Diffusion Models for Visual Content Generation 3D Generation

Presenter: Minhyuk Sung

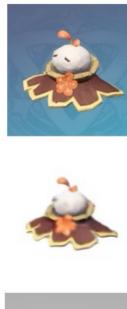
Eurographics 2024 Tutorial

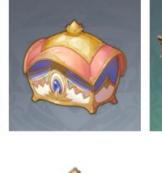
High-Resolution Text-to-3D Content Creation

Chen-Hsuan Lin* Jun Gao* Luming Tang* Towaki Takikawa* Xiaohui Zeng* Xun Huang Karsten Kreis Sanja Fidler# Ming-Yu Liu# Tsung-Yi Lin

*#: equal contributions

NVIDIA Corporation





Zero123-XL

OpenLRM

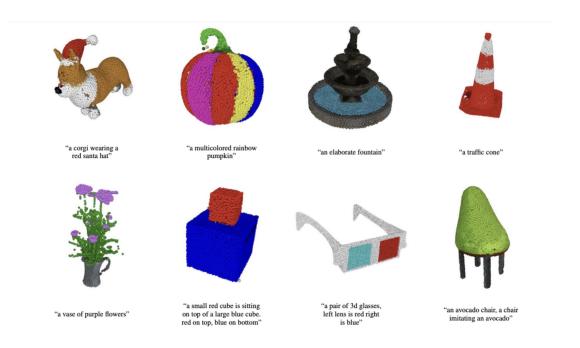
Stable Zero123

TripoSR (ours)

Stable Video 3D

Point clouds

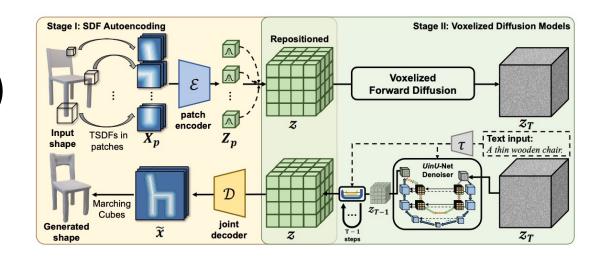
- ShapeGF (Cai et al., 2020)
- DPM (Luo and Hu, 2021)
- LION (Nichol et al., 2022)



LION, Nichol et al. 2022.

Voxel representation

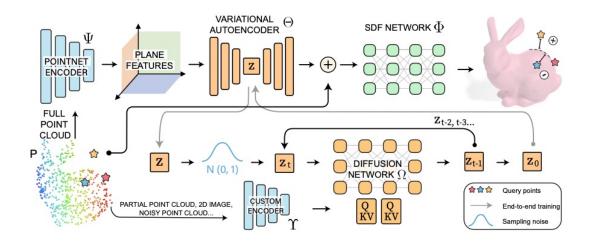
- PVD (Zhou et al., 2022)
- Diffusion-SDF (Li et al, 2022)



Diffusion-SDF, Li et al., 2022.

Latent representation

- SDFusion (Cheng et al., 2022)
- DiffusionSDF (w/o hyphen, Chou et al., 2023)



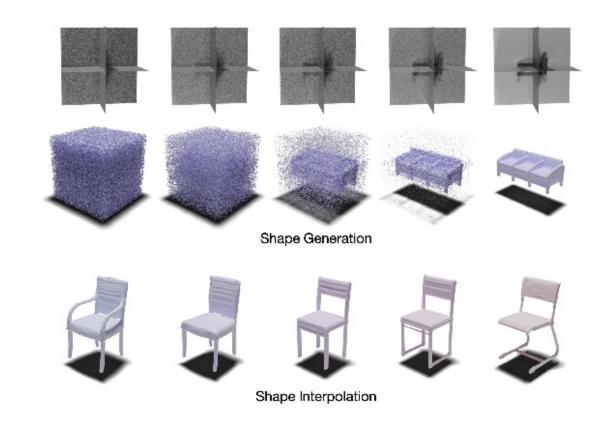
DiffusionSDF, Chou et al., 2023

Triplane representation

• NFD (Shue et al., 2022)

Diffusion in the spectral domain:

 NeuralWavelet (Hui et al., 2022)



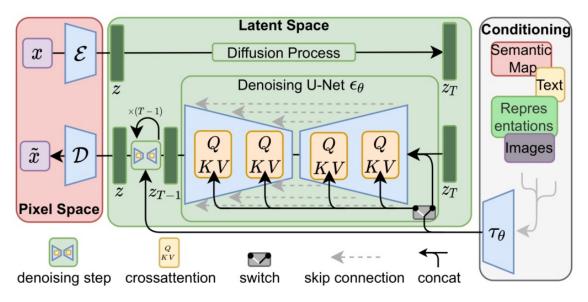
NFD, Shue et al., 2022.

Diffusion w/ Different Representations

- Implicit representation
- Explicit representation

Diffusion w/ Different Representations

- Implicit representation (I.e., latent features)
 - E.g., Latent diffusion (Rombach et al., 2022)
 - (+) Best quality of the generated data.
 - (-) Requires retraining for each conditional generation setup.



Latent Diffusion, Rombach et al., 2022.

Diffusion w/ Different Representations

- Explicit representation (E.g., pixels in images)
 - E.g.: The original DDPM model (Ho et al., 2020) for images.
 - (—) Suboptimal performance due to the high dimensionality.
 - (—) Cannot change the resolution of the data.
 - (+) Can be directly leveraged in conditional generation setups in a zero-shot manner.

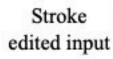
SDEdit [Meng et al., 2022]

Image editing using a pretrained pixel-space diffusion model.

$$\mathbf{x}^{(0)} = m \odot \mathbf{x}_a^{(0)} + (1 - m) \odot \mathbf{x}_b^{(0)}$$

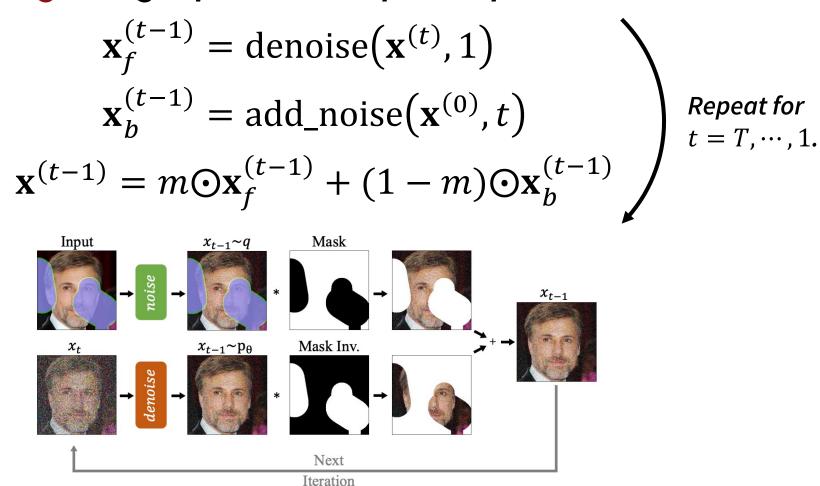
$$\mathbf{x}^{(t)} = \text{denoise}(\mathbf{x}^{(0)}, t)$$

$$\mathbf{x}'^{(0)} = \text{add_noise}(\mathbf{x}^{(t)}, t)$$



RePaint [Lugmayr et al., 2022]

