

Deep Learning for Graphics

Unsupervised Learning

Niloy Mitra

UCL

Iasonas Kokkinos

UCL/Facebook

Paul Guerrero

UCL

Vladimir Kim

Adobe Research

Kostas Rematas

U Washington

Tobias Ritschel

UCL

facebookArtificial Intelligence Research

Timetable

	Niloy	lasonas	Paul	Vova	Kostas	Tobias
Introduction	X	X	X			X
Theory	X					
NN Basics		X				X
Supervised Applications		X	X			
Data						X
Unsupervised Applications			X			
Beyond 2D	X			X		
Outlook	X	X	X	X	X	X

Unsupervised Learning

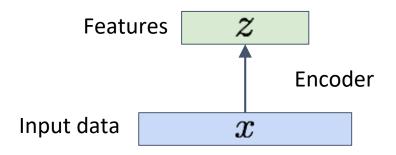
There is no direct ground truth for the quantity of interest

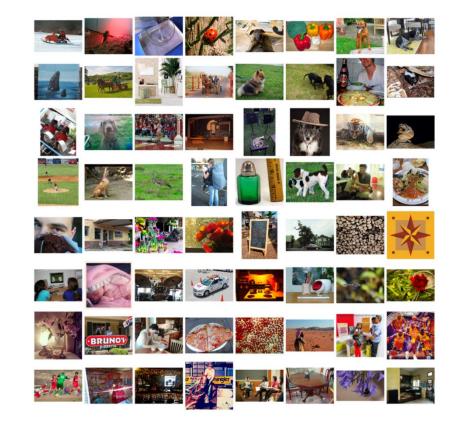
- Autoencoders
- Variational Autoencoders (VAEs)
- Generative Adversarial Networks (GANs)

Autoencoders

Goal: Meaningful features that capture the main factors of variation in the dataset

- These are good for classification, clustering, exploration, generation, ...
- We have no ground truth for them

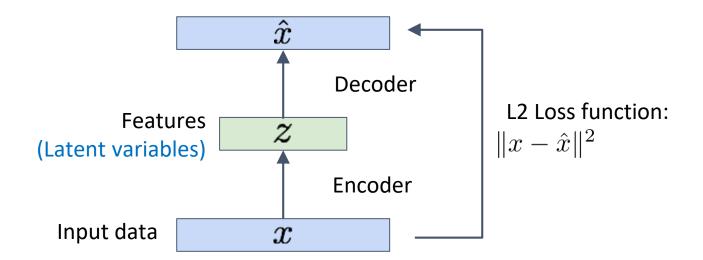


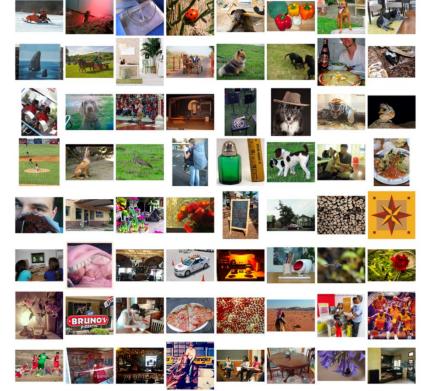


Autoencoders

Goal: Meaningful features that capture the main factors of variation

Features that can be used to reconstruct the image

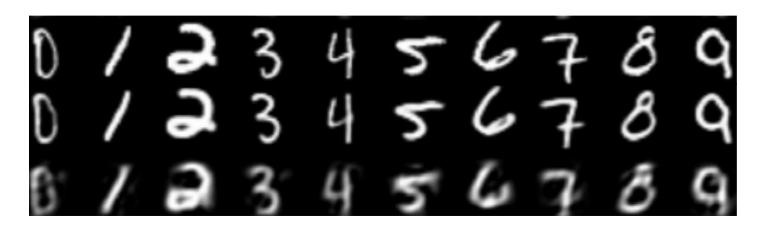




Autoencoders

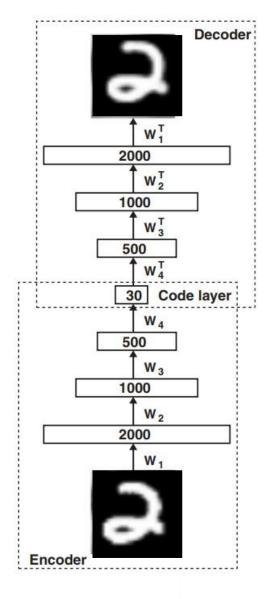
Linear Transformation for Encoder and Decoder give result close to PCA

Deeper networks give better reconstructions, since basis can be non-linear



Original
Autoencoder

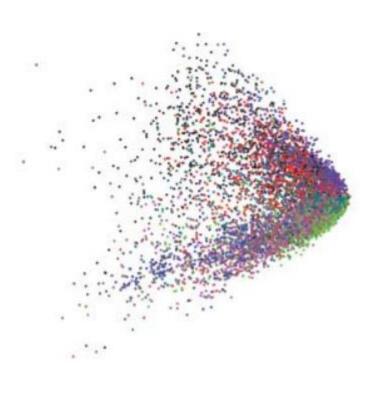
PCA

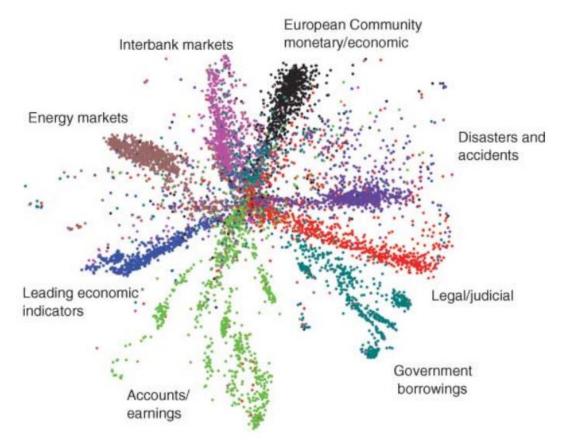


Example: Document Word Prob. → **2D Code**

LSA (based on PCA)

Autoencoder



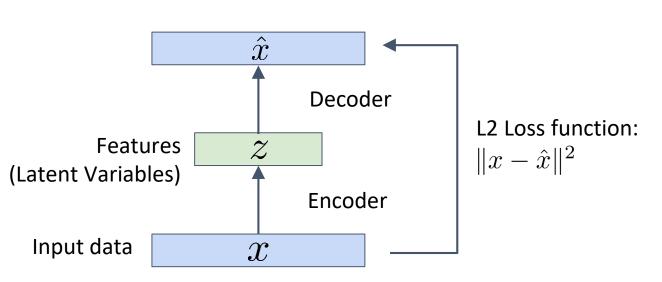


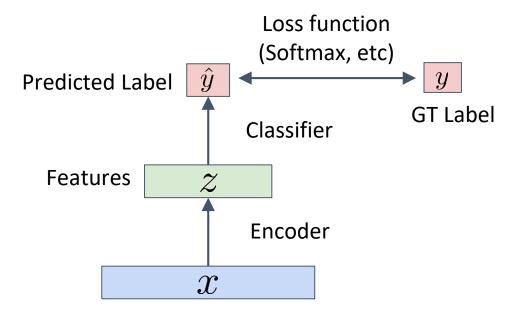
Example: Semi-Supervised Classification

Many images, but few ground truth labels

start unsupervised train autoencoder on many images

supervised fine-tuning train classification network on labeled images

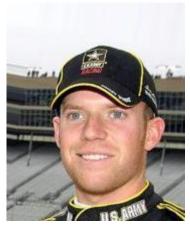


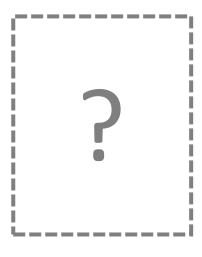


Code example

Autoencoder (autoencoder.ipynb)

