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Abstract

Classic shape representations define 3D models as a set of discrete elements, gen-

erally as triangles or quads. This description is widely adopted across graphics

pipelines, from rendering, compression, and shape editing, to shape correspon-

dence. Recently, neural shape representations have emerged as effective tools to de-

scribe complex geometries and structures. Models are encoded in network weights,

that are then queried through a 3D or 2D point. However, most of these representa-

tions are task-specific and thus must be converted back to meshes to be used across

applications. The need for a flexible representation, adaptable across the different

neural pipelines, that lends itself to optimizations, remains.

This thesis explores the idea of neural surface representations as a map. First,

we define surfaces as 2D-3D map encoded into neural network weights, dubbed

Neural Surface Map. We adopt it as a building block to define a comprehensive

mapping framework. Indeed, by composing multiple maps, we establish and op-

timize correspondences between shapes. This framework sidesteps the intricacies

of optimization encountered by conventional methods while achieving continuous

and bijective maps. Then, building on this foundation, we relax constraints within

the mapping framework. In particular, we eliminate the need for human supervi-

sion by extracting (noisy) labels from pre-trained models. These labels are used to

distill inter-surface maps between highly non-isometric shape pairs. We compare to

state-of-the-art shape correspondence methods, demonstrating its effectiveness.

Finally, by interpreting a shape as the composition of a coarse structure and

detail, we extend the neural representation to enable shape manipulation, compres-

sion, and detailed transfer. Intuitively, the structure defines the pose of the model
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and details repeating information, such as wrinkles. This representation lends itself

to interactive shape manipulation, such as feature enhancement, while compressing

detail into the network weights.
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Impact Statement

This thesis presents three works that define neural representations enabling geom-

etry processing tasks. Each work was presented at CVPR or Eurographics. The

work in Chapter 3 presents a surface representation that acts as a building block

for a mapping framework for subsequent chapters. Furthermore, this representation

enables inter-surface mappings, a challenging task in geometry processing. Due to

several constraints in its formulation, the mapping framework is then extended in

Chapter 4, bringing it closer to real-world applications. Finally, Neural Convolu-

tional Surfaces (Chapter 5) reformulates the initial representation for a wider range

of geometry processing tasks. This definition brings the representation closer to an

interpretable generative framework for 3D models.
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Notation

Table 1: Notation used throughout the thesis.

Symbol Meaning
R Set of real numbers
x ∈ R2 Vector representing a 2D point
X ∈ R3 Vector representing a 3D point
A R3→ R2 Source mesh
B R3→ R2 Target mesh
fA R2→ R3 Source overfitted neural surface map
fB R2→ R3 Target overfitted neural surface map
h R2→ R2 Neural map bridging two surface maps
Ψ R3→ R3 Map between source and target shape

Ω fA Domain for map fA
Jh ∈ Rhin×hout Jacobian matrix of transformation h
M ∈ R2×2 First Fundamental Form
‖·‖k ∈ R L-k norm



Chapter 1

Introduction

In the era of digitization, our reliance on 3D data has deepened. The transition

from analog to digital 3D models by artists and engineers highlights the need for

software capable of parsing and manipulating digital surfaces. Whether creating

animated movies or games, artists now utilize 3D graphics software like Blender to

operate directly on meshes, encapsulating the complexity of 3D assets.

AI and deep learning have become pivotal in addressing many 3D challenges,

pushing researchers to leverage these technologies. However, the use of meshes in

this context often necessitates ad-hoc algorithms to handle numerous edge cases.

This thesis defines a more adept representation tailored for neural-based down-

stream 3D tasks, alleviating the challenges associated with intricate mesh structures

and fostering a more streamlined integration of 3D data into neural computational

frameworks.

1.1 Challenges
Triangle meshes have been the most popular representation across much of geom-

etry processing since its early stages. However this representation bears several

shortcomings: it describes surfaces in a piece-wise linear fashion, i.e., discrete and

discontinuous, and it does not scale well with the model complexity. Due to these

limitations, meshes often require task-specific optimization formulations, that often

fail to generalize to surfaces of varying sizes. Generally, geometry processing re-

searches heavily rely on maps as tools to manipulate and act on meshes, however,
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Figure 1.1: Meshes discreteness: optimizing mesh vertices directly, blue arrow in (a), re-
sults in foldovers or artefacts, red edge in (b). The optimization is more com-
plicated when we slides one surface over the other, green lines in (c). Edges
must follow the geometry of the other mesh while avoiding artefacts (d).

maps assume continuity of the input domain (the surface) while meshes are not.

Similarly, neural networks work best with fully discrete data and fixed-size data

[10], such as voxel grids, while meshes are partly continuous. Therefore, designing

maps or neural tools to effectively process and manipulate meshes is non-trivial,

often requiring hacks to handle edge cases as shown in Figure 1.1. We therefore

need a new representation that lends itself to various types of processing.

The rising prominence of deep learning has led researchers to investigate ways

to represent shapes via neural networks. The immediate use of these techniques

is to define a shared latent space to describe shapes. Notable approaches use im-

plicit fields [7, 8], volumes [9, 10], or hybrid representations [6, 11, 12, 13]. Shared

latent spaces enforce a strong prior over the network weights, enabling the compres-

sion of 3D models in a small vector. Indeed, through the use of a shared template,

3DCoded [13] can effectively morph and model human deformations. Implicit field

techniques, like DeepSDF [7], instead can encode a large variety of data indepen-

dently of their topology, while neural volumetric representations demonstrate ex-

cellent results in shape analysis [10]. However, due to a lack of diversity in the

training data, these approaches fail to generalize to ”artistic” models and are often

inaccurate or imperfect as network weights trade accuracy for diversity.

Alternative methods use a shape-specific set of weights to represent a specific

shape instance. These approaches rely on the same techniques as generative mod-

els but capture geometric detail efficiently and accurately, thus creating outputs that

are on par with existing 3D models. Furthermore, they introduce novel properties
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Table 1.1: Representations: meshes are widely adopted across the graphics pipeline. On
the other hand, most neural representations are made ad-hoc for specific tasks,
such as rendering, or compression. The representations proposed in this thesis
span a wider range of applications.

Name Type Manipulation Correspondence Rendering
Detail

Compression
Geometry

transfer processing
Meshes Explicit 4 4 4 4 4 4

Deep GI [1] Hybrid 7 7 7 7 4 7

IDF [2] Implicit 7 7 7 4 4 4

ACORN [3] Implicit 7 7 7 7 4 4

NGLOD [4] Implicit 7 7 4 7 4 4

NERF [5] Implicit 7 7 7 4 7 7

AtalsNet [6] Hybrid 7 7 7 4 4 7

Chapter 3 Hybrid 7 4 7 7 7 4

Chapter 5 Hybrid 4 4 7 4 4 4

not attainable with surface meshes, such as differentiability. These neural represen-

tations for shape instances were demonstrated to be useful in several applications

such as rendering [4], shape compression [3], surface parametrization [14], and

video consistent shape reconstruction [15]. However, most of these techniques are

constrained to the specific task they are designed for, hence limiting their applica-

bility. We highlight the nature and flexibility of different representations in Table

1.1.

Shape correspondence is a notable task in geometry processing for which the

representation is fundamental. Intuitively, we expect to map neighboring points

from a shape onto close-by points of another, thus preserving the continuity of the

original shapes, as shown in Figure 1.2. The most seminal technique attempting to

solve this problem is Functional Maps [16]. This method defines a linear map in

the spectral domain of the two shapes, thus mapping a vertex to a vertex. Over the

years, this technique has been extended to handle partial shape [17, 18], scans [19],

and shape collections [20]. However, none of the proposed solutions is continu-

ous or bijective, as it should be. This is because the underlying representation is

not continuous and the technique does not enforce or exploit continuity of the rep-

resentation. In Chapter 3, we explore the idea of a map-based representation and

demonstrate that through such change we can optimize a bijective and continuous

map. In particular, we introduce the concept of Neural Surface Map (NSM) that en-

codes surfaces in neural network weights as a map R2→R3. Thanks to the intrinsic
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a) b)

Figure 1.2: Shape correspondence: starting from manual annotations (a), a map is op-
timized to define correspondences between the two meshes (b), here shown
through texture.

continuity of the neural network, this representation lends itself to optimization. We

use NSM as a building block to define a framework for the inter-surface map be-

tween shape pairs and collections. We later extend this framework in Chapter 4, and

reduce the human supervision required. In particular, we replace the human in the

loop with noisy supervision from DinoV2 [21], and show we can achieve semantic

maps.

More broadly, the choice of shape representation and neural network architec-

ture plays a critical role in how efficiently the network capacity is utilized and for

its flexibility. The majority of existing representations use MLPs to model the shape

as a function that maps points either from a 2D atlas to the surface [22] or points

in a 3D volume to an implicit function such as a distance field [7]. However, these

techniques entangle geometric details and overall shape structure and do not have a

natural mechanism to reuse the network weights to represent repeating local details,

as Convolution Neural Networks (CNNs) achieve on images. Alternatively, instead

of a single global MLP, some prior techniques leverage repetitions by breaking the

shape into smaller 3D voxels, each represented by an SDF [3], however, these repre-

sentations do not account for surface details alignment, and thus, are less effective

at representing local geometric textures that flow with the shape. These choices

constrain the flexibility of the representation, preventing it from being used across

multiple manipulation tasks. In Chapter 5, we extend the representation defined

in Chapter 3 and define a convolution-based description, dubbed Neural Convolu-
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tional Surface (NCS). We show NCS enables shape manipulation, detail transfer,

and compression, on top of tasks already possible with NSM.

1.2 Contributions

In line with the challenges emphasized above, we hypothesize there exists a better

representation than meshes that lend themselves to manipulation enacted by neural

networks. This thesis seeks to define surface representations that lend themselves

to manipulation enacted by neural networks. Specifically, we focus on single-shape

representation that must faithfully capture the intricate features of the underlying

surface. This level of fidelity is as important as the representation’s flexibility. Thus,

we showcase both quality and applicability across various tasks within the realm of

computer graphics and geometric processing.

After reviewing the literature in Chapter 2, in Chapter 3 we introduce Neural

Surface Map (NSM) as surface representation. We build NSM on the concept of

maps and atlases and use it as a building block for the entire thesis. This defini-

tion can faithfully encode 3D models into network weights. Furthermore, it allows

us to define a mapping framework between surfaces of different kinds, thus show-

casing the usability of this representation for tasks such as parametrization, shape

correspondence, and collection mapping.

In Chapter 4 we extend the mapping framework previously defined to alleviate

its constraints. In particular, we show how by adopting seamless maps it is possible

to mitigate the need for manual labels in shape correspondence in different tasks.

This allows us to automate the entire shape correspondence pipeline, bridging the

gap to state-of-the-art methods.

Chapter 5 extends the Neural Surface Map representation introducing a convo-

lutional bias, thus defining a Neural Convolutional Surface (NCS). The main con-

tribution of this chapter is the separation of coarse shape structure and surface

details. We prove that this shape disentanglement along with the convolutional bias

can effectively compress the shape while enabling surface feature enhancement and

detail transfer.
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Finally, in Chapter 6 we summarize the contributions of this thesis, and its

limitations, and highlight future works.



Chapter 2

Literature review

In this chapter, we review the literature associated to shape space representations as

well as the specific trend of representing a single shape via a neural network. We fo-

cus on atlas-based representation, which inspires this thesis, and delve into specific

applications of shape analysis, i.e., such as shape correspondence and manipulation,

which are used to demonstrate the validity of the presented representations.

2.1 Differential geometry

Atlas-based representations are deeply grounded in differential geometry. Here we

briefly review the basic concepts referred to in this thesis.