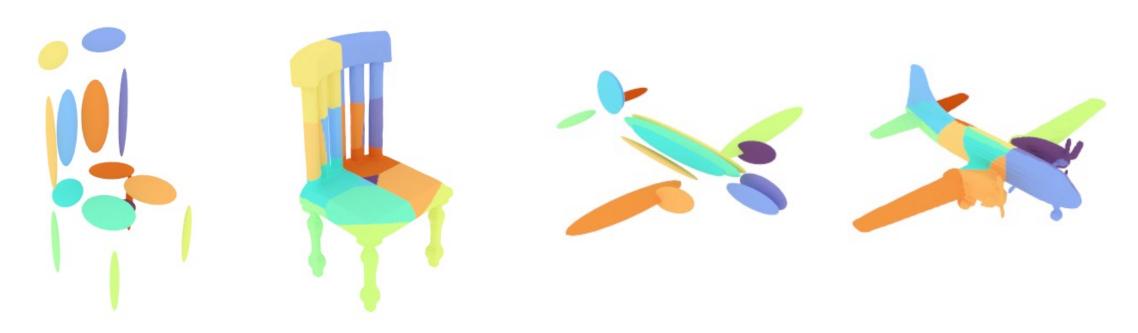
Image inpainting using a pretrained pixel-space diffusion model.



Hybrid Representation

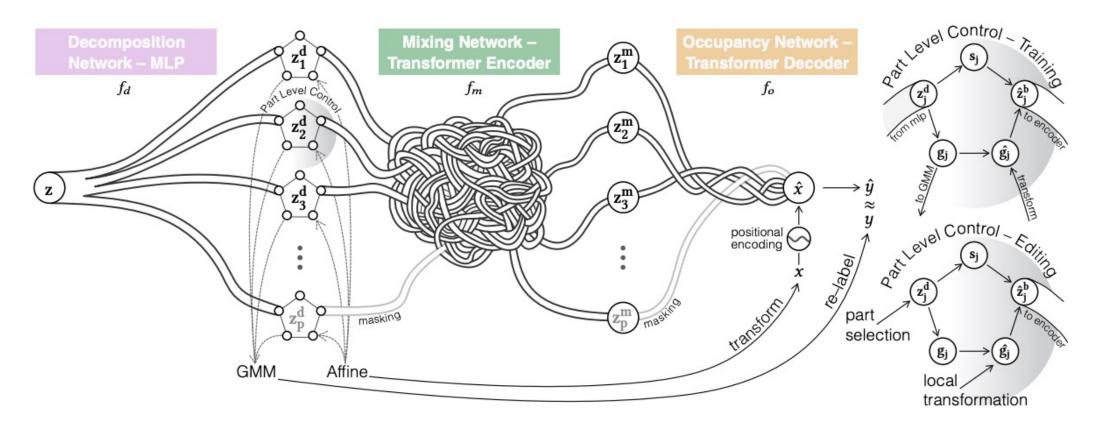
Leverages a novel hybrid representation describing

- global part-level structure explicitly, and
- local geometry implicitly.



SPAGHETTI [Hertz et al., 2022]

The part decomposition and the explicit/implicit representations are learned in an unsupervised way.



Part-Level Representation

For each part of an object learned in an unsupervised way,

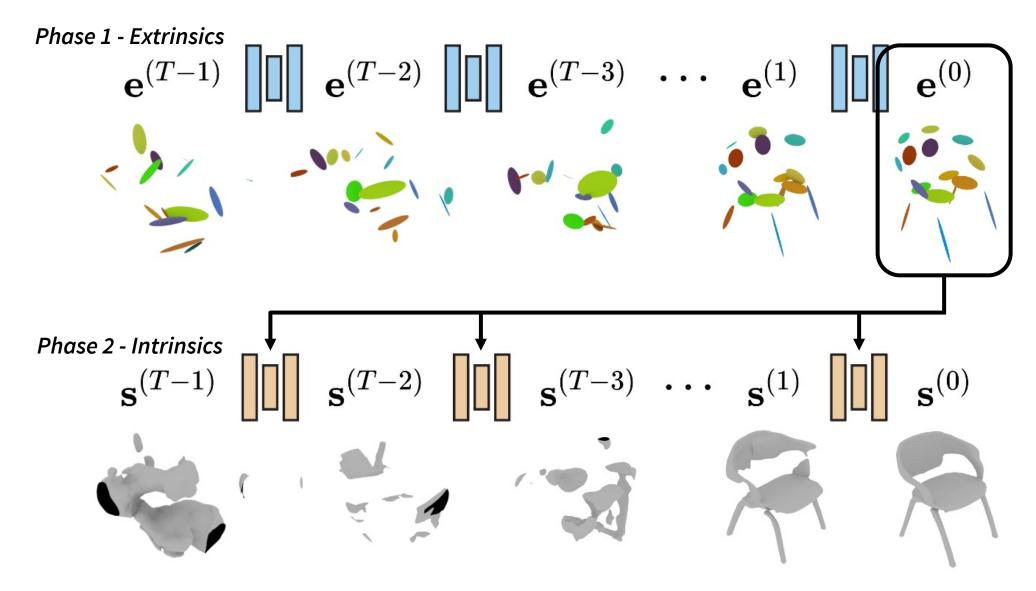
• Explicit parameters of Gaussian blubs indicate position, scale, and rotation.

Part-Level Representation

For each part of an object learned in an unsupervised way,

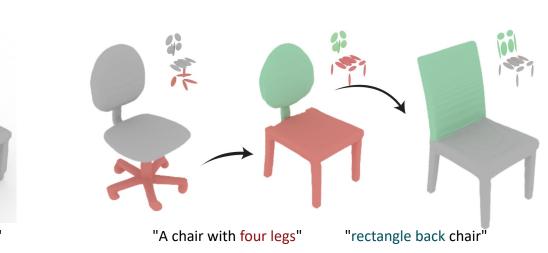
• Implicit latent feature is decoded into an occupancy function.