- ullet Assumption: the dataset are samples from an unknown distribution $p_{
 m data}(x)$
- Goal: create a new sample from $p_{\mathrm{data}}(x)$ that is not in the dataset





Dataset

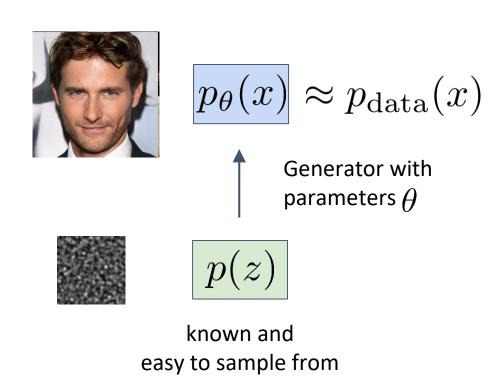
Generated

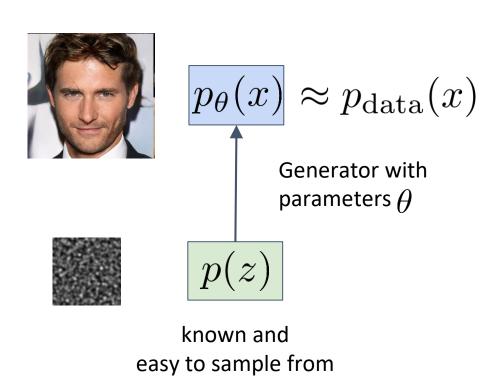
- ullet Assumption: the dataset are samples from an unknown distribution $p_{
 m data}(x)$
- Goal: create a new sample from $p_{\mathrm{data}}(x)$ that is not in the dataset



Dataset

Generated





How to measure similarity of $p_{ heta}(x)$ and $p_{ ext{data}}(x)$?

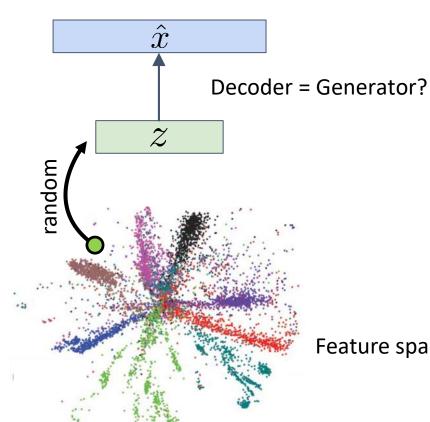
1) Likelihood of data in $p_{ heta}(x)$

Variational Autoencoders (VAEs)

2) Adversarial game: Discriminator distinguishes $p_{\theta}(x)$ and $p_{\mathrm{data}}(x)$ vs $p_{\mathrm{data}}(x)$ hard to distinguish

Generative Adversarial Networks (GANs)

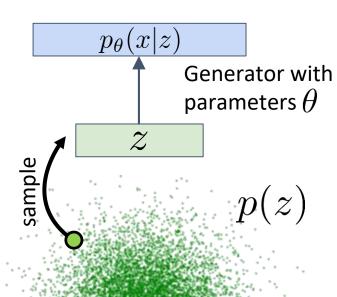
Autoencoders as Generative Models?



- A trained decoder transforms some features z to approximate samples from $p_{\mathrm{data}}(x)$
- What happens if we pick a random z?
- We do not know the distribution p(z) of features that decode to likely samples

Feature space / latent space

Variational Autoencoders (VAEs)



- ullet Pick a parametric distribution $\,p(z)$ for features
- The generator maps p(z) to an image distribution $p_{\theta}(x)$ (where θ are parameters)

$$p_{\theta}(x) = \int p_{\theta}(x|z) \ p(z) \ dz$$

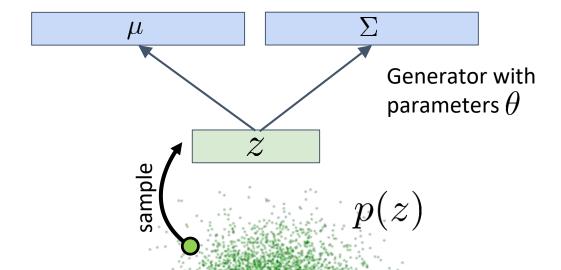
• Train the generator to maximize the likelihood of the data in $p_{\theta}(x)$:

$$\max_{\theta} \sum_{x \in \text{data}} \log p_{\theta}(x)$$

Outputting a Distribution

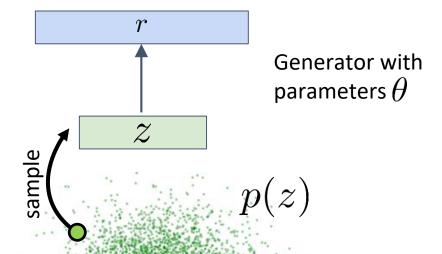
Normal distribution

$$p_{\theta}(x|z) = N(x; \mu(z), \Sigma(z))$$



Bernoulli distribution

$$p_{\theta}(x|z) = Bern(x; r(z))$$



Variational Autoencoders (VAEs): Naïve Sampling (Monte-Carlo)

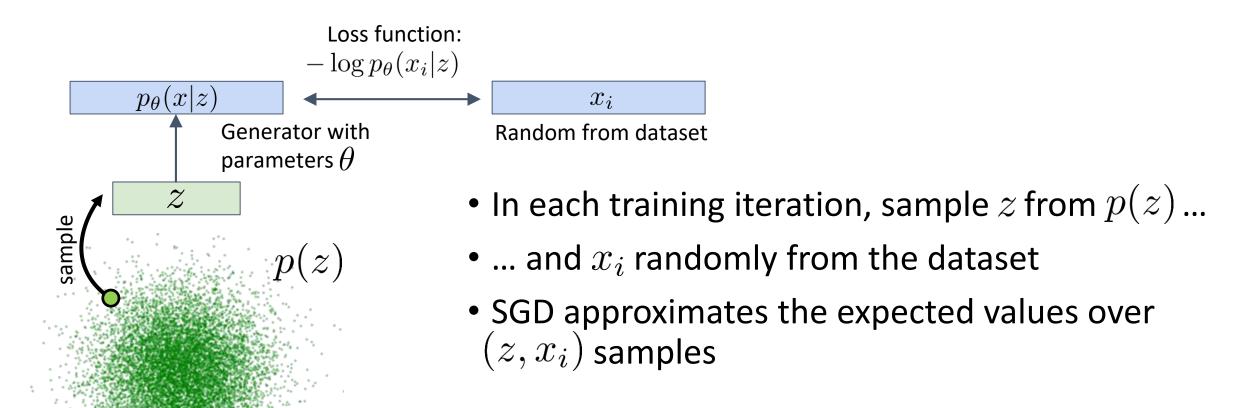
$$p_{\theta}(x) = \int p_{\theta}(x|z) \ p(z) \ dz$$
$$\max_{\theta} \sum_{x \in \text{data}} \log p_{\theta}(x)$$

$$\theta^* = \arg\max_{\theta} \sum_{x \in \text{data}} \log \int p_{\theta}(x|z) \ p(z) \ dz$$
$$\theta^* \approx \arg\max_{\theta} \mathbb{E}_{x_i \sim p_{\text{data}}(x)} \mathbb{E}_{z \sim p(z)} \log p_{\theta}(x_i|z)$$

