

Deep Learning for Graphics

Supervised Applications

Niloy Mitra

UCL

UCL/Facebook

lasonas Kokkinos

UCL

Paul Guerrero

Vladimir Kim Adobe Research Kostas Rematas U Washington Tobias Ritschel

facebook Artificial Intelligence Research

Timetable

	Niloy	lasonas	Paul	Vova	Kostas	Tobias
Introduction	Х	Х	Х			Х
Theory	Х					
NN Basics		Х				
Supervised Applications		Х	Х			Х
Data						Х
Unsupervised Applications			Х			
Beyond 2D	Х		Х	Х		
Outlook	Х	Х	Х	Х	Х	Х

Fully-Convolutional Network (FCN)

Fast (shared convolutions) Simple (dense)

EG Course Deep Learning for Graphics

FCN-based semantic segmentation

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. CVPR, 2015

FCN-CRFs: Deeplab

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille, Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, PAMI 2016

EG Course Deep Learning for Graphics

Deeplab v2 results

Ground truth FCN EG Course Deep Learning for Graphics

Deeplab v2 results

Ground truth

FCN-DCRF

EG Course Deep Learning for Graphics

FCN

Object Detection: Fast(er)-RCNN

- Fast/Faster R-CNN
 - ✓ Good speed
 - ✓ Good accuracy
 - ✓Intuitive
 - ✓ Easy to use

Ross Girshick. "Fast R-CNN". ICCV 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Mask R-CNN

• Mask R-CNN = Faster R-CNN with FCN on Rols

EG Course Deep Learning for Graphics

Mask R-CNN results on COCO

Mask R-CNN for Human Keypoint Detection

- 1 keypoint = 1-hot "mask"
- Human pose = 17 masks
- Softmax over spatial locations
 - e.g. 56²-way softmax on 56x56

EG Course "Deep Learning for Graphics"

Mask R-CNN frame-by-frame

Mask R-CNN frame-by-frame

UberNet: a "universal" network for all tasks

https://github.com/jkokkin/UberNet

I. Kokkinos, UberNet: Training a Universal CNN for Low-Mid- and High-Level Vision, CVPR 2017

EG Course Deep Learning for Graphics

What is the ultimate vision task?

"Inverse graphics": understand how an image was generated from a scene If we focus on a single object category: surface-based models

UberNet: Universal Network

DensePose: Unified model

DenseReg: dense image-to-face regression

EUROGRAPHICS 2018

EG Course Deep Learning for Graphics

DensePose: dense image-to-body correspondence

DensePose-RCNN Results

DensePose COCO Dataset

DensePose-RCNN: ~25 FPS

R. A. Guler, N. Neverova, I. Kokkinos "DensePose: Dense Human Pose Estimation In The Wild", CVPR'18

SFSNet: incorporating image formation in model

SfSNet: Learning Shape, Reflectance and Illuminance of Faces 'in the wild' Soumyadip Sengupta Angjoo Kanazawa Carlos D. Castillo David W. Jacobs, CVPR 2018

Beyond single frames: end-to-end optical flow

FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, Thomas Brox

University of Freiburg, Germany

– Supplementary Material ——

EG Course **Deep Learning for Graphics**

End-to-end Structure From Motion

- DeMoN: Depth and Motion Network for Learning Monocular Stereo, B. Ummenhofer, et al, CVPR 2017
- Unsupervised learning of depth and ego-motion from video, T Zhou, M Brown, N Snavely, DG Lowe, CVPR 2017

Monocular depth & normal estimation

• D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture, ICCV 2015

Graphics applications

EG Course "Deep Learning for Graphics"

Sketch Simplification

- Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simon-Serra et al., 2016
- Deep Extraction of Manga Structural Lines, Li et al., 2017

Sketch Simplification: Learning to Simplify

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

Sketch Simplification: Learning to Simplify

- Loss for thin edges saturates easily
- Authors take extra steps to align input and ground truth edges

Pencil: input Red: ground truth

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

Image Decomposition

- A selection of methods:
- Direct Instrinsics, Narihira et al., 2015
- Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition, Zhou et al., 2015
- Decomposing Single Images for Layered Photo Retouching, Innamorati et al. 2017

Image Decomposition: Decomposing Single Images for Layered Photo Retouching

Colorization

- Concurrent methods:
 - Let there be Color!, lizuka et al., 2016
 - Colorful Image Colorization, Zhang et al. 2016
 - Learning Representations for Automatic Colorization, Larsson et al., 2016
 - *Real-Time User-Guided Image Colorization with Learned Deep Priors,* Zhang et al. 2017

Colorization: Let There Be Color!

Let there be Color !: lizuka et al.

Colorization: Colorful Image Colorization

Image Credit: Colorful Image Colorization, Zhang et al.

Mesh Labeling / Segmentation

3D Mesh Labeling via Deep Convolutional Neural Networks, Guo et al. 2016

Mesh Labeling / Segmentation

3D Mesh Labeling via Deep Convolutional Neural Networks, Guo et al.

LDR to HDR Image Reconstruction:

- Concurrently:
- Deep Reverse Tone Mapping, Endo et al. 2017
- HDR image reconstruction from a single exposure using deep CNNs, Eilertsen et al. 2017

Reflectance Maps

 Paint a sphere as if it is made of a material under a certain illumination of another object in a photo

Deep Reflectance Maps. Rematas et al. CVPR 2015

DeLight

• Factor BRDF and (HDR) Illumination

Reflectance and Natural Illumination from Single-Material Specular Objects Using Deep Learning. Georgoulis et al. PAMI 2017

3D volumes form Xrays

Single-Image Tomography: 3D Volumes from 2D Cranial X-Rays. Henzler et al. EG 2018

Deep Shading

• Paint a z-buffer like a path tracer (AO, DOF, MB)

Deep Shading, Nalbach et al. EGSR 2017

Rendering Atmospherics

Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting Neural Networks, Kallweit et al. SIGGRAPH Asia 2017

Speed up approx. 24 x

Speed up approx. 24 x

Rendering Atmospherics: RPNN

In: Hierarchical representation of a cloud patch **Out:** incoming indirect radiance at patch center (incoming direct radiance is computed directly)

Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting Neural Networks, Kallweit et al. SIGGRAPH Asia 2017

Denoising Renderings

- Concurrent:
- Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al. 2017
- Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder, Chaitanya et al. 2017 (more on Autoencoders later)

TRAINING Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al.

Denoising Renderings:

Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al. SIGGRAPH 2017

Geometry Abstraction / Simplification

Learning Shape Abstractions by Assembling Volumetric Primitives, Tulsiani et al. 2016

Geometry Abstraction / Simplification:

Learning Shape Abstractions by Assembling Volumetric Primitives, Tulsiani et al. 2016

Procedural Parameter Estimation

Interactive Sketching of Urban Procedural Models, Nishida et al. 2016

Procedural Parameter Estimation: Interactive Sketching of Urban Procedural Models

Interactive Sketching of Urban Procedural Models, Nishida et al.

Audio-driven facial animation

Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion, Karras et al. 2017

3D Pose Estimation: VNECT

VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera, Mehta et al., SIGGRAPH 2017

Thank you!

http://geometry.cs.ucl.ac.uk/dl4g/

