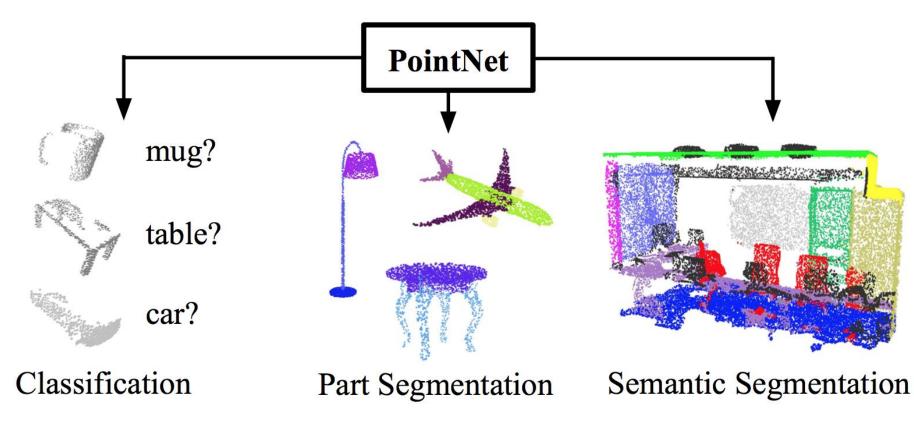
Unified framework for various tasks



. . .

End-to-end learning for irregular point data

Unified framework for various tasks



The model has to respect key properties of point clouds:

Point Permutation Invariance

Point cloud is a set of unordered points

Spatial Transformation Invariance

Point cloud rigid motions should not alter classification

results

The model has to respect key properties of point clouds:

Point Permutation Invariance

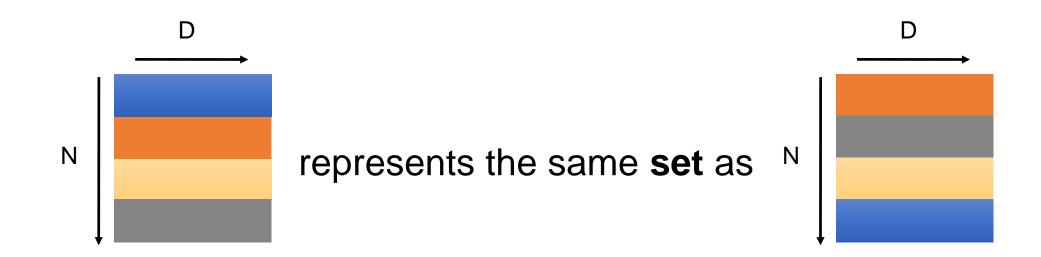
Point cloud is a set of unordered points

Spatial Transformation Invariance

Point cloud rigid motions should not alter classification

results

Point cloud: set of N unordered points, each represented by a D dim vector



Model needs to be invariant to N! permutations

Permutation Invariance: Symmetric Function

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), x_i \in \mathbb{R}^D$$

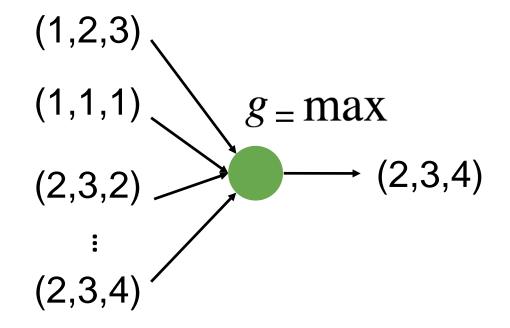
Examples:

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

How can we construct a universal family of symmetric functions by neural networks?

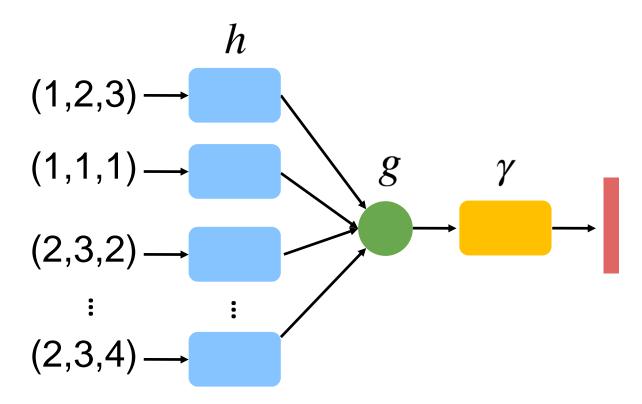
Construct Symmetric Functions by Neural Networks

Simplest form: directly aggregate all points with a symmetric operator gJust discovers simple extreme/aggregate properties of the geometry.



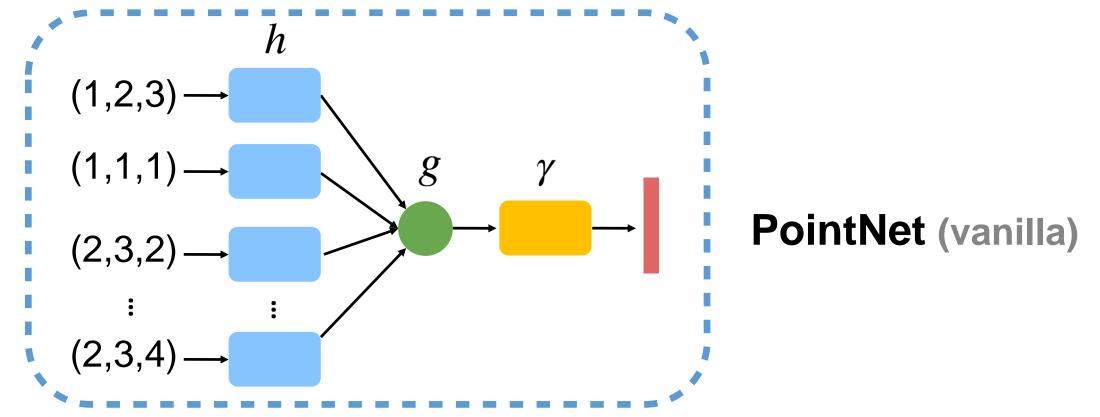
Construct Symmetric Functions by Neural Networks

Embed points to a high-dim space before aggregation. Aggregation in the (redundant) high-dim space encodes more interesting properties of the geometry.

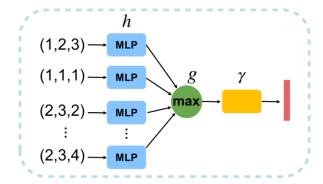


Construct Symmetric Functions by Neural Networks

$$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$$
 is symmetric if g is symmetric



Symmetric Functions: Polynomials



$$2\sum_{i\neq j} x_i x_j = (\sum_i x_i)^2 - \sum_i x_i^2 \qquad \sum_{i\neq j} (x_i - x_j)^2 = 3\sum_i x_i^2 - (\sum_i x_i)^2$$

 In fact, any symmetric polynomial in the x_i can be expressed as a polynomial in sums of the form

 $\sum x_i^k$

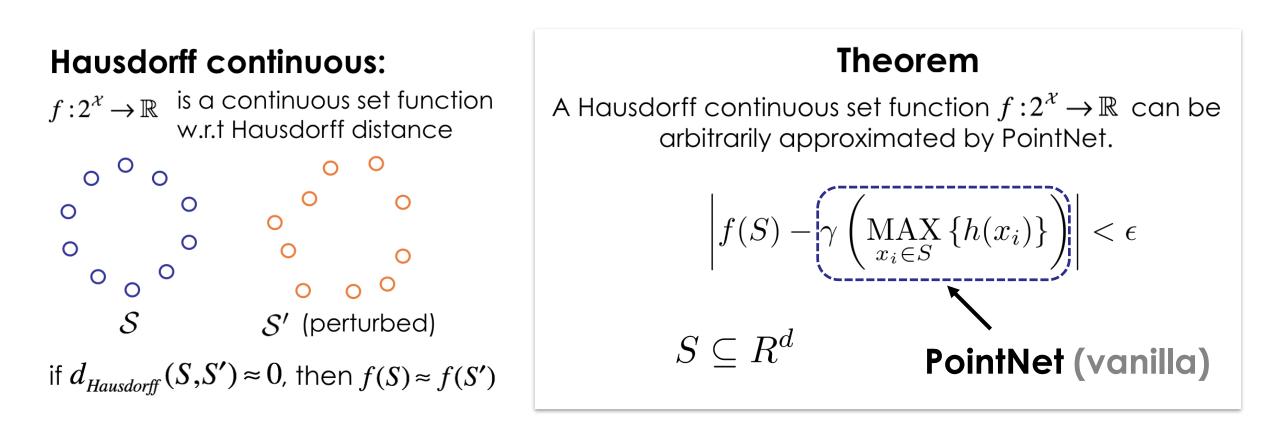
and can be computed by

$$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$$
²⁰

What Symmetric Functions Can Be Constructed By PointNet?

Symmetric functions

PointNet (vanilla)



Voxel occupancy maps

The model has to respect key properties of point clouds:

Point Permutation Invariance

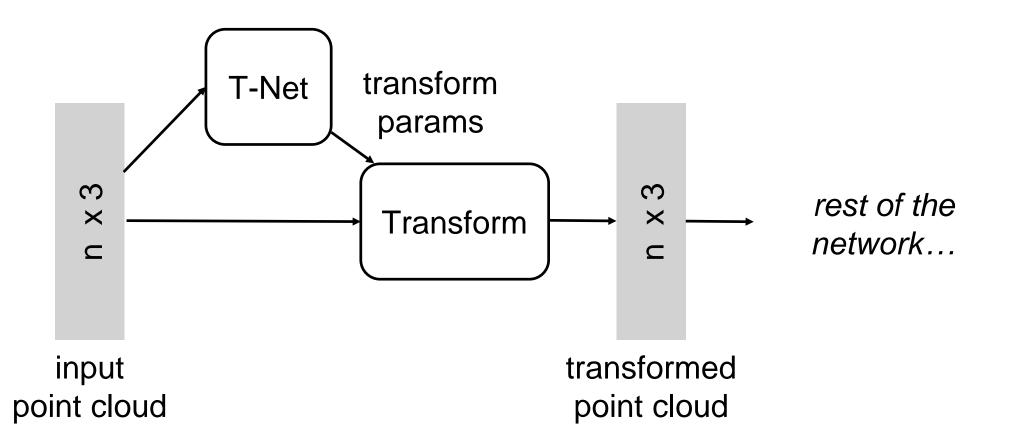
Point cloud is a set of unordered points

Transformation Invariance

Point cloud rigid motions should not alter classification results

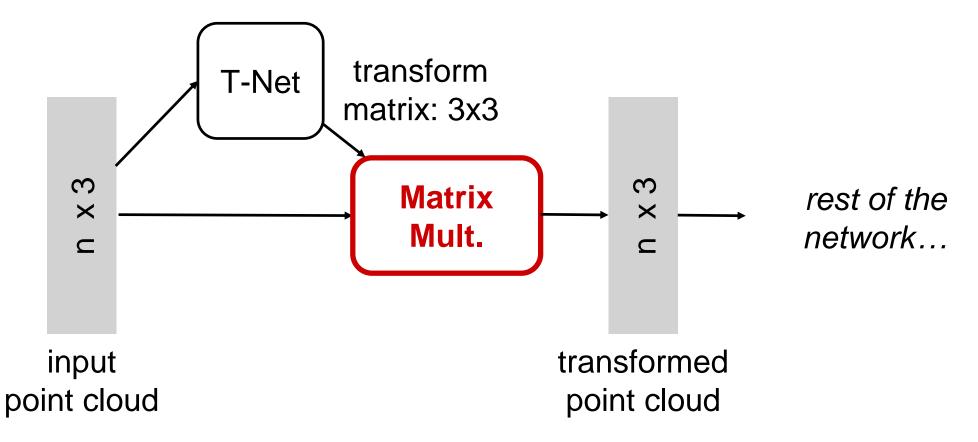
Input Alignment by Transformer Network

Idea: Data dependent transformation for automatic alignment



Input Alignment by Transformer Network

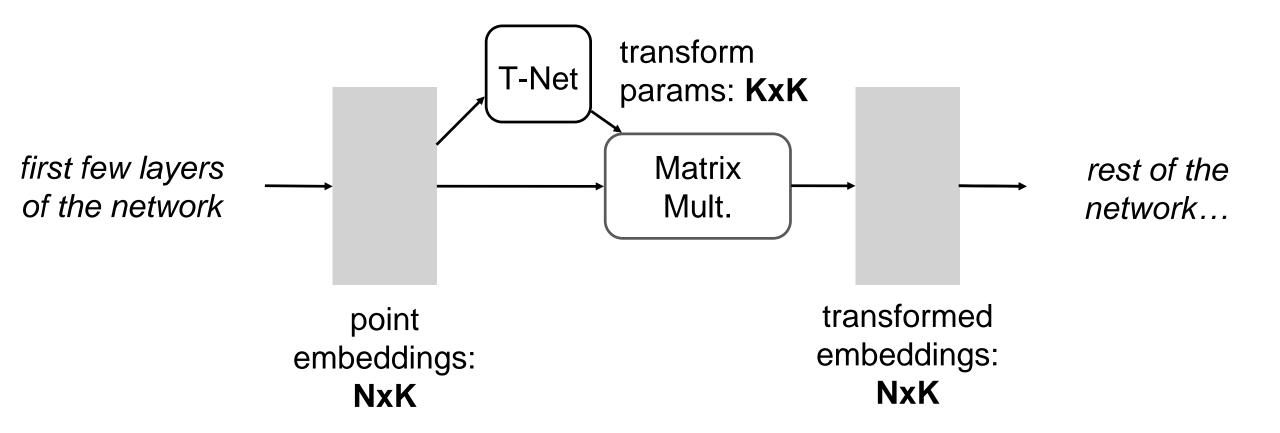
Idea: Data dependent transformation for automatic alignment The transformation is just matrix multiplication!