Two-Phase Cascaded Diffusion



Diversity of 3D Shapes

Applications



Text-to-3D Generation

Text-Guided Part Editing

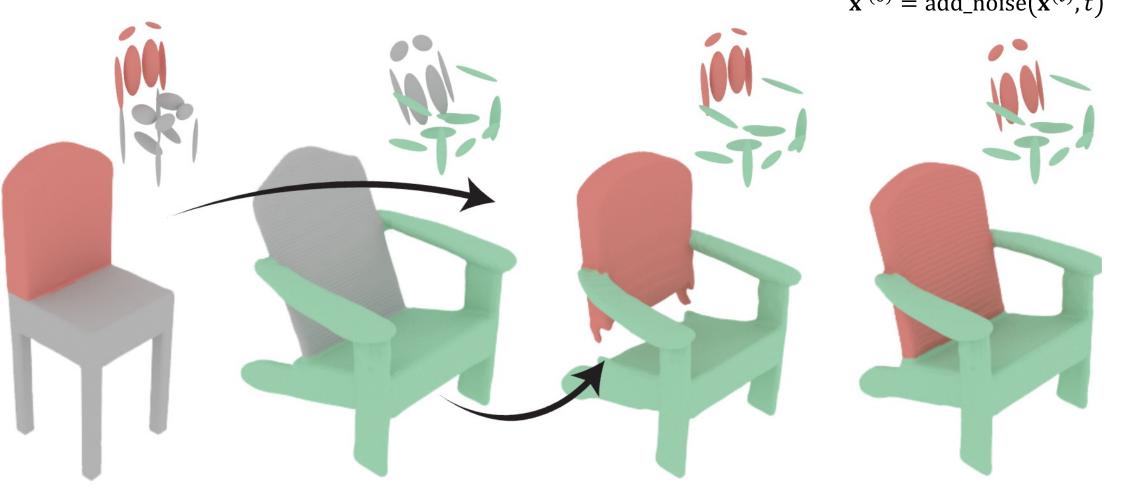
Part Mixing

Part Mixing

$$\mathbf{x}^{(0)} = m \odot \mathbf{x}_a^{(0)} + (1 - m) \odot \mathbf{x}_b^{(0)}$$

$$\mathbf{x}^{(t)} = \text{denoise}(\mathbf{x}^{(0)}, t)$$

$$\mathbf{x}'^{(0)} = \text{add_noise}(\mathbf{x}^{(t)}, t)$$

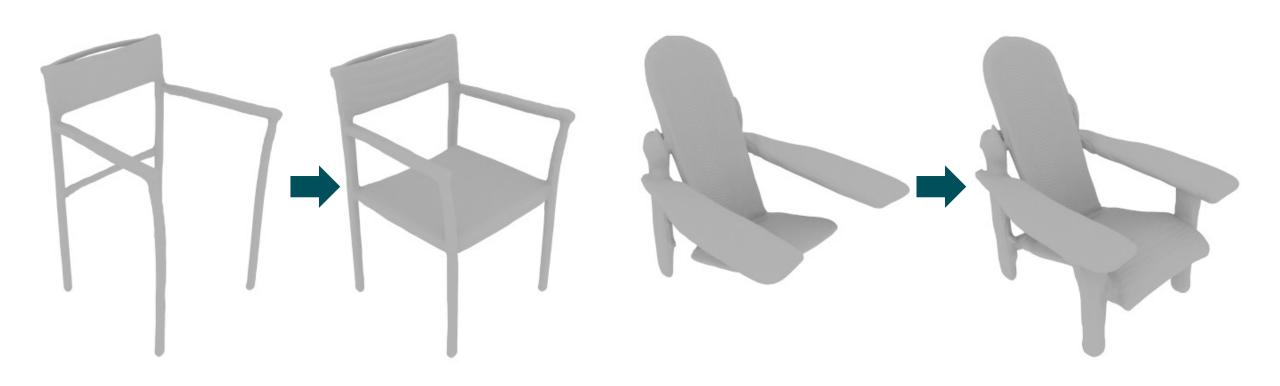


Part Completion

$$\mathbf{x}_{f}^{(t-1)} = \text{denoise}(\mathbf{x}^{(t)}, 1)$$

$$\mathbf{x}_{b}^{(t-1)} = \text{add_noise}(\mathbf{x}^{(0)}, t)$$

$$\mathbf{x}_{b}^{(t-1)} = m \odot \mathbf{x}_{f}^{(t-1)} + (1 - m) \odot \mathbf{x}_{b}^{(t-1)}$$
Repeat for $t = T, \dots, 1$.

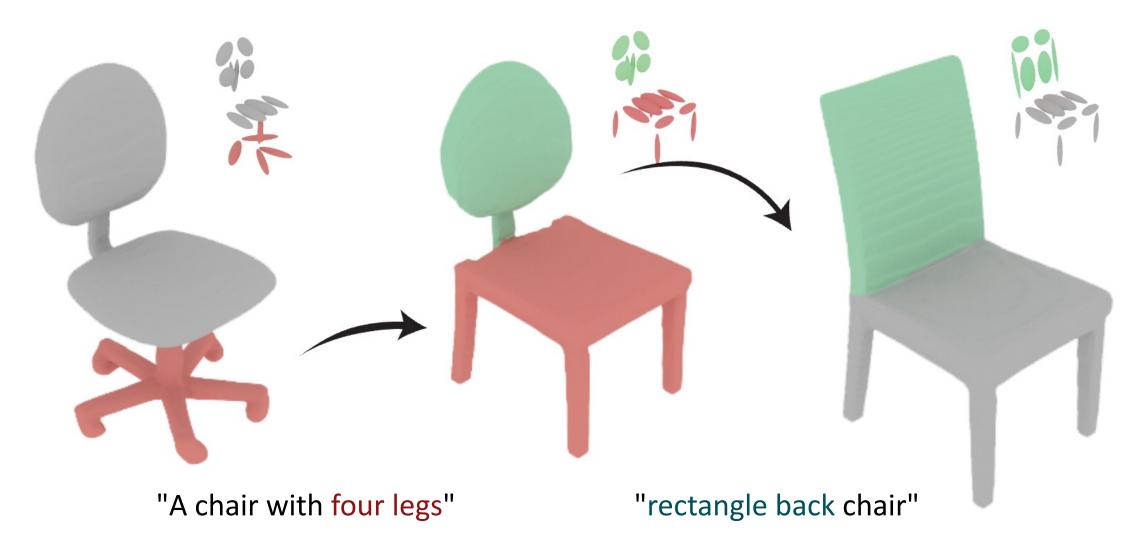


Text-to-3D Generation

"Chair has round arms and wheels."

"Its the one with gaps in the back."