Generally speaking, surfaces are envisioned as 2D manifolds lying in 3D, i.e.,

2D surfaces that live in a higher dimensional space. Thus, locally, from any given

point, the surface would appear to be flat. This idea can be leveraged to define a

chart as a local mapping of an open subset of the surface Si onto a plane through

a homeomorphic function: ψ : S→ R2. Intuitively, a chart is a bijective and con-

tinuous function mapping a local part of the surface onto a planar domain. Atlases

extend this concept to cover the whole surface, namely an atlas is a collection of

charts A = {(Si,ψi) : i ∈ I}, such that S =
⋃
i∈I

Si. More formally, these charts must

agree, such that their composition, or their inverse, is consistent.

Leveraging these concepts, we can define the tangent plane at a point p as the

set of vectors tangent to the surface at p. Mathematically, we can define the basis
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Figure 2.1: Thanks to differential geometry we can define a local map from the surface to
the plane. Given this relation, it is possible to estimate a tangent plane to the
surface, and its normal.

for such a local plane in terms of the map differential:

xu =
∂φ

∂u
and xv =

∂φ

∂v
, (2.1)

where xu and xv are unit vectors, and φ is the inverse of the chart as show in Figure

2.1. Notably, the normal at a point p is defined as the cross-product of the basis:

np = xu× xv. (2.2)

Then, we define the First Fundamental Form as:

M =

〈xu,xu〉 〈xu,xv〉

〈xu,xv〉 〈xv,xv〉

=

E F

F G

 , (2.3)

which encodes surface properties, such as curvature.

It is possible to use similar concepts for a general transformation T :RD→RG.

In this case, xu and xv are not unit vectors, and we refer to them as Jacobian

JT = [xu,xv] ∈ RG×D of the transformation T . In this case, the First Fundamen-

tal Form can be rewritten as M = JT J, and it encodes essential properties about

the transformation, e.g., we can infer the per-point distortion applied by T and its

type. For example, an isometric transformation preserves geodesic distances be-

tween points, and its first fundamental form would belong to M ∈ SO(2). Similarly,

a transformation that preserves angles is a rotation up to a scaling factor λ .
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These concepts are extensively used in geometry processing when defining

maps. For example, SLIM [23] parametrizes meshes to a plane in a single chart

such that it minimizes isometric energy called Symmetric Dirichlet. Similarly,

ARAP [24] morph shapes between different poses by constraining the triangle-

wise transformation to a rotation. Other works define a global conformal mapping

[25, 26, 27] to the plane, while more recent works use higher dimensional domains,

e.g., spheres [28, 29]. Please refer to [30] for an in-depth discussion on parametriza-

tion.

2.2 Neural shape representations
Neural shape representations have emerged as a transformative paradigm in the

domain of geometric modeling and computer graphics. Unlike traditional meth-

ods that often struggle to scale with the complexity of shapes, neural approaches

leverage the power of deep learning to capture and encode complex, and possibly

repeating, geometries, easing further processing required for complex tasks. How-

ever, the community has not yet reached a consensus on which shape representation

to adopt. For example, in 3D shape reconstruction we have a rich palette of rep-

resentations, ranging from pixel-wise depth maps [31, 32, 33, 34, 35], triangular

meshes [32, 36, 37, 38, 39, 40, 41, 42], implicit functions [43, 44, 7, 45, 46], voxels

[47, 48, 49], shape primitives [50, 51, 52, 53, 54, 55], atlas-based representations

[56, 6, 13, 14, 54, 22], or combinations of some of these [57, 58, 59, 60].

There is no free lunch, each representation has specific benefits and drawbacks,

for example in terms of memory requirements, fitting precision, adaptability to dif-

ferent shape topologies, or access to the surface properties. Below we delve into

atlas-based representations as they inspire the work discussed in this thesis.

2.2.1 Atlas-based representations

Atlas-based representations are mathematically defined as map f : R2→ R3. Gen-

erally, this function is parametrized by a neural network, or more specifically an

MLP [6, 22], which maps a 2D point x to 3D. Seminal work from Groueix et

al. [6] parametrizes a surface as the combination of multiple networks and charts.
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Figure 2.2: AtlasNet [6] encodes an input image, or point cloud (left), then decodes it as
composition of several charts. Each chart is decoded independently through an
MLP, by sampling a point on a 2D regular grid (right).

Each network is tasked to uplift a chart to 3D, such that the union of charts de-

scribes the whole surface. This design can represent surfaces of arbitrary topology

in a continuous and differentiable fashion, see Figure 2.2. However, as these func-

tions are defined independently, the overall approach allows inconsistencies across

the individual mappings. Bednarik et al. [22] incorporated a penalization of in-

consistencies while encouraging independent conformal mappings. Concurrently,

FoldingNet [12] parametrizes a surface as a single chart. This formulation sidesteps

the inconsistencies arising from an atlas, but cannot accurately represent large shape

spaces.

Recently, AtlasNet has been extended in [15] to consistently parametrize

shapes across a motion sequence, thus demonstrating that given a few corresponding

landmarks across the sequence, it is possible to encode motion in network weights.

With a similar formulation, PCTMA-Net [61] exploits the inductive bias of trans-

former networks to better model a latent shape space, thus enhancing the recon-

struction quality. Further extension decomposes shapes into deformable parts [54],

or primitives, encoded in an atlas and corresponding mappings. Similarly, Badki et

al. [56] optimize a dictionary of local patches and place them to cover the surface.

Orthogonally, TearingNet [62] avoids the need for multiple mappings by learning

to tear apart the input domain and fit arbitrary genus objects with a single function.

Several techniques specialize in certain shape categories or topologies.

SCALE [63] focuses on the human body with an AtlasNet-like design. Multi-

chart Generative Surface Modelling [64] assumes spherical shape topology, but it
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Figure 2.3: Neural fields: Implicit techniques represent the surface through a signed dis-
tance function as in DeepSDF [7] (a). Alternatively, rendering focused methods
define an occupancy that must be accumulated along a ray, as in NeRF [5] (b).
Figures taken from [66].

can produce a globally consistent set of mappings. 3D-Coded [13] optimizes multi-

ple MLPs deforming a (human) template to a target shape, thus implicitly defining

correspondences. Similarly, NERS [65] morphs a sphere to the target model while,

disjointly, optimizing texture.

These techniques have been explored mainly for reconstruction and generative

tasks. In this thesis, we explore the use of atlas-based representation for a single

shape and demonstrate it can be used across several tasks while carrying all the

advantages of an explicit surface.

2.2.2 Implicit fields

Implicit fields define shapes as signed distance [7, 3, 67, 68] or occupancy

grids [10]. These techniques are extremely popular since they can accurately de-

scribe arbitrary topologies with few parameters. High compression rate and accu-

racy can be obtained as these techniques do not store the surface explicitly, but it is

extracted through a non-differentiable marching cubes algorithm.

Seminal work, DeepSDF [7], encodes shapes in a shared latent space through a

decoder-only architecture, see Figure 2.3(a). Each 3D Model is decoded by query-

ing the decoder at different points in the volume, whose SDF values then are used

to reconstruct the surface via marching cubes. At inference time, a 3D model is

encoded through a slow latent code optimization. Many works build on this idea,

SIREN [67] focuses on a single shape or image and defines an implicit field with
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sinusoidal activation. Sitzmann et al. prove the effectiveness of this activation com-

pared to more classic ones. Chan et al. [69] extend this idea to generative settings

through meta-learning [70, 71]. Davies et al. [72] offer an in-depth analysis of this

representation in terms of compactness, the impact of alignment, stability, scale,

and convergence. Differently, [3] subdivides the space through an integer-linear

program to compactly encode a single shape into features, which are later decoded

by a network into distance values. Yifan et al. [2] propose a two-network shape rep-

resentation, one defining a coarse structure, while the latter encodes high-frequency

details. Recently Yang et al. [73] showcased several geometry processing applica-

tions exploiting the differentiability of the underlying representation.

Mildenhall et al. in [5] cast the surface reconstruction with implicit fields as

multi-view volumetric rendering, see Figure 2.3(b). NERF encodes visual appear-

ance and occupancy in two separate networks that are queried along rays to render

or retrieve the surface. Several techniques extend this approach incorporating light-

ning [74], depth-maps [75], few views [76, 77], unbounded scenes [78], compress-

ing [79], estimate camera poses [80, 81], exploiting image features [82, 83], and

encoding dynamic scenes [84]. The literature regarding this type of neural field is

vast and mostly orthogonal to this thesis. We refer to [66] for an in-depth discussion

of these methods. Overall, neural fields effectively encode volumes enabling ren-

dering but are not flexible, i.e., they cannot be adopted across different applications.

2.3 Shape Matching

Shape correspondence is a fundamental problem in geometry processing, Figure

1.2 shows an example. Simple techniques, like Iterative Closest Points (ICP) meth-

ods [85, 86], align and match shape pairs through rigid transformations. Learned

features can be leveraged to identify good correspondences and define an initial

global alignment [87, 88, 89]. Most recent algorithms characterize correspondences

in the shape spectral space [16, 17, 17, 18], while mesh-based algorithms define

maps between charts or meshes [90, 91, 92, 93]. In the following, we review the

shape-matching literature.
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Figure 2.4: Shape correspondence: [93] in (a) defines the inter-surface maps on the mesh
directly, optimizing mesh-mesh intersection. On the other hand, ZoomOut
[166] in (b), incrementally optimizes a map in the spectral domain of the
meshes. Pictures taken from respective papers.

2.3.1 Spectral methods

Most notable shape correspondence methods are based on Functional maps [16].

These approaches compute a fuzzy correspondence by aligning the spectral ba-

sis of two shapes with linear transformation [16, 94]. This technique offers el-

egant machinery to compute shape correspondence and proved to be reliable for

near-isometric shape pairs. The key advantage is the capacity to express maps as

small matrices, encoded in a reduced basis, which greatly simplifies the optimiza-

tion problems, see Figure 2.4(b).

A fundamental aspect of functional map techniques is the use of shape descrip-

tors to identify a set of correspondences. Most methods rely on hand-crafted input

features, such as SHOT [95], Heat Kernel Signature [96] or Wave Kernel Signa-

ture [97]. However, these descriptors generalize poorly across datasets, as the input

features can change significantly, or are unreliable for non-isometric shapes. For

example, SHOT descriptors [95] are sensitive to the mesh topology, while WKS

[97] works poorly in non-isometric shape pairs.

Aware of these issues, researchers integrated norms [98, 99], map recovery

approaches [100, 101], and regularizers [102] in the solution. Ezuz et al. [101]

denoise maps based on a smoothness before formulated as cycle consistency. [103]

define the initial map exploring the space of maps with Monte Carlo, this approach

helps them disambiguate intrinsic symmetries while yielding a smoother map.

More recent techniques attempt to learn descriptors specifically for shape cor-
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respondence through mesh convolution [104, 105, 106], siamese networks [107],

refining the input descriptors [108, 19], or completely unsupervised [109]. Unfor-

tunately, these methods are bounded to the dataset’s distribution, e.g., humanoid

shapes.

While the original formulation of functional maps was restricted to genus 0

shapes, Litany et al. [110, 17] extended it to partial shapes by relying on a localized

quasi-harmonic basis [110]. More recent works explore the space low-distortion

map [111], define maps between non-isometric shape pairs [19, 112], and leverage

optimal transport methods [113]. Although effectiveness of these techniques, they

struggle to define a continuous and bijective map.

2.3.2 Classic methods

Classic methods act directly on meshes themselves. Seminal work from Schreiner

et al. [93] divides shape into corresponding parts, then optimizes the surface-to-

surface map directly as mesh-mesh intersection, as shown in Figure 2.4(a). This

leads to a combinatorial problem due to the surface discreteness, i.e., triangle

meshes. Kim et al. [114] define a map as a blending of maps, dubbed Blended

Intrinsic Maps (BIM). The authors explore the space of low-distortion maps and

then define a map by blending and interpolating several conformal maps.