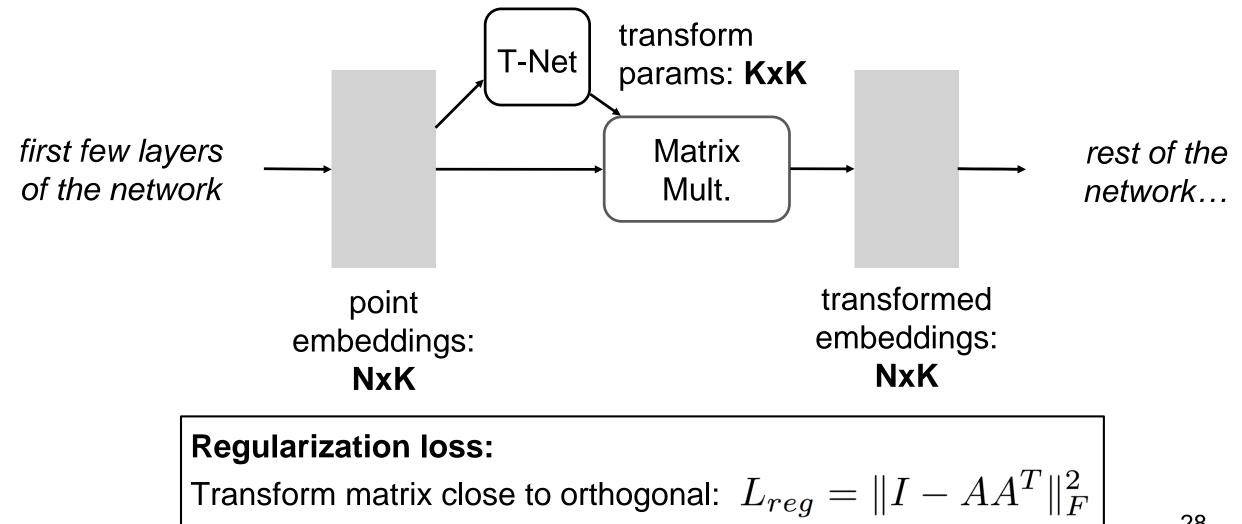
first few layers of the network

> point embeddings: **NxK**

Embedding Space Alignment

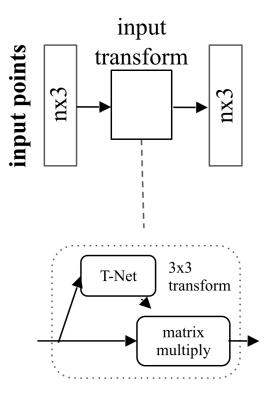


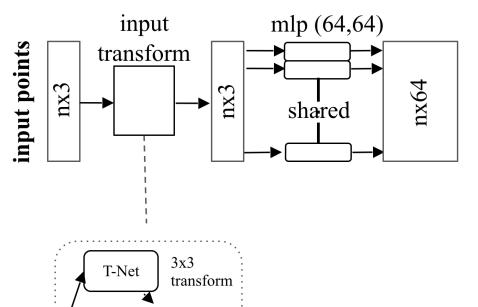
Embedding Space Alignment



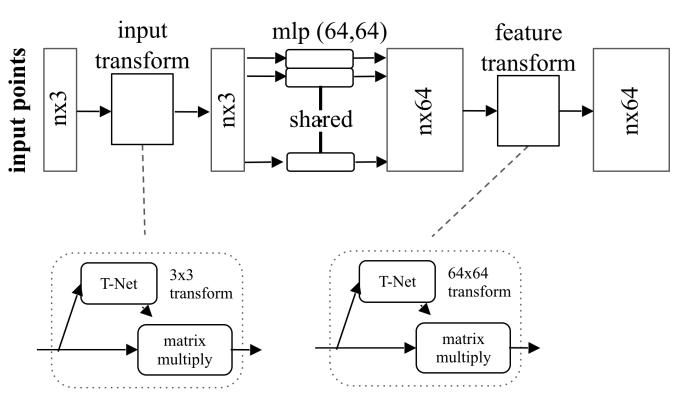
oints	
ď	
ut	
ld	

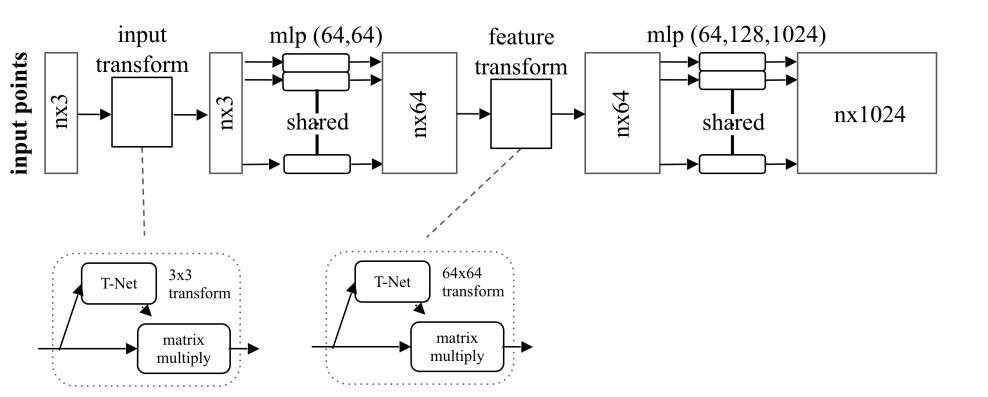
nx3

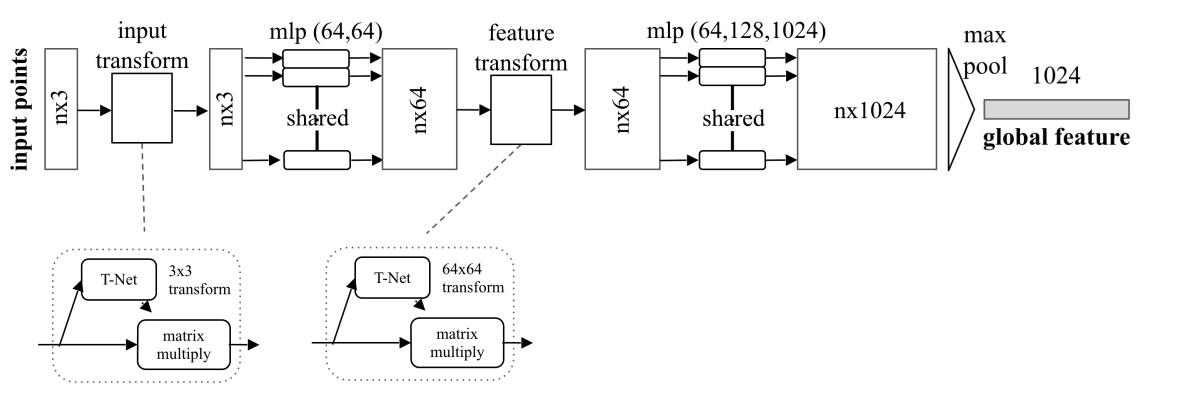


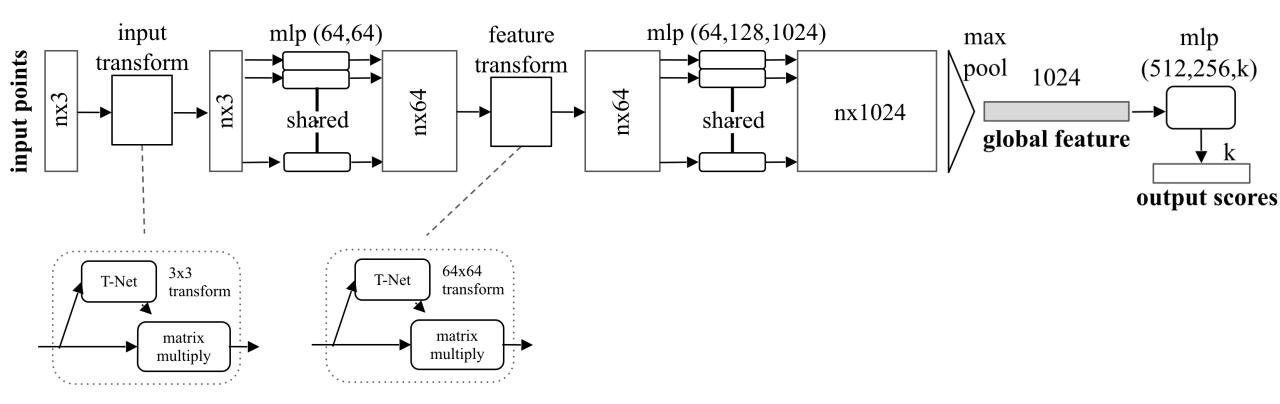


matrix multiply

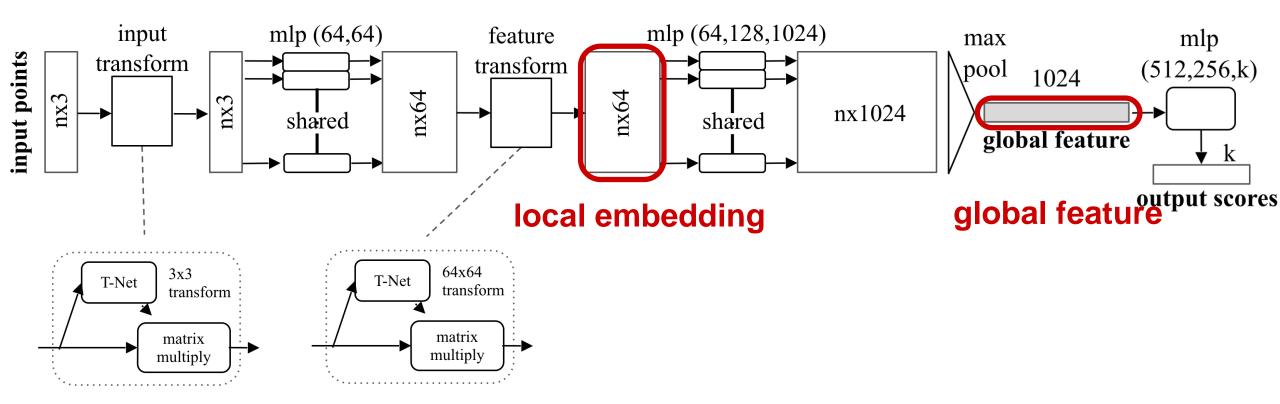




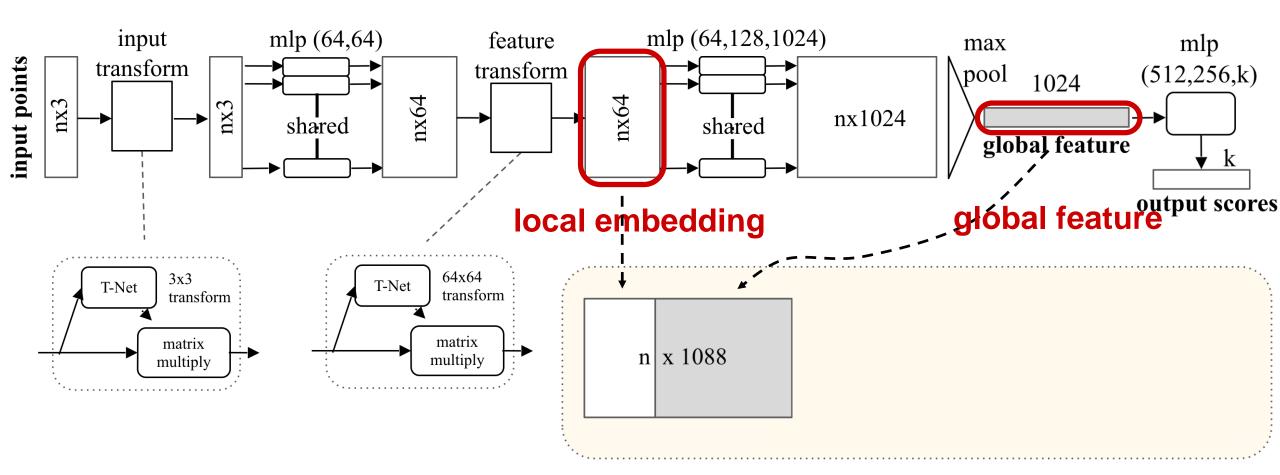




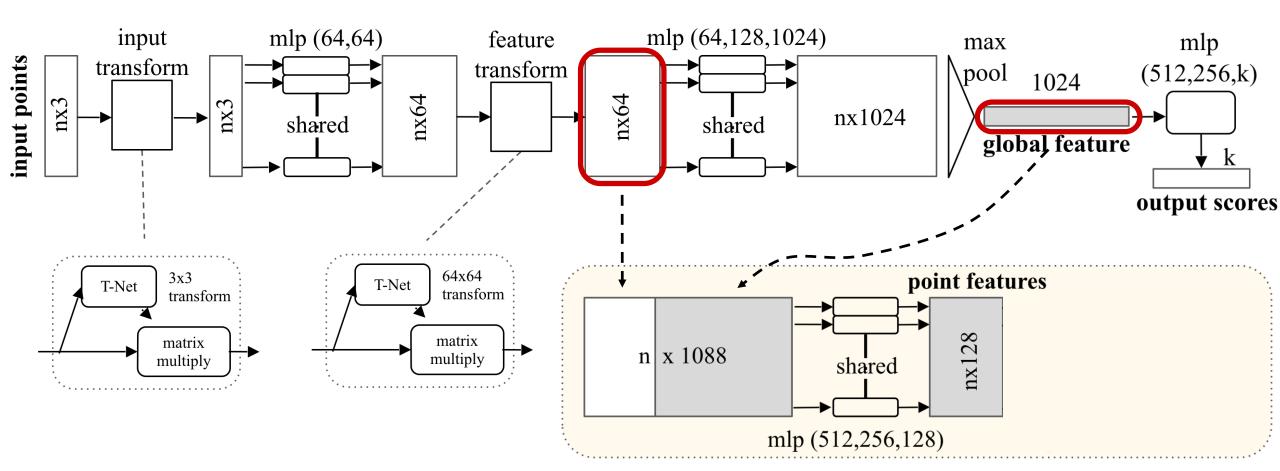
Extension to PointNet Segmentation Network



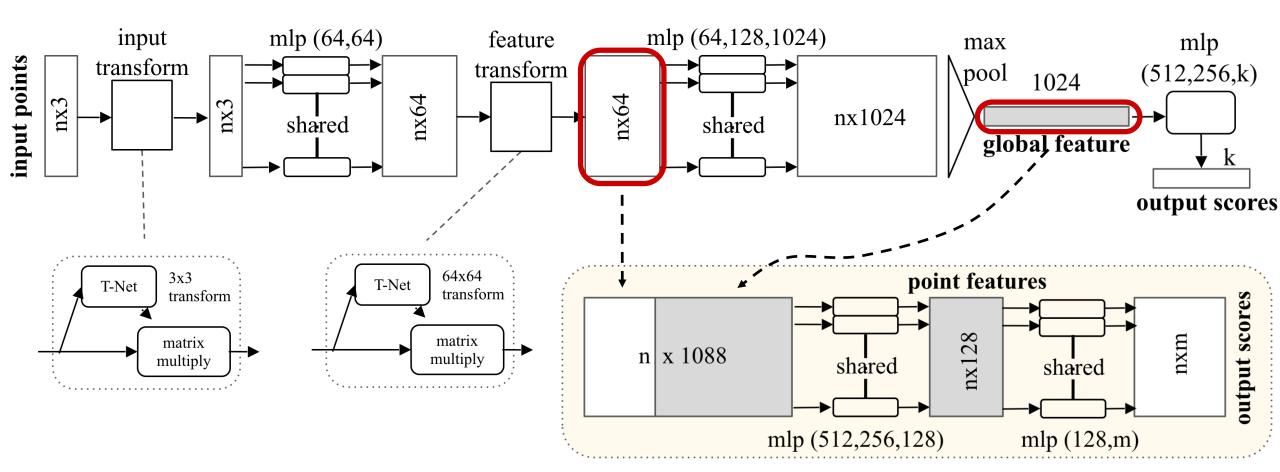
Extension to PointNet Segmentation Network



Extension to PointNet Segmentation Network



Extension to PointNet Segmentation Network



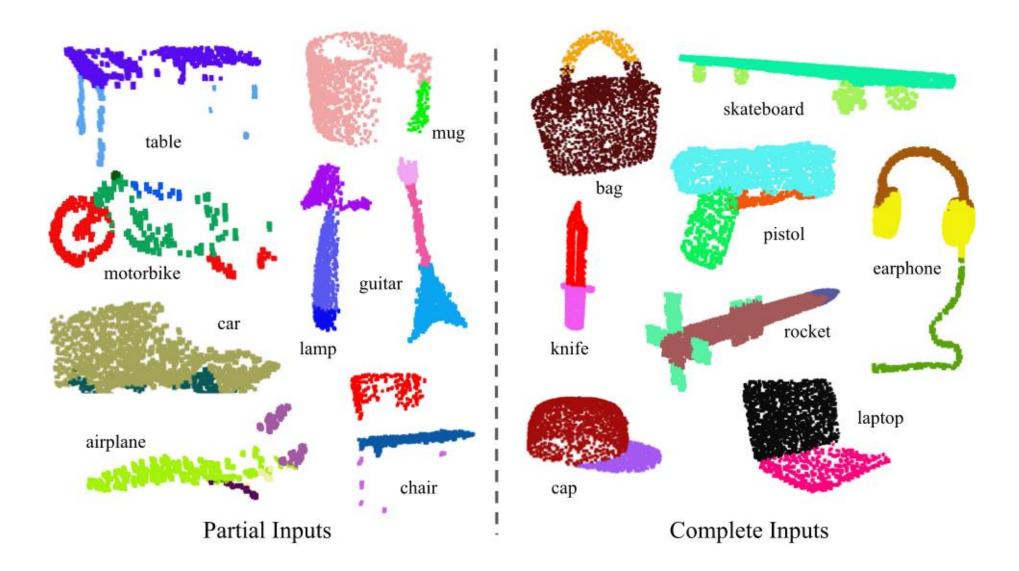
Results

Results on Object Classification

_					
		input	#views	accuracy	accuracy
				avg. class	overall
	SPH [12]	mesh	-	68.2	
_	3DShapeNets [29]	volume	1	77.3	84.7
3D CNNs	VoxNet [18]	volume	12	83.0	85.9
	Subvolume [19]	volume	20	86.0	89.2
_	LFD [29]	image	10	75.5	
	MVCNN [24]	image	80	90.1	-
-	Ours baseline	point	-	72.6	77.4
	Ours PointNet	point	1	86.2	89.2
-				•	

dataset: ModelNet40; metric: 40-class classification accuracy (%)

Results on Object Part Segmentation



Results on Object Part Segmentation

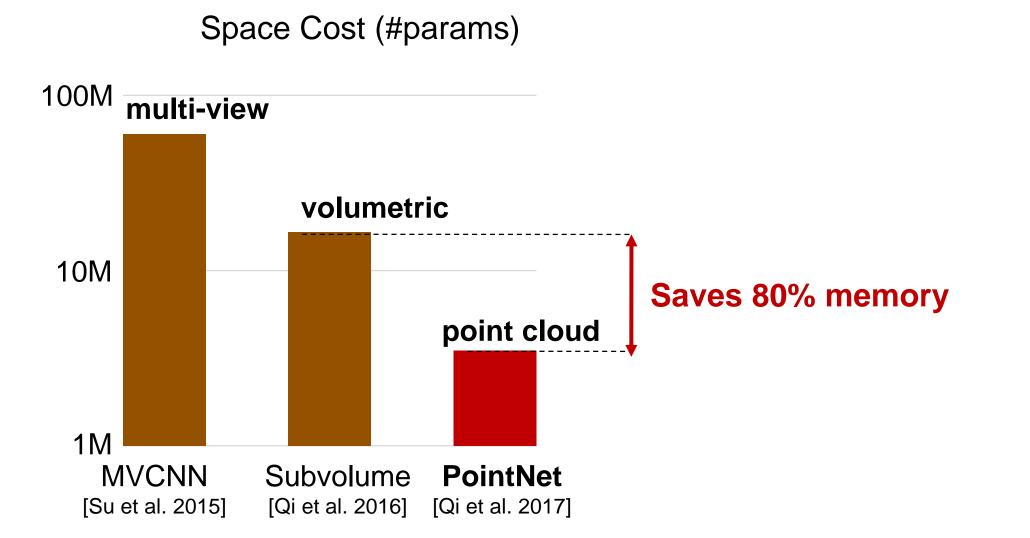
	mean	aero	bag	cap	car	chair	ear	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skate	table
			0.00	сцр	••••	•	phone	8		p	In prop		8	Protor	1001100	board	
# shapes		2690	76	55	898	3758	69	787	392	1547	451	202	184	283	66	152	5271
Wu [28]	-	63.2	-	-	-	73.5	-	-	-	74.4	-	-	-	-	-	-	74.8
Yi [30]	81.4	81.0	78.4	77.7	75.7	87.6	61.9	92.0	85.4	82.5	95.7	70.6	91.9	85.9	53.1	69.8	75.3
3DCNN	79.4	75.1	72.8	73.3	70.0	87.2	63.5	88.4	79.6	74.4	93.9	58.7	91.8	76.4	51.2	65.3	77.1
Ours	83.7	83.4	78.7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6

dataset: ShapeNetPart; metric: mean IoU (%)

Results on Semantic Scene Parsing

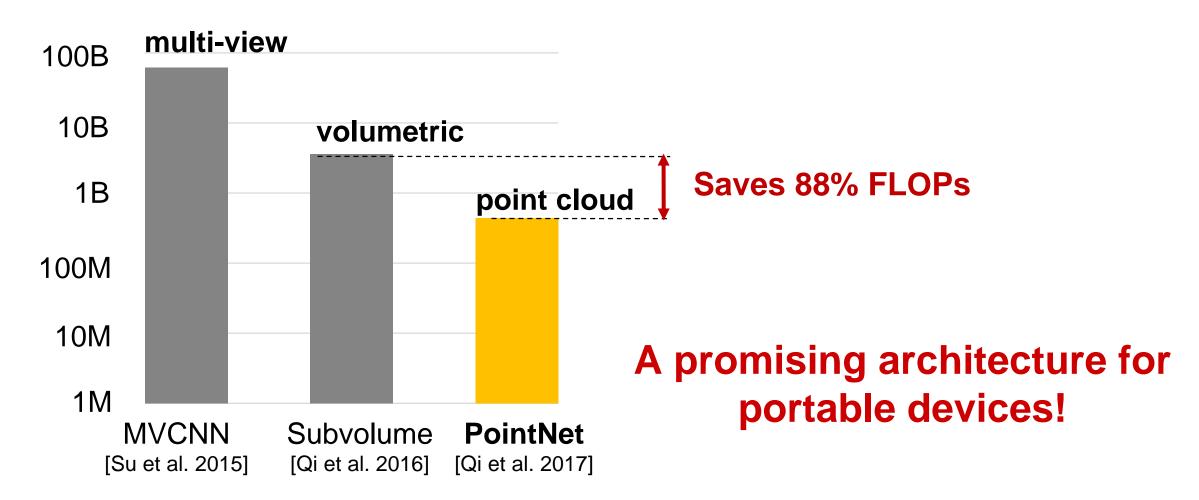
dataset: Stanford 2D-3D-S (Matterport scans)

PointNet is Light-Weight and Fast

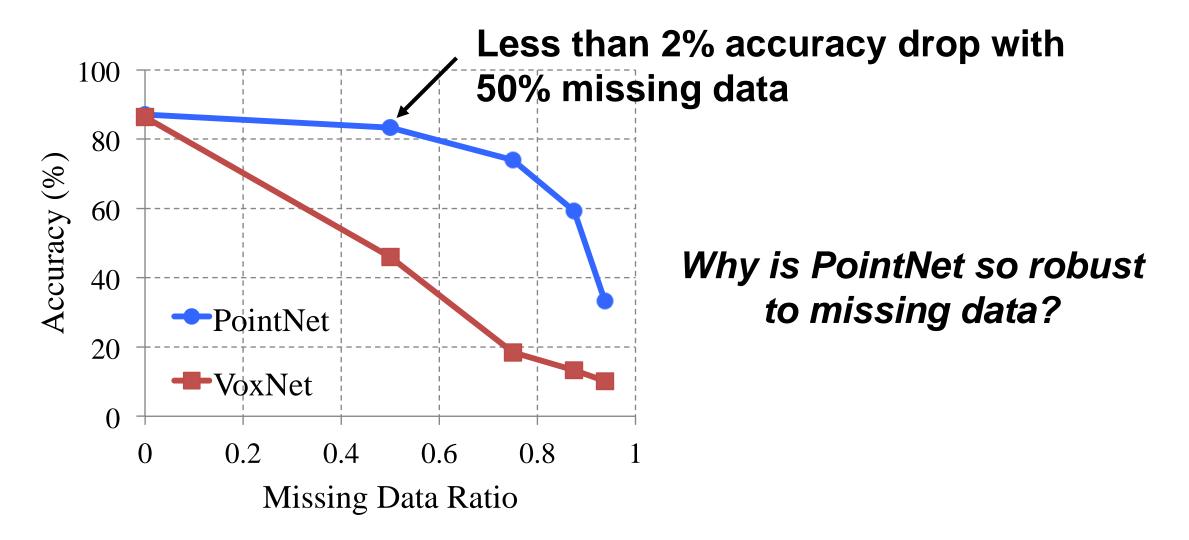


PointNet is Light-Weight and Fast

Computation Cost (FLOPs/sample)

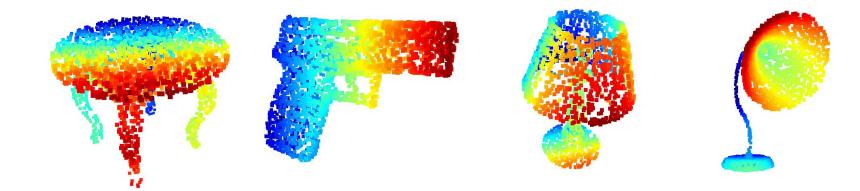


PointNet is Robust to Data Corruption



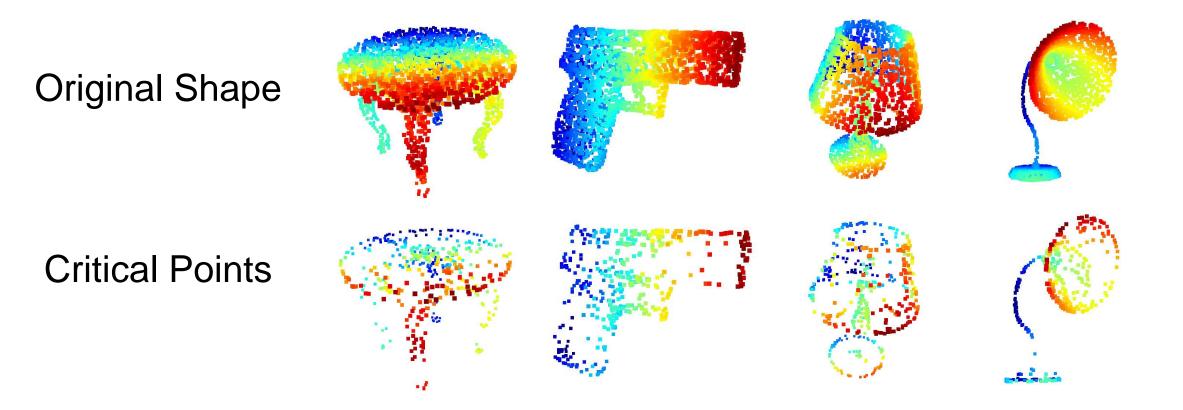
dataset: ModelNet40; metric: 40-class classification accuracy (%)

Visualizing Global Point Cloud Features



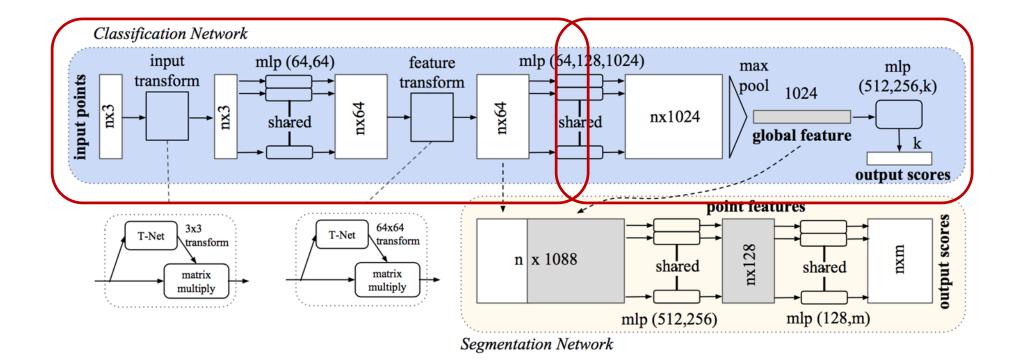
Original Shape

Visualizing Global Point Cloud Features



PointNet learns to pick perceptually interesting points!