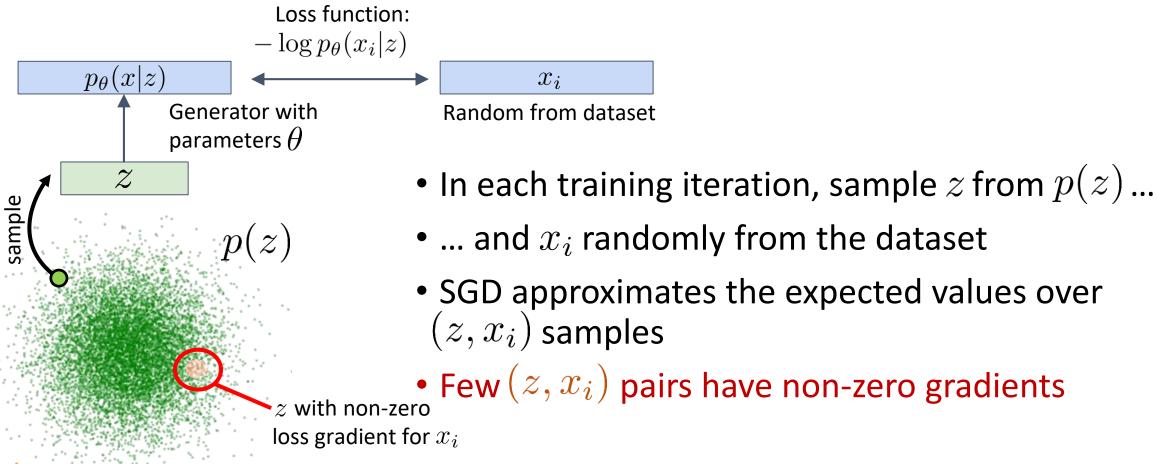
- SGD approximates the expected values over (z,x_i) samples
- In each training iteration, sample z from $p(z) \dots$
- ... and x_i randomly from the dataset, and maximize:

$$\max_{\theta} \log p_{\theta}(x_i|z)$$

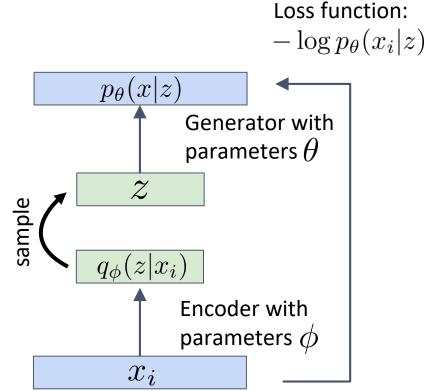
Variational Autoencoders (VAEs): Naïve Sampling (Monte-Carlo)



Variational Autoencoders (VAEs): Naïve Sampling (Monte-Carlo)



Variational Autoencoders (VAEs): The Encoder



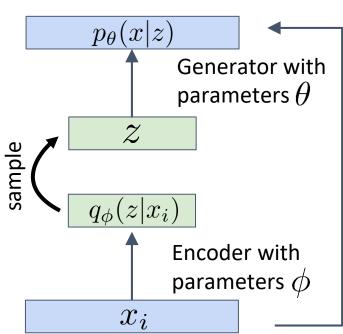
$$p_{\theta}(x) = \int p_{\theta}(x|z) \ p(z) \ dz$$

- During training, another network can guess a good z for a given x_i
- $q_{\phi}(z|x_i)$ should be much smaller than p(z)
- ullet This also gives us the data point x_i

Variational Autoencoders (VAEs): The Encoder

Loss function:

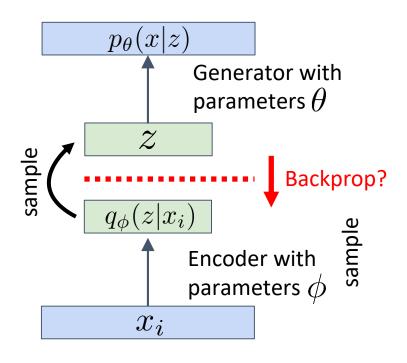
$$-\log p_{\theta}(x_i|z) + KL(q_{\phi}(z|x_i) \parallel p(z))$$



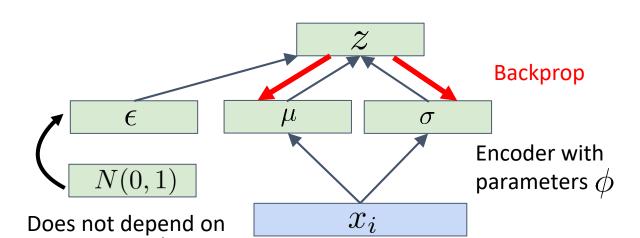
- Can we still easily sample a new z?
- Need to make sure $q_{\phi}(z|x_i)$ approximates p(z)
- Regularize with KL-divergence
- Negative loss can be shown to be a lower bound for the likelihood, and equivalent if

$$q_{\phi}(z|x) = p_{\theta}(z|x)$$

Reparameterization Trick

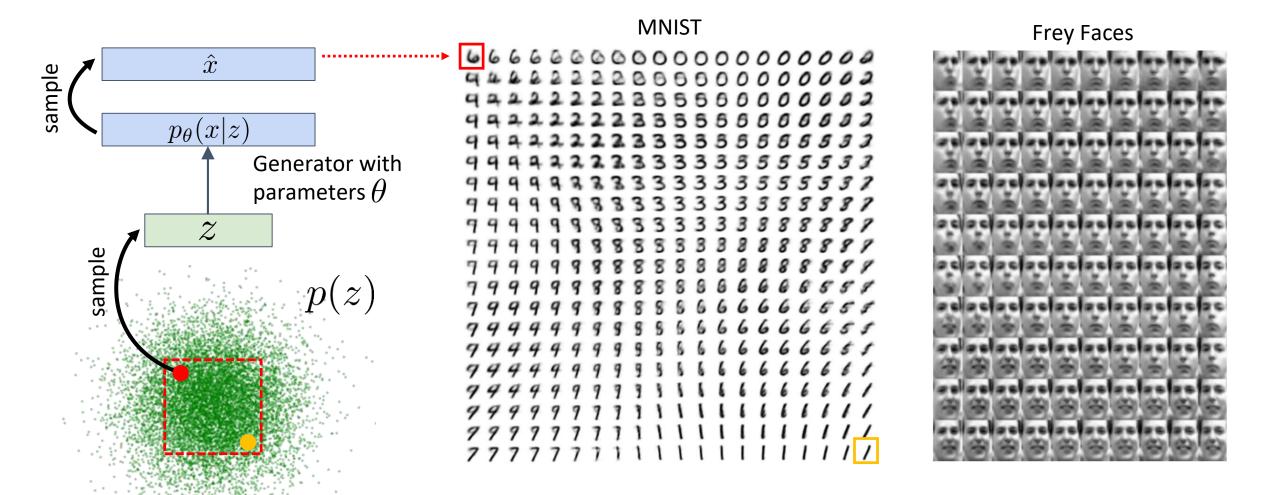


Example when $q_\phi(z|x_i)=N(z;\mu(x_i),\sigma(x_i))$: $z=\sigma+\mu\cdot\epsilon \text{ , where }\epsilon\sim N(0,1)$ $\partial z \quad \partial \mu \quad \partial \sigma$



parameters ϕ

Generating Data



Demos

VAE on MNIST

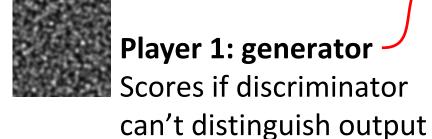
VAE on Faces

http://vdumoulin.github.io/morphing faces/online demo.html

Code example

Variational Autoencoder (variational_autoencoder.ipynb)

