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Guidance Using Additional Information

If we have additional information about the data, such as class

labels for images, can we utilize this information to improve
the quality of generated outputs?
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Zero-Shot / Few-Shot Adaptations

Can we apply a pretrained diffusion model to various

conditional generation setups in a zero-shot or few-shot
manner?

Meng et al., SDEdit: Guided Image Synthesis and Editing with
Stochastic Differential Equations, ICLR 2022.
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Guidance Using Additional Information

How to use class labels or some additional information about
the data to improve the quality of generated outputs?




Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021.

Recap: Stochastic Differential Equations

In a continuous time domain, the reverse process is formulated as the
following stochastic differential equation:

dx = [f(x, t)dt — g*(t)V, log p,(x)]dt + g(t)dw

DDPM is a specific discretization of the SDE formulation.

Data Forward SDE Prior Reverse SDE Data

dz = f(z,t)dt + g(t)dw —)@— dz = [f(z,t) — ¢*(t)V. logpi(z)] dt + g(t)dw




Recap: Stochastic Differential Equations

The gradient of the logarithm of the PDF V, log q(x;) is referred to as a
score function.

[V 108 4G)]= Exy e [V, l0B aCxelx0)]
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The noise predicted by the nerual network €4 (X, t)
is the scaled score!




Dhariwal and Nichol, Diffusion Models Beat GANs on Image Synthesis, NeurlPS 2021.

Classifier Guidance

* Assume that data x and class label y pairs are given:
P(X,y) = p(Xe)p(YVIX¢e)
* At each timestep t, we are interested in the score function
V. logp(Xe, y):
Vi, 10gp(Xe, y) = Vi, logp(x¢) + Vy, logp(y[xe)

1

= — ﬁ €p (Xt' t) T th logp(ylxt)

= ——— (e (x, ) — V1 — @[Vy, logp(y[x,))]

1-ay

Noise How to
predictor compute this?



Classifier Guidance

How to compute V, logp(y|[x;)?

* Train a classfier py (¥[X;), taking noisy data x; (and timestep t) as
input and classifying it.

* Use V, logpy (¥[X:) as an approximation of V, logp(y|x;).



Dhariwal and Nichol, Diffusion Models Beat GANs on Image Synthesis, NeurlPS 2021.

Classifier Guidance
 Update the noise predictor €4 (X, t) as follows:

€o(X¢, t) = €9(X¢, t) — /1 — @ Vy, logpy (V]X¢)

* The strength of the classifier guidance can be controlled by adding a
weight w:

§9 (Xty t) — 89 (Xt) t) T W\/l o C_xtvxt log p(l) (ylxt)

 Limitation: Additional training of a classifier is required.
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Ho and Salimans, Classifier-Free Diffusion Guidance, NeurlPS 2021 Poster.

Classifier-Free Guidance (CFG)

* Jointly train both the conditional and unconditional diffusion models.

* For the unconditional case, simply feed a null token @ as the
condition.

* In the reverse process, given the condition y, take €4 (X;, y, t).

"o Take a linear combination of unconditional and conditional noises as
follows:
ﬁ@ (Xt; Y t) — (1 + W)£9 (Xt' Y t) — W& (XtJ 0, t)
| | | | w=o0

Increase T Decrease |
the conditional the unconditional
noise noise 11



Classifier Guidance

Ho and Salimans, Classifier-Free Diffusion Guidance, NeurlPS 2021 Poster.

Classifier-Free Guidance (CFG)
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Classifier-Free Guidance (CFG)

* (+) The classifier does not need to be trained.

* (+) It is more versatile and can be used not only for class labels but
also for any additional information (e.g., text descriptions).

* (—) In the generation process, the noise predictor needs to be

evaluated twice.

* (—) Determining the optimal weight w can be challenging.

13



under review
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Audio Conditioned Generati

Example
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under review

Example: Audio Conditioned Generation

Text Prompt: “Aurora Text Prompt: Text Prompt:
Borealis Lights” “Lego” “Surreal Dreamscapes”

Snow

Waterfall Burbling
Forest
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Lee et al., InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion, CVPR 2024.