Learning Interesting Points

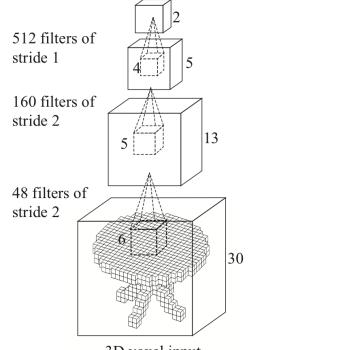


Pointnet learns optimization criteria, which in turn pick interesting points

From PointNet to PointNet++

Limitations of PointNet

Hierarchical feature learning multiple levels of abstraction

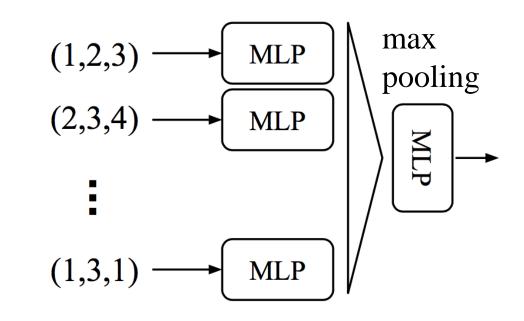


V.S.

3D voxel input

3D CNN [Wu et al.2015]

Global feature learning either one point or all points



PointNet (vanilla) [Qi et al.2017]

Limitations of PointNet

Hierarchical feature learning multiple levels of abstraction

Global feature learning either one point or all points

3D voxel input

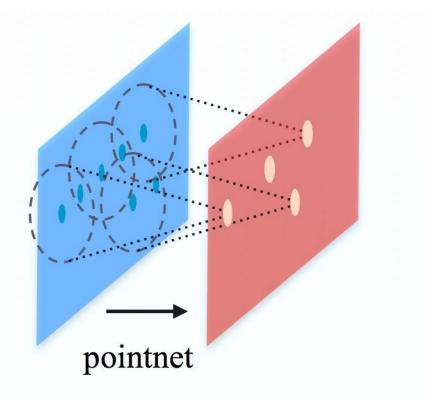
3D CNN [Wu et al.2015]

PointNet (vanilla) [Qi et al.2017]

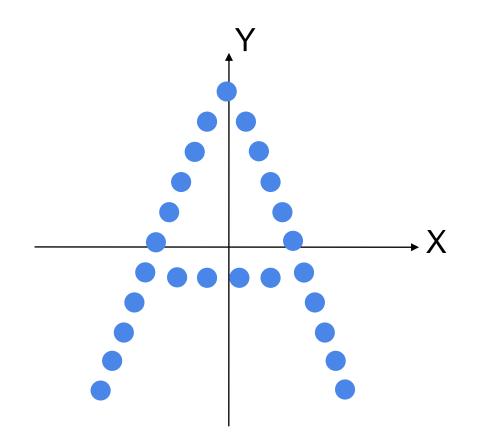
PointNet++

Basic idea: Recursively apply pointnet at local regions.

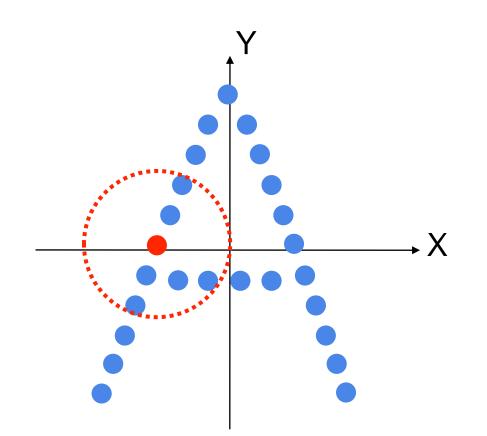
✓ Hierarchical feature learning
 ✓ Local translation invariance
 ✓ Permutation invariance



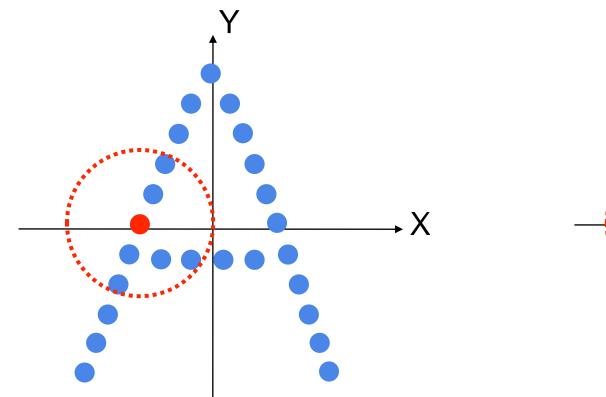
[2] Charles R. Qi, Li Yi, Hao Su, Leonidas Guibas. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (NIPS'17)

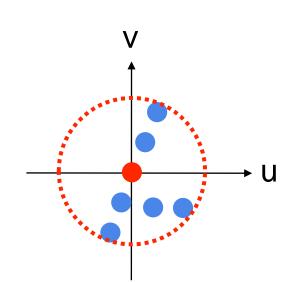


N points in (X,Y)



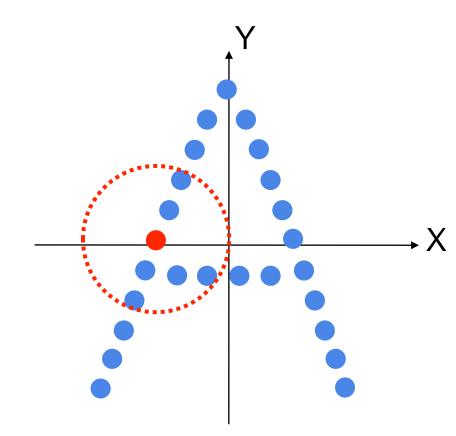
N points in (X,Y)



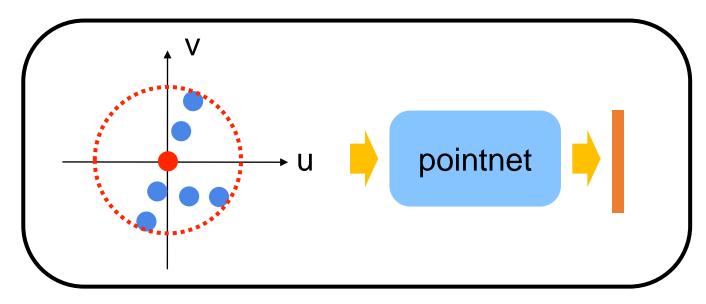


N points in (X,Y)

k points in local coordinates (u,v)

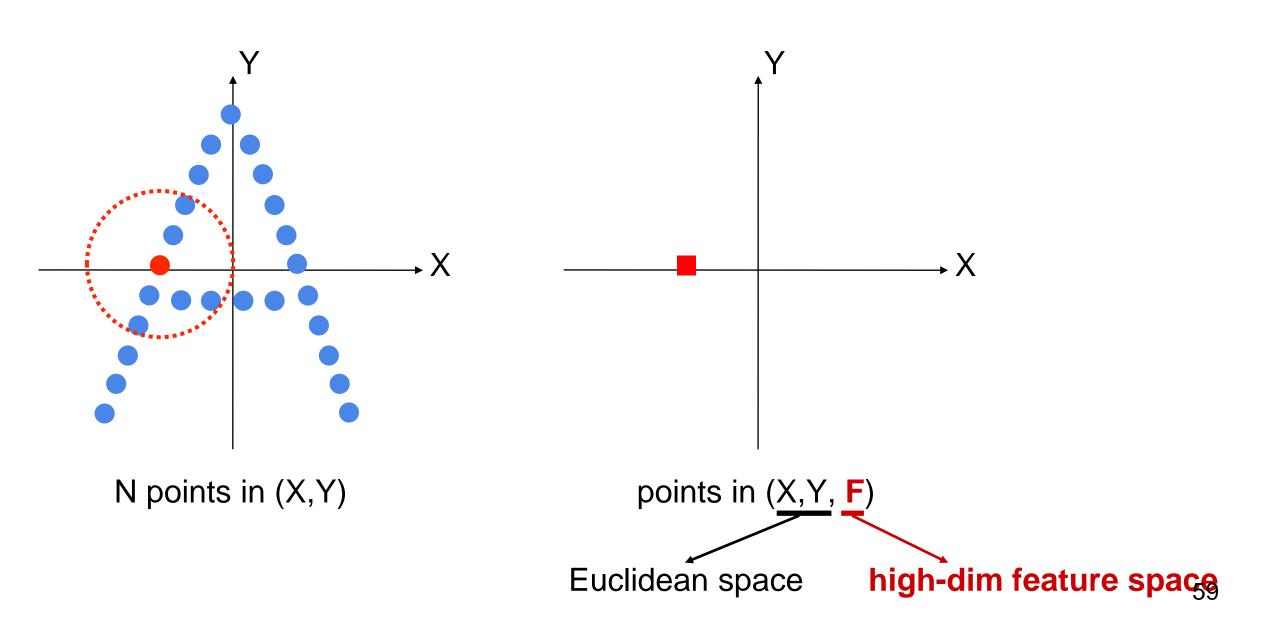


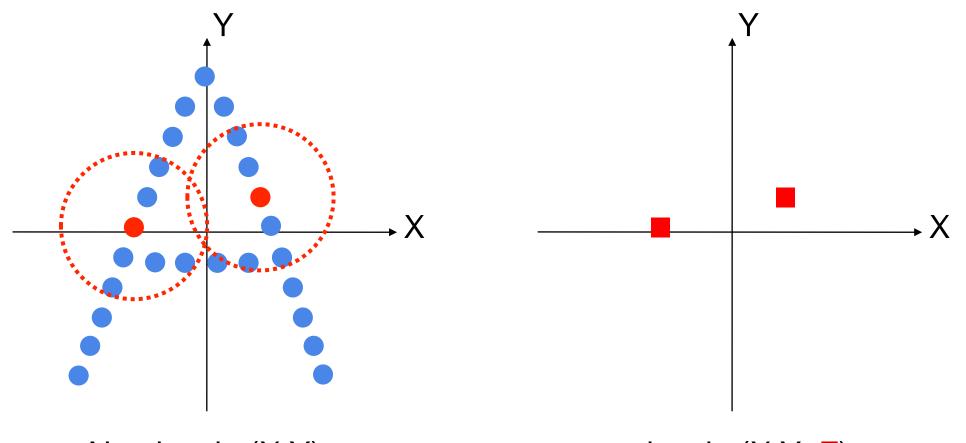
Apply pointnet at a local region



N points in (X,Y)

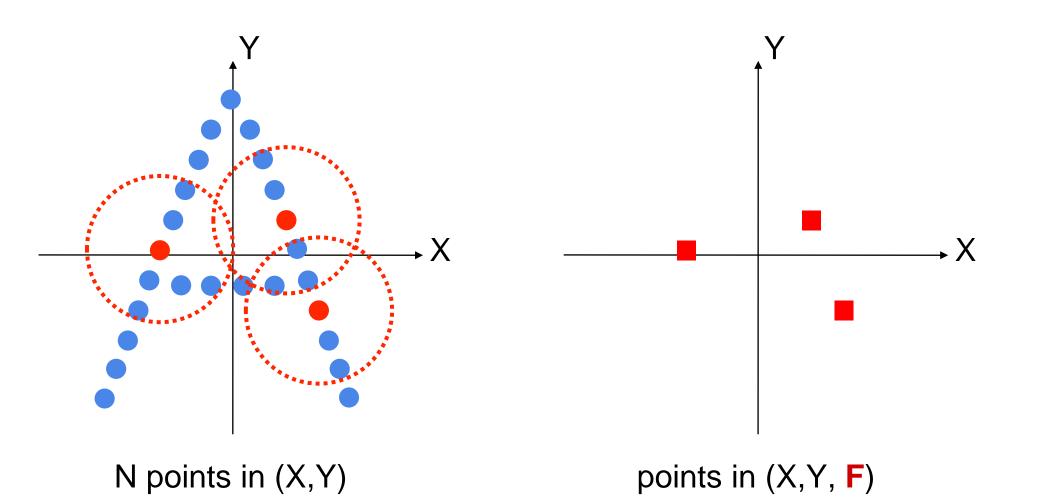
k points in local coordinates (u,v)

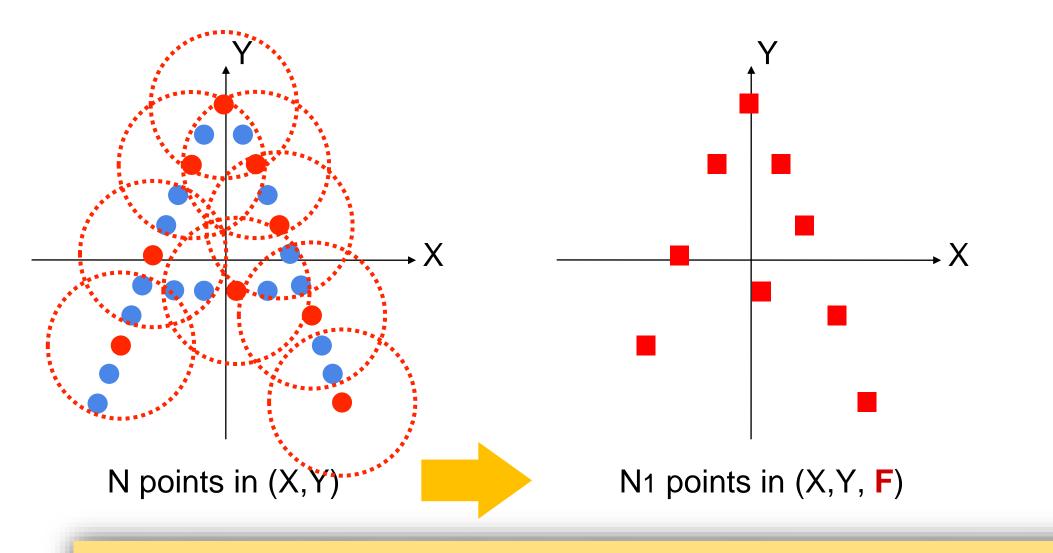




N points in (X,Y)

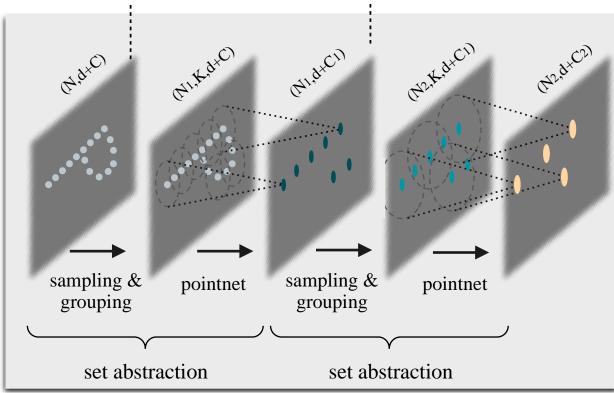
points in (X,Y, F)





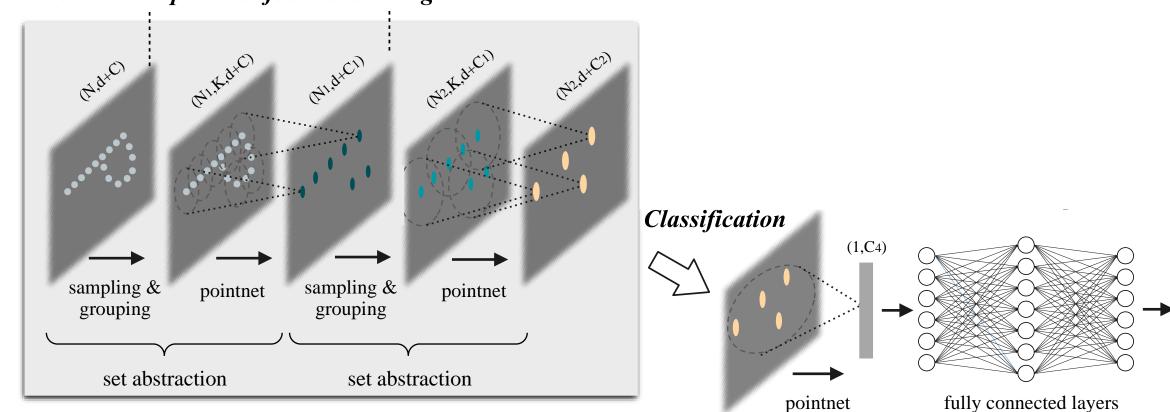
Set Abstraction: farthest point sampling + grouping + pointnet ₆₂