Generative Adversarial Networks

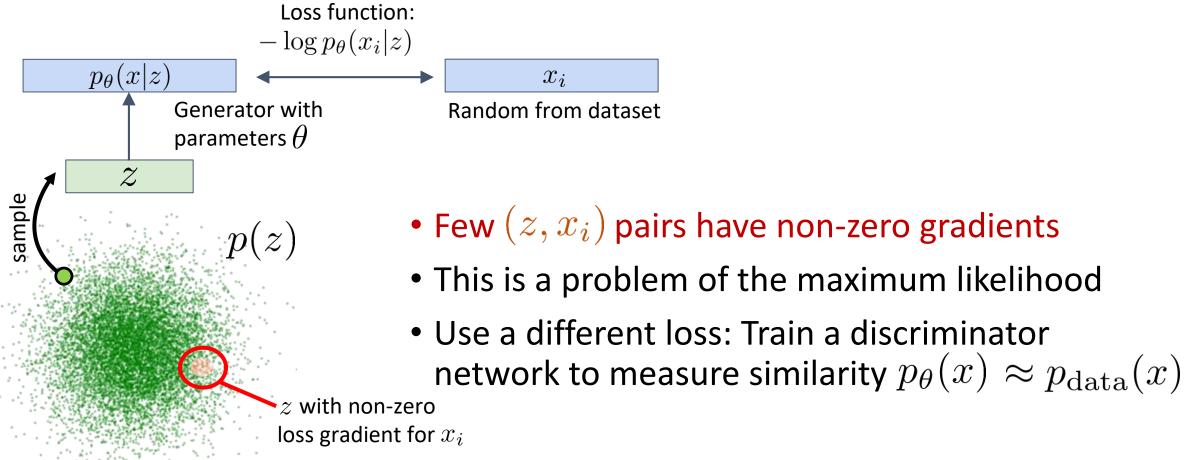


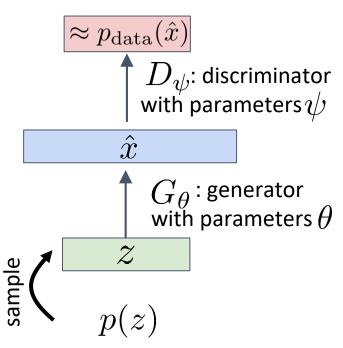
from real image

from dataset

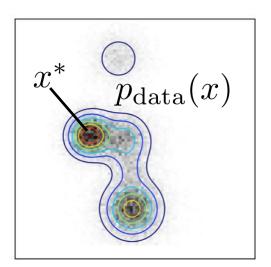
Player 2: discriminator → real/fake Scores if it can distinguish between real and fake

Naïve Sampling Revisited

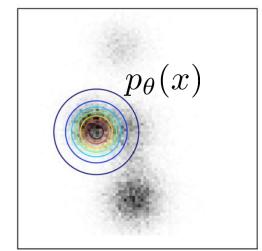




- If discriminator approximates $p_{\rm data}(x)$:
- $ullet x^*$ at maximum of $p_{\mathrm{data}}(x)$ has lowest loss
- Optimal $p_{\theta}(x)$ has single mode at x^* , small variance

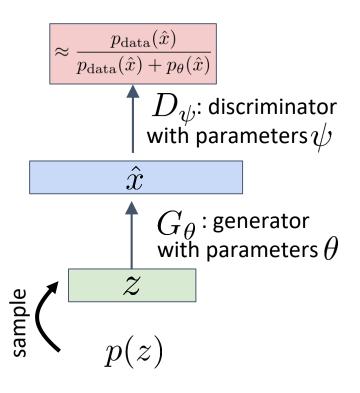


$$D_{\psi} \approx p_{\rm data}(\hat{x})$$



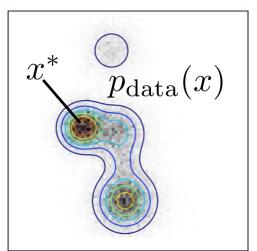
EG Course "Deep Learning for Graphics"

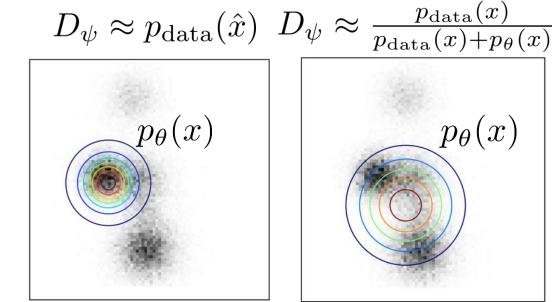
Image Credit: How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?, Ferenc Huszár

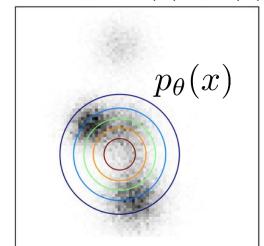


For GANs, the discriminator instead approximates:

$$\frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\theta}(x)} \longrightarrow \text{depends on the generator}$$

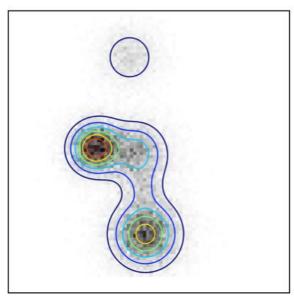


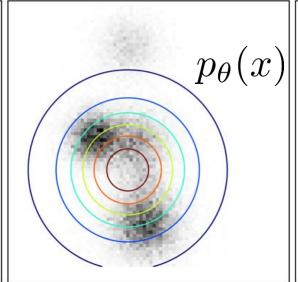


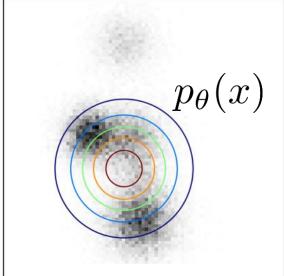


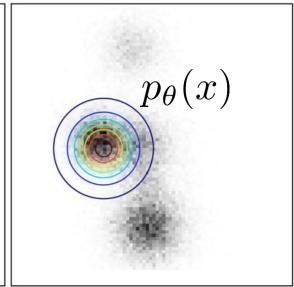
EG Course "Deep Learning for Graphics"

Image Credit: How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?, Ferenc Huszár







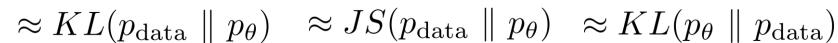


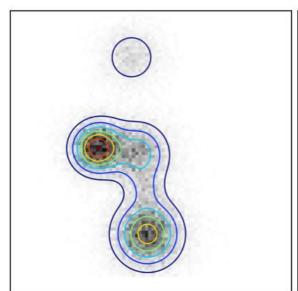
 $p_{\text{data}}(x)$

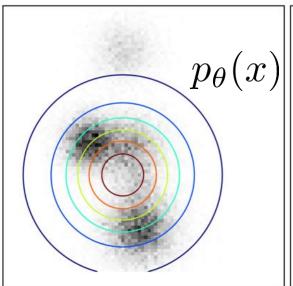
VAEs: Maximize likelihood of data samples in $p_{\theta}(x)$