Recent techniques define maps through a common domain such as a

plane [115, 91] or a sphere [116, 29]. Aigerman et al. [115] first cut each mesh,

jointly flatten them, and finally optimize an affine map on the plane. This strategy

has then been extended in [90] to account for inconsistent shape cuts through a

seamless map.

Schmidt et al. [91] optimize a bijective map in the planar domain between

shape pairs minimizing isometric energy, while accounting for the mesh discon-

tinuities. Later, the authors define an optimization scheme directly on the mesh

estimating geodesics in metrics of constant Gaussian curvature [92], thus being

invariant to the mesh topology. In an attempt to overcome shape discretization,

Schmidt et al. [29] defines an iterative optimization scheme for genus 0 shapes by

using spheres as an intermediate domain. The authors incrementally refine the map
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Figure 2.5: Image-based analysis: given a 3D model it is possible to render it from a
different point of view and then process these images with a CNN model to
extract information, e.g., classify the 3D object. Figure taken from [118].

in a coarse to fine manner while encouraging bijectivity and continuity. Unfortu-

nately, due to the refinement, the original mesh is lost in the process. We refer to

[117] for a more comprehensive analysis of shape correspondence methods.

In this thesis, we take a different approach and introduce map-based represen-

tation and demonstrate its effectiveness in the challenging task of matching shapes

while preserving continuity.

2.4 Image-based Shape Analysis

Many works analyse shapes through images: first models are rendered multiple

times and from different viewpoints, then they are analysed by neural networks

in the image space, as shown in Figure 2.5. Prominent examples are classifica-

tion [118], segmentation [119, 120, 121], or matching [122] where these methods

rely on, possibly pre-trained, CNNs acting on images. The output may be aggre-

gated on the shape via additional optimization [123] or ray casting. Often these

methods require fine-tuning with 3D supervision and thus can only work on cate-

gories of shapes with labelled 3D data. For example, Genova et al. [124], train a

3D segmentation technique by using a 2D method to produce pseudo labels. Ab-

delreheem et al. [125] describes a training-free approach for 3D shape semantic

segmentation using pre-trained visual transformers, Blip2 [126], and the functional

maps framework [127].
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Although the use of pre-trained CNN features marked a vital milestone for

computer vision tasks, such as object detection and segmentation [128], these net-

work representations encode a wide range of visual information from low-level (sta-

tistical) features, (e.g., edges, and auto-correlation matrices), to object parts. Vision

Transformers [129], dubbed ViTs, have shown the ability to discover both local

and non-local relations. Dino-ViT [130] trains a transformer network through self-

distillation and uses its features in multiple tasks, e.g., image retrieval and object

segmentation. Several works demonstrated the utility of Dino-ViT internal repre-

sentation as a black box [131, 132] for tasks such as semantic segmentation [133]

and category discovery [134]. Amir et al. [135] study these features and use them

to solve vision tasks, such as image correspondences, in zero-shot settings. Re-

cently, Oquab et al. [21] extended Dino-ViT, introducing DinoV2, showcasing en-

hanced semantic interpretability compared to the original version, and also exhibit-

ing broader applicability.

Conversely to state-of-the-art methods, we use ViT models to extract semantic

information between shape pairs, thus lifting the need for human labeling in shape

correspondence tasks.

2.5 Geometry manipulation
Manipulating shapes is a key task for 3D artists. Thus a representation must enable

artists to edit the geometry as easily as possible, in multiple ways, e.g., through

brushes, procedurally, or through visual guidance. Although in this thesis we tackle

the task of transferring and enhancing high-frequency shape details, hereafter we

broadly review shape manipulation approaches.

2.5.1 Image-based Surface Editing

Early applications of image-based mesh editing were mainly focused on mesh sim-

plification and accelerated rendering [136]. Most methods reduce polygon count

for efficient rendering while preserving perceptual appearance [137, 138, 139, 140].

Recently, Liu et al. [141] proposed to utilize rendering for a larger family of surface

editing tasks. In particular, the user can apply changes in the image space with a
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Figure 2.6: Surface manipulation: image-based techniques change the surface based on
appearance obtained from renderings (a), while neural approaches (b-c) edit the
model based on data-driven priors captured from meshes. Figures taken from
respective papers.

wide range of image processing filters, which are then translated into shape edits as

shown in Figure 2.6(a). Similarly, Kato et al. [142] apply for image style transfer

on renderings by propagating the image gradient to the geometry. The subtle dif-

ference between these two recent works lies in the gradients: Paparazzi define them

analytically, whereas N3DMR uses approximations.

2.5.2 Neural Surface Manipulation

Recent advances in deep learning enabled the use of learnable components in 3D

editing, such as generation [145], stylization [146], subdivision [144], and decom-

position [147, 145].

Generation: directly generating a mesh as a set of vertices and faces is infeasible

due to the lack of regular structure and combinatorial variability in the output space.

Thus most approaches produce only coarse models [148] or deform a template [149,

150, 41], hence constraining the output’s topology.

Stylization: stylization is a challenging task in computer graphics involving the ma-

nipulation of a 3D model based on an input image or conditioned on a certain style.

While the same problem has been extensively studied in the image space, [151] be-

ing the prime example, 3D modeling lacked behind. Early methods involved com-

bining different shapes as collage art [152, 153], generating non-realistic shapes,

lego-like models [154, 155], or model with manga style [156]. More recently, neu-

ral network approaches have shown the ability to transfer texture from any template

to a new target shape [143, 158] as in Figure 2.6(b), or specific style [146], or from

text [157].
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Subdivision: subdivision techniques attempt to retrieve the original mesh from a

compressed one. Seminal work [159] inserts a new vertex at each edge’s mid-

point, subdividing each face in 4. [160] proposes a similar, weighted, approach

that inserts new vertices by interpolating over existing ones. However, these classic

techniques rely on hand-crafted filters [159, 161, 160], thus failing to retrieve the

original geometry. Recent techniques rely on learned priors to upsample 3D models

and restore them from a low-poly geometry [144, 162]. Liu et al. [144] propose

a data generation technique for creating various coarse variants of the same mesh

with a low-distortion bijective map, then learning to upsample it, see Figure 2.6(c).

Similarly, [162] exploits repeating patterns in 3D models to encode local detail in a

shared latent space. Then, a decoder upsamples the coarse mesh conditioned on the

local latent codes, restoring the lost features.

In this thesis, we propose a neural representation that compresses a 3D model,

enables the transfer of style or detail or detail between meshes, and enhances exist-

ing features.



Chapter 3

Neural Surface Maps

3.1 Introduction
Maps are one of the most fundamental concepts in geometry processing: as dis-

cussed in Section 2.1, in differential geometry, a surface, i.e., a 2-manifold, is usu-

ally (locally) defined as the image of a (non-degenerate) map

f : R2→ Rn.

Not surprisingly, maps are also used to define correspondences between different

parts of surfaces in an atlas, to evaluate similarity between surface pairs, or across

surface collections.

Accordingly, computing maps is central in most geometry processing tasks

operating on surfaces. The ubiquitous concept of a UV map [163], mapping a

surface into the plane, provides a local coordinate system on surfaces, and hence

enables downstream tasks such as texturing, surface correspondence, remeshing,

quad-meshing [164] to name a few. Similarly, surface-to-surface maps [93] enable

defining correspondences between surfaces, which are at the heart of shape anal-

ysis, transfer of properties, deformations, or defining morph sequences. Indeed,

almost all shape processing tasks, including parametrization, surface correspon-

dence, remeshing, and deep learning on surfaces, heavily rely on access to such

surface maps.

However, many of the tasks related to maps and their computation become ex-
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tremely hard to handle when the target domain is a surface, i.e., a 3D mesh (n = 3).

This is due mostly to the fact that meshes are combinatorial representations, which

in turn leads to a combinatorial representation of the surface maps, and taints the

optimization task with a combinatorial nature as well. Although elegant solutions

in the form of discrete differential geometry [165, 92], meshing invariant spectral

analysis [166, 167], functional maps [16, 19] have been proposed to work around

the combinatorial representation, the diverse choices and different data represen-

tations inhibit easy end-to-end optimization and adaptation outside the specialized

geometry processing community.

As an example, consider the problem of computing a mesh-to-mesh mapping

in which a continuous map from one surface to the other is computed: one needs

to account for the image of each source vertex, which lands on a triangle of the

other mesh, and the image of a source edge may span several triangles of the target;

this leads to extensive bookkeeping, and any attempt to optimize, e.g., the map’s

inter-surface distortion leads to combinatorial optimization of the choice of target

triangle for each source vertex as in [93, 168]. An alternative is to optimize proxy

maps into a common base domain [115, 29] in the hope that the resulting surface-to-

surface map will be optimized by proxy. Such an approach, however, does not yield

surface maps that are even a local minimizer of the energy they set to minimize.

This is particularly problematic when optimizing inter-surface maps across shape

collections.

In this work, we consider neural networks as a parametric representation of

both individual surfaces as well as inter-surface maps. Specifically, we consider

networks with parameters θ that receive 2D points as input and output points either

in 2D or 3D, fA : R2→Rn. While this definition is similar to, e.g., AtlasNet [6], we

do not aim to perform any learning task, and our network does nothing more than

map 2D points with the aim of performing one task: approximate a single surface

map fA ∼ f : R2→ Rn, so we can work with neural networks instead of with, e.g.,

mappings of triangular meshes.

Specifically, we use a map fA ∼ f : R2→ R3 to directly characterize a given
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Figure 3.1: Here, we depict an inter-surface map between two non-isometric shape pairs.
We optimize such a map by minimizing isometric energy of the composition
of several mappings, fA, h, and fB. These mappings are defined as neural
networks describing a surface ( fA, fB) or a map between planar domains (h).
To preserve the surfaces, we only optimize h to cope with the distortion of the
surface mappings. This operations is done in a complete differentiable manner
through PyTorch.

manifold shape A (restricted to surface patches homeomorphic to a disc), and use

another map h :R2→R2 to update the surface map by restricting movements on the

underlying 2-manifold. These neural networks are, by construction, differentiable

and composable with one another, hence they lend us a simple model for defining

a differentiable algebra of surface maps, enabling us to compose maps with one

another and optimize objectives directly over their composition, rather than propose

approximations via intermediate proxy domains.

We employ this concept in two ways that build on top of one another: first, we

revisit the differential-geometry definition of a surface as a map from 2D to 3D, by

overfitting a neural network to a given UV parametrization computed via a standard

parametrization algorithm, such as Tutte’s embedding [169] or SLIM [23]. Two

such maps, fA, fB, are shown in Figure 3.1. This gives us a parametric, differen-

tiable representation of the surface, from a canonical domain. Second, we compose

the overfitted map with other maps, either to optimize the distortion of the map, or
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to compute distortion-minimizing maps between two or more surfaces. Figure 3.1

shows an example of a distortion-minimizing map f defined by composing h with

fA and fB.

We evaluate NSM on a variety of triangular meshes with varying complex-

ity and show their efficacy in computation of parametrizations, surface-to-surface

distortion-minimizing mapping, and also for mapping across collections of shapes.

We also provide comparison to baseline methods. In summary, our main contri-

bution is introducing neural surface map as a novel representation and utilizing it

towards addressing a variety of geometry processing applications. We particularly

stress the modular nature of the representation that enables harnessing the power of

current deep learning frameworks to solve many (classical) shape analysis tasks in

a uniform framework.

3.2 Method
We now define neural surface maps and how to compute and optimize them.

3.2.1 Neural Maps

We use the term neural surface map (NSM) to refer to any neural network con-

sidered as a function fA : R2→ R3. This ensures the map’s image is always a 3D

surface, and, assuming the map is non-singular, also a 2-manifold.

Neural surface maps are an alternative method to describe a surface that holds

two main advantages: differentiability and ability to be composed with other maps.