PointNet++ for Classification and Segmentation



Hierarchical point set feature learning

PointNet++ for Classification and Segmentation

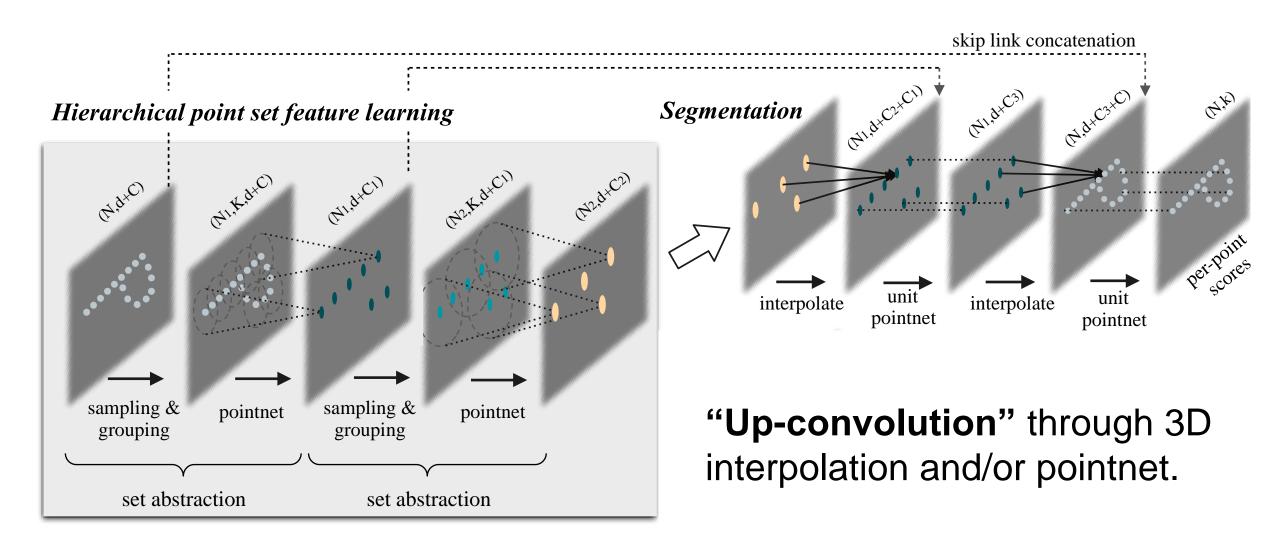


Hierarchical point set feature learning

(k)

class scores

PointNet++ for Classification and Segmentation

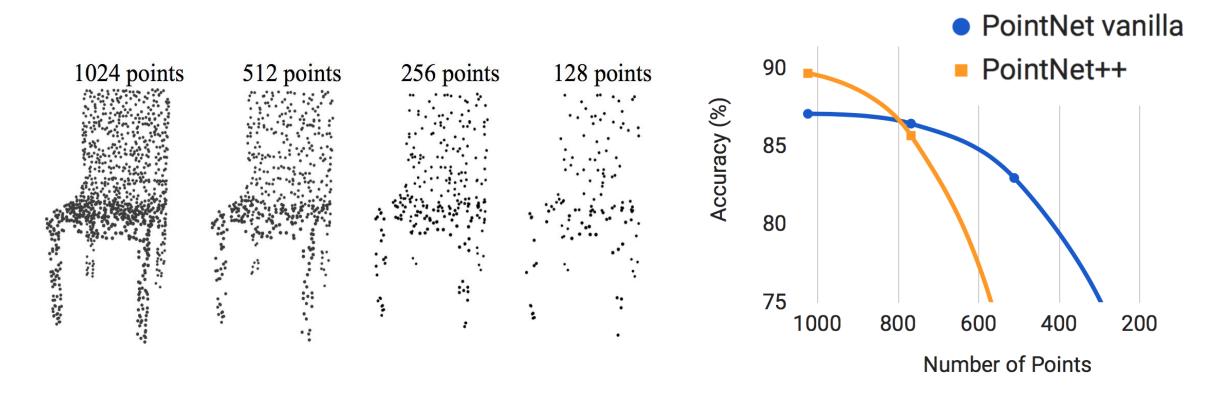


Non-uniform Sampling Density in Point Clouds

Density variation is a common issue in 3D point cloud processing

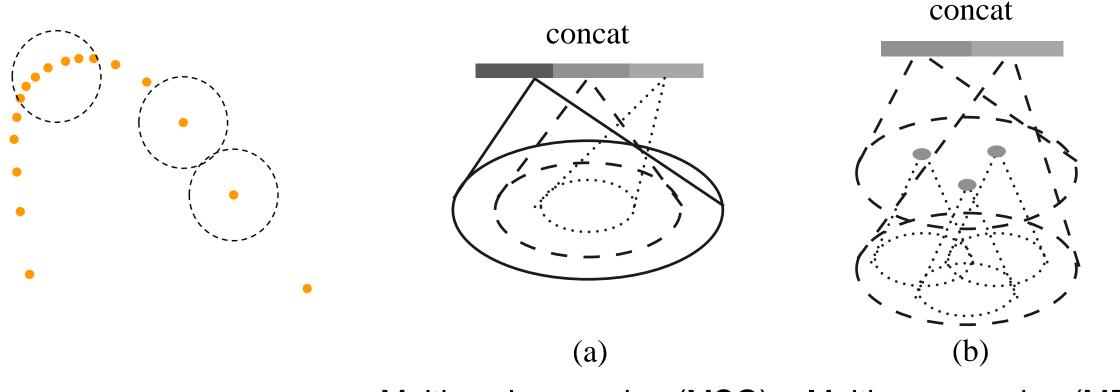
- perspective effect, radial density variation, motion etc.

Density Variation Affects Hierarchy



Small kernels suffer from varying densities!

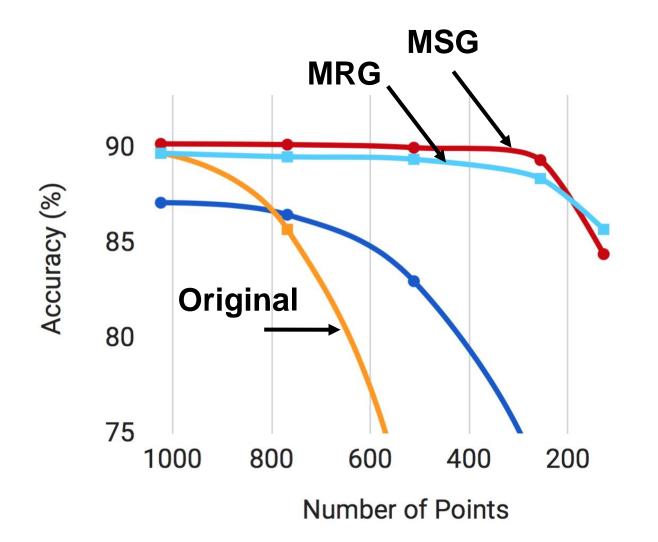
Robust Learning Under Varying Sampling Density



Multi-scale grouping (MSG) Multi-res grouping (MRG)

During Training: input point dropout with random dropout ratio

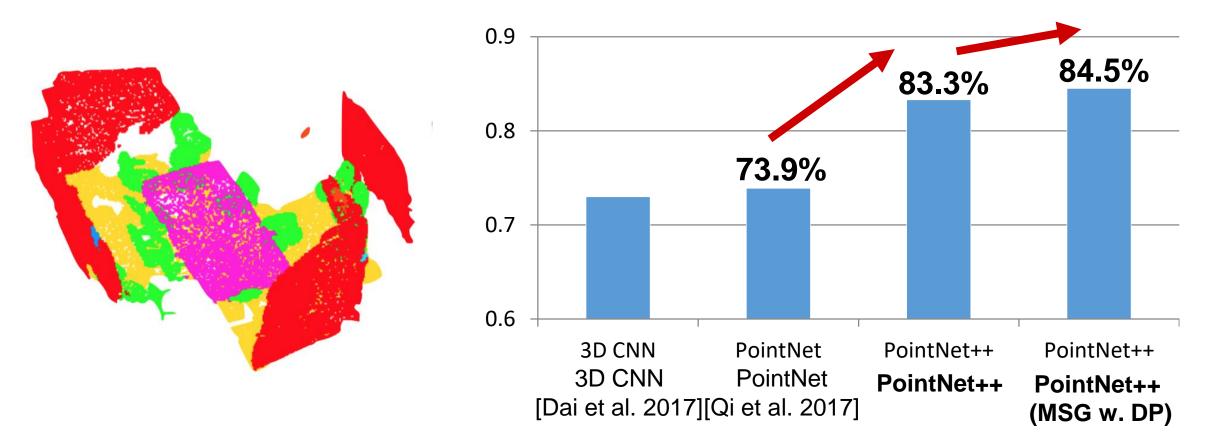
Robust Learning Under Varying Sampling Density



- PointNet vanilla
- PointNet++
- PointNet++ (MSG w. DP)
- PointNet++ (MRG w. DP)

PointNet++ Results: Scene Parsing

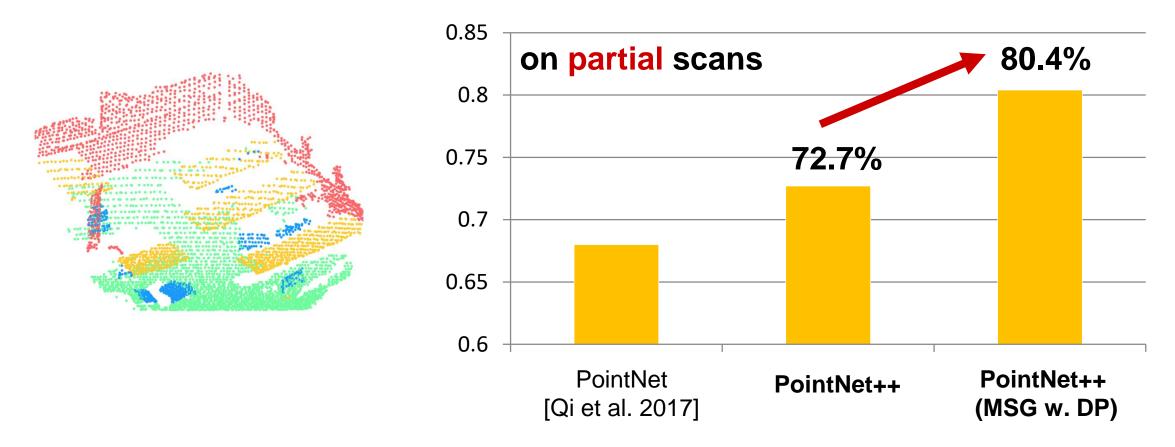
Better accuracy with hierarchical learning.



dataset: ScanNet; metric: per-point semantic classification accuracy (%) 70

PointNet++ Results: Scene Parsing

Robust layers for non-uniform densities (MSG) helps a lot.

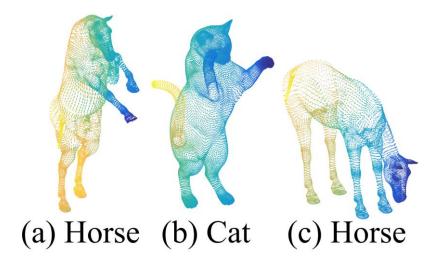


dataset: ScanNet; metric: per-point semantic classification accuracy (%) 71

PointNet++ Results: Non-Euclidean Space

For organic shape recognition, PointNet++ can generalize to non-Euclidean space

- intrinsic point features (HKS, WKS, Gaussian curvature)
- intrinsic distance metric (geodesic)

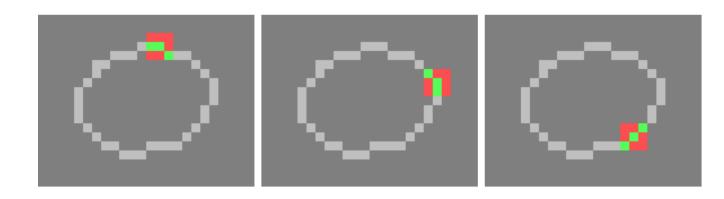


	Metric space	Input feature	Accuracy (%)		
DeepGM [13]	-	Intrinsic features	93.03		
Ours	Euclidean Euclidean Non-Euclidean	XYZ Intrinsic features Intrinsic features	60.18 94.49 96.09		

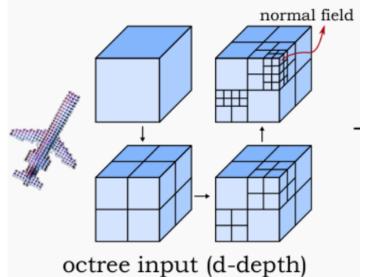
dataset: SHREC15; metric: shape classification accuracy (%)

More Types of Deep Networks Related to Point Clouds

Sparse 3D CNNs



Submanifold Sparse Convolutional Networks [Graham et al. 2017]



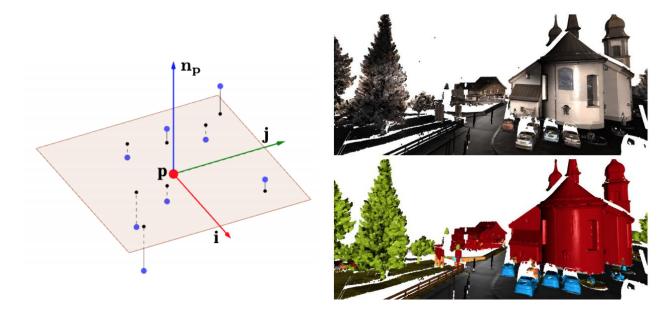
OctNet

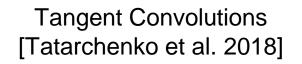
[Riegler et al. 2017]

O-CNN: Octree based Convolutional Neural Networks

[Wang et al. 2017]

Surface-Based Convolutions

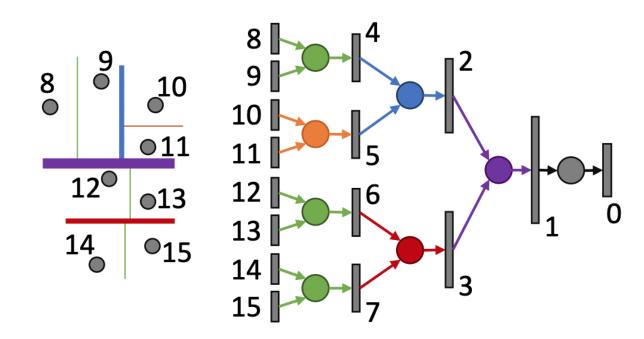


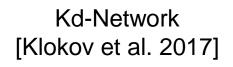


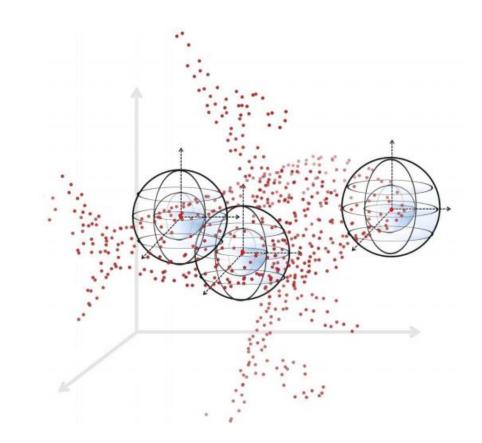
Surface Convolution

SurfConv [Chu et al. 2018]

Classic Spatial Representations + NN

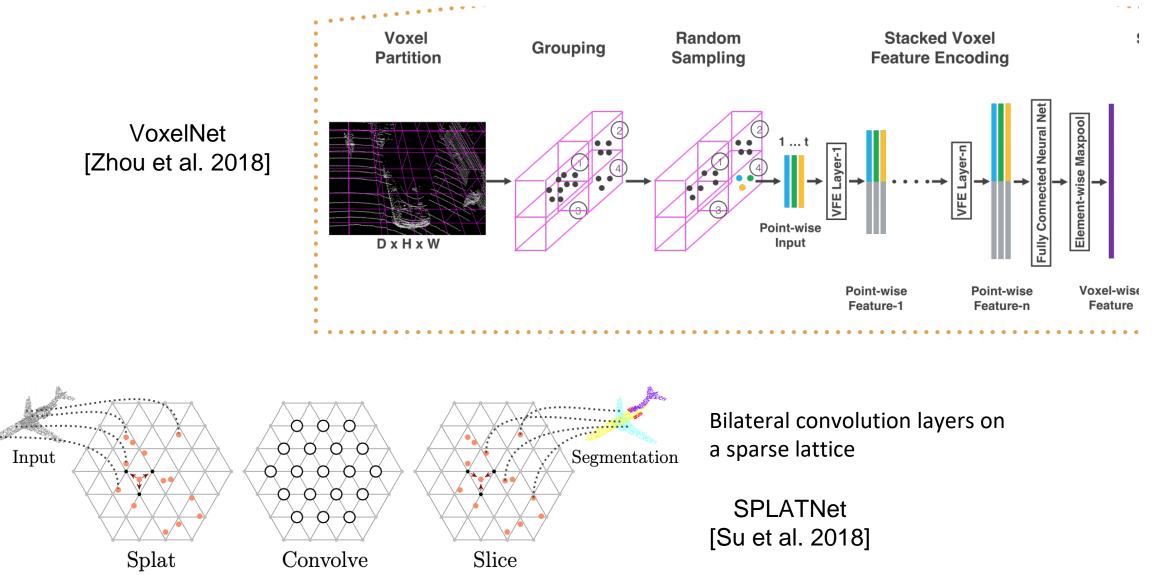




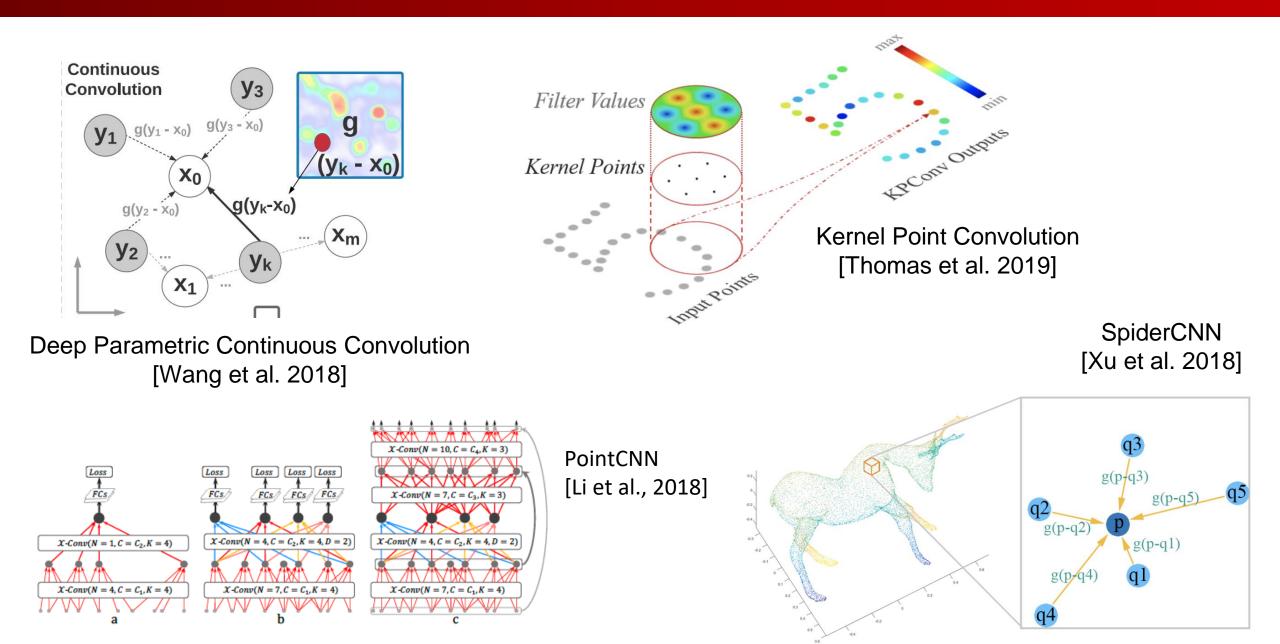


ShapeContextNet [Xie et al. 2018]

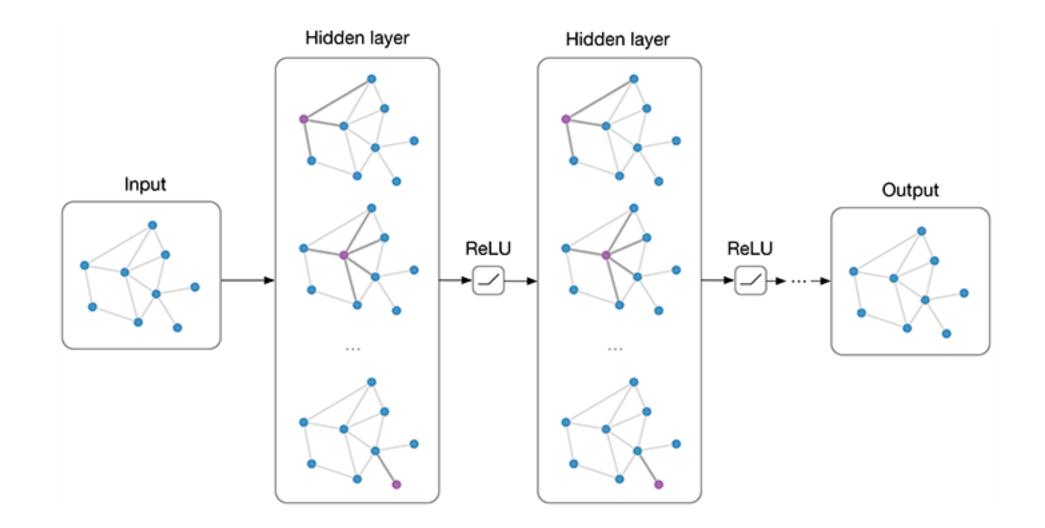
Hybrid Networks: Grids + Points



Point Cloud Convolution Variants



Graph Neural Networks



https://tkipf.github.io/graph-convolutional-networks/

Which Network Architecture Is Best?