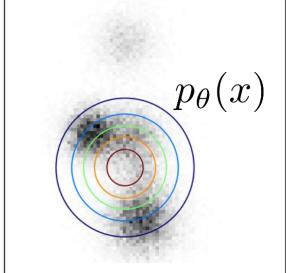
GANs: Adversarial game

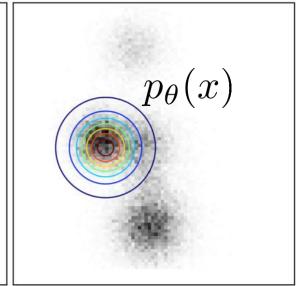
Maximize likelihood of generator samples in approximate $p_{\rm data}(x)$











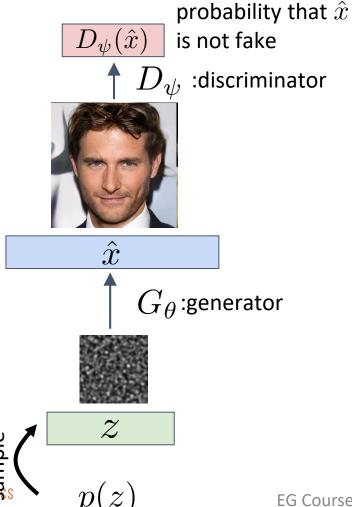
 $p_{\text{data}}(x)$

VAEs: Maximize likelihood of data samples in $p_{\theta}(x)$

GANs: Adversarial game

Maximize likelihood of generator samples in approximate $p_{\rm data}(x)$

GAN Objective



fake/real classification loss (BCE):

$$L(\theta, \psi) = -0.5 \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\psi}(x)$$
$$-0.5 \mathbb{E}_{x \sim p_{\theta}} \log(1 - D_{\psi}(x))$$

Discriminator objective:

$$\min_{\psi} L(\theta, \psi)$$

Generator objective:

$$\max_{\theta} L(\theta, \psi)$$

EG Course "Deep Learning for Graphics"

Non-saturating Heuristic

$$L(\theta, \psi) = -0.5 \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\psi}(x) -0.5 \mathbb{E}_{x \sim p_{\theta}} \log(1 - D_{\psi}(x))$$

Generator loss is negative binary cross-entropy:

$$L_G(\theta, \psi) = 0.5 \, \mathbb{E}_{x \sim p_{\theta}} \, \log(1 - D_{\psi}(x))$$
 poor convergence

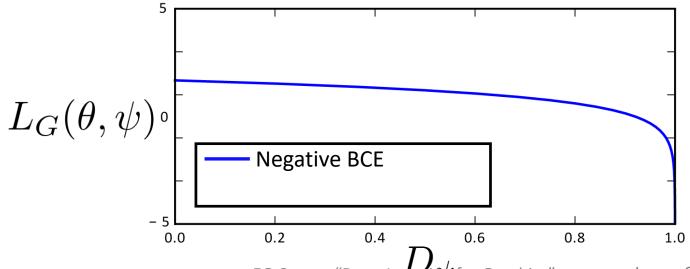


Image Credit: NIPS 2016 Tutorial: Generative Adversarial Networks, Ian Goodfellow

Non-saturating Heuristic

Generator loss is negative binary cross-entropy:

$$L_G(\theta, \psi) = 0.5 \ \mathbb{E}_{x \sim p_{\theta}} \ \log(1 - D_{\psi}(x))$$
 poor convergence

Flip target class instead of flipping the sign for generator loss:

$$L_G(\theta, \psi) = -0.5 \, \mathbb{E}_{x \sim p_\theta} \, \log D_\psi(x)$$
 good convergence – like BCE

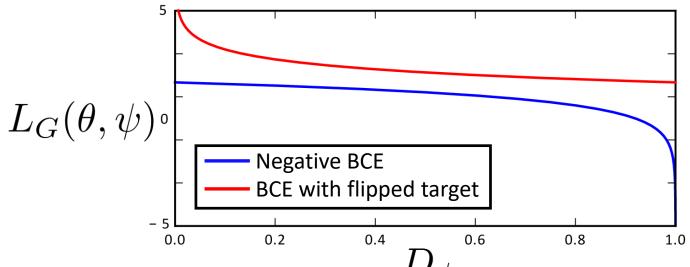
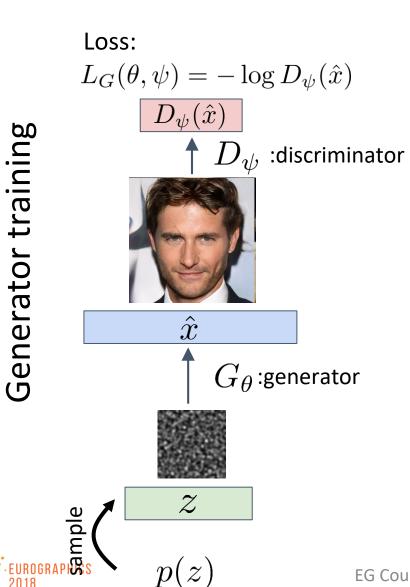


Image Credit: NIPS 2016 Tutorial: Generative Adversarial Networks, Ian Goodfellow

GAN Training

Generator training

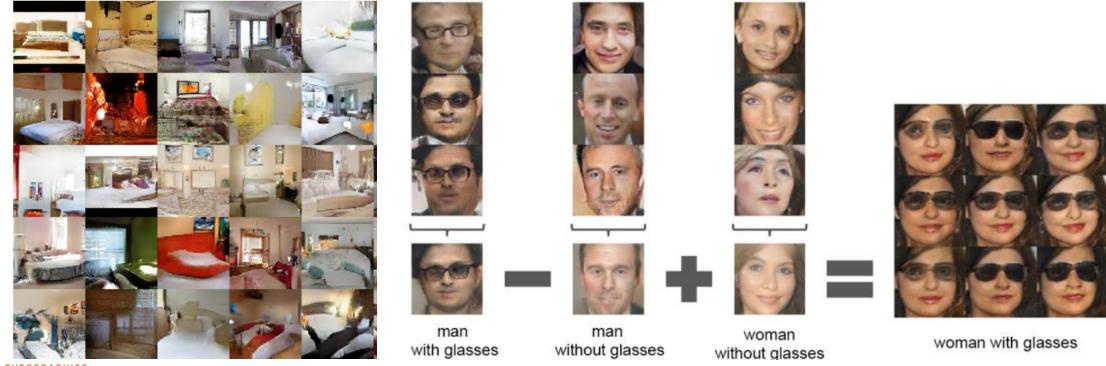


Loss: $L_D(\theta, \psi) = -0.5 \log(1 - D_{\psi}(\hat{x})) - 0.5 \log D_{\psi}(x_i)$ $D_{\psi}(\hat{x})$ $D_{\psi}(x_i)$ Discriminator training D_{ψ} :discriminator \hat{x} x_i from dataset

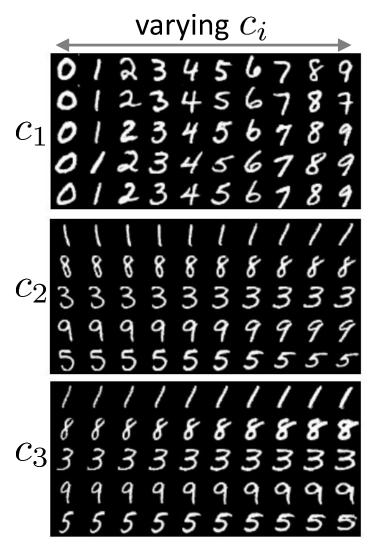
Interleave in each training step

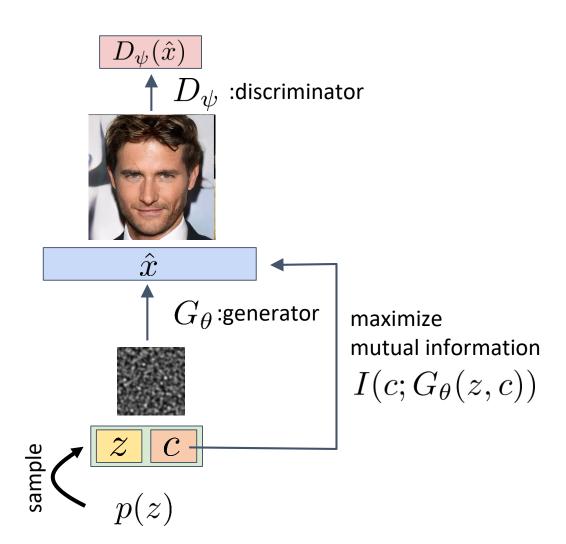
DCGAN

- First paper to successfully use CNNs with GANs
- Due to using novel components (at that time) like batch norm., ReLUs, etc.