This enables us to easily compose neural maps fA ◦ fB, and define an objective over

the composition O( fA ◦ fB) which can be differentiated and optimized via standard

(deep learning) libraries and optimizers without the need to write tailor-made code

to handle new objective, work with combinatorial mesh representations, or deal

with the notoriously-hard map composition problem. Furthermore, thanks to the

universal approximation theorem [170], there always exists a network capable of

approximating a given surface function.

We obtain and manipulate neural surface maps via two processes – overfitting

and optimization, which we detail next.
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Figure 3.2: Starting from a 3D mesh, A, we parametrize to the 2D disk. Thus, obtaining
a piece-wise linear map PA. We overfit an MLP to the inverse of such a map
fA ≈ P−1

A .

3.2.2 Overfitting Neural Surface Maps

Let Ω⊂ R2 be the unit circle. All our neural maps will make use of Ω as a canon-

ical domain. Given any map P : ΩP → Rn, we can approximate it via a neural

surface map f by using black-box methods to train the neural network and overfit

it to replicate P. In the case of surfaces, this ground-truth map can be the inverse

of a parametrization, PA : R3 → R2, of a surface A. This would be a continuous

piecewise-linear map mapping triangles to triangles.

To approximate P−1
A we minimize the least-square deviation of fA from P−1

A

and the surface normal error as follows:

Loverfit =
∫

p∈Ω f

∥∥P−1
A (p)− fA (p)

∥∥2
+

λn

∫
p∈Ω f

∥∥∥n fA
p −nPA

p

∥∥∥2
,

(3.1)

where n fA
p is the estimated normal at p, and nPA

p is the ground-truth normal. In

practice, we optimize this objective by approximating the integral in Monte-Carlo

fashion by summing the integrand over a random set of sample points.

Namely, to use neural surface maps to represent surfaces, we first compute

a ground truth map PA by overfiting to a UV parametrization of the mesh A into

2D, computed via any bijective parametrization algorithm of our choosing – in this
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thesis, we show results with SLIM [23], by which we achieve an injective map of

the mesh into Ω ⊂ R2. We consider the inverse of this map, which maps Ω back

into the 3D mesh A, as our input f : Ω→ A, and overfit fA to it by minimizing

Equation 3.1, as shown in Figure 3.2. Thus, we obtain a neural representation of

the surface. More specifically, this is a mapping into the surface, endowed with

specific UV coordinates, with point fA (x,y) having UV coordinates x,y. Figure 3.3

shows several examples of such overfitted neural maps and their faithfulness to the

original geometry. NSM can faithfully represent smooth shapes as well as those

having sharp edges. Note that we assume that the objects are or have been cut open

to be homeomorphic to a disc.

Before progressing to discussing how can we compose maps and optimize

them, we define the distortion measures we wish to optimize.

3.2.3 Surface Map Distortion

We wish to optimize several energies related to neural surface maps. Similarly to

[22], for a neural map fA : Ω fA→R3, we denote by J fA
p ∈R3×2 the matrix of partial

derivatives at point p ∈ Ω fA , called the Jacobian of fA. The Jacobian essentially

quantifies the local deformation at a point. Letting Mp = JT
p Jp, we subsequently

can quantify the symmetric Dirichlet energy [23]:

Diso =
∫

Ω

trace(Mp)+ trace
(
(Mp + εI)−1

)
(3.2)

where I is the identity matrix, added with a small constant ε , set to 0.01, to regular-

ize the inverse.

Likewise, we can define a measure of conformal distortion via

Dconf =
∫

Ω

∥∥∥∥∥ trace(Mp)∥∥Mp
∥∥2 Mp− I

∥∥∥∥∥
2

. (3.3)

We evaluate the integrals by random sampling of the function in the domain.

Next, we show how to define surface-to-surface maps via various compositions

of the maps and optimize their distortion, in the pairwise and in the shape collection
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setting.

3.2.4 Geometry-preserving optimization via composition

Our basic representation of 3D geometries is, as discussed above, via an overfitted

neural surface map fA : Ω fA →R3 that approximates a given map PA. We now treat

fA as our de-facto representation of the geometry. Our goal is to optimize various

properties relating to the surface map, without affecting the geometry. However,

optimization of the map is not trivial since it will immediately change the 3D ge-

ometry. We propose a solution to completely avoid this issue, next.

Assume we are given a neural surface map representing some surface fA :

Ω fA → A; we wish to optimize the distortion D( fA) of the map. It is immediate

to optimize fA itself with respect to our differentiable notion of distortion, however

that will cause the map to change, and thus its image, the 3D surface, will change

and could, for instance, flatten to the plane. To overcome this, we suggest intro-

ducing another neural surface map h : Ω→ Ω fA . We can now define a new map,

f h
A = fA ◦ h. As long as we solely optimize h and ensure it is onto Ω fA , we are

guaranteed that the image of f h
A is still the original image of fA, i.e., respects the

original surface.

We can now optimize the distortion of f h
A, by optimizing h and keeping fA

fixed, thereby finding a map from Ω to A which is (at least a local) minimizer of the

distortion measure of our choice:

min
h

D
(

f h
A

)
.

The distortion is a differentiable property of the map and hence is readily avail-

able, e.g., via automatic differentiation. In fact, composition, and minimization of

distortion can be achieved in a mere few lines of code in Pytorch.

We can now consider composing more than two of these maps, to enable maps

into more intricate domains.
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3.2.5 Compositing Neural Maps

One of the many advantages of NSM’s composability is to enable representing maps

between a pair of surfaces, using the classic method of a common domain, as de-

picted in Figure 3.1: we posses two overfitted neural maps, fA, fB : Ω→ R3, re-

spectively representing two surfaces A,B, and we wish to define and optimize an

inter-surface mapping between these two 3D surfaces, f : A→ B.

To address the above prob-

lem, we define as before a map

h : Ω fA → Ω fB and the composi-

tion f h
B = fB ◦ h. At first glance, it

would seem that in this case, to map

a point from A to B, we will need

to consider the map fB ◦ h ◦ f−1
A ,

which includes an inverse of the entire map, that is of course not readily tractable.

However, we can define the inter-surface map Ψ via the following simple

definition: for any point p ∈ Ω fA , Ψ is implicitly defined as the map satisfying

Ψ◦ fA , fB◦h, or in simple words: for any point p∈Ω fA , Ψ matches the image of p

under f h
B with the image of p, mapped through h and then through fB (refer to Figure

3.1 for an illustration). This definition is known as the common domain definition

of a map and has been used in many works [171, 93, 168, 172, 115, 173, 25, 174].

It can be verified that this definition is identical to the one using the inverse, as long

as the inverse exists, and can still provide a bijective map between the surfaces even

in cases where it does not exist (cf., [173, 115]).

3.2.5.1 Computing distortion in the common domain

Even though Ψ itself is not tangible for optimization, as it is implicitly defined by h,

luckily the only differential quantity we need from Ψ to compute the distortion, is

the Jacobian of f , denoted JΨ
q at point q = fA (p). Using basic differential calculus

arithmetic, JΨ
q can be derived to be exactly

JΨ
q = J fB◦h

p

(
J fA

p

)−1
, (3.4)



3.2. Method 43

which is composed of the Jacobian of f h
B and the inverted Jacobian of fA at point p,

both readily available. Hence, to optimize the distortion of Ψ, we can take Equation

3.4, and plug it as the Jacobian used to define M in one of the distortion measures

Equation 3.2, Equation 3.3, which we denote as D(Ψ).

3.2.5.2 Optimizing h for bijectivity

For h to be a well-define surface map, it needs to map exactly bijectively (i.e., 1-to-1

and onto) to the source domain of fB, which is Ω fB . To ensure that, we only need

to ensure that h has a positive-determinant Jacobian everywhere, and maps to the

target boundary injectively. We optimize h to map the boundary onto itself, via the

energy

B(h) =
∫

p∈∂Ω fA

σ (h(p)) , (3.5)

where σ is the signed distance function to the boundary of Ω fB . Note that the

boundary map is free to slide along the boundary of Ω during optimization, enabling

the boundary map to change. This is true for all points on the boundary, except those

mapped to the four corners which are fixed to place and are essentially keypoint

constraints between the two models.

Further, we also optimize h to encourage its Jacobian’s determinant to be pos-

itive, via:

G = λinv

∫
max

(
−sign

(∣∣∣Jh
∣∣∣)exp

(
−
∣∣∣Jh
∣∣∣) ,0) . (3.6)

3.2.5.3 Keypoint constraints

Lastly a sparse set of corresponding key points on the two surfaces are given, and

it is required that the surface map Ψ maps those points to one another. Given key-

points on A, we can, in a preprocess before optimization, find their preimages in

Ω fA , to get a set of points QA s.t. fA
(
QA

i
)

maps to the i-th keypoint. We likewise

can find the preimages of the keypoints from B and their preimages QB under fB.

If these key points are required to be mapped to one another between the two sur-

faces by Ψ, we can achieve that by requiring h
(
QA

i
)
= QB

i , which guarantees the

induced Ψ maps the points correctly. We optimize for that equality by reducing its
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least-squares error:

C (h) = λC ∑
i

∥∥∥h
(

QA
i

)
−QB

i

∥∥∥2

2
. (3.7)

To facilitate the optimization, we apply a rotation, R, to the input of h. R is pre-

computed from the landmarks.

3.2.5.4 Optimization for surface-to-surface maps

To compute the surface map, we optimize the distortion of Ψ with respect to h,

while ensuring h respects the mapping constraints

min
h

D(Ψ)+C (h)+B(h)+G(h) . (3.8)

This yields a map h that maps onto the domain, and represents a distortion-

minimizing surface map Ψ that maps the given sets of corresponding keypoints

correctly, as shown for instance in Figure 3.1.

3.2.5.5 Cycle-consistent surface mapping

We also extend our method to discover inter-surface mapping among a collection

of k surfaces A1,A2, ...,Ak represented respectively via neural maps f 1
A, f 2

A, ..., f k
A,

we can define a cycle consistent [175, 176] set of surface maps by considering k

additional neural maps, hi : Ω f 1
A
→ Ω f i

A
, define the composition f i

A ◦ hi, and then

define the surface-to-surface maps Ψi→ j : Ai → A j via Ψi→ j ◦ f i
A ◦ hi , f j

A ◦ h j.

This naturally allows extracting a set of mutually consistent maps while addition-

ally optimizing for (all pairs) surface-to-surface maps, see Figure 3.7. Note that

achieving similar qualities via classic methods is significantly challenging, while

previous techniques could compute cycle consistency, none could optimize for true

surface-surface distortion minimization over the entire collection.

3.3 Evaluation
We evaluate the discussed neural-mapping representation in the context of vari-

ous mapping problems, such as surface parametrization, inter-surface mapping, and

mapping a collection of shapes.
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Figure 3.3: Neural surface maps faithfully represent the original surface, no matter the
complexity. Here, we depict the point-wise error (L2 norm) for each vertex
with respect to the ground truth as colour map.

3.3.1 Neural representation

Our overfitting procedure is able to capture even very detailed features of the orig-

inal shape with a high fidelity. Figure 3.3 illustrates the difference between our

reconstruction and the input mesh (highlighted in red). There are minor discrepan-

cies between the models in regions exhibiting complex patterns like the Armadillo’s

legs. We observe that our reconstructions tend to be slightly smoother than the orig-

inal shapes due to the use of Softplus activation.

3.3.2 Surface Parametrization

The main advantage of neural mapping is not in representing the surfaces, but in

representing the mapping. We now take a map fA : Ω fA → R3 from Figure 3.3, and
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Figure 3.4: Starting from a Neural Surface Map (left), it is possible to optimize a neu-
ral map h minimizing conformal energy (centre) or isometric energy (right)
with free-boundary. Independently to the model’s size, the neural maps can
parametrize the input mesh, with very few parameters. Adding a constraint
over the boundary shape is as simple as regularize the mesh boundary.

introduce another map h : Ω fA → R2, where we do not constrain its output domain.