Example: Two-Hand Interaction Generation

One hand is generated based on the condition of the other
hand.
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ControlNet:
Few-Shot Adaptation
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LAION-5B: A NEW ERA OF
OPEN LARGE-SCALE MULTI-
MODAL DATASETS

by: Romain Beaumont, 31 Mar, 2022

We present a dataset o 5,85 billion CLIP-filtered image-text pairs, 14x bigger than LAION-400M, previously the biggest openly
accessible image-text uawasew i uie world - see also our NeurlPS2022 paper

Authors: Christoph Schuhmann, Richard Vencu, Romain Beaumont, Theo Coombes, Cade Gordon, Aarush Katta, Robert
Kaczmarczyk, Jenia Jitsev
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

e Should we have 5 billion input-output pairs to train conditional image
diffusion models?

* Should we have the new dataset for every type of condition?

Input human pose
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

How to convert a pretrained unconditional image diffusion
model into an image-conditioned generative model using a
relatively smaller set of input-output pairs (~100k)?

20



Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)
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ControlNet [zhang et al., 2023)
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

Condition

zero convolution

- (+)

SD Encoder Block_1
64x64 (trainable copy)

"SD Encoder Block 3 |

16x16 (trainable copy) i

SD Encoder Block 4| 3
8x8 (trainable copy)|

'SD Middle Block
8x8 (trainable copy)

zero convolution %3

zero convolution x3

zero convolution x3

zero convolution x3

(b) ControlNet

2. For the encoding of the
conditional image, copy
the pretrained encoder
parameters while
allowing them to be
updated during fine-
tuning.

23



ControlNet [zhang et al., 2023)

Prompt Input

Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

Condition

zero convolution

— - . 0 SD Encodér Block 1 .
_ Text Encoder IEE 6464 o x3
~ SD Encoder Block_2 .

32x32 al -3

Time 7 ' ]
SD Encoder Block 3 | %3

' 8 16x16 @
Time Encoder | I

' ] SD Encoder

Block 4 8xg & ”‘3

SD Middle .. |
Block 8x8 ™ |

SD Decoder

Block 4 8xg & ’*3

' SD Decoder Block_3 | 3 | G

Prompt&Time
" SD Encoder Block 2 y
. 32x32 (trainable copy)

" SD Encoder Block 3 ‘ %3
1616 (trainable copy)

+)

SD Encodér Block_1
64x 64 (trainable copy)

SD Encoder Block 4| .
|88 (trainable copy)

"SD Middle Block |

-

8x8 (trainable copy)

16x16 B

~ SD Decoder Block 2. ,7

32x32 N 8
SD Decoder Block_1 f 3
B A

“ ﬁ‘ =

Otlfput
(a) Stable Diffusion

zero convolution

zero convolution %3

zero convolution x3

zero convolution x

zero convolution

(b) ControlNet

3. Combine the encoded
conditional image
information with the
noisy image using zero
convolution.
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

Zero Convolution Z is a 1 x 1 convolution layer with learnable
weight (scaling) parameters a and bias (offset) parameters b,
both of which are initialized with zero:

Z(x;a,b) =a-x+b
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

ControlNet modifies each neural network block using zero
convolution as follows:

Ye = F(xl @) T Z(F(x T Z(C, ai, bl)l GC)) aj, bZ)
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

ControlNet modifies each neural network block using zero
convolution as follows:

Zero in the beginning since a; = by = 0.

Ye = F(x;0) + Z(F(x +|{Z(c; a4, b1); 0.); az, by)
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

ControlNet modifies each neural network block using zero
convolution as follows:

Same as F(x; ©) in the beginning since 0,.= 0.

Ye = F(xl @) T Z(F(x T Z(C, ai, bl)l @C}) aj, bZ)
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

For encoding of the conditional image c, begin with the state
where the input is X, while gradually incorporating c.

Same as F(x; ©) in the beginning since 0,.= 0.

Ye = F(xl @) T Z(F(x T Z(C, ai, bl)l @C}) aj, bZ)
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

ControlNet modifies each neural network block using zero
convolution as follows:

Zero in the beginning since a; = b, = 0.

Ye = F(x;0) +|Z(F(x + Z(c; a1, by); 0,); az, b,)

c N
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

ControlNet modifies each neural network block using zero
convolution as follows:

Same as F(x; ©) in the beginning.

ye =(F(x;0) + Z(F(x + Z(c; a1, by); 0,); az, b,)
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

Also for the noise prediction, gradually incorporate the
output of conditional image encoding.

Same as F(x; ©) in the beginning.
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

* The idea can be used for any image conditioning.

* The training dataset is “ ~100k in size, which is 50,000 time smaller
than the LAION-5B.”
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Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV 2022.