InfoGAN





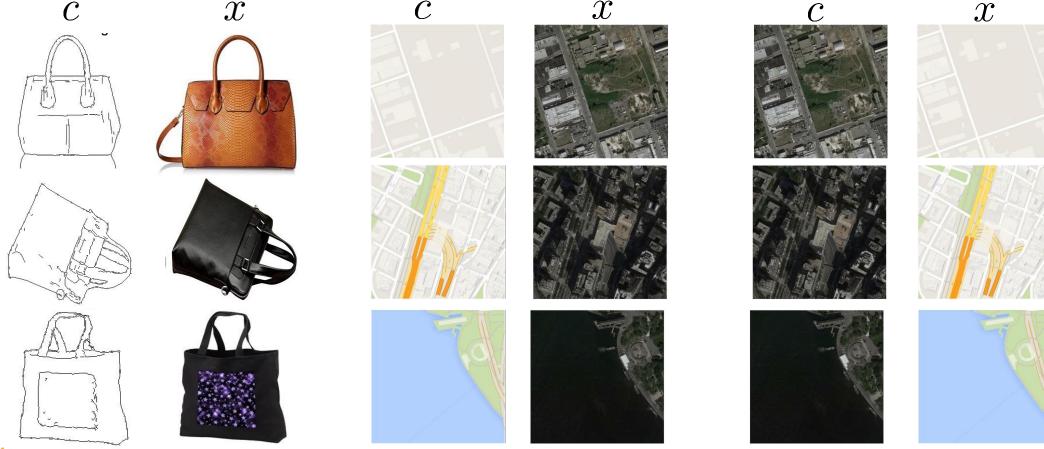
Code example

Generative Adversarial Network (gan.ipynb)

Conditional GANs (CGANs)

• ≈ learn a mapping between images from example pairs

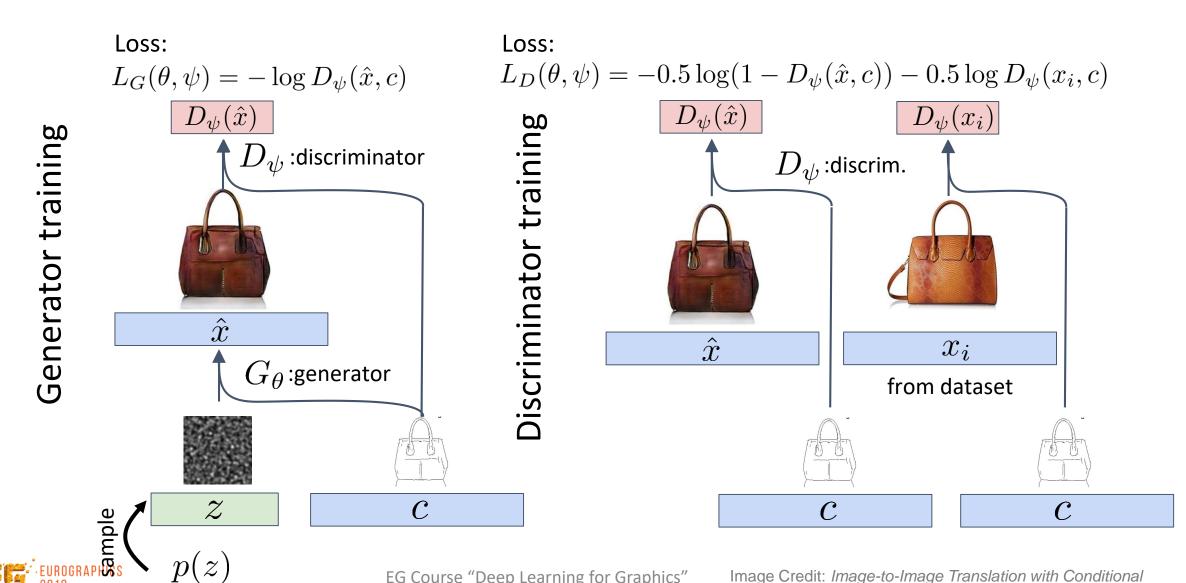
• Approximate sampling from a conditional distribution $p_{\mathrm{data}}(x \mid c)$

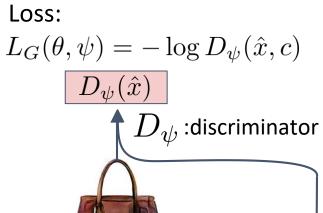


EG Course "Deep Learning for Graphics"

Image Credit: *Image-to-Image Translation with Conditional Adversarial Nets*, Isola et al.

Conditional GANs





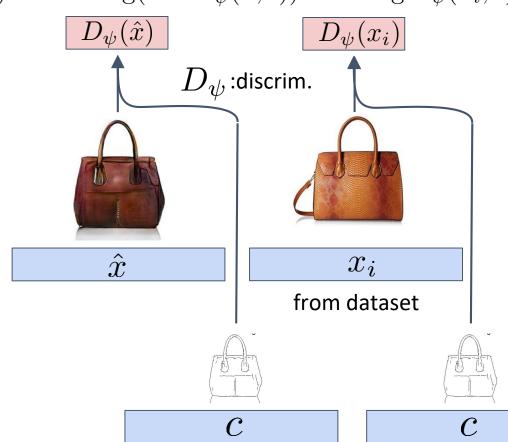
 $G_{ heta}$:generator

z is often omitted in favor of dropout in the generator

Loss:

$$L_D(\theta, \psi) = -0.5 \log(1 - D_{\psi}(\hat{x}, c)) - 0.5 \log D_{\psi}(x_i, c)$$

Discriminator training



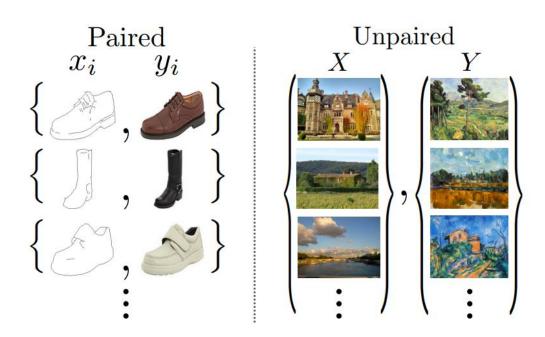
Demos

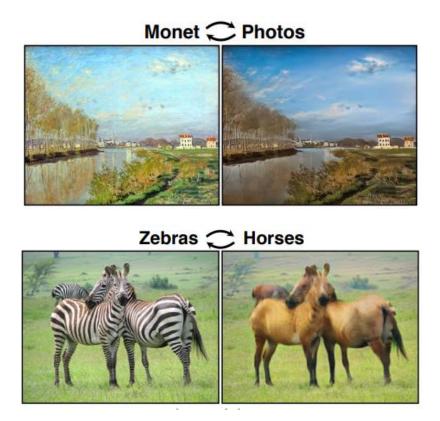
CGAN

https://affinelayer.com/pixsrv/index.html

CycleGANs

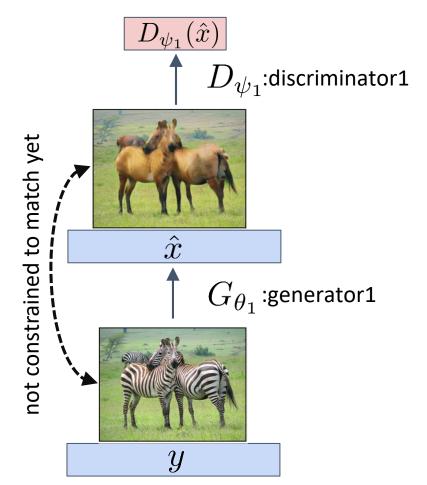
- Less supervision than CGANs: mapping between unpaired datasets
- Two GANs + cycle consistency