Similarly to the discussion in Section 3.2.5, we can define the map Ψ from the 3D

model implicitly via as Ψ( fA (p)) = h(p) for all p ∈ Ω fA . We then minimize the

isometry distortion of Ψ (Equation 3.2), using the method to extract the Jacobian

discussed in Section 3.2.5. Note that this objective is different from the one that

was used to produce fA, hence we undo the original parametrization’s distortion by

compositing the neural map with a newly optimized map in Figure 3.4.

In contrast to UV parametrizations of meshes, the complexity of our optimiza-

tion for this composition is completely independent of the resolution of the geome-

try.
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Figure 3.5: Here we showcase example of inter-surface maps. In each case, we first convert
the models into Neural Surfaces, then we optimize a neural map h that mini-
mizes the distortion of the map while respecting landmarks, bijectivity and con-
tinuity. We observe no inversion of flips in the maps. Corresponding landmarks
are depicted with sphere of the same colour.

3.3.3 Surface-to-surface Maps

We can obtain a surface-to-surface map by compositing neural maps with a map

between two atlases, as discussed in Section 3.2.5. In Figure 3.5, we depict several

maps by mapping texture from one model onto the other. Spheres depict landmarks

used to guide the map. Generally, our inter-surface maps exhibit low isometric

distortion while corresponding regions are mapped correctly, see the wings of the

plane and the wings of the bird. Furthermore, the proposed framework can map non-

isometric shape pairs such as bull to horse. Note how despite significant geometric

differences between surfaces, the result is a bijective, low-distortion mapping.

In all cases, we optimize only a neural map h initialized with map identity.

Experimentally, we observe this speed-up the optimization, while leading to more

stable results.

3.3.4 Composition with Analytical Maps

Our method can optimize an inter-surface map Ψ from fA, fB just as well when fB

is not a neural map, but rather an analytical mapping defining some surface. Indeed,

only h itself is required to be neural in our formulation of surface-to-surface maps.

In Figure 3.6, we show mappings of Bimba and David into four such analytical

surfaces. In this case, we optimize the conformal distortion Equation 3.3 of Ψ.

Please refer to the supplementary for equations of the analytic surfaces.
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Figure 3.6: Inter-surface map between 3D models (left) and several analytical surfaces
(right). Colours are based on the source model’s normals.

3.3.5 Cycle-consistent Mapping for Collections of Surfaces

Finally, we show that thanks to the compose-ability of neural surface maps, our

method can be efficiently applied to cycle-consistent mappings for a collection of

shapes. Furthermore, since we use a common domain, the maps are guaranteed

to be cycle-consistent, as in [175, 176]. We minimize the isometric distortion of

the surface-to-surface maps between all pairs of surfaces in a collection of three

models, following the method discussed in Section 3.2.5. Figure 3.7 illustrates that

we were able to obtain cycle-consistent low-distortion maps between all shapes

in the collection. We used keypoints, as shown by the sphere, to ensure correct
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Figure 3.7: We define neural maps from one model (hub) to all other through neural maps,
black arrows. Then, we minimize the distortion between all pairs, maps
among all other nodes are implicitly defined by composing existing maps,
orange arrows. This formulation ensures cycle consistency by construc-
tion. Spheres of corresponding colours depicts corresponding landmarks used
during the optimization.
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(a) source (b) [93] (c) ours

Figure 3.8: Comparison with inter-surface mapping [93].

alignment.

3.3.6 Comparison

To validate neural surface maps, we offer visual comparisons with the classic inter-

surface method [93] and Mandad et al. [167]. Schreiner et al. fails to produce

smooth maps while matching landmarks: respectively for the bust and animal

shown in Figure 3.8, [93] presents 8.58% and 8.54% triangles flips with a me-

dian Diso = 4.90 and Diso = 7.00. Similarly, Mandad et al. achieve a median

Diso = 7146, with 49.91% of flips, and Diso = 10669 with 49.86% of flips, see

Figure 3.9. Note, [167] introduces discontinuities in the map, resulting in large

distortion and misalignment. On the other hand, our method offer a continuous,

properly aligned, map. Numerically, our map for busts exhibit Diso = 7.00 with no

triangle flips, Diso = 8.56 and 0.03% flips for animal.

3.4 Implementation Details
In all our experiments, we use a neural network consisting of ten-layer residual

fully-connected network, with 256 hidden units per layer, with a Softplus activation

function. We use λn = 0.01, λB = 106, λinv = 102, λC = 103 in all experiments.

We sample the initial mesh uniformly with 500k points. Since our goal is to fully-
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(a) source (b) [167] (c) ours

Figure 3.9: Comparison with state of art shape correspondence [167].

optimize the networks, they are trained until the gradient’s norm drops below a

threshold of 0.1. In all cases, we optimize the network with and RMSProp, and

initialize the optimization procedure with a learning rate of 10−4 and momentum

0.9, the step size is modulated with [177]. Similarly, maps used for surface map-

ping are four-layer fully-connected network of 128 hidden units, with Softplus. In

general, overfitted networks converge in 1h, while, surface-map and collection-map

optimization take around 1.5h to reach a stable configuration.

3.5 Limitations

The representation and mapping framework that stems from it has several limita-

tions. For one, it can only represent disk-topology surfaces, other topologies can be

approached with cuts. Furthermore, we assume the cuts to be in correspondence,

which it might not be a realistic assumption.

Regarding inter-surface maps, we assumed h being bijective and mapping the

keypoints correctly; in theory, we cannot guarantee that this requirement is upheld,

however, in our experiments, it is rare for this condition to be violated.

The overfitting and map optimization are computationally expensive, requiring

a matter of hours for the networks to be trained.
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3.6 Conclusions
In this chapter, we introduced Neural Surface Maps as a core representation for sur-

faces that is easily differentiable and composeable. Using the common domain ap-

proach, we can optimize for different properties of parametrization or inter-surface

maps. Overfit to individual meshes allows encoding shapes as network weights, and

subsequently optimize maps while keeping the surface approximation quality fixed.

We demonstrated the universality of neural maps addressing challenging classical

tasks including parametrization, surface-to-surface distortion minimization, and ex-

tracting maps across a collection of shapes.

Future works

We see many immediate uses to the differentiability and composability of our repre-

sentation, such as applying differential geometry operators to the models as well as

solving PDEs on them. Resorting to neural network generalization capabilities can

bring large high-resolution dataset within our reach, exposing neural surface maps

to applications like segmentation and classification.



Chapter 4

Neural Semantic Surface Maps

4.1 Introduction

In Chapter 3 we introduced a mapping framework which allows us to compute inter-

surface maps between shapes given manual annotations. In this chapter, we extend

NSM and propose an automatic method to compute a continuous correspondence

between two genus-zero surfaces. The core contribution is an approach for comput-

ing semantic maps that matches semantically corresponding points to one another

(e.g., nose to nose, arm to arm, etc.).

As discussed earlier, computing correspondences between domains is a funda-

mental problem spanning a wide array of domains such as text snippets [178], au-

dio [179], images [180], or general graphs [181]. In the context of 3D surfaces, es-

tablishing such correspondences enables texture or deformation transfer [182, 183],

shape analysis [184, 185, 186, 187], and shape space exploration [188, 189, 190].

Continuous surfaces (2-manifolds), encoded as triangular meshes, remain the

most natural and common representation of 3D shapes in graphics and discrete dif-

ferential geometry. Correspondence between two such surfaces is typically required

to be a map that is continuous, one-to-one, onto, and with a continuous inverse, i.e.,

a homeomorphism. Decades of research (see surveys [117, 191]) have been dedi-

cated to tackle the task of mapping between surface pairs. These previous works, be-

ing geometric, cannot extract (semantic) maps over the space of homeomorphisms;

instead, they have focused on surrogate optimization tasks that minimize some geo-
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Figure 4.1: Here, we show the extracted map between two non-isometric shapes, tiger
and iguana. Although the shapes are highly non-isometric, e.g., lengths of the
tail and legs, our method successfully associated these regions between shapes,
thus yielding a semantically correct map. This map is seamless by construction,
and optimized with no supervision thanks to pre-trained ViT models which can
identify semantically corresponding points across shape renderings.

metric notion of ”distortion” of the map, e.g., preserving geodesic distances as best

as possible. Such distortion-minimizing geometrically-guided maps are, of course,

not necessarily semantically meaningful. Thus, a human-in-the-loop approach is

usually taken to manually indicate landmark correspondences, which are then used

to optimize a map.

Computing semantic homeomorphism faces two main challenges. First, the

lack of annotated 3D data inhibits learning high-level semantic priors. Second,

most 3D representations either hinder or – completely – prevent the computa-

tion of bijective inter-surface maps from semantic priors. In contrast, recent

works [131, 133, 134, 135, 21] demonstrate that the features of a pre-trained vi-

sion transformer (ViT) are often semantically meaningful and can be used reliably

across multiple vision tasks, even on out-of-training image data in a zero-shot set-

ting. We aim to bridge the semantic matching capabilities of the image domain with

the computation of inter-surface maps from potentially noisy correspondences, en-

couraging continuity and bijectivity. Our core observation is that suitable renderings

of the surfaces, without access to surface texture, are already sufficient for image

transformers (i.e., ViT) to produce 2D matches that can subsequently be used as

fuzzy (i.e., partial and non-injective) maps between the surfaces. Then, we for-

mulate an optimization to aggregate multiple such fuzzy matches obtained from
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multiview renderings to produce a surface map that best conforms to these fuzzy

matches, thereby distilling their semantic priors, see Figure 4.1.

Specifically, given the fuzzy matches, we utilize Neural Surface Maps

(NSM) defined in Chapter 3 to optimize a map between two surfaces. The original

NSM framework encodes surfaces using dedicated neural functions, offering a dif-

ferentiable backbone and avoiding complexities arising from topological changes

(i.e., mesh connectivity for different triangulations). However, it has two limi-

tations: it expects the individual surfaces to be cut into disc topologies with the

two respective boundaries already in correspondence, and requires a set of exact

landmark correspondences. We address the first problem by proposing a seam-

less Neural Surface Maps (sNSM) framework, which relaxes the requirement from

exact boundary correspondences to only cone-point matchings. We address the

second problem by optimizing a custom objective that encourages the image of a

specific point to best accommodate the fuzzy (semantic) matches while identifying

and disregarding outliers (see Figure 4.4). The resultant optimization problem is

solved using gradient descent, simply through PyTorch’s SGD optimizer.

Through quantitative and qualitative experiments, we evaluate our ability to

match upright object pairs with varying levels of isometry for objects from the same

semantic class and across different ones. We also compare ours to competing sur-

face map extraction algorithms. In summary, our main contributions are:

• proposing a fully automatic algorithm for extracting semantic maps between

upright shape pairs;

• sampling and integrating a set of image-based correspondences to form fuzzy

object space correspondence maps;

• extending the Neural Surface Maps framework proposed in Chapter 3 to

seamless maps that can work with fuzzy, and potentially noisy guidance, to

distil semantic maps; and

• demonstrating, via extensive evaluation and comparisons, that the algorithm

yields semantically valid maps for both isometrically and non-isometrically
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Co-align Fuzzy 
Matches

NSM
Distill

Homeomorphism

Figure 4.2: Overview. Starting from a pair of upright genus-zero surfaces, we automati-
cally distil an inter-surface map from a set of fuzzy matches. First, we align the
input shapes, then extract a set of fuzzy matches through DinoV2 [21] semantic
visual features. We use these features to independently cut the two meshes and
then optimize a (seamless) map between them.

related shape pairs.