- Any distance metric among points?
- 3D points or higher-dim points?
- Single object or multi-object?
- Depth image or fused point clouds?
- Care about efficiency?

Is there a universally best architecture?

3D Scene Understanding with PointNet and PointNet++

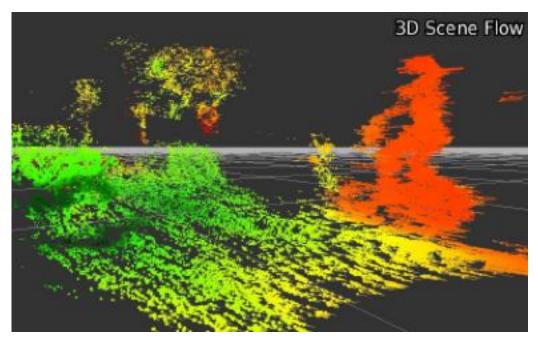
3D Scene Understanding with PointNets

 PointNet and PointNet++ lead to new 3D centric approaches to scene understanding

3D Object Detection

source: SUN RGB-D by Song et al.

3D Scene Flow



source: Wedel et al.

3D Scene Understanding with PointNets

 PointNet and PointNet++ lead to new 3D centric approaches to scene understanding

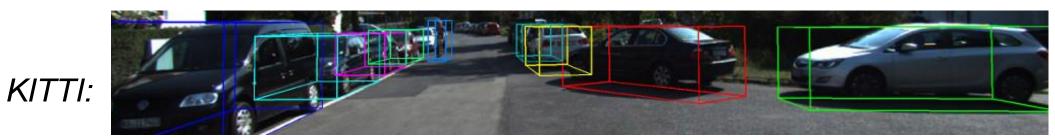
source: SUN RGB-D by Song et al.

3D Scene Flow

source: Wedel et al.

3D Object Detection

- Input: RGB-D data
- Output: 3D bounding boxes of objects



SUN RGB-D:

3D Object Detection

- Input: RGB-D data
- Output: 3D (amodal) bounding boxes of objects

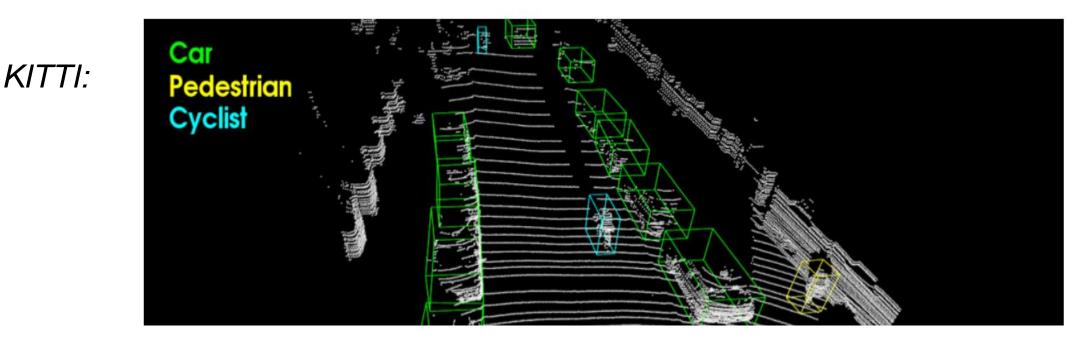
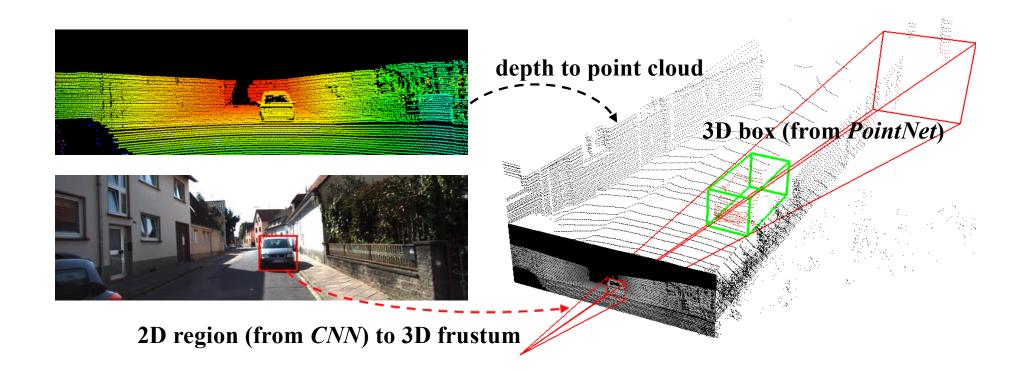


Figure from VoxelNet [Zhou et al. 2018]

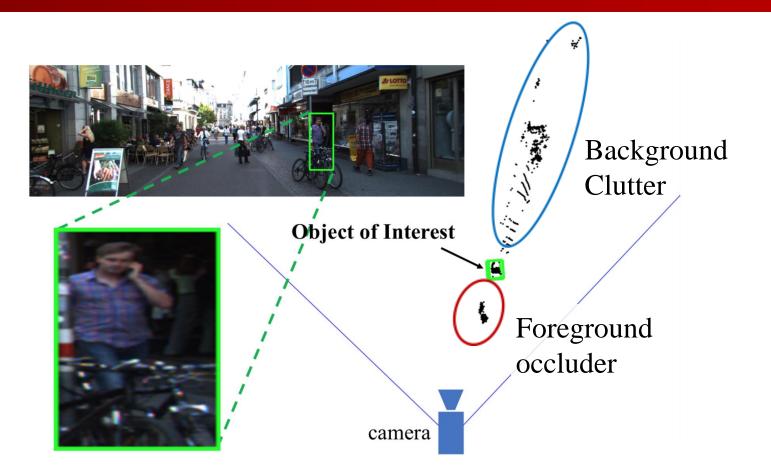
Frustum PointNets for 3D Object Detection



+ Leveraging mature 2D detectors for region proposal. greatly reducing 3D search space. + Solving 3D detection problem with 3D data and 3D deep learning.

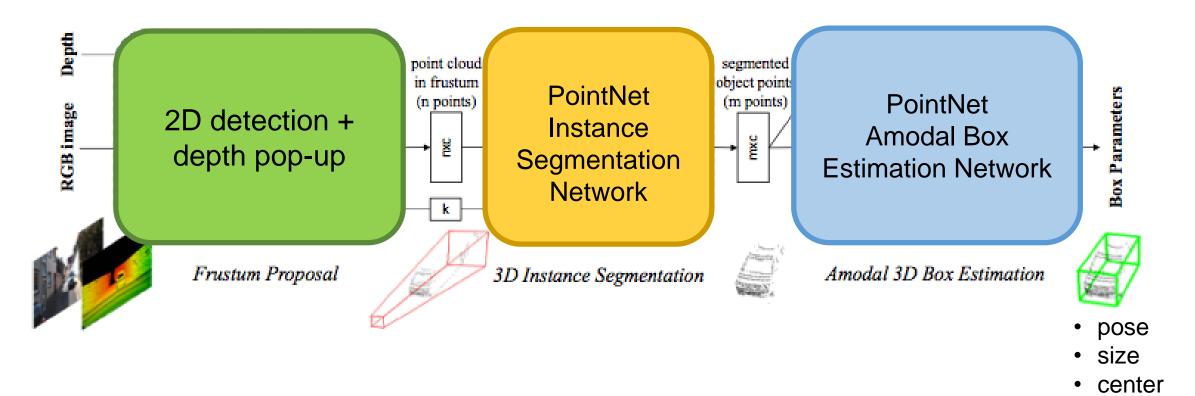
Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, Leonidas Guibas. Frustum PointNets for 3D Object Detection from RGB-D Data (CVPR 2018)

Frustum-based 3D Object Detection: Challenges



- Occlusion and clutter is common in frustum point clouds
- Large range of point depths

Use **PointNets** for **data-driven** object detection in frustums.

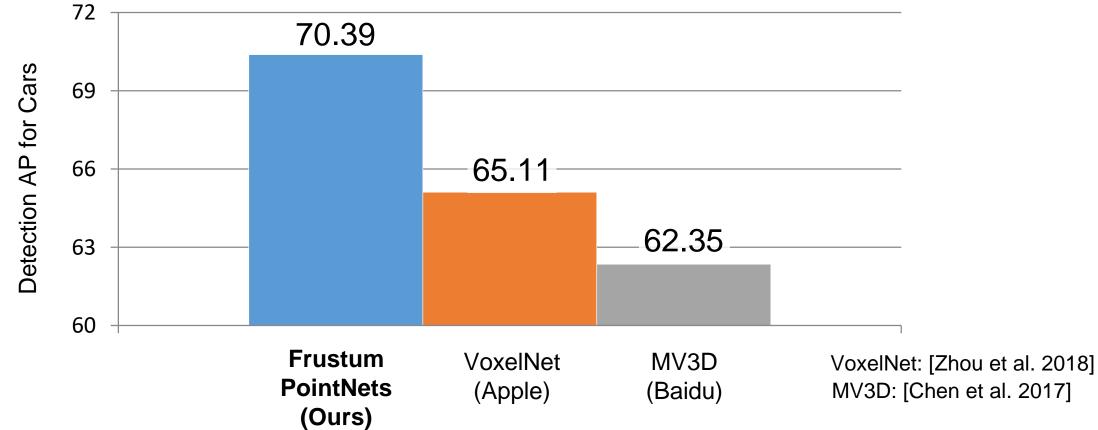


Frustum PointNets: Key to Success

Respect and exploit 3D

- Use each modality (image, points) for what it's best at using 3D representation and 3D deep learning for the 3D problem.
- Canonicalize the problem exploiting geometric transformations in point clouds.

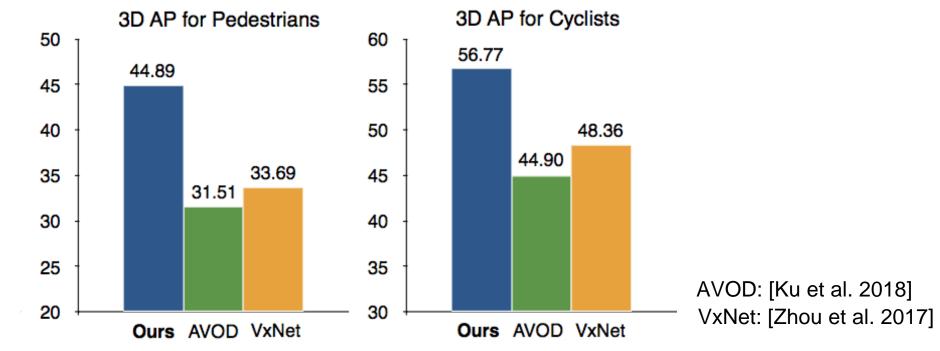
Leading performance on KITTI benchmark



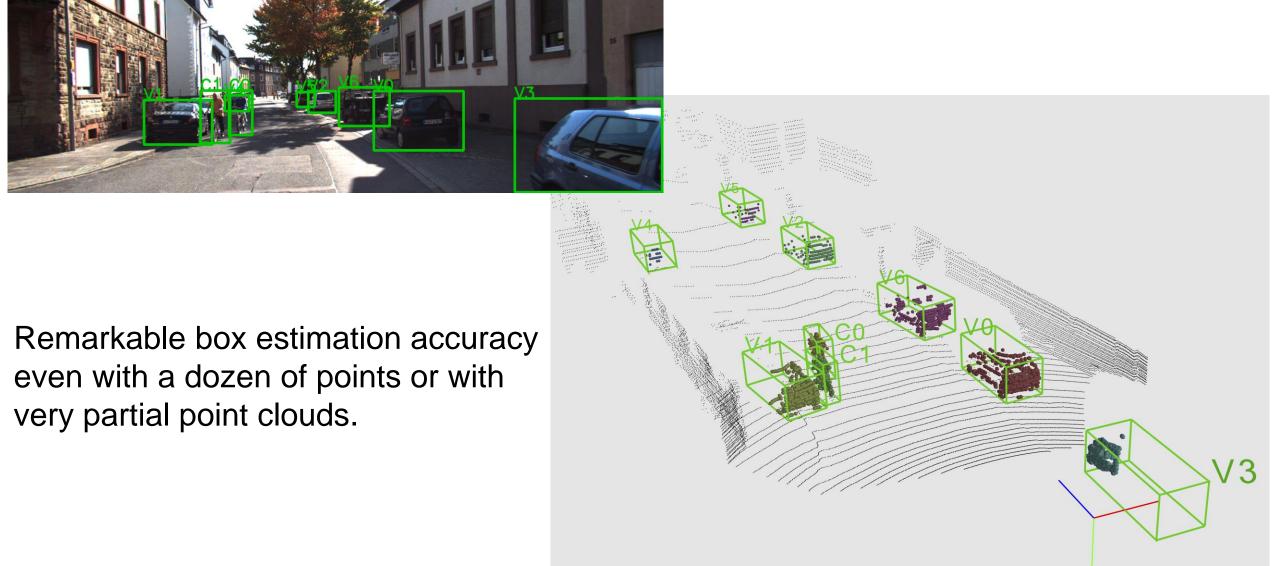
KITTI Results: Quantitative

Leading performance on KITTI benchmark

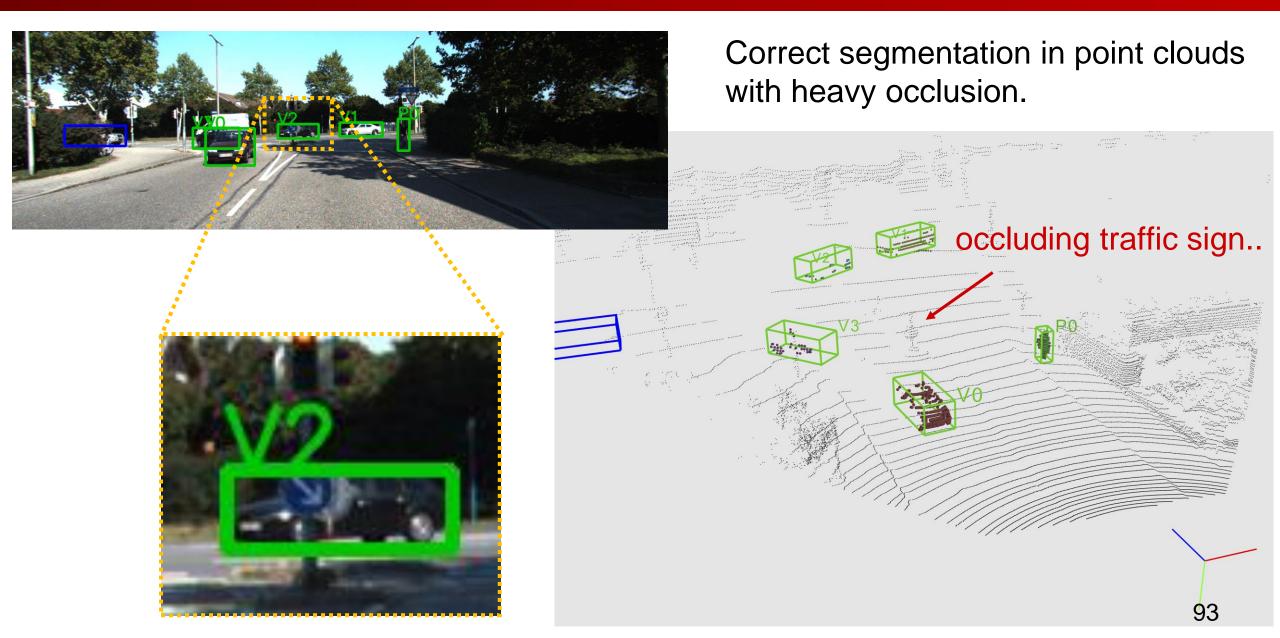
Especially leading at smaller objects (pedestrians and cyclists) – hard to localize with 3D proposals only.