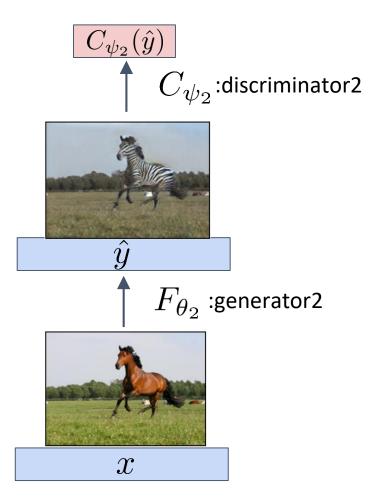




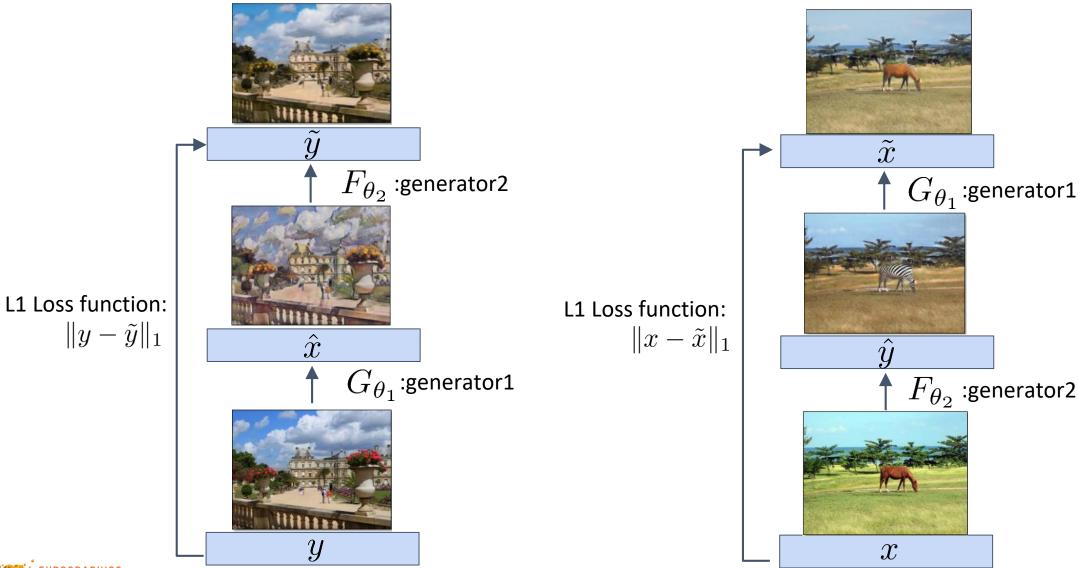
CycleGAN: Two GANs ...

• Not conditional, so this alone does not constrain generator input and output to match





CycleGAN: ... and Cycle Consistency



Unstable Training

GAN training can be unstable

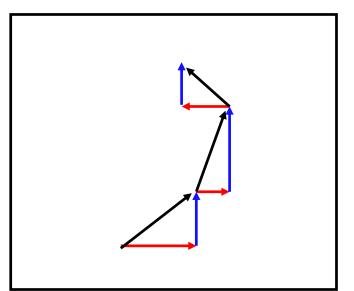
Three current research problems (may be related):

- ullet Reaching a Nash equilibrium (the gradient for both L_G and L_D is 0)
- p_{θ} and p_{data} initially don't overlap
- Mode Collapse

GAN Training

- Vector-valued loss: $\mathbf{L}(\theta, \psi) = \begin{pmatrix} L_G(\theta, \psi) \\ L_D(\theta, \psi) \end{pmatrix}$
- In each iteration, gradient descent approximately follows this vector over the parameter space (θ, ψ) :

$$\mathbf{V}(\theta, \psi) = \begin{pmatrix} \frac{\partial}{\partial \theta} L_G(\theta, \psi) \\ \frac{\partial}{\partial \psi} L_D(\theta, \psi) \end{pmatrix} \psi$$



$$\frac{\partial}{\partial \theta} L_G(\theta, \psi)$$

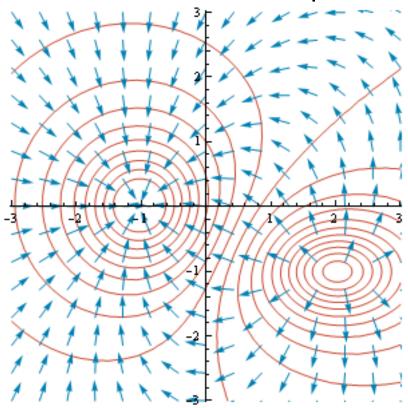
$$\frac{\partial}{\partial \psi} L_D(\theta, \psi)$$

$$\mathbf{V}(\theta, \psi)$$

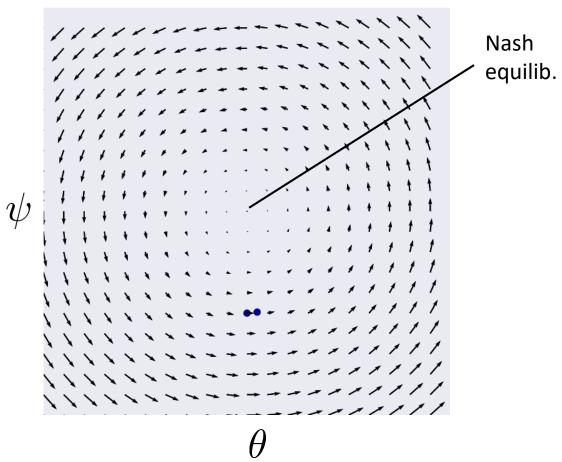
$$\rightarrow \frac{\partial}{\partial \psi} L_D(\theta, \psi)$$

$$\rightarrow \mathbf{V}(\theta, \psi)$$

Reaching Nash Equilibrium

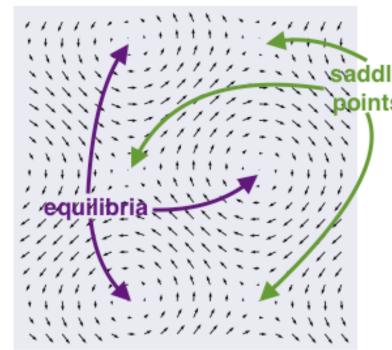


$\mathbf{V}(heta,\psi)$ Example



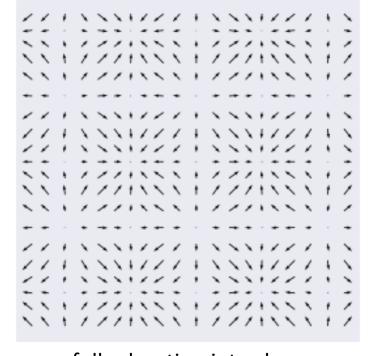
Reaching Nash Equilibrium

Solution attempt: relaxation with term: $-\nabla L = \frac{\partial}{\partial \theta} \left\| \mathbf{V}(\theta, \psi) \right\|_2^2$