4.2 Method
We now detail our framework (see Figure 4.2) for an automatic inter-surface map.

We assume to be given two upright 3D surfaces, A and B, in arbitrary relative

poses. The majority of meshes from online repositories, such as the 3D Ware-

house, TurboSquid, or Sketchfab, satisfy this requirement, alternatively, methods

like [192, 193] can be used as pre-processing. We assume both shapes to have zero

genus, although the method can be extended to higher genus surfaces. We aim to

compute an inter-surface map Ψ : A↔ B guided by visual semantics. Our frame-

work proceeds in three stages:

1. Given two shapes, A and B, that are assumed to be oriented upright, we auto-

matically align them using semantic matches.

2. We aggregate fuzzy matches (i.e., general matching of pairs of points which

is neither 1-to-1, onto, nor maps all points on the source surface) between

the surfaces by applying 2D matching techniques to renderings, over multiple

views.

3. Optimize a surface map that best agrees with the fuzzy semantic matches

while handling outliers.

We provide pseudocode for our semantic homeomorphic map extraction framework

in Algorithm 1.
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Algorithm 1: Semantic Surface Homeomorphism
Data: source A, target B
R← COALIGN(DinoViT(),A,B) ;
fuzzyMatches← COMPUTEMATCHES(DinoViT(),A,B,R) ;
Adisk,Bdisk← ASYNCCUT(A,B,fuzzyMatches) ;
ANSM← OVERFITNSM(Adisk) ;
BNSM← OVERFITNSM(Bdisk) ;
map← DISTILMAP(ANSM,BNSM,fuzzyMatches) ;
return map

4.2.1 Semantic Shape Alignment

Given two upright shapes, A and B, we first align them to have the same orienta-

tions. We achieve this by casting this problem as (semantic) circular string matching

between shape renderings: given two ”strings” – sets of renderings – of the same

length, we find the global rotation R, about the upaxis, to best align one string with

the other. Intuitively, we order one sequence to convey semantic information in the

same order as the other, see Figure 4.3 for an overview.

First, we render each mesh from 12 viewpoints around it, RA
i and RB

i (see Sec-

tion 4.2.10 for a discussion on rendering). These images constitute the two strings

sA := {RA
i } and sB := {RB

i }. Then, we extract a set of DinoV2 [21] features for each

image. Finally, we compute the alignment score for the 12 possible rotations as the

total number of ”Best Buddy matches” [194] between the two strings of features.

We pick the (relative) rotation with the highest score as the rotation and use it to

co-align the shapes.

4.2.2 Distilling Fuzzy 3D Matches via Visual Semantics

Next, we extract fuzzy matches from renderings, taken from different viewpoints,

of the aligned surfaces. Each such viewpoint V results in a pair of rendering that we

use to define a fuzzy correspondence φV :=
(

pV
i ,q

V
i
)n

i=1 with p ∈ A,q ∈ B, which

consists of pairs of corresponding points on A and B.

Although correspondences are imprecise or inaccurate, we assume that these

imprecisions balance out, leading to approximately correct matches. Embracing

this assumption, we leverage it as a guiding principle during map optimization.
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String Matching

Figure 4.3: Co-aligning input surfaces: Starting from a pair of upright meshes (bison
and bull in this example), we render 12 views around them (sA and sB). Then,
we extract DinoV2 features from each rendering independently and match these
features as a string-matching problem. Specifically, we optimize over a cyclic
shift of the rendered views (i.e., one degree of freedom) to maximize agreement
of image-based semantic correspondences.

4.2.3 Computing rendering correspondences.

Given a viewpoint V , we render the two untextured surfaces from that viewpoint

to get two renderings, RA
V and RB

V . To extract correspondences, we take inspiration

from recent methods that leverage deep image features from [21] for matching 2D

images and design a method for extracting dense visual correspondences. Specifi-

cally for each image patch processed by DinoV2, we extract a feature vector with

λ A
i and λ B

i being the features of rendering of RA
V and RB

V , respectively. Then, we

segment foreground/background through PCA and compute the cosine similarity

between all pairs of source and target patch foreground features, as score

Si j =
〈

λ
A
i ,λ B

j

〉
. (4.1)

Finally, we define the match of patch i ∈ RA
V as the patch j ∈ RB

V with the highest

cosine similarity, and vice versa, the match of patch j ∈ RB
V as the patch i ∈ RA

V with

the highest cosine similarity. In summary, the pair (i, j), i ∈ RA
V , j ∈ RB

V is a match,
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Aggregated
Matches

Final
Selection

Fuzzy Matches

Figure 4.4: Fuzzy semantic correspondences. (Left) We lift 2D image-based correspon-
dences, obtained using a pre-trained vision-transformer [21] on rendered image
source/target pairs from sampled views, to obtain fuzzy and spurious 3D (se-
mantic) correspondences. We collect correspondence, shown with colouring
and a random set highlighted with lines, from each of the sampled views and
aggregate them across views to get aggregated fuzzy matches (middle), which
contain erroneous matching, e.g., thigh getting mapped to the arm. (Right) We
propose an optimization to distil these fuzzy matches into an inter-surface map,
here depicting a subset of matches closer than a given threshold (d < 0.1) wrt
the optimized map.

if

Si j = max
k

Sik or Si j = max
l

Sl j. (4.2)

We transform a match from patch level to pixel level, as the patch size is known. In

contrast to ours, [135] selects only ”Best Buddy” matches [194], augments features

with binning, and does not segment foreground/background through PCA features.

Although [135] produces a more expressive set of features and possibly a more

reliable set of fuzzy matches, we found it time-consuming (2hrs in our settings),

and our experiments did not provide sufficient justification for such a design choice.

Given dense 2D correspondences in an image, we lift (unproject) each pixel

to the 3D mesh by performing ray intersection between that pixel’s corresponding

ray from viewpoint V and the 3D mesh T, thereby associating every 2D pixel with

a point on the surface, represented as barycentric coordinates at the triangle the ray

intersects. The fuzzy matches are thus pairs of matching 3D points (represented as
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barycentric coordinates on triangles): (φV = pi,qi)
n
i=1.

We repeat this process from multiple viewpoints and obtain a collection{
φ i}k

i=1 of fuzzy matches. Our final task is to distil them to produce an automatic

map.

4.2.4 Aggregating the Fuzzy Matches to an Inter-surface map

Given the fuzzy matches, we wish to optimize a continuous map Ψ between A and

B using a differentiable loss that encourages agreement with the fuzzy matches.

Our final goal is thus to devise an optimization scheme that will lead to a map

Ψ : A↔ B which balances smoothness with the number of respected matches. We

compare each point’s image with its designated matches from φ i to achieve this

goal. We then use an L1 norm over the error of different points, which is known

to be robust to outliers and encourage sparsity (i.e., agree with as many matches of

the fuzzy matches as possible). In practice, we select a subset (N) of all possible

correspondences and minimize the discrepancy between the predicted point and its

ground truth, thus averaging across redundant noisy matches:

LMatches =
1
N

N

∑
j=1
‖Ψ(p j)−q j‖1, (4.3)

where (p j,q j) is a randomly selected correspondence. To evaluate LMatches we first

extract the barycentric coordinates of p j and convert it to a point in the square, p2D
j ∈

R2. Then, this point is mapped forward through f B◦h and used to compute the error

as ‖ f B(h(p j))−q j‖1 for each match. To optimize Equation 4.3, we adopt a recent

method for optimization of the surface map, Neural Surface Maps (NSM) Chapter

3 as described next.

4.2.5 Seamless Neural Surface Map.

We follow NSM’s paradigm: we first parametrize each one of the two cut surfaces

via SLIM [23] into a square D ∈ R2 to get two bijective seamless parametriza-

tions, PA : A ↔ D,PB : B ↔ D. Then, we fit a neural network to each of the

two parametrizations’ inverse, fA ≈ P−1
A , fB ≈ P−1

B . Finally, using another neu-

ral network that maps the square to itself, h, we can define the inter-surface map
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Ψ = fB ◦ h ◦ f−1
A . By optimizing solely the parameters of h while maintaining its

bijectivity, and holding the overfitted networks fA, fB fixed, NSM enables optimiza-

tion over the space of maps between the two surfaces.

As we cannot guarantee corresponding cuts between genus 0 meshes, see cut

examples in Figure 4.5, we relax the boundary-matching constraint in the original

NSM and extend it to support seamless maps. Intuitively, a borderless, or seam-

less, parametrization is a 2D-3D mapping that is independent of the choice of cut

path, given a set of K boundary points. In other words, the map emerging from the

parametrization has several equivalent maps with different boundaries, see Figure

4.6(c). Only the K points, referred to as cones, remain constant and must have the

same mapping across all equivalent maps. Mathematically, a seamless parametriza-

tion is a mapping equipped with homotopic cuts (i.e., the cuts can be changed ho-

motopically but the produced mapping will stay the same). In particular, for three

cones on a sphere, all cuts are homotopic, and thus the embedding is independent

of the cut choice. Please refer to [90] for more details.

Furthermore, the class of seamless parametrization requires a specific type of

cut such that triangles, or points for that matter, can be mapped to the other side of

the cut by a family of transformations R. In terms of NSM, a seamless map requires

matching corresponding cones while the boundary is allowed to move. Thus, the

a) b) c)

Figure 4.5: Cutting through cone points. We collect a set of spurious and noisy
matches (a). Then, we select the most reliable K = 3 correspondences (b).
Finally, using these matches as cut endpoints, or cones, we cut the two meshes
independently (c). Note how the cut differs in the two shapes: the man is cut
through the back, while the woman is cut through the front. Refer to Sec. 4.2.6
for details.
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accuracy required to define the cut path, and hence the 2D boundary, through fuzzy

matches is reduced, e.g., see Figure 4.5(c) for cut paths. Below, we first detail how

we extract corresponding cones, then describe a seamless map.

4.2.6 Cones.

To identify cones, we first aggregate the fuzzy matches by counting for each triangle

FA
i ∈A, how many fuzzy matches associate it with triangle FB

j ∈B, yielding a large

sparse matrix M such that its (i, j) entry is the total count for matches of FA
i to FB

j ,

Mi j = ∑
k

∣∣∣{(p,q) s.t. p ∈ FA
i ,q ∈ FB

j ,(p,q) ∈ φ
k
}∣∣∣ , (4.4)

where | · | stands for the cardinality of the set. Next, we consider M as the adjacency

matrix of an edge-weighted graph, with Mi j being the weight on edge (i, j). Then,

through bipartite graph matching [195] we obtain a matching, i.e., a list of pairs

(ik, jk), s.t. i, j = argmax
i, j

Mi, j. We select the K = 3 correspondences (i, j) with the

highest Mi j values, such that the geodesic distance – averaged between the two

shapes – between all K points is at least τ = 0.3. Finally, we use these landmarks

as the cut’s endpoints and the midpoint.

4.2.7 Seamlessness.

Since we cannot rely on the cut quality, we reformulate the neural map h, which

we optimize to define the map Ψ, to support seamlessness. This constrains the map

to work on shape pairs with the same genus. Furthermore, the definition of the

seamless map changes based on the genus. For a sphere, h changes to h̃:

h̃ =
{

x→ T ·h(x)+η |T =

 a −b

b a

 ∈ R2×2,η ∈ R2×1
}

(4.5)

for all points mapped outside the domain Ω, which rotates around the cone ci (η)

of a rotation R(T ).

To achieve seamlessness h must perfectly match cones ci to their ground truth

c̃i. Therefore, we formulate such a constraint by penalizing the deviation of mapped
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a) b) c)

Figure 4.6: Seamless cuts. To parametrize a genus-zero mesh (a) we cut and map it to a
disc topology, cut visualized as in (b). The two corresponding sides of the cut
match perfectly, i.e., when we connect the two parts, the map remains continu-
ous across the cut (c).

cones, h(ci), to their ground truth position:

LCones = ‖h(ci)− c̃i‖ . (4.6)

In the case of spheres, we have 3 cones, of which one is duplicated, thus one for

each vertex of the square in the square domain Ω. In the case of torus, a single point

is duplicated 4 times, corresponding to all 4 square vertices.