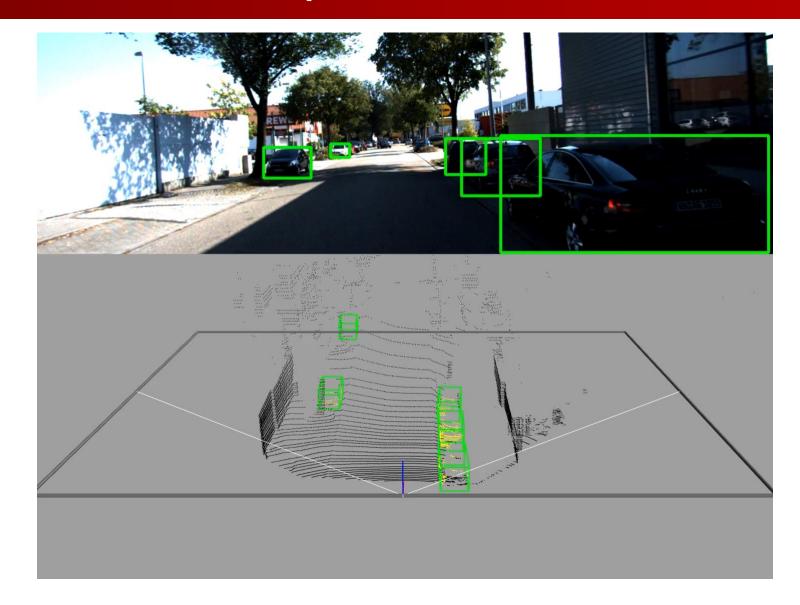
KITTI Results: Qualitative



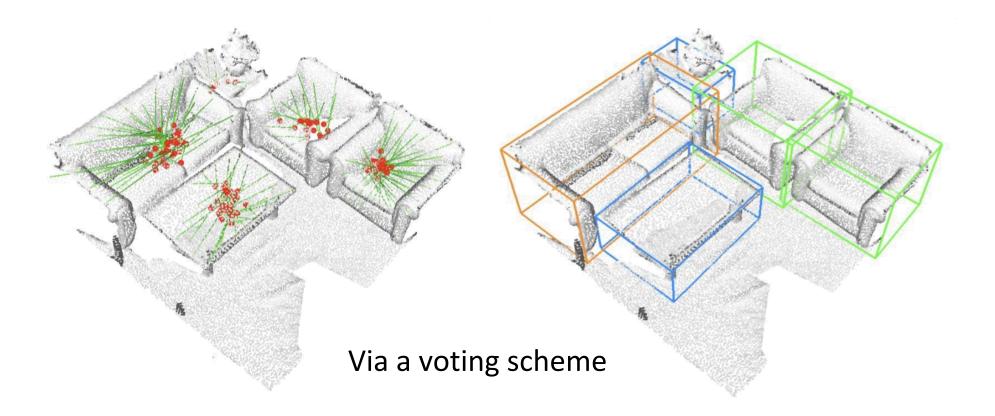
KITTI Results: Qualitative

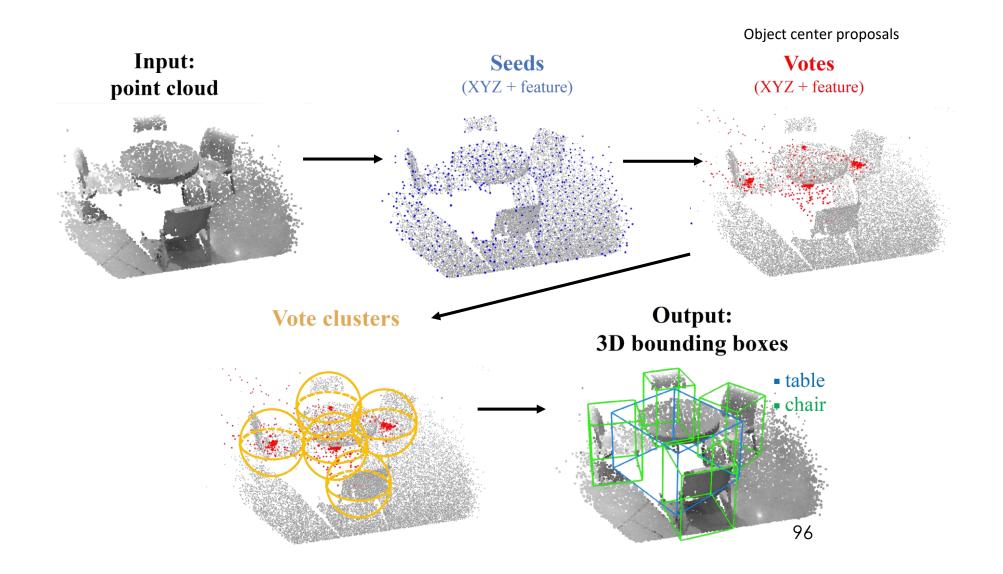


KITTI Results: Example

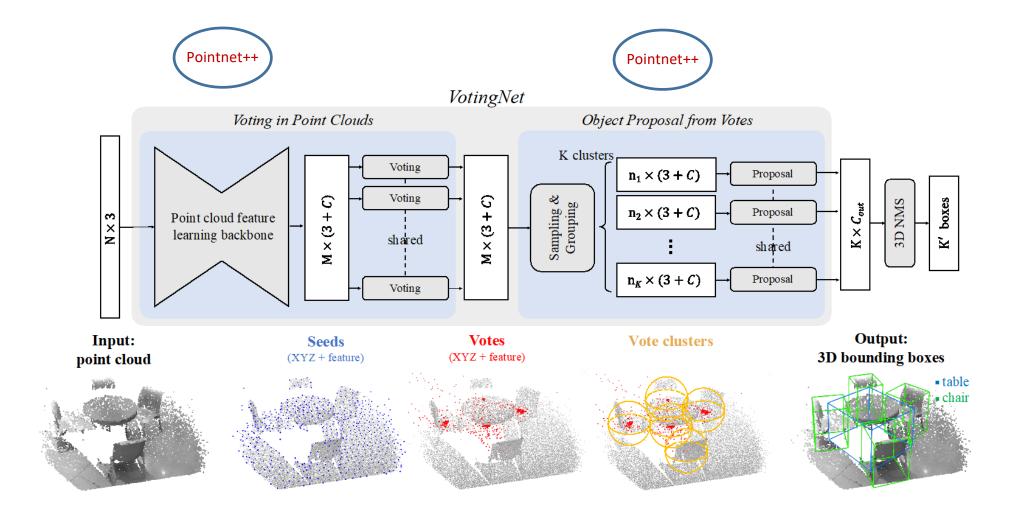


Point Cloud Amodal Bounding Box Detection (Indoor)

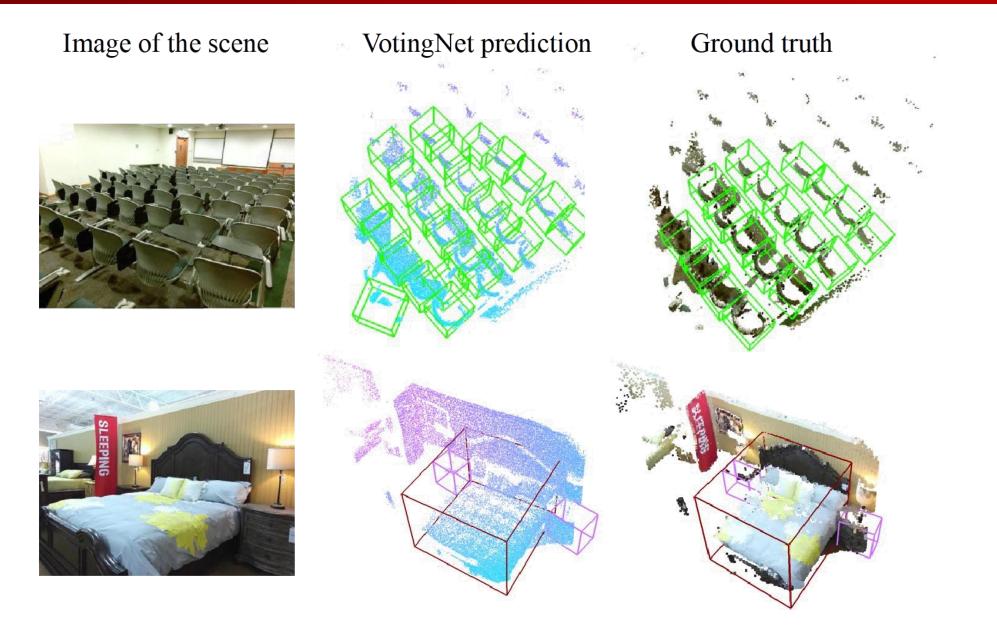




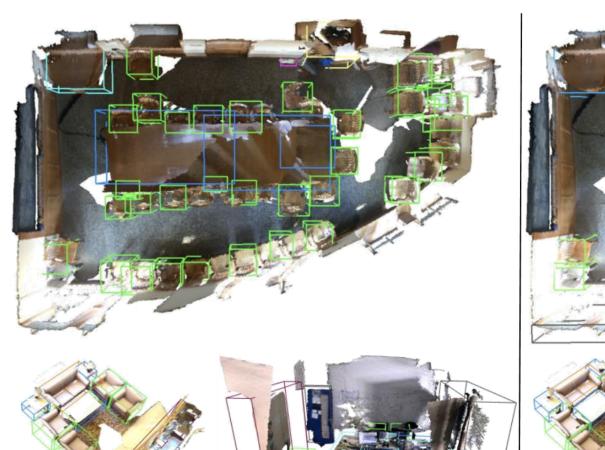
Deep Hough Voting



Results on SUN RGB-D

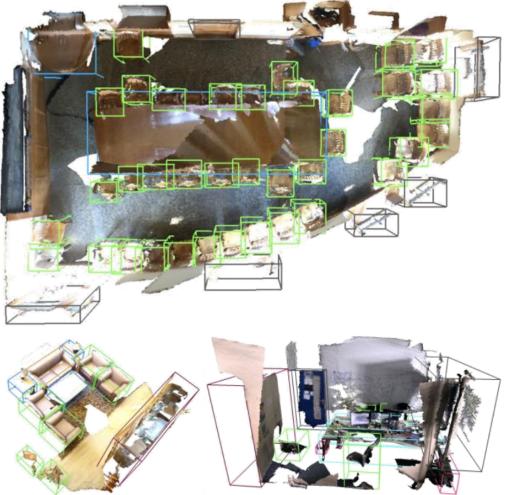


Results on ScanNet



VotingNet prediction

Ground truth



	Input	bathtub	bed	bookshelf	chair	desk	dresser	nightstand	sofa	table	toilet	mAP
DSS [37]	Geo + RGB	44.2	78.8	11.9	61.2	20.5	6.4	15.4	53.5	50.3	78.9	42.1
COG [33]	Geo + RGB	58.3	63.7	31.8	62.2	45.2	15.5	27.4	51.0	51.3	70.1	47.6
2D-driven [17]	Geo + RGB	43.5	64.5	31.4	48.3	27.9	25.9	41.9	50.4	37.0	80.4	45.1
F-PointNet [30]	Geo + RGB	43.3	81.1	33.3	64.2	24.7	32.0	58.1	61.1	51.1	90.9	54.0
VotingNet (ours)	Geo only	74.4	83.0	28.8	75.3	22.0	29.8	62.2	64.0	47.3	90.1	57.7

SUN RGB-D

ScanNetV2

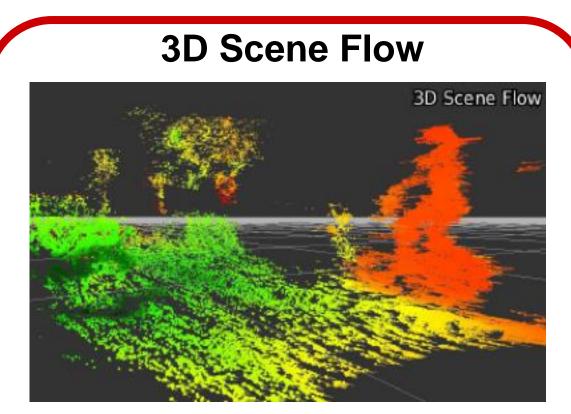
	Input	mAP@0.25 mAP@0.5		
DSS [37]	Geo + RGB	15.2	6.8	
MRCNN 2D-3D [10]	Geo + RGB	17.3	10.5	
F-PointNet [30]	Geo + RGB	19.8	10.8	
GSPN [47]	Geo + RGB	30.6	17.7	
3D-SIS [11]	Geo + 1 view	35.09	18.66	
3D-SIS [11]	Geo + 3 views	36.64	19.04	
3D-SIS [11]	Geo + 5 views	40.22	22.53	
3D-SIS [11]	Geo only	25.36	14.60	
VotingNet (ours)	Geo only	46.75	24.65	

100

3D Scene Understanding with PointNets

 PointNet and PointNet++ lead to new 3D centric approaches to scene understanding

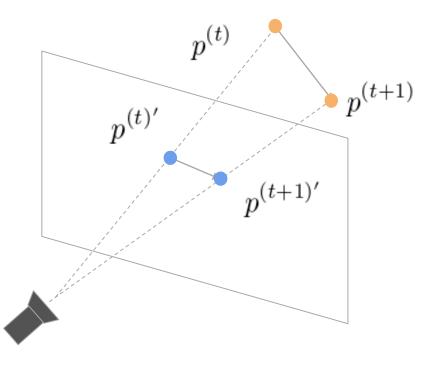
source: SUN RGB-D by Song et al.



source: Wedel et al.

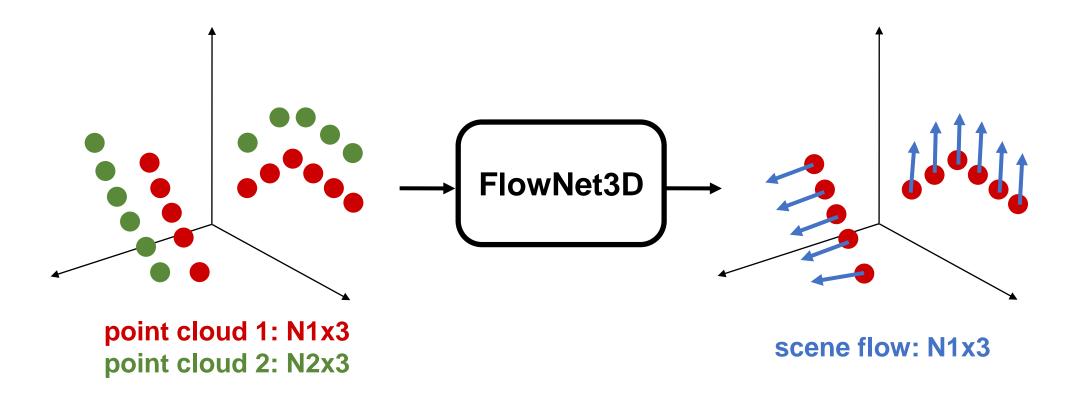
Scene Flow [Vedula et al. 1999]

- Scene flow: 3D motion field of points
- Optical flow is its projection to 2D image plane.
- Low-level understanding of a dynamic environment



Our Approach: FlowNet3D

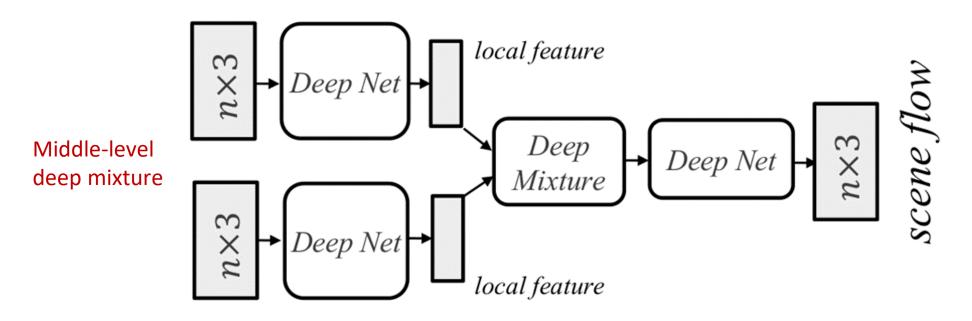
 Directly learning scene flow in 3D point clouds, with 3D deep learning architectures.



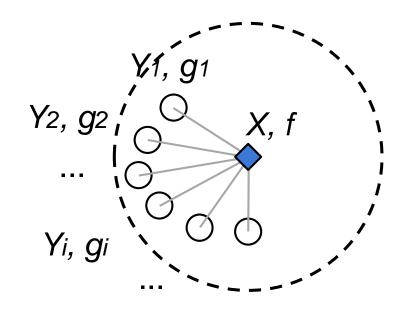
[4] Xingyu Liu*, Charles R. Qi*, Leonidas Guibas. Learning Scene Flow in 3D Point Clouds, arXiv preprint.

Deep Net Architecture

- How to learn point cloud features?
- Where in the network architecture to mix point features from consecutive frames?
- How to mix them?



Intermediate level

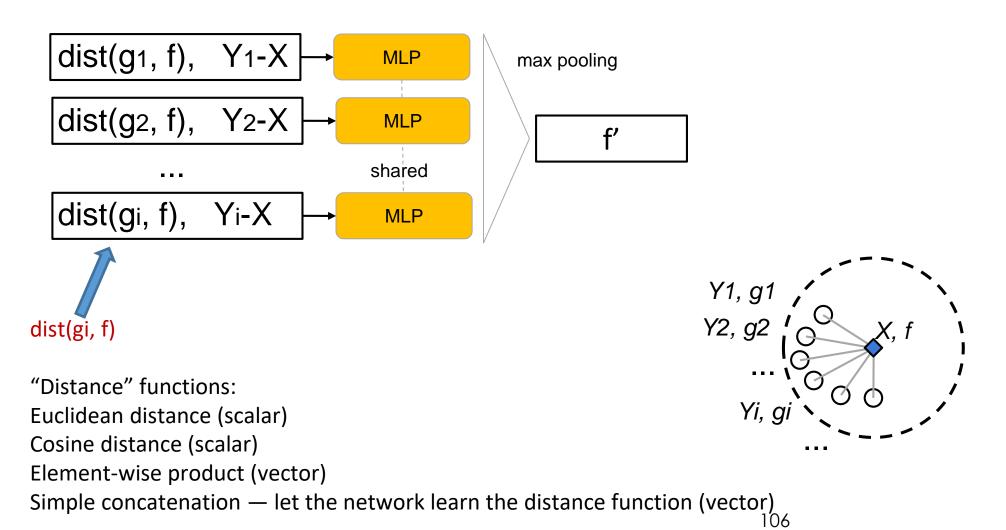


dist(g1, f),	Y1-X
dist(g2, f),	Y2 - X
÷	
dist(gi, f),	Yi-X
:	

.

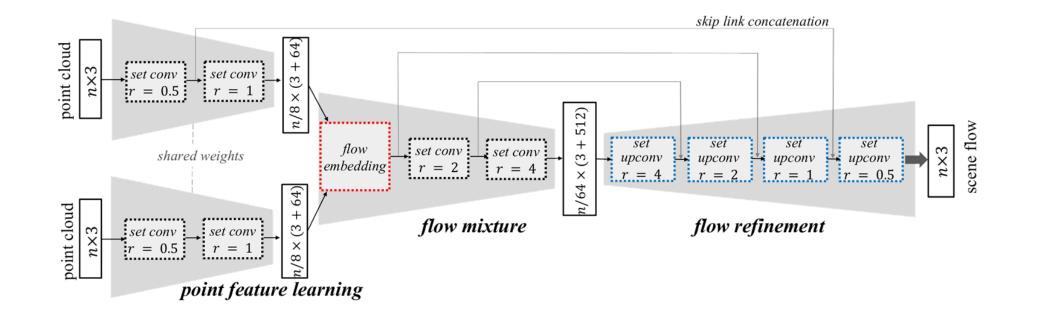
Naive approach: concatenation

dist(g1, f), Y1-X dist(g2, f), Y2-X ...



•••

FlowNet3D



Composed of many many mini-pointnet++ modules ...

Training on Synthetic Data

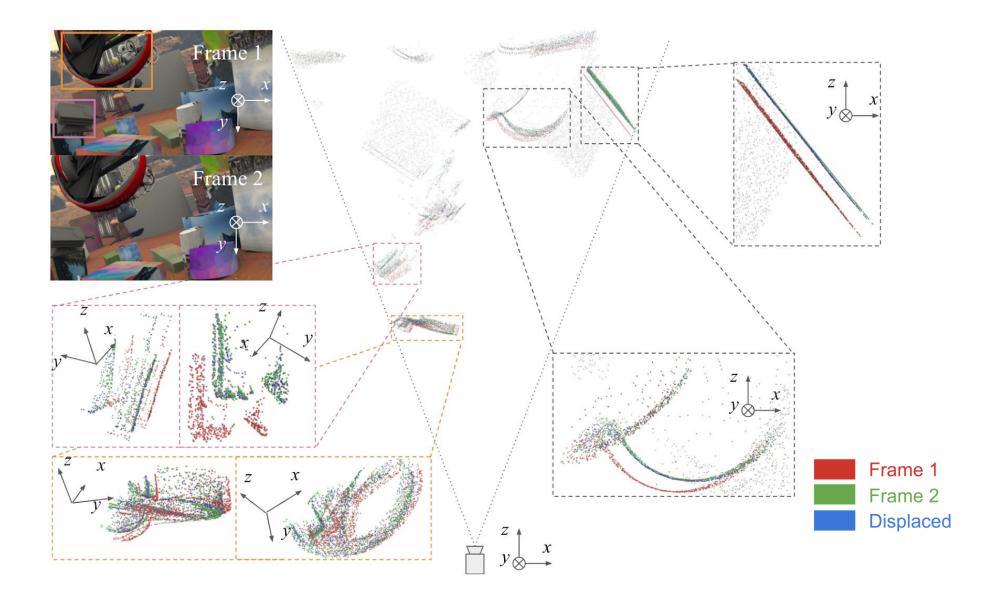
FlyingThings3D [Mayer et al. 2016] dataset from MPI

Random ShapeNet objects

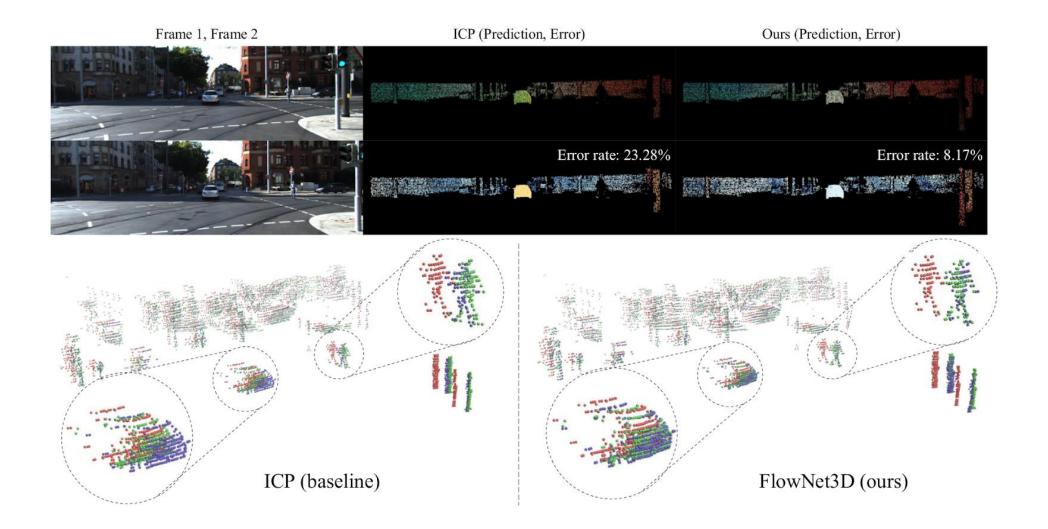
Very challenging dataset with strong occlusions and large motions.