no relaxation has cycles

Conservative field $-\nabla L$

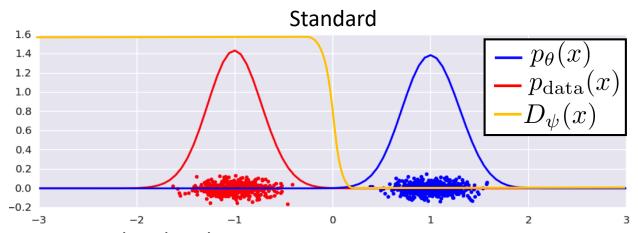


full relaxation introduces bad Nash equilibria

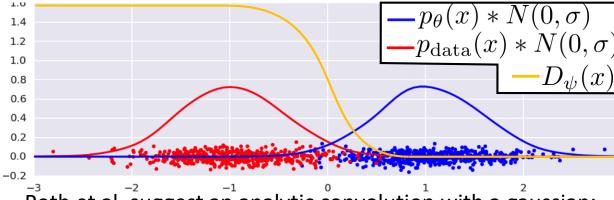
Combined field $v - 0.6\nabla L$

mixture works sometimes

Generator and Data Distribution Don't Overlap

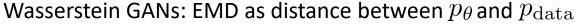


Instance noise: adding noise to generated and real images



Roth et al. suggest an analytic convolution with a gaussian:

Stabilizing Training of Generative Adversarial Networks through Regularization, Roth et al. 2017



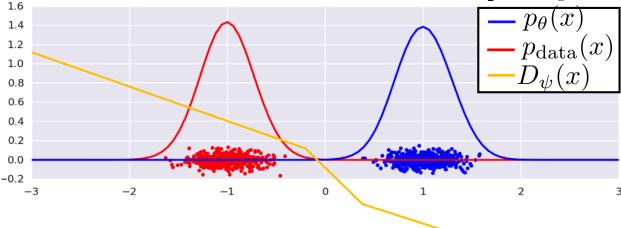
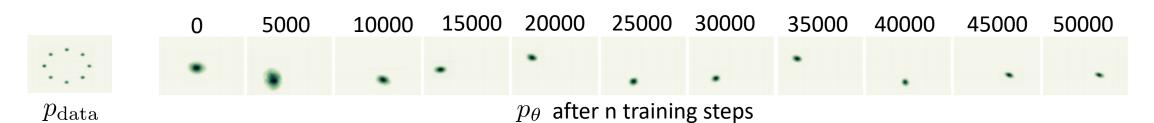


Image Credit: Amortised MAP Inference for Image Superresolution, Sønderby et al.

Mode Collapse

Optimal
$$D_{\psi}(x)$$
:
$$\frac{p_{\mathrm{data}}(x)}{p_{\mathrm{data}}(x) + p_{\theta}(x)}$$

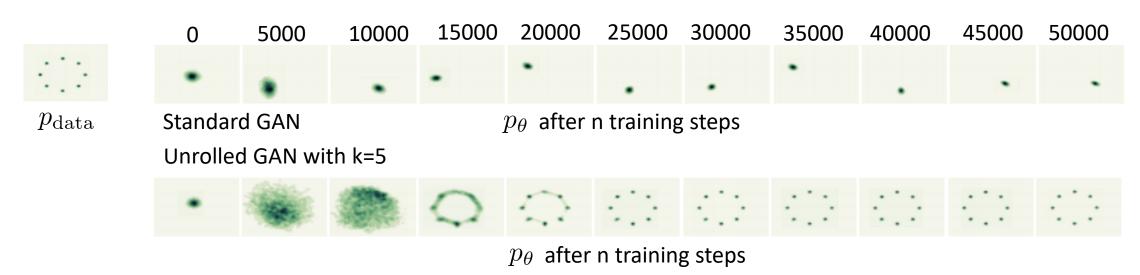
 p_{θ} only covers one or a few modes of p_{data}



Mode Collapse

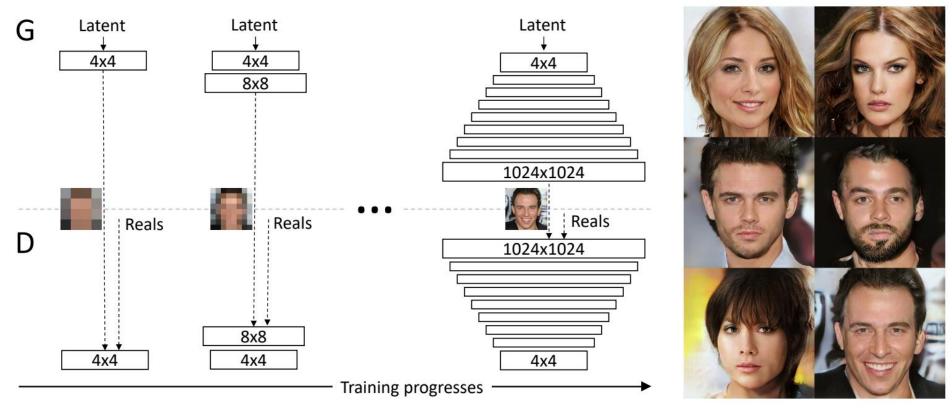
Solution attempts:

- Minibatch comparisons: Discriminator can compare instances in a minibatch (*Improved Techniques for Training GANs*, Salimans et al.)
- Unrolled GANs: Take k steps with the discriminator in each iteration, and backpropagate through all of them to update the generator



Progressive GANs

- Resolution is increased progressively during training
- Also other tricks like using minibatch statistics and normalizing feature vectors



Disentanglement

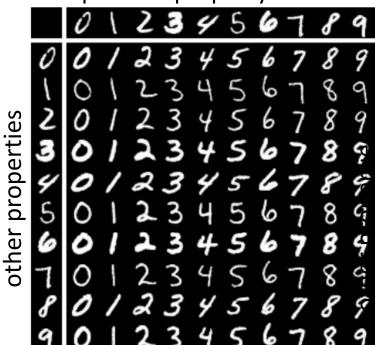
z

 $z_a z_b \cdots$

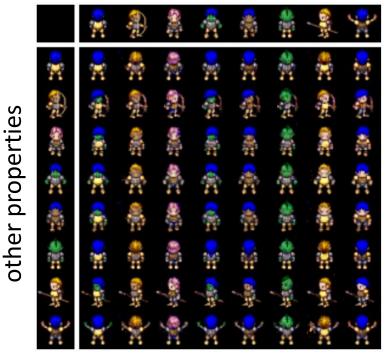
Entangled: different properties may be mixed up over all dimensions

Disentangled: different properties are in different dimensions

specified property: number



specified property: character



Summary

- Autoencoders
 - Can infer useful latent representation for a dataset
 - Bad generators
- VAEs
 - Can infer a useful latent representation for a dataset
 - Better generators due to latent space regularization
 - Lower quality reconstructions and generated samples (usually blurry)
- GANs
 - Can not find a latent representation for a given sample (no encoder)
 - Usually better generators than VAEs
 - Currently unstable training (active research)

Thank you!

http://geometry.cs.ucl.ac.uk/dl4g/