Text-Guided Part Editing



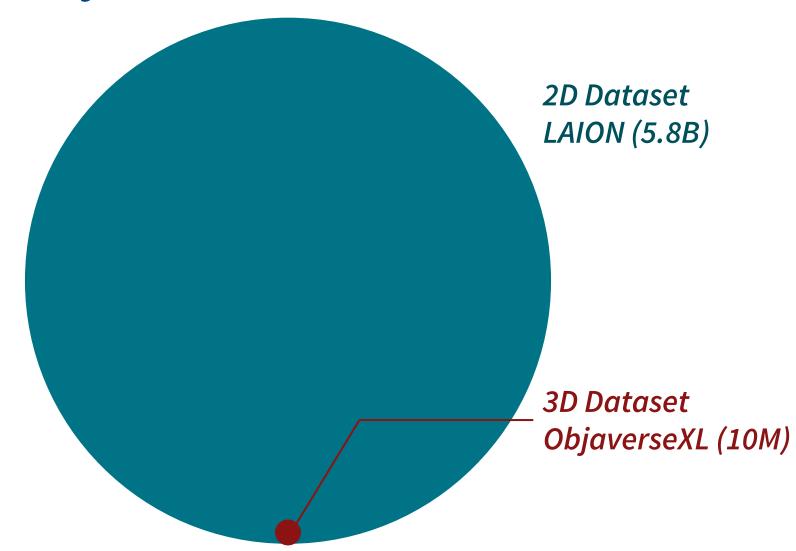
Limitation?

Koo et al., SALAD: Part-Level Latent Diffusion for 3D Shape Generation and Manipulation, ICCV 2023.

Challenge: Lack of Large-Scale 3D Dataset

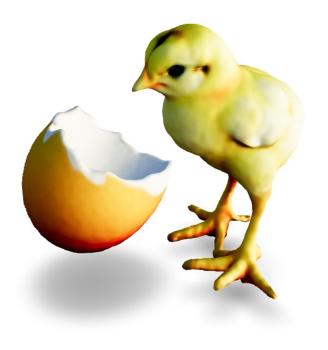
Objaverse-XL Allen Institute

Data Deficiency



Diversity of Imaginable 3D Shapes

"frog wearing a sweater"



"eggshell broken in two with an adorable chick standing next to it"

"eggshell broken in two "ghost eating a hamburger" "a pig wearing a backpack"

We have a small-scale 3D dataset but images on an internet scale.

Images are projections of 3D from specific angles.

3D Generation

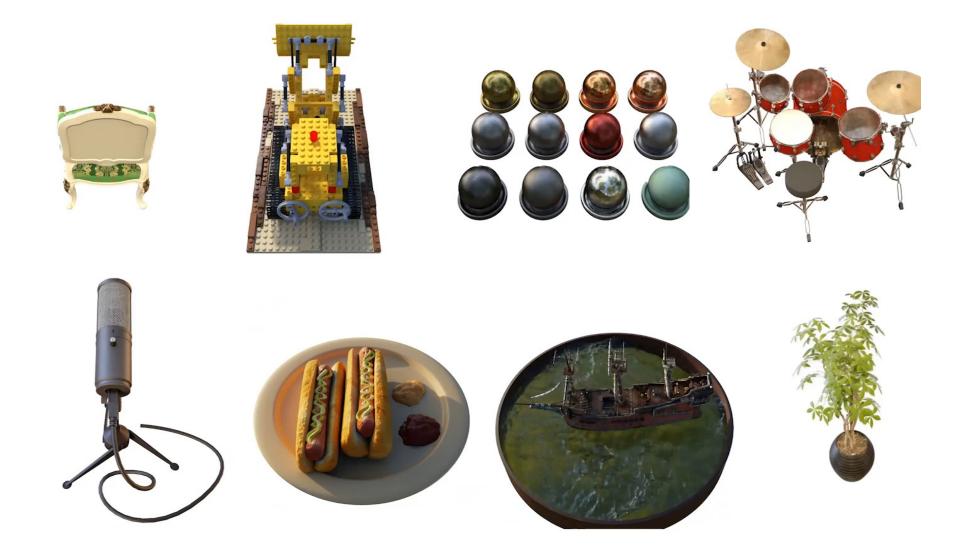
How to generate a 3D object

from a collection of 2D images?

3D Reconstruction

How to reconstruct a 3D object from a collection of 2D images of a specific object?

NeRF

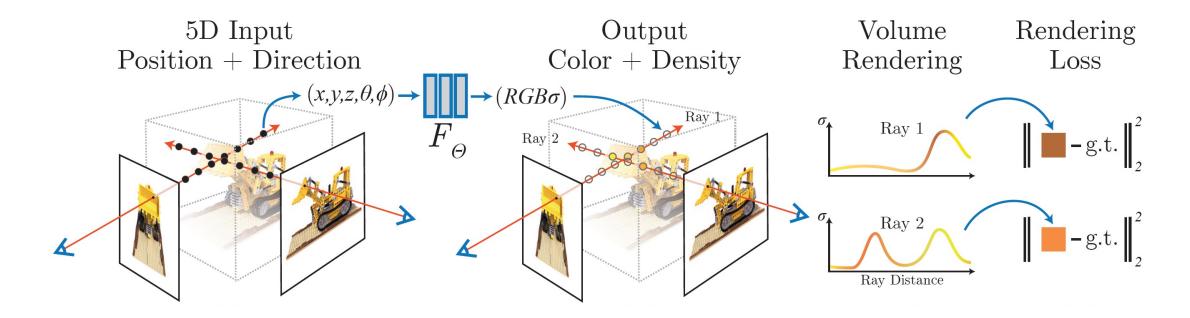


3D Reconstruction

- Input: A set of images with camera poses.
- Output: A representation of the 3D object.

NeRF Optimization

- 1. Render a NeRF representation into a specific view.
- 2. Compute the difference with the given image.
- 3. Update the NeRF using gradient descent.



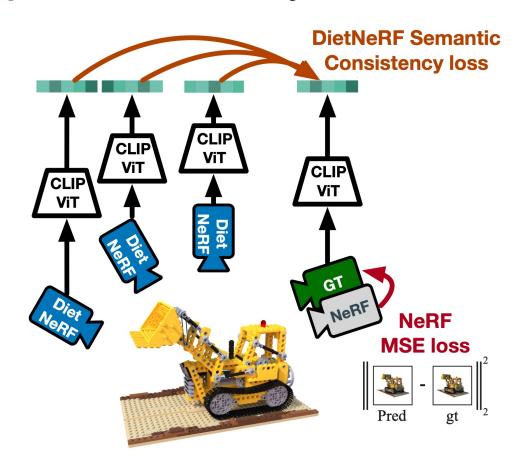
Can we perform NeRF reconstruction with a few images?

Then, we need additional information!