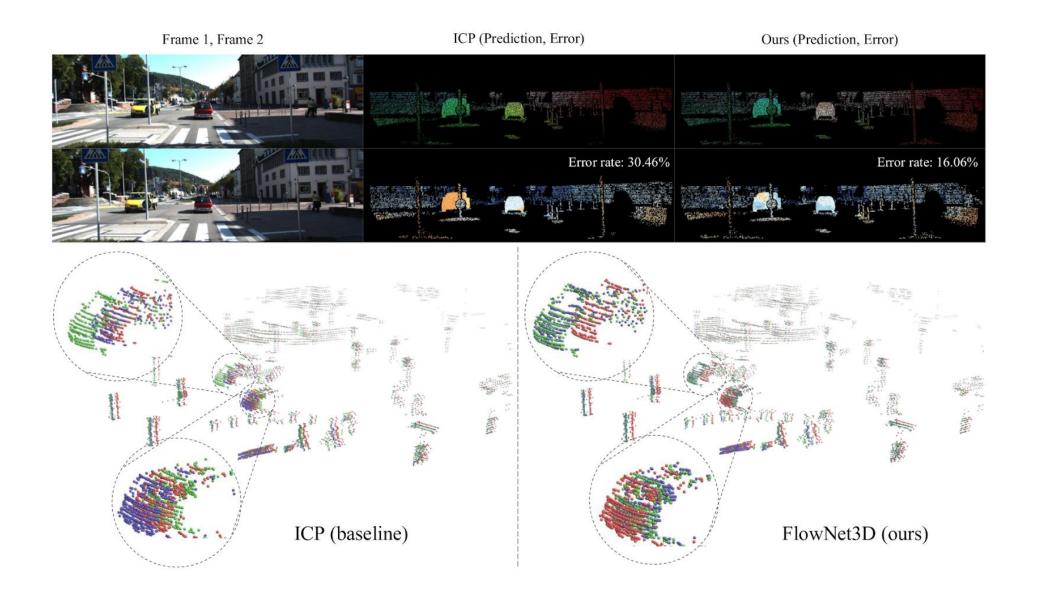
FlyingThings3D Results



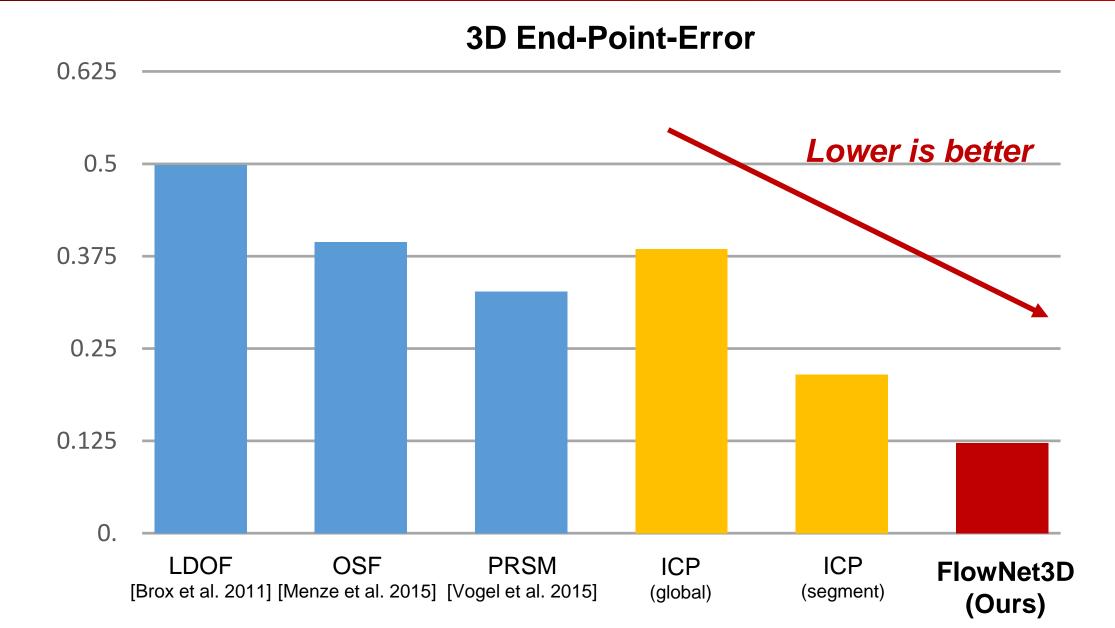
KITTI Results



KITTI Results



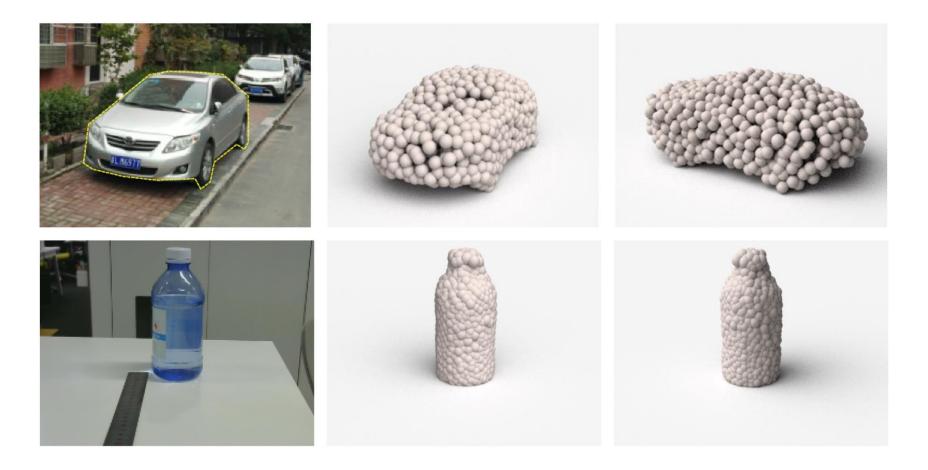
Generalizing to KITTI: Quantitative



112

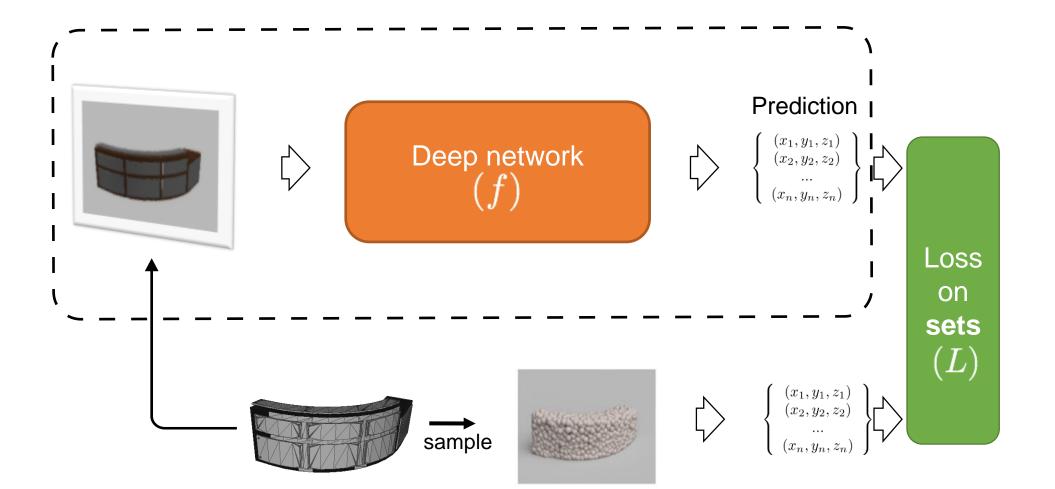
Point Cloud Synthesis

Point Cloud Synthesis from a Single Image

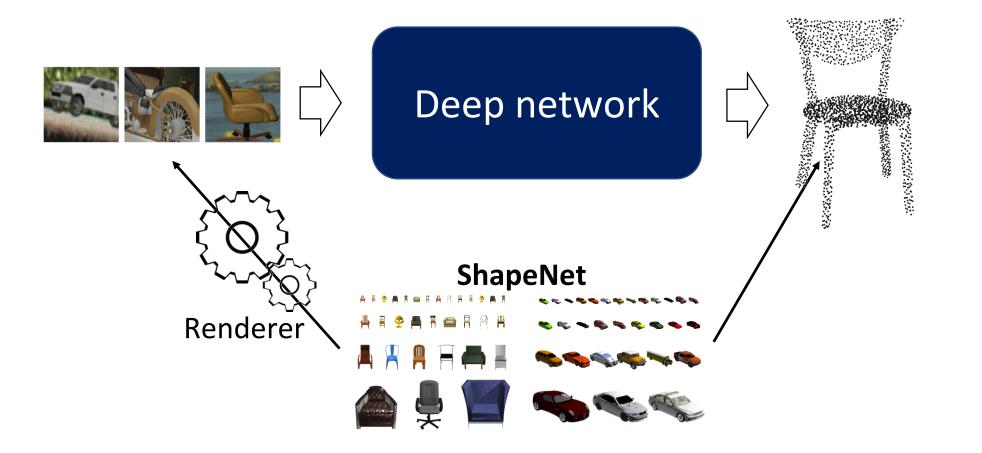


Hao Su, Haoqiang Fan, Leonidas Guibas Learning Shape Abstractions by Assembling Volumetric Primitives CVPR 2017

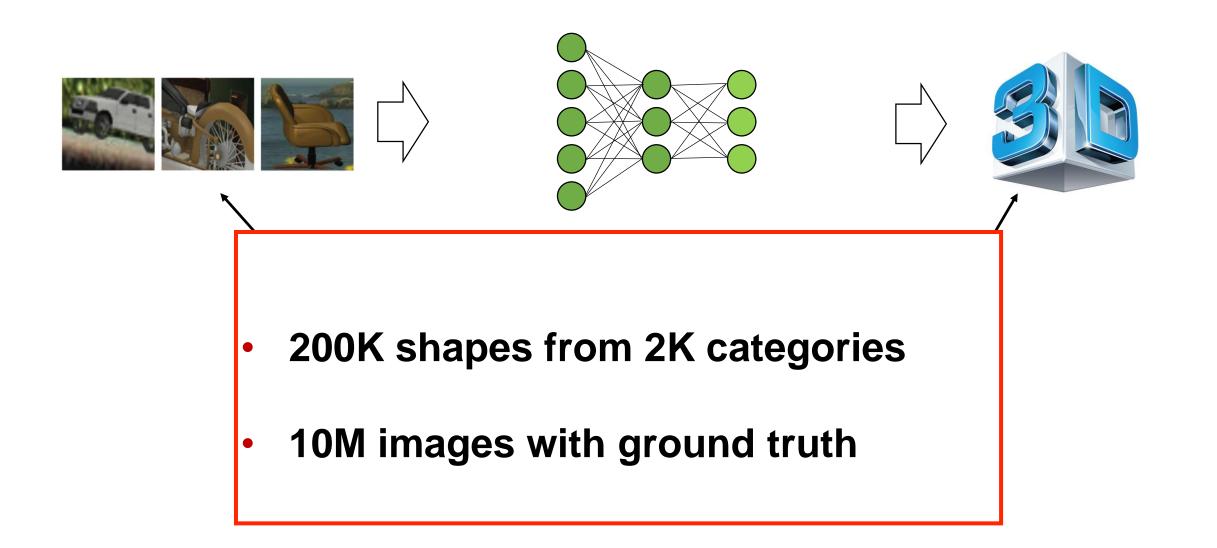
End-to-End Learning



Synthesize for Learning



Supervision from "Synthesize for Learning"



Point Cloud Distance Metrics

Worst case: Hausdorff distance (HD)

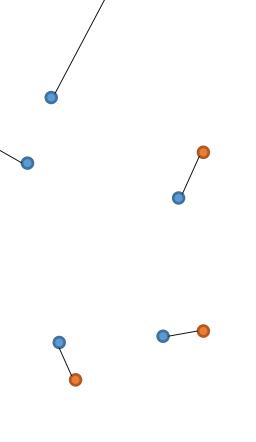
Average case: Chamfer distance (CD)

Optimal case: Earth Mover's distance (EMD)

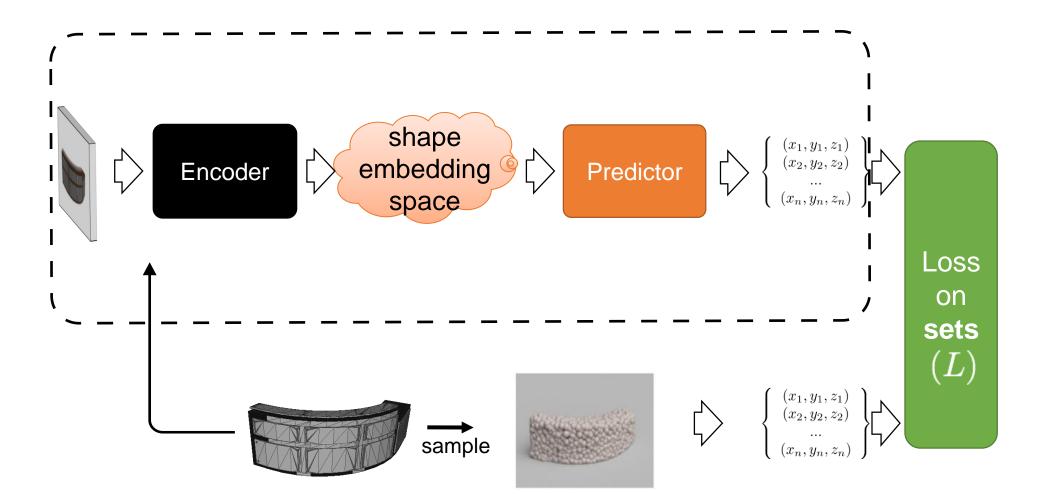
$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$

where $\phi: S_1 \to S_2$ is a bijection.

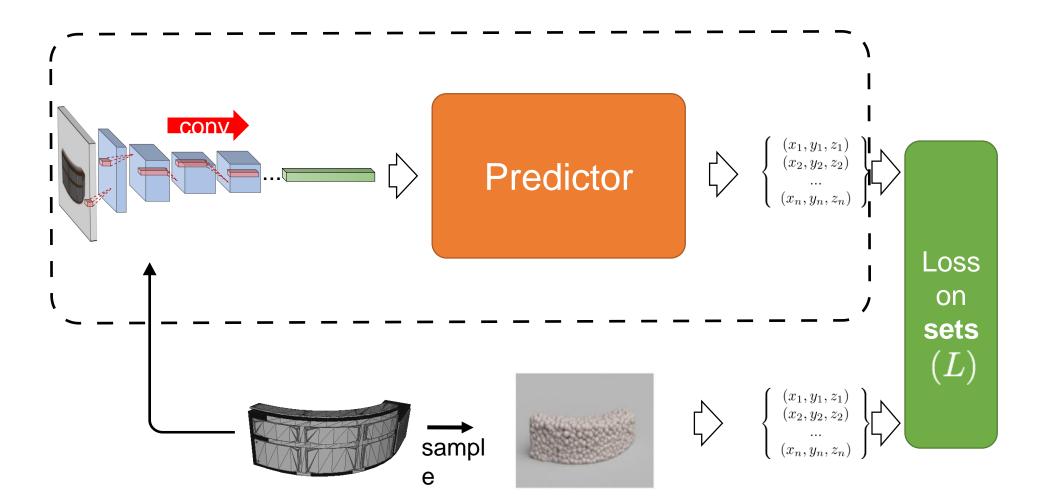
Solves the optimal transportation (bipartite matching) problem!



End-to-End Learning



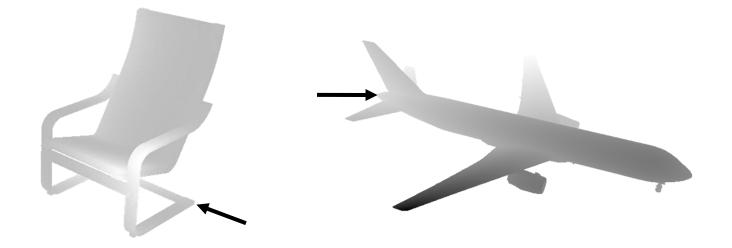
End-to-End Learning



Natural Statistics of Object Geometry

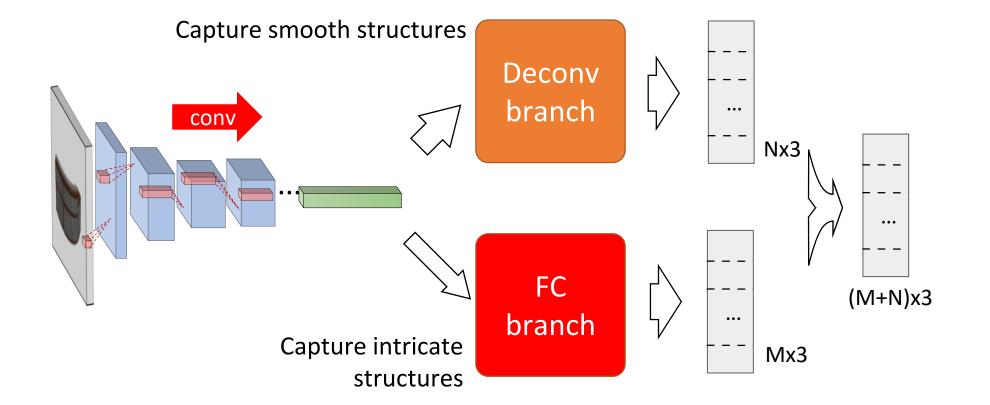
- Many local smooth structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates

Natural Statistics of Object Geometry



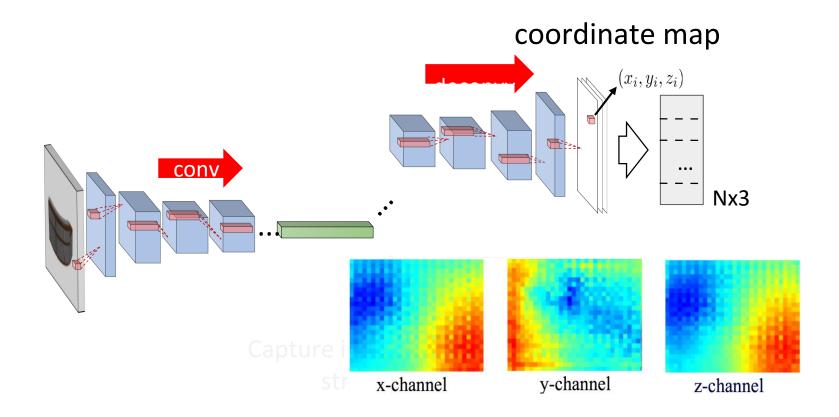
- But also some sharp/intricate local structures
 - some points have high variability neighborhoods

Two-Branch Architecture



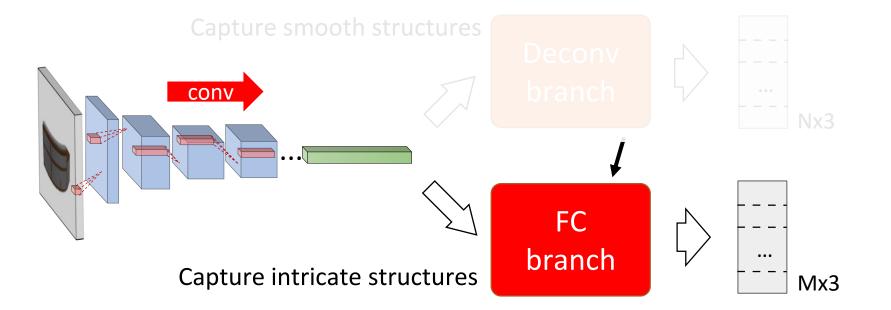
Set union by array concatenation

Deconvolution Branch



- Deconvolution induces a smooth coordinate map
- Geometrically, it learns a smooth parameterization