A second condition for seamlessness concerns the duplicated points on the

boundary. In the case of spheres, each point on the boundary p1 has a corresponding

point p2 which is a rotation of 90◦ with respect to one of the cones. For the case of

a sphere, we formulate the constraint as the following energy:

LSeamless = ‖h(p1)−R · (h(p2)− ci)+ ci‖ , (4.7)

where ci is the cones wrt p2 undergoes a rotation R to be a clone of p1. Note, the

rotation can either be π/2 or−π/2. In the case of a torus, p2 is on the opposite side

of the boundary of p1, i.e., the transformation being a translation along x or y.

4.2.8 Optimization energies.

We follow Section 3.2.5 and encourage the map to be bijective through a loss term

that prevents the map h’s Jacobian Jp at every point p ∈ Ω from having a negative
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determinant:

LJ =
∫

Ω

max
(
−sign

(∣∣Jp
∣∣)e−|Jp|,0

)
. (4.8)

Thus, encouraging, but not guaranteeing, continuity and bijectivity of the map.

To cope with the sparsity of fuzzy matches and obtain a well-defined map in

undefined regions, we use an energy term that encourages smoothness and prevents

large distortion:

LSmooth =
∫

Ω

∥∥∥JΨ
p − JΨ

pε

∥∥∥ , (4.9)

where JΨ
p is the Jacobian at a point p of the map Ψ. While pε is the point p per-

turbed by ε ∼N (0,0.1) through barycentric coordinates. Intuitively, we want the

Jacobian of the map to change slowly. Note, in Chapter 3, the authors used Sym-

metric Dirichlet [23] in a similar context, however, this energy promotes isometric

maps rather than smooth ones. Such behaviour can actively damage the map opti-

mization and force it to ignore certain – correct – matches, while we aim to attend

to unregularized areas.

4.2.9 Total energy.

Our total loss is expressed as:

L = α1Lmatches +α2LJ +α3LCones +α4LSeamless +α5LSmooth, (4.10)

where α1 = 104, α2 = 106, α3 = 106, α4 = 106, and α5 = 10−1 in all experi-

ments. These hyper-parameters were selected experimentally. We optimize net-

work weights h using this loss, and to alleviate the impact of incorrect matches; we

incrementally drop those that strongly disagree with the current map, i.e., 20% of

matches with the highest Euclidean distance. Experimentally, this explicit filtering

reduces the impact of incorrect matches, thus preventing the network from getting

stuck in incorrect energy minima due to the presence of inaccurate matches.

In summary, the proposed pipeline optimizes for an inter-surface map automat-

ically between a pair of upright shapes. First, the input mesh pair is automatically

aligned, then through pre-trained ViT [21] we extract a large set of semantic fuzzy
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matches between them. Finally, we distil an inter-surface map; this step is fun-

damental to filter out any incorrect matches, enhancing the overall accuracy and

reliability of the resultant map. Next, we quantitatively and qualitatively evaluate

the quality of the distilled map.

4.2.10 Rendering Settings

We render shape pairs and use these images with DinoV2 [21]; this model is known

to be forgiving in cases of image variation. As the shape alignment is unknown,

we render an object-centric scene with a fixed perspective camera and 5 point lights

aimed at the shape. Different points of view are obtained by rotating only the shape

by fixed increments, while the rest of the scene (i.e., camera and lights) stays fixed.

We set up the scene to ensure the entire object is visible by the camera’s field of

view.

To boost the matching capabilities of Dino-ViT and aid it in distinguishing left

from right, top from bottom, while enhancing scene details, we strategically position

coloured lights around the object in a half-dome fashion. Specifically, we employ

five coloured point lights (red, blue, green, yellow, and white) for this purpose. As

depicted in Figure 4.3, corresponding regions in the images exhibit similar colours;

for instance, the right part of the images tends to appear reddish due to illumination

from a red light source. In cases involving textured meshes, we replace the coloured

lights with white ones.

4.3 Evaluation
We evaluated our method on various datasets for inter-surface mapping and com-

pared it against multiple baselines that focus on obtaining surface-to-surface maps.

4.3.1 Datasets

We assess maps’ quality on available benchmarks comprising isometric and non-

isometric shape pairs. (i) We randomly select 30 pairs from FAUST [186], contain-

ing isometric deformations and pose variations of human shapes. (ii) We choose 30

random same-category shape pairs from SHREC07 [198], containing non-isometric

deformations across multiple categories of shapes. (iii) We also extract 30 random
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shape pairs among the listed test set of SHREC19 from Dyke et al. [199], contain-

ing a mix of isometric and non-isometric deformations.

To ablate the effect of pose variation, we use FAUST [186], SCAPE [200],

and TOSCA [201]. To ablate the effects of rendering settings and rotation, we

use FAUST [186]; 3DBiCar [202], which comprise a variety of textured shapes;

and SHREC15 [203], which contain significant non-isometric-variations, with

manually-annotated sparse correspondences. Furthermore, we present additional

ablations highlighting the crucial role of initial alignment, the method’s robustness

to mesh holes and noise, and discuss DinoV2 features. To summarize, significant

misalignment negatively impacts matching quality; feature similarity does not re-

flect their matching accuracy; finally, the method effectively maps meshes with

holes, e.g., scans.

All meshes used in our experiment are watertight and genus zero, and range

from 11K to 90K faces. The shape pairs include a mix of some isometric and mostly

non-isometric cases.

4.3.2 Metrics

We assess map quality (see also [127]) based on their accuracy, bijectivity, and

inversion as:

• Accuracy (Acc ↓): measures the ability of the algorithms to respect ground-

truth correspondences. We measure it as the geodesic distance normalized, as

defined in [114], for each landmark.

• Bijectivity (Bij ↓): measures the geodesic distance of all vertices mapped

forward, and then back to the source mesh wrt their original position. A zero

value indicates perfect bijectivity.

• Inversion (Inv ↓): measures how often the map flips the surface as the per-

centage of inverted triangles; we compute it as the agreement of the normal of

the mapped triangles wrt the faces on which the triangle vertices are mapped.
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Table 4.1: Quantitative evaluation. We compute each map’s accuracy (i.e., average
geodesic error) and averaged them over 30 shape pairs for each dataset.

FAUST SHREC07 SHREC19
Inv ↓ Bij ↓ Acc ↓ Inv ↓ Bij ↓ Acc ↓ Inv ↓ Bij ↓ Acc ↓

ICP 0.06 0.17 0.25 0.09 0.65 0.23 0.07 0.75 0.15
BIM 0.09 0.03 0.04 0.49 0.48 0.23 0.05 0.82 0.04

ZoomOut 0.33 0.23 0.15 0.25 0.65 0.54 0.29 0.76 0.32
Smooth-shells 0.01 0.00 0.01 0.03 0.72 0.26 0.01 0.83 0.01

Ours 0.00 0.00 0.13 0.00 0.00 0.23 0.00 0.00 0.11

4.3.3 Baselines

We compare with three other techniques that focus on extracting maps between

given surfaces: (i) BIM [114], (ii) ZoomOut [166], and (iii) Smooth-shells [103].

We also include (iv) ICP, which uses the closest points as correspondence, as a

straw-man approach that performs well in case of negligible pose variation. Results

are presented in Table 4.1, and selection of the pairs shown in Figure 4.7.

We cast ICP as nearest neighbour search after rigid alignment. Specifically, we

use our pipeline first to align each shape pair and then compute nearest neighbour

correspondences for each point on the source to the target mesh. This approach may

perform well for shapes in similar poses with low isometric deformations.

Additionally, we compare qualitatively to Enigma [197] that uses genetic al-

gorithms along with a combinatorial search to find a set of good sparse correspon-

dence, which are then interpolated to a dense low-distortion map. While this method

produces smoother and more semantic maps than other baselines, it still suffers from

large and uneven distortions, see Figure 4.8.

4.3.4 Quantitative Evaluation

We report quantitative errors using the metrics discussed earlier. In particular, for

accuracy, we follow the standard practice and measure the mean geodesic distance

to ground truth correspondence on a unit-area mesh.

Although not guaranteed by construction, we empirically found that ours con-

sistently offers more bijective and continuous maps, see Table 4.1 ”Bij” and ”Inv”,

while others can fail to perfectly achieve these properties in both isometric and

non-isometric cases. Our technique shows comparable quality in the maps in non-
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Source BIM ICP Smooth-Shells ZoomOut Ours

Figure 4.7: Comparisons. Left-to-right: Source model, results using BIM [114], ICP,
Smooth-shells [103], ZoomOut [166], and Ours. Although geometric methods
produce good maps, they often yield discontinuous maps, e.g., see the wings of
planes. Ours explicitly encourages continuity and bijectivity. Coloured land-
marks and paths show automatically selected cones and cuts by our method.
Note that our maps are continuous across the cut seams. No explicit energy
term is used to encourage isometric maps.

isometric cases (SHREC07) compared to state-of-the-art methods, Table 4.1 ”Acc”,

while it performs worse in isometric cases (FAUST and SHREC19). In general,

our method suffers in these cases as it does not exploit geometric cues and does

not have an explicit isometric energy term, thus producing less accurate maps than

competing methods.
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Source BIM ICPENIGMA Smooth-Shells ZoomOut Ours

Figure 4.8: Qualitative comparison. ENIGMA [197] fails to produce correct mappings,
in cases of extreme deformations. Similarly, other state-of-the-art methods may
lack bijectivity or correct correspondence. Ours can better handle these cases,
see Table 4.1 for quantitative comparison. Coloured landmarks and paths show
automatically selected cones and cuts by our method.

4.3.5 Qualitative Evaluation

Figure 4.9 shows Neural Semantic maps extracted using our fully automatic ap-

proach. The produced maps accurately match semantic features despite the fuzzy

aggregated correspondences being erroneous and confused by symmetries (e.g.,

mapping incorrect limbs). Ours also work well across dissimilar shapes. These

non-isometric cases require introducing significant local stretching to preserve se-

mantic correspondence. The extracted maps still exhibit low isometric distortion,

where possible, while adhering to semantically meaningful correspondences. Yet,

artefacts may arise (see Armadillo’s leg in Figure 4.7) when the smoothing energy

is not sufficient to balance the noisiness of matches. State-of-the-art methods, such

as ENIGMA [197] or Smooth-shells [103], suffer from self-symmetry ambiguities,

e.g., see bull-horse in Figure 4.8.

4.3.6 Ablation

4.3.6.1 On DinoV2 features

As aforementioned, we deem a match if the cosine similarity Si j between patch fea-

tures – λ A
i and λ B

i – is the highest. While this is a common similarity measure,

it is important to acknowledge its inherent limitations. Specifically, one notable
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Figure 4.9: Results. Automatic maps extracted by the optimization on various surface
pairs using aggregated fuzzy correspondences. Coloured landmarks and paths
show automatically selected cones and cuts by our method. The rabbit, hands,
humans, and heads examples represent near isometric pairs with pose varia-
tions; the chairs, giraffe-horse, giraffe-cow examples produce non-isometric
mappings with spatially varying distortions. Note the semantic nature of the
extracted maps. No explicit energy term was used to encourage the maps to be
isometric.
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challenge is that similarity scores derived from different images may not be directly

comparable. For example, for two matches with scores 0.9 and 0.8, the former

match pair is not necessarily better than the latter. In essence, features extracted

from one view may be extremely dissimilar to those extracted from another view,

even for the same shape. This arises from the inherent variation in image structure

across different views and how features are generated from them. This inherent vari-

Source Ours TopK

Figure 4.10: Ablation on similarity scores. Left: source mesh. Middle: map optimized
using all correspondences. Right: a map optimized with the top k = 100 cor-
respondences based on the similarity score. The map optimized with matches
with the highest similarity score matches shows several incorrectness, high-
lighted with a red circle. This is the result of several incorrect matches which
bias the map towards an incorrect energy minimum. Differently, using all
correspondences prevents this behaviour, as the optimization process auto-
matically filters out wrong matches.
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ability hinders consistency in cross-image feature comparisons. Consequently, the

process of aggregating features across different views can potentially yield unex-

pected outcomes, leading to either incorrect matching or highly inaccurate results.