Few-Shot NeRF

DietNeRF [Jain et al., ICCV 2021]

Use priors learned by CLIP [Radford et al., 2021], a text-image model.



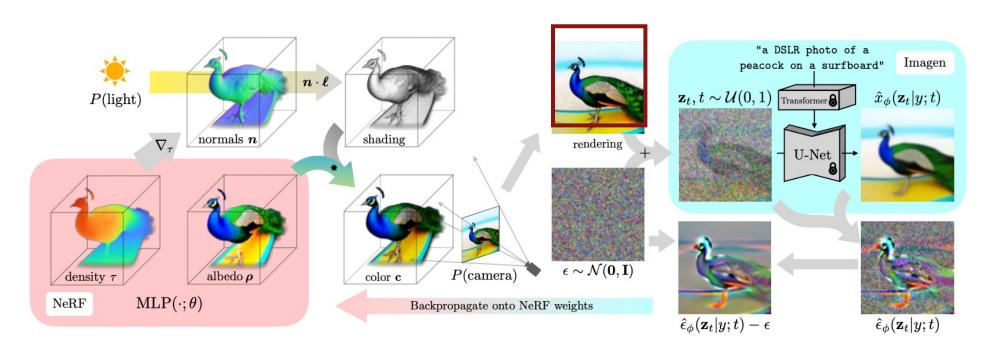
"a bulldozer is a bulldozer from any perspective"

CLIP [Radford et al., 2021]

CLIP takes a text-image pair as input and assesses the alignment between the text and the image.

Knowledge Distillation in 3D Generation

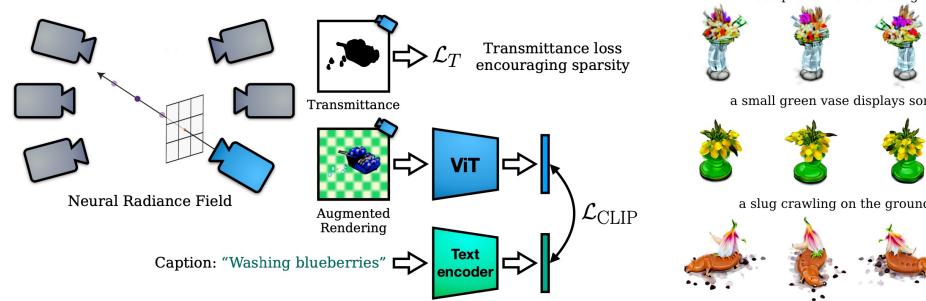
- 1. Render the NeRF representation into a specific view
- 2. Compute the alignment to the given text.
- 3. Update the NeRF using the gradient descent.

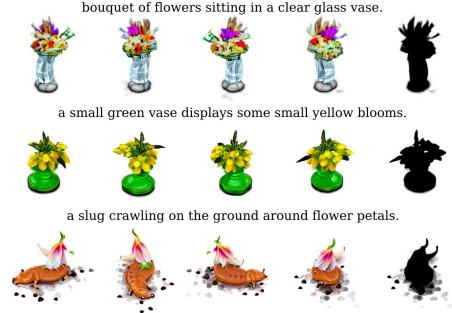


Extrem Case: Zero-Shot NeRF

DreamFields [Jain et al., CVPR 2022]

Given a text prompt but no images, generate a 3D shape by maximizing similarity between a rendered image and the input prompt in the CLIP embedding space.





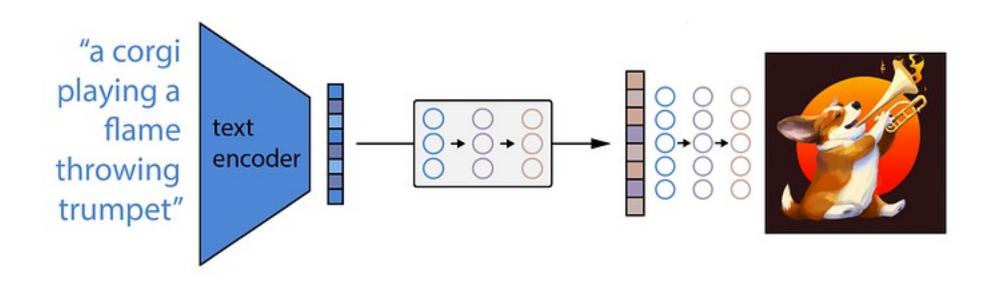
DreamFields [Jain et al., CVPR 2022]

an archair in the shape of a ____.
an archair imitating a ____.

a teapot in the shape of a _____.

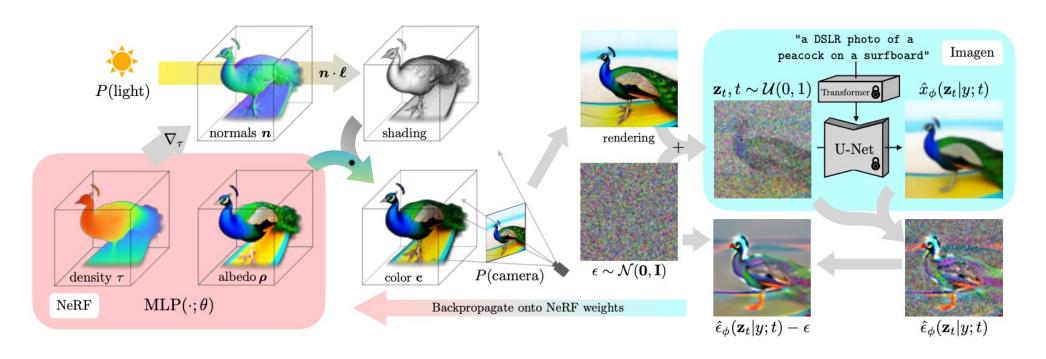
a teapot imitating a _____.

Can we use an image diffusion model instead of CLIP?



DreamFusion [Poole et al., ICLR 2023]

Proposed the idea of Score Distillation Sampling (SDS), leveraging a pretrained diffusion model to measure the plausibility of rendered images.



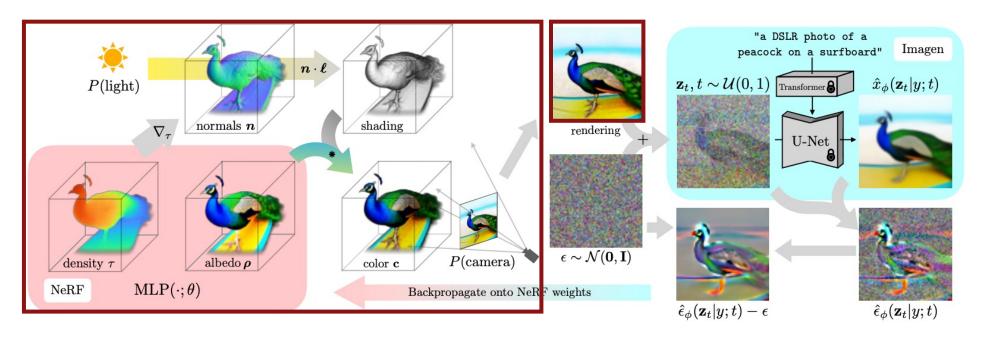
• How can we utilize a pretrained diffusion model to measure the plausibility of rendered images?