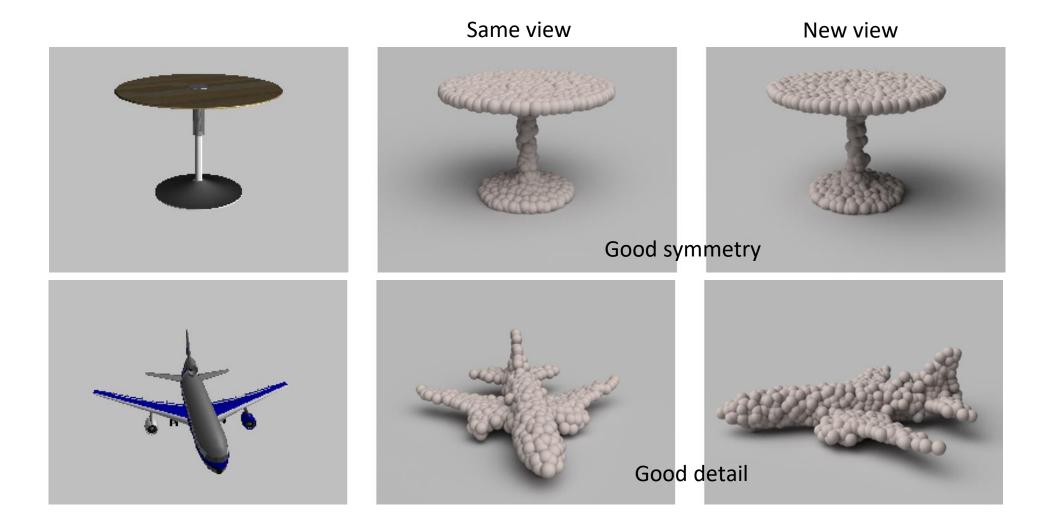
Fully-Connected Branch



The Two Branches

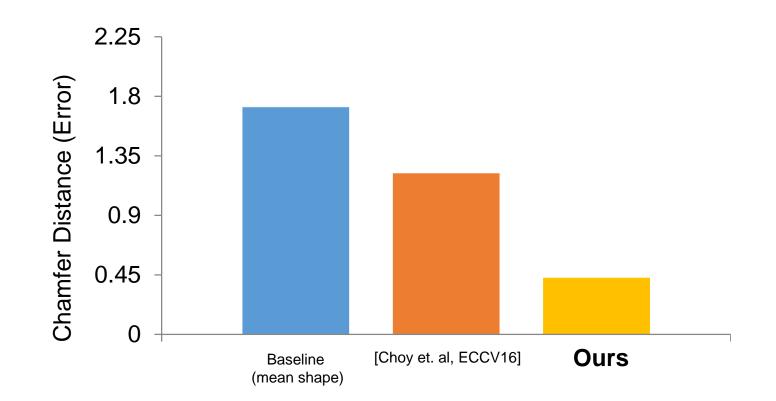
blue: deconv branch - large, consistent, smooth structures
red: fully-connected branch - more intricate structures

Example Results



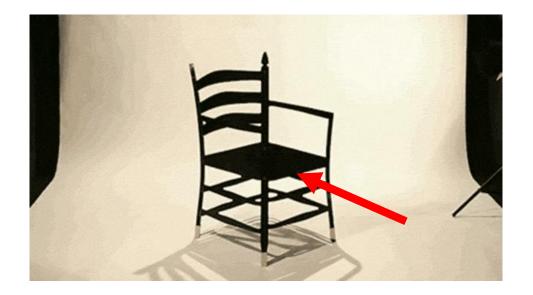
Comparison to State-of-the-Art

Trained/tested on 2K object categories

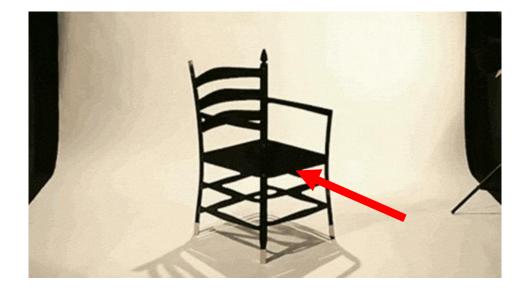


A fundamental issue: inherent ambiguity in prediction

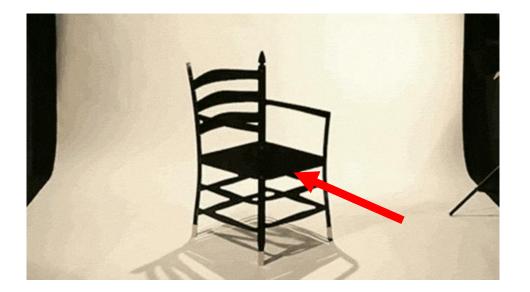
A fundamental issue: inherent ambiguity in prediction



A fundamental issue: inherent ambiguity in prediction



A fundamental issue: inherent ambiguity in prediction





 By loss minimization, the network tends to predict a "mean shape" that averages out uncertainty

Distance Metrics Affect Mean Shapes

The mean shape carries characteristics of the distance metric

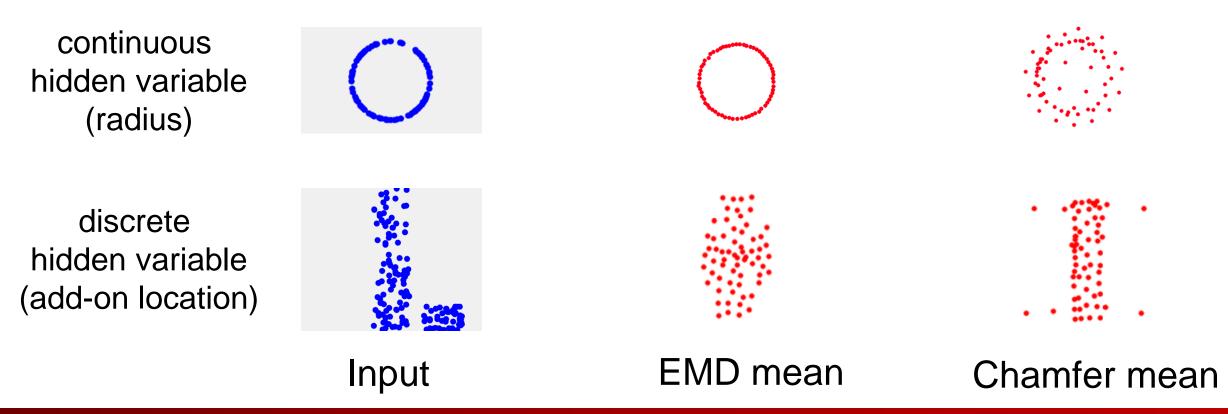
$$\bar{x} = \underset{x}{\operatorname{argmin}} \mathbb{E}_{s \sim \mathbb{S}}[d(x, s)]$$

continuous hidden variable (radius)

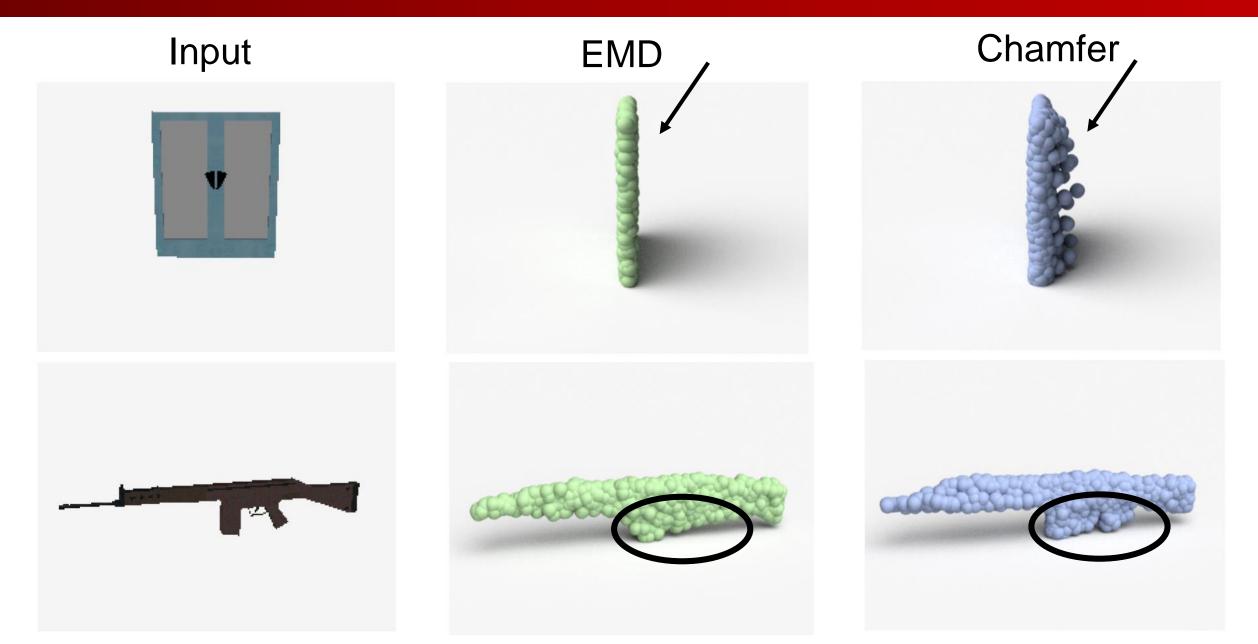
Distance Metrics Affect Mean Shapes

The mean shape carries characteristics of the distance metric

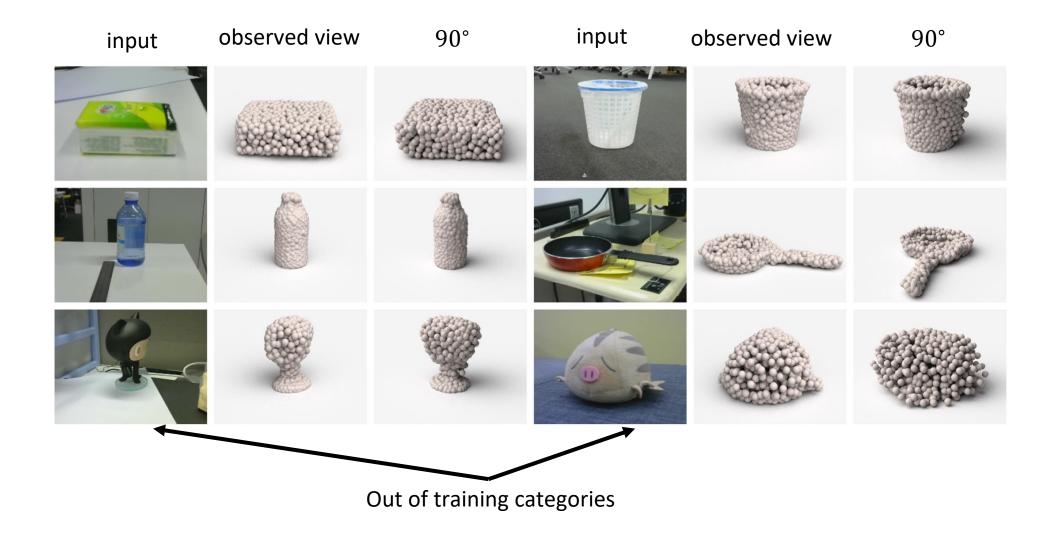
$$\bar{x} = \underset{x}{\operatorname{argmin}} \mathbb{E}_{s \sim \mathbb{S}}[d(x, s)]$$



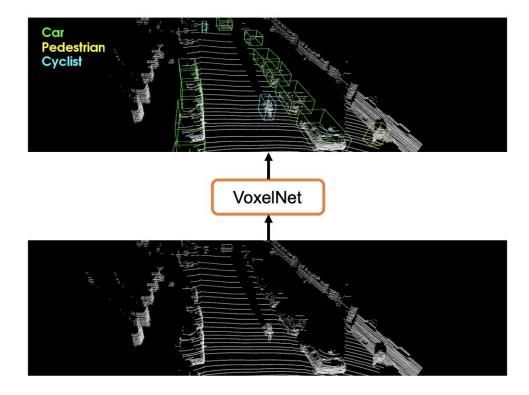
Comparison of Predictions by EMD versus CD

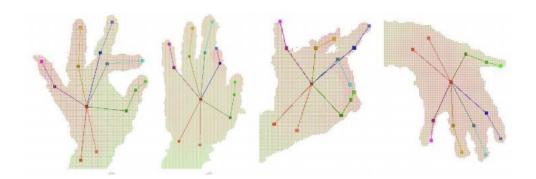


From Real Images



3D object & scene understanding

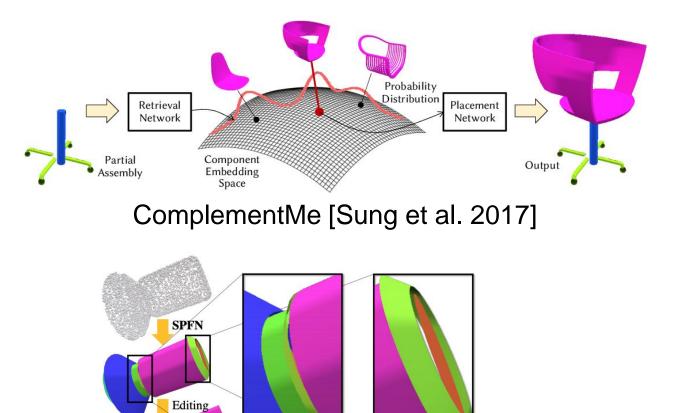


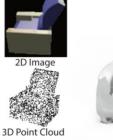


Hand Pose Estimation [Hand PointNet by Ge et al.]

3D Object Detection [VoxelNet by Yin et al.]

- 3D object & scene understanding
- Al-assisted shape design







(a) Possible Inputs (b) Output Mesh for 2D Image

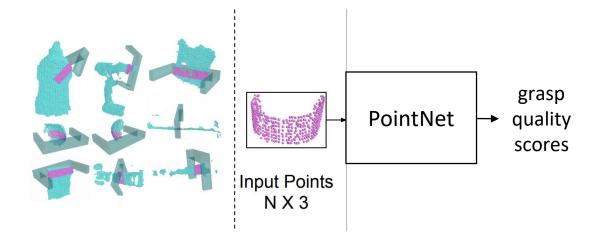
(c) Output Atlas (optimized)

(d) Textured Output

AtlasNet [Groueix et al. 2018]

Primitive fitting [Li et al. CVPR'19]

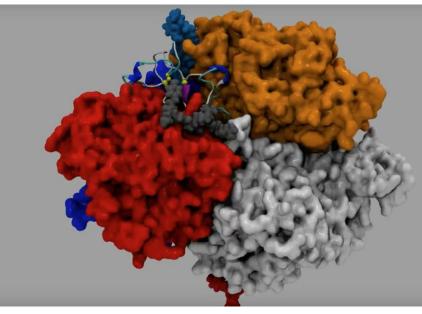
- 3D object & scene understanding
- Al-assisted shape design
- Robotics: grasping, manipulation and simulation



PointNetGPD by Liang et al. ICRA19

source: Ludovic Righetti

- 3D object & scene understanding
- Al-assisted shape design
- Robotics: grasping, manipulation and simulation
- Molecular biology: from structure to function



source: BPC@University Greifswald

Future Directions for Point Cloud Deep Learning

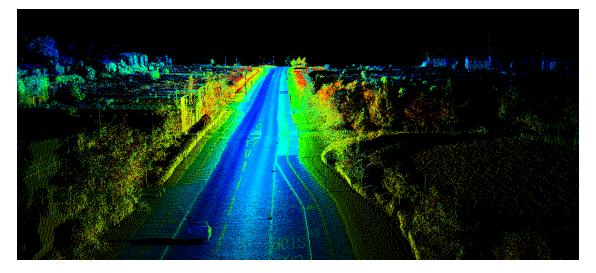
Scalability

How to scale up from processing 100k points to 1M or even 10M points?

(1024 x 1024 image ~= 1M pixels)

Trade-offs in neighborhood sampling More memory efficient operators

- Scalability
- Multi-modality

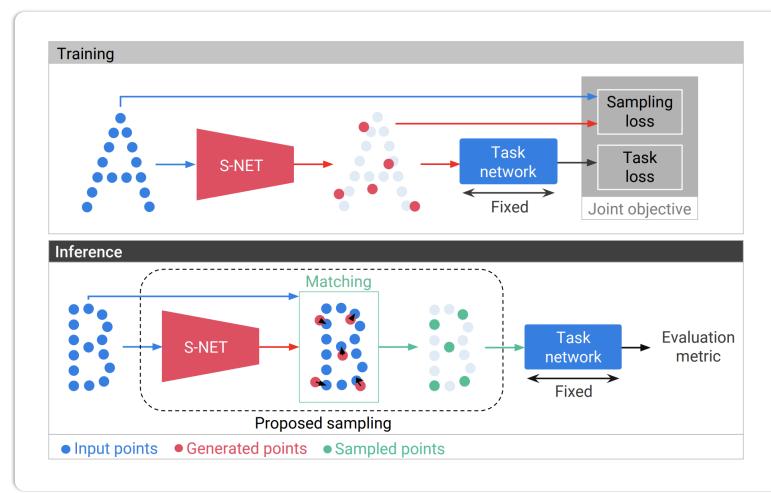


Lidar point clouds

RGB images High resolution Rich textures

Accurate depth Accurate 3D geometry

- Scalability
- Multi-modality
- Sampling



Learning to sample [Dovrat et al.]

General Set / Graph Processors

- Scalability
- Multi-modality
- Sampling
- Set processing

- Scalability
- Multi-modality
- Sampling
- Set processing
- Geometry generation

How to generate? How to measure quality?

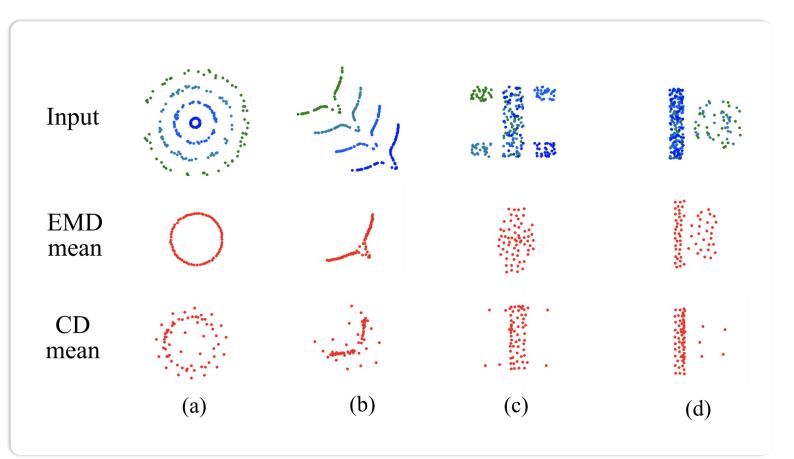


Figure from [Fan et al. CVPR 2017]

Code for PointNet, PointNet++ on GitHub

• <u>https://github.com/charlesq34/pointnet</u>

📮 charleso	34 / pointne	t				O Watch	108	★ Star	2,045	% Fork	802
<> Code	Issues 92	រ៉ា Pull request	s 3 🔲 Projec	ts 0 🕕 Se	ecurity Insigh	its					
PointNet: D	eep Learning o	n Point Sets fo	r 3D Classificati	on and Segn	nentation						
point-cloud	classification	segmentation	neural-network	tensorflow	geometry-processi	ng					

<u>https://github.com/charlesq34/pointnet2</u>

segmentation

📮 charlesq34 / pointnet2						• Watch	55	★ Star	1,152	8 Fork	442
<> Code	Issues 98	ן Pull requests 7	Projects 0	C Security	Insight	ts					

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

classification

point-cloud

deep-learning

🕝 51 commits	₽ 1 branch	\bigcirc 0 releases	4 3 contributors	ک ٹ View license

3d-shape

Acknowledgements

Googlepo

 Current/past students: Xingyu Liu, Kaichun Mo, Charles Qi, Hao Su, Minhyuk Sung, Eric Yi
 Current/past postdocs: Or Litany

Senior: Kaiming He

National Science Foundation

Charles Qi

Hao Su

ΤΟΥΟΤΑ

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/