ControlNet [zhang et al., 2023)

Ablative study of different architectures.
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LooseControl: Lifting ControlNet for Generalized Depth Conditioning, Bhat et al. 2023

Adherence of Conditioning Signal
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eDiff-1: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers, Balaji et al. 2023

Regional Control of Conditioning Signal

Text Embedding

Image Embedding Output

o [« [
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Attention Matrix
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cross attention layer
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Zero-Shot Applications
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Zero-Shot Adaptations

How to edit and inpaint images using a pretrained image
diffusion model even without the need for fine-tuning?

Original
image
Stroke
edited input
GAN
baselines
SDEdit
(Ours)
Meng et al., SDEdit: Guided Image Synthesis and Editing with Lugmayr et al., RePaint: Inpainting using Denoising Diffusion
Stochastic Differential Equations, ICLR 2022. Probabilistic Models, CVPR 2022.
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Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022.

SDEdit [Meng et al., 2022]
Image generation/editing through user interaction
* Image generation from sketches

* Image editing from scribbles

LSUN bedroom
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Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022.

SDEdit [Meng et al., 2022]

Perform the forward process for a bit and then reverse the
process.

Perturb with SDE Reverse SDE
/—‘—\ /
“w @ & L*
Imagé\
. -
Input
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Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022.

SDEdit [Meng et al., 2022]

Realism vs. faithfulness

As you perform the forward process with a longer timestep,
the output image becomes more realistic but less faithful

(deviating from the given condition).

Faithful Realistic More faithful More realistic

— p—_ Less realistic Less faithful
, Faithful SDEdit —
= [ i [ . ) Realistic
a
74 /
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Lugmayr et al., RePaint: Inpainting using Denoising Diffusion Probabilistic Models, CVPR 2022.

RePaint [Lugmayr et al., 2022)
* Filling regions in an image using a pretrained image diffusion
model.

* Assume that the missing foreground is filled while t
background is fixed.
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Lugmayr et al., RePaint: Inpainting using Denoising Diffusion Probabilistic Models, CVPR 2022.

RePaint [Lugmayr et al., 2022)

Combine denoised foreground images (to be filled) and noisy
background (to be fixed) images at each iteration of the

reverse process.

Background

Foreground

Mask

Mask Inv.

Next

Iteration
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Lugmayr et al., RePaint: Inpainting using Denoising Diffusion Probabilistic Models, CVPR 2022.

RePaint [Lugmayr et al., 2022)

1. Starting from x, at each timestep t,

. . f
denoise x; one step (reverse process), resulting x;_.

Input

xt_1~q MaSk

Background

Mask Inv.

Foreground

Next
Iteration
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Lugmayr et al., RePaint: Inpainting using Denoising Diffusion Probabilistic Models, CVPR 2022.

RePaint [Lugmayr et al., 2022)

2. Perturb the input background image xg (forward process)
with a noise scale of the timestep t — 1, resulting x’g_l.

Mask

Background

Mask Inv.

Foreground

Next
Iteration
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Lugmayr et al., RePaint: Inpainting using Denoising Diffusion Probabilistic Models, CVPR 2022.

RePaint [Lugmayr et al., 2022)

3. Combine x’g_1 and x{_l (where M is the background mask):

Xe—q1 = MOx{_; + (1 - M)Gx{q

Input Mask

Background

Mask Inv.

Foreground

Next
Iteration
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Lugmayr et al., RePaint: Inpainting using Denoising Diffusion Probabilistic Models, CVPR 2022.

RePaint [Lugmayr et al., 2022)
4. Repeat this processfort =T, ..., 1.

(You may need to replay the forward/reverse processes in intermediate intervals.)

Background

Mask Inv.

Foreground

Next
Iteration
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Lugmayr et al., RePaint: Inpainting using Denoising Diffusion Probabilistic Models, CVPR 2022.

RePaint [Lugmayr et al., 2022]

Results with different masks

Denoising 0% Denoising 60% Denoising 75% Sample 1 Sample 2 Sample 3 Sample 4
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Summary

1. Classifier Guidance / Classifier-Free Guidance
Enhancing the quality of generated outputs using additional
information.

2. ControlNet
Adapting the pretrained diffusion model with relatively few
conditional data using zero convolution.

3. SDEdit / RePaint
Utilizing the pretrained diffusion model for editing and image
Inpainting.
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