Review the loss function:

$$\mathcal{L} = \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, \mathbf{\varepsilon}_t} \left[\left\| \mathbf{\varepsilon}_t - \mathbf{\varepsilon}_{\theta} \left(\sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \mathbf{\varepsilon}_t, t \right) \right\|^2 \right]$$

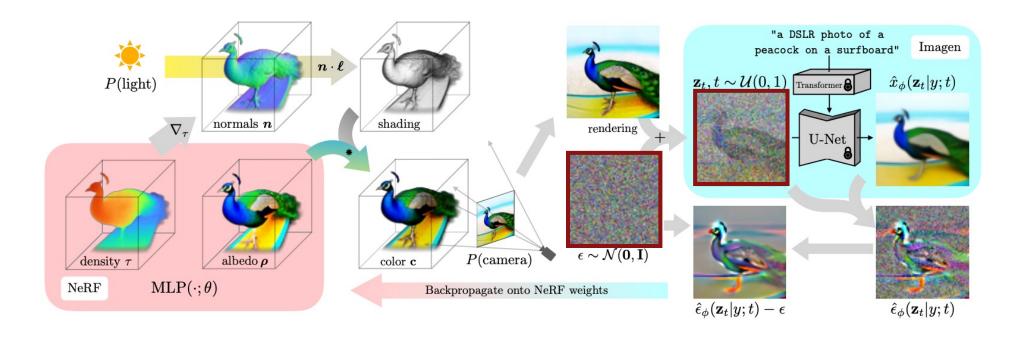
If the training of the diffusion model has converged, the loss for real data \mathbf{x}_0 will be close to zero.

1. Render the NeRF representation into a specific view. Let ϕ denote the NeRF parameter, and $\mathbf{x}_0 = g(\phi)$ denote the rendered image.

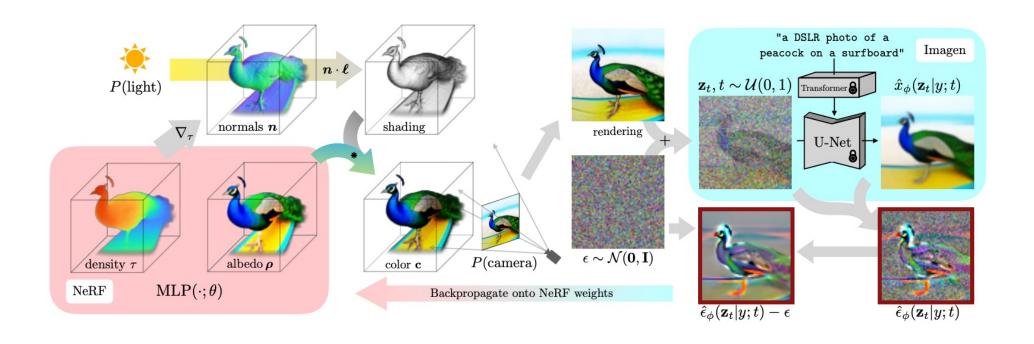


2. Add noise to the rendered image x_0 :

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \mathbf{\varepsilon}_t.$$



3. Perform gradient descent on \mathcal{L} with respect to the NeRF parameters ϕ .



DreamFusion Results

"frog wearing a sweater"

"eggshell broken in two with an adorable chick standing next to it"

"eggshell broken in two "ghost eating a hamburger" "a pig wearing a backpack"

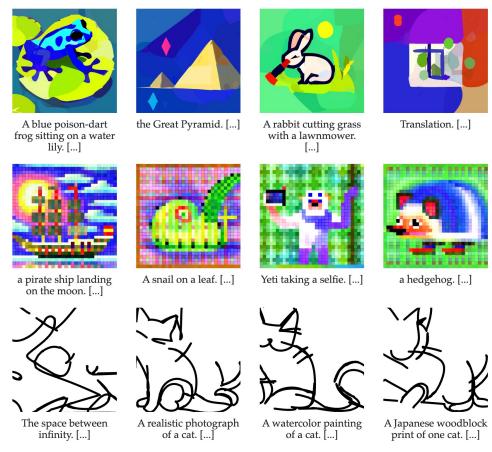
Why SDS Instead of Reverse Diffusion?

This is a scenario where the images are parameterized differently from how they were represented during the training of the diffusion model.

- Training: Per-pixel colors.
- Inference: NeRF rendering.

Example: Vector Images / Sketches

The same idea but with a different parameterization of images.



Example: Mesh Editing

The same idea but with a different parameterization of images.

Stable-DreamFusion

Stable-Dreamfusion

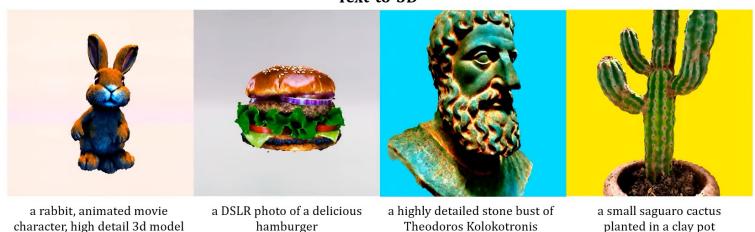
A pytorch implementation of the text-to-3D model **Dreamfusion**, powered by the **Stable Diffusion** text-to-2D model.

ADVERTISEMENT: Please check out threestudio for recent improvements and better implementation in 3D content generation!

NEWS (2023.6.12):

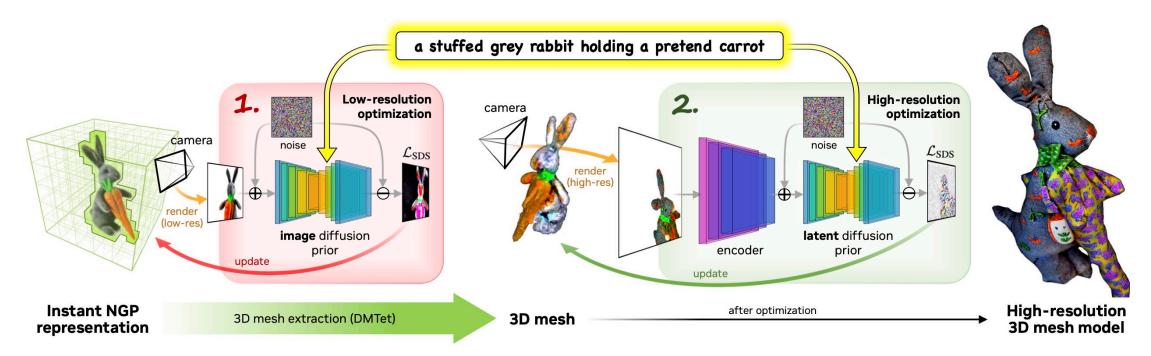
- Support of Perp-Neg to alleviate multi-head problem in Text-to-3D.
- Support of Perp-Neg for both Stable Diffusion and DeepFloyd-IF.