Experimentally, sampling the top k = 100 correspondences based on the simi-

larity produced far worse results than uniform sampling or uniform weighting, see

Figure 4.10 for qualitative comparison. In both cases, we optimize maps following

the proposed algorithm: Ours uses all matches, while TopK is limited to k = 100

correspondences with the highest similarity score. Visibly, some of these correspon-

dences are incorrect and bias the map towards incorrect minima, thus their similarity

score is not representative of their quality. Indeed, the use of all matches prevents

the map from falling into such a degenerate solution, as the majority of matches are

reasonably correct.

4.3.6.2 Tuning Dino-Vit Matches

We ablate the quality of matches based on Dino-ViT’s degrees of freedom – layer

features – in different contexts: pose variation, presence of texture, lights, and

misalignment. We conduct our analysis on three distinct datasets: FAUST [186],

3DBiCar [202], and SHREC15 [203] each with dense or sparse ground truth.

We select 12 shape pairs, 4 for each dataset, to ablate texture and misalign

concerning the choice of Dino-ViT feature layer, as discussed in [135]. Similarly,

we assess the effect of pose variation for the same model with a single instance of

Table 4.2: Dino-ViT ablation: DinoV2 [21] works better than its predecessor [130], with
no significant difference between features from L9 and L11. The use of coloured
lights (rows DinoV1 and DinoV2) offers better visual cues to extract matches
than white lights. Although counter-intuitive, the use of simple texture reduces
the visual cues available to Dino ViT.

FAUST SHREC15 3DBiCar
Layer 9 11 9 11 9 11

DinoV1 0.10 0.12 0.32 0.32 0.36 0.49
DinoV2 0.11 0.11 0.24 0.24 0.33 0.33

w/ white lights (V1) 0.20 0.18 0.27 0.35 0.38 0.38
w/ white lights (V2) 0.11 0.11 0.24 0.24 0.30 0.31

w/ texture (V1) - - - - 0.26 0.26
w/ texture (V2) - - - - 0.29 0.29
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Table 4.3: Dino-ViT pose ablation: DinoV2 [21] matches are significantly more accurate
than DinoV1 [130] in case of pose variation, with no significant difference be-
tween features from L9 and L11.

FAUST SCAPE TOSCA
Layer 9 11 9 11 9 11

DinoV1 0.16 0.16 0.38 0.40 0.27 0.29
DinoV2 0.09 0.09 0.18 0.18 0.27 0.25

FAUST, SCAPE, and TOSCA mapped onto all the other provided poses. We report

the quantitative results in Table 4.2 and Table 4.3 and show shape pairs examples

and qualitative optimization results in Figure 4.12.

We assess the quality of the aggregated matches in terms of the normalized

average geodesic distance [114]. We aggregate the fuzzy matches, thus, obtaining

a face-wise map M from one mesh onto the other. Finally, the geodesic distance

is computed on the target mesh between the centroid of the mapped face to the

centroid of the ground truth target face.

In general, DinoV2 [21] outperforms its predecessor V1 [130] (Dino-ViT), of-

fering more accurate and robust matches. The depth at which features are extracted

(9 vs 11) does not impact the matches of DinoV2, while it plays a significant role

for Dino-ViT, as discussed in [135]. The presence of texture is beneficial to Dino-

ViT, while it only offers a minor improvement for DinoV2. This is reassuring as our
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Figure 4.11: Robustness to misalignment: the quality of matches depends on the quality
of alignment. In the case of severe misalignment (60◦ or more), we observe
poor correspondence.
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method can only assume access to untextured models. The choice of coloured lights

offers additional shading and visual features for Dino-ViT, but it is less relevant for

DinoV2 as white lights perform equally with the base case.

4.3.6.3 Effect of Initial Alignment

We ablate the effect and robustness to misalignment for match quality, see Figure

4.11. We start from a correct alignment with 12 shape pairs and incrementally mis-

align one shape – step of 20◦ around the up axis. We report the quality of matches

Figure 4.12: Pose variation: we assess the ability of DinoV2 [21] to establish matches
between shapes in different poses, as those in the figure. Experimentally,
DinoV2 yields correspondences able to guide our pipeline to a proper solution.
Coloured landmarks and paths show automatically selected cones and cuts by
our method.
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in terms of geodesic error, i.e., accuracy. The quality sensibly decreases with severe

misalignment – more than 40◦ – reaching a peak with opposite orientation – 180◦.

We additionally compare the quality of matches for the last two layers of Dino-ViT

and show that, for such a case, a deeper level (L11) seems to encode slightly better

semantic information than the previous layer (L9).

4.3.6.4 Aggregation

To assess the importance of the map distillation module, we present a qualitative

comparison in Figure 4.13 with the method proposed by Surface Maps via Adap-

tive Triangulations (SMAT) [29], where we replace manual correspondences with

automatically extracted ones. As the original approach requires a set of bijective

correspondences, we randomly subsample a set of N = 64 matches from the auto-

matically extracted ones to ensure consistency, i.e., no vertex appears twice. Then,

we optimize for a bijective map that respects these landmarks. We refer to it as

DinoV2+SMAT. Note SMAT [29] optimize for isometric energy (Dirichlet), while

we optimize only for smoothness, see Equation 4.9.

As SMAT does not account for inaccurate nor imprecise correspondences, it

is unable to filter out wrong correspondences. In our observations, optimizing a

map with the original hyperparameters leads to visible inversions. This issue arises

from SMAT’s attempt to preserve all landmarks, resulting in maps with extreme

stretches, a phenomenon intensified by the discrete nature of meshes. Adaptive

remeshing struggles to handle these extreme stretches effectively, leading to visi-

bly distorted maps. To mitigate this effect, we trade landmark precision for map

continuity and quality. As shown in Figure 4.13, although both maps appear contin-

uous, [29] is unable to filter out inaccurate correspondences and yield a reasonable

map. Note that this experiment mainly assesses the importance of our correspon-

dence distillation step, and DinoV2+SMAT is not the mode SMAT was originally

designed for. Ours, without any explicit isometric or conformal energy term, still

can produce smooth and semantics-respecting bijective maps.
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Source DinoV2 + SMAT NSSM

Figure 4.13: Qualitative comparison. Surface Maps via Adaptive Triangulations
(SMAT) [29] optimize for bijective and continuous maps, relying on man-
ual annotations. We pair it with DinoV2 – DinoV2+SMAT – by replacing
these manual annotations with k = 64 automatically extracted ones, {φ i} with
i = 1 : k, then we optimize the inter-surface map to construct an automatic
inter-surface map. While DinoV2+SMAT attempts to satisfy all matches to-
gether with bijectivity, ours automatically filters out incorrect matches, yield-
ing a more continuous and semantically correct map.

4.3.6.5 Handling Noise and Holes

Raw scans present noise or holes, thus inhibiting the applicability of our method

since it assumes watertight genus zero meshes. Intuitively the presence of large

holes, and missing limbs such as arms, may severely mislead DinoV2 and thus our
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Scan Template

Figure 4.14: Scan to SMPL: we first close holes in the raw scan (left) with Meshlab[205],
then we map it onto the template SMPL model[204] and mask out the surfaced
introduced to fill holes. Coloured landmarks and paths show automatically
selected cones and cuts by our method.

pipeline. On the other hand, small holes can be dealt with by applying a simple

hole-filling approach. In Figure 4.14, we use our method to map a raw scan to the

SMPL template [204]. We prefill small holes with Meshlab [205] and then apply

our pipeline.

4.4 Implementation details

We realize the neural map (h) as a 4-layer residual MLP of 128 neurons each, while

neural surfaces ( f∗) are always 8 layers residual MLP with 256 neurons. We sample

128 correspondences, 1024 points to enforce injectivity and smoothness, and 128

points for the boundary in each optimization iteration.



4.5. Limitations 78

4.4.0.1 Rendering Details

In all cases, we render images of the same size, i.e., 1344×1344 with Mitsuba [196]

using spp = 150 and a path integrator. When extracting semantic matches, we limit

to rotations around the up-axis (y) – 20 steps between [0,2π) – and forward-axis

(z) – 10 steps between [−π

2 , π

2 ) – obtaining 200 images for each shape. Similarly, to

align shapes, we rotate around the up-axis – 12 steps – with fixed increments. To

uplift 2D pixels to 3D for the matches, we use ray-triangle intersection. On average,

we get 328 matches per view, totalling 65k matches across the 200 views.

4.5 Limitations
The approach discussed in this chapter has several limitations. For starter, it still

requires to parametrize surfaces to a plane – square in this case. Thus, thin shapes,

e.g., lamps, remain challenging as they require complex cuts.

Similarly to NSM Chapter 3, a key limitation is the long running time. The map

optimization takes on average 1.5 hours, converting the meshes into their neural

representation which requires about 1 hour, and extracting all Dino-ViT matches

takes 21 minutes. We plan to investigate approaches, such as Meta-Learning [206,

207], better sampling [208], and better caching, to speed up this process.

Finally, the presence of self-occlusion in shape pairs prevents Dino-ViT from

correctly mapping regions across shapes, thus consistently making mistakes. We

believe incorporating other priors, or an advanced rendering pipeline (e.g., layered

rendering) may help cope with this issue.

4.5.1 Improvement over Neural Surface Maps

Compared to the framework described in Chapter 3, here, we relax the constraint

over the cut: only 3 points are required to be in correspondence, while the rest of

the boundary can move. Furthermore, as we rely on seamless maps, the boundary

and domain terms in Equation 3.8 are not needed, thus easing the optimization.

Thanks to the use of DinoV2 [21] to extract noisy matches, manual labels are

no longer required. Finally, we can handle more non-isometric shapes, since we

replaced the isometric prior, Equation 3.2, with a softer, smoothing one, Equation
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4.9.

4.6 Conclusion
In this chapter, we have presented a method that produces a semantic surface-to-

surface map guided by visual semantic priors, by computing it from a set of can-

didate non-injective and discontinuous partial maps extracted by matchings over

renderings of untextured 3D surfaces. This method has many potential practical

applications, ranging from matching scans of human faces and bodies to clothes,

anatomical scans, and archaeological findings. These depend on the quality of the

matchings achieved over the renderings of objects from these categories, which we

aim to explore.

Future work

Even after introducing seamlessness in the NSM framework, we require surfaces to

be cut which makes our method more prone to error. We aim to improve the existing

pipeline to avoid cutting altogether by replacing the 2D disks with 3D spheres [209],

as successfully used in [29]. Our optimization cannot guarantee achieving a global

optimum nor that the global optimum defines the ”most-meaningful” semantic map,

and we mark extending our method to directly learn to produce maps from a dataset

as an important future direction. Our method can create such a dataset, augmented

with manual input to score the goodness of any extracted semantic map. We believe

this work is only a step in producing semantic-driven maps. Candidate fuzzy maps

extracted from other means can be considered. For instance, methods to predict

fuzzy geometric correspondences directly over 3D surfaces trained for specific tasks

can alternatively produce fuzzy maps and can be used in conjunction with semantic

and/or visual cues.



Chapter 5

Neural Convolutional Surfaces

5.1 Introduction

Triangle meshes have been the most popular representation across much of geome-

try processing since its early stages, however research has been devoted to devising

novel representations of geometry to circumvent many of the shortcoming of trian-

gular meshes. Lately, the rising prominence of deep