Text-to-3D



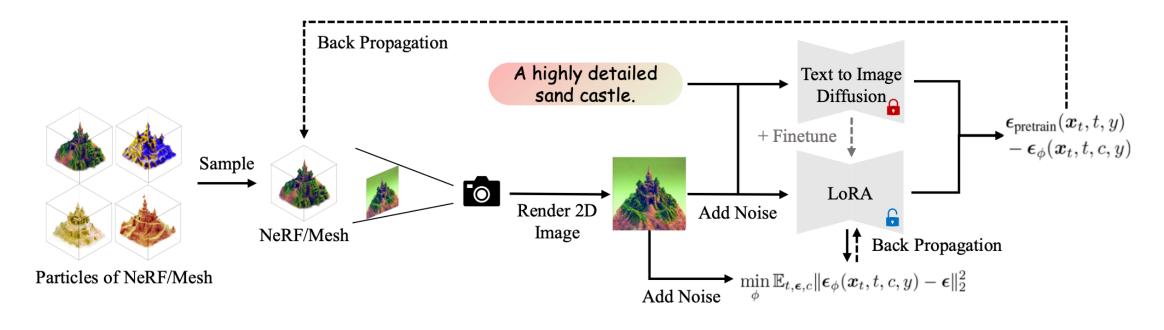
Magic3D [Lin et al., CVPR 2023]

- Two-stage approach.
- Extract a coarse mesh in the first stage, and then texture the mesh in the second stage.



ProlificDreamer [Wang et al., arXiv 2023]

- Minimize the SDS loss for the multiple samples of the NeRF parameters ϕ .
- Finetune the diffusion model with the Low Rank Adaptation (LoRA) technique.



Limitation of SDS

It does not converge well without a high CFG weight (e.g., w = 400) and thus suffers from model collapse.

"a delicious hamburger"

Credit: Jaihoon Kim

gingerbread man

Huang et al., DreamTime: An Improved Optimization Strategy for Text-to-3D Content Creation, arXiv 2023.

Limitation of 3D Generation from 2D Priors

Limitation of 3D Generation from 2D Priors

Supervision for geometry is still needed!

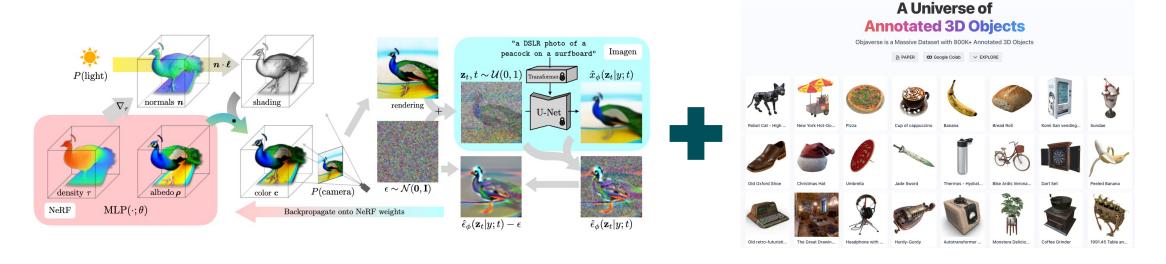
ProlificDreamer, Wang et al., 2023.

StableDreamFusion

What's Next for 3D Generative Models?

1. Combining 3D Supervision

While pretrained image generative models will continue to be valuable for 3D generation, the key to producing realistic and solid 3D shapes would lie in utilizing small-scale 3D priors.



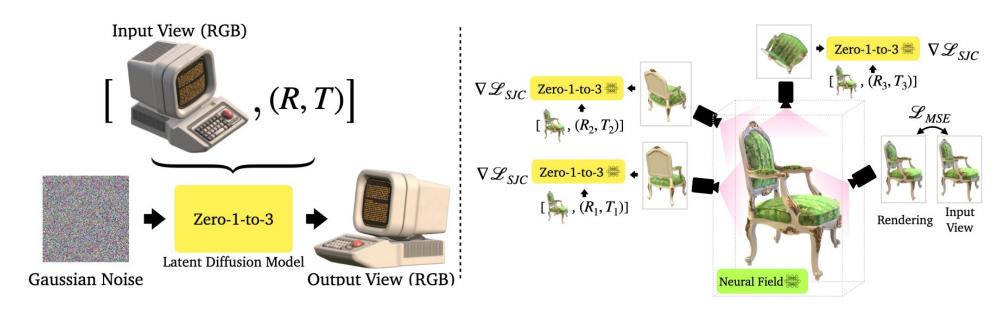
DreamFusion Google

Objaverse Allen Institute

Zero-1-to-3 [Liu et al., 2023]

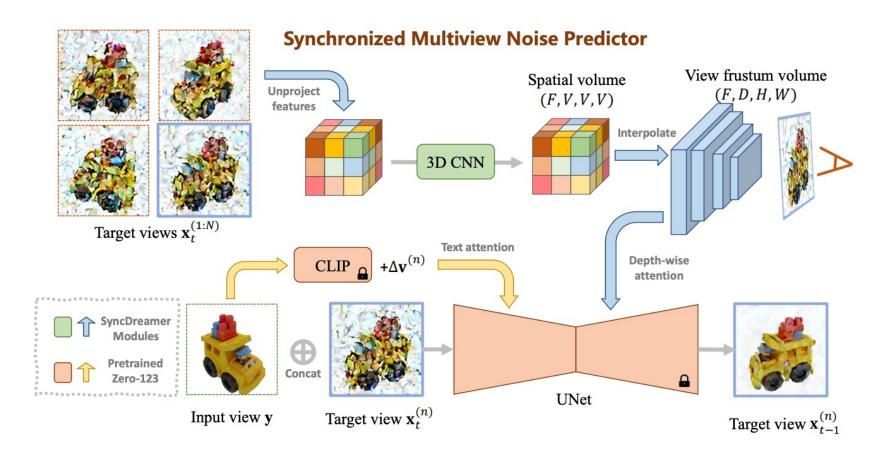
Novel view generation

An image diffusion model generating a novel view image conditioned by another view image and camera pose.



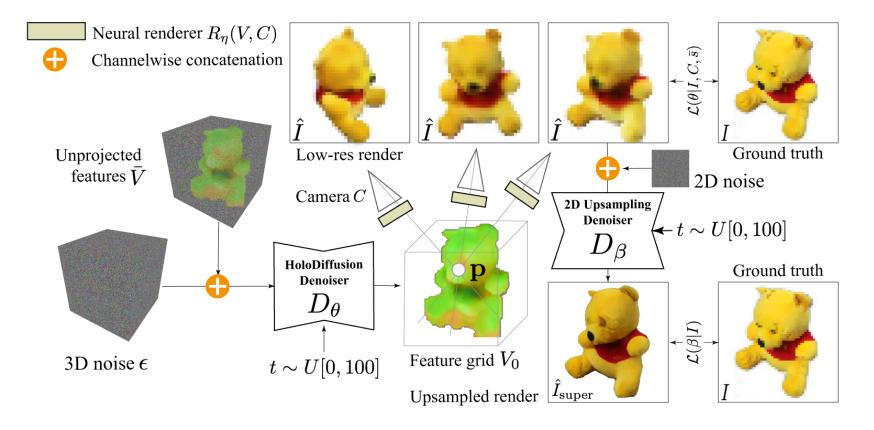
SyncDreamer [Liu et al., 2023]

Utilize Zero 1-to-3 to learn the joint probability distribution of multi-view images.



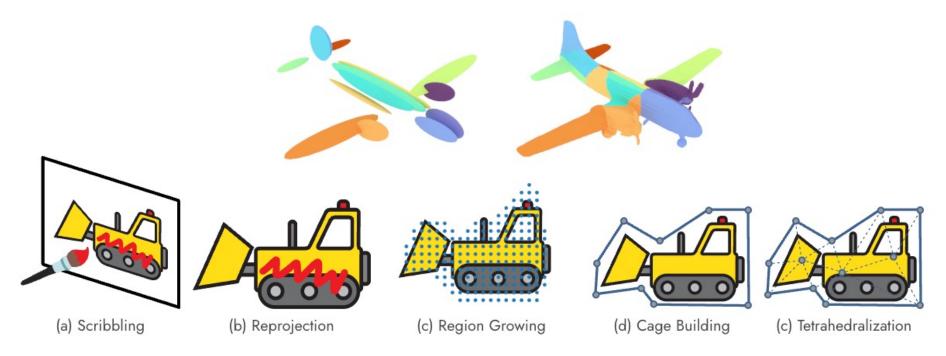
HoloFusion [Karnewar et al., 2023]

- Train a 3D diffusion model using multi-view images only.
- Can be extended to integrate 2D priors.



2. Generation → Editing

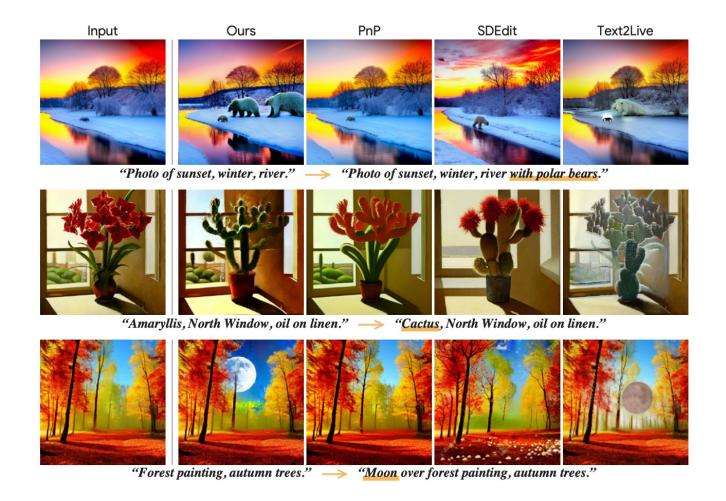
The focus of 3D generative models will shift towards creating versatile models capable of not only generating but editing and manipulating 3D shapes.



NeRFshop, Jambon et al., I3D 2023.

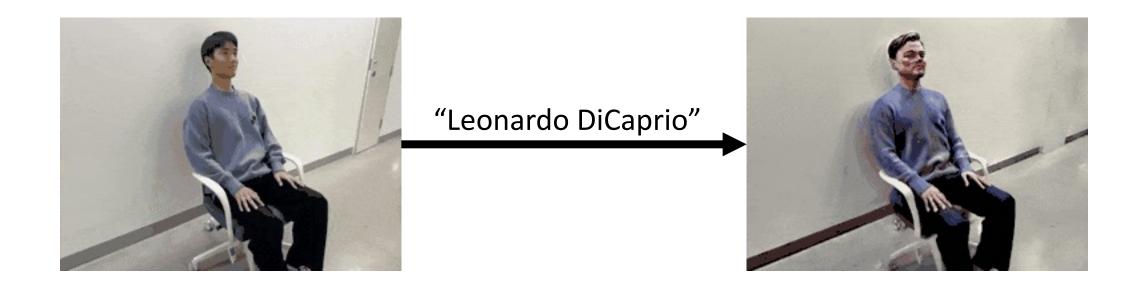
Delta Denoising Score [Hertz et al., 2023]

A new loss function for zero-shot image editing.



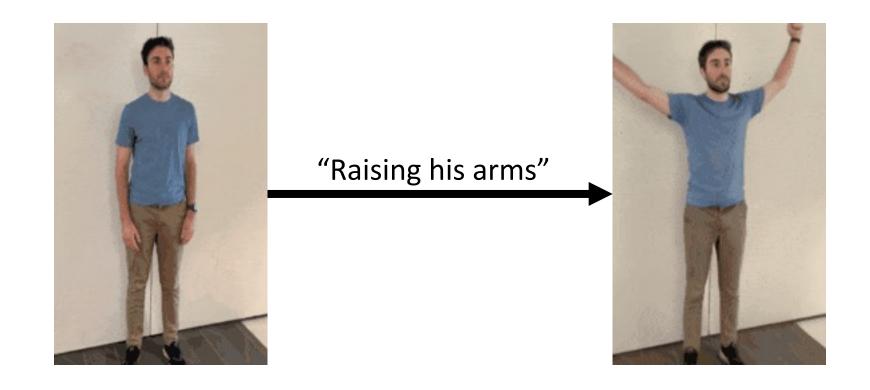
Posterior Distillation Sampling [Koo et al., 2024]

A new loss function for zero-shot NeRF editing.



Posterior Distillation Sampling [Koo et al., 2024]

A new loss function for zero-shot NeRF editing.



3. Texture Generation

How can we generate photorealistic texture given a 3D mesh or Gaussian splats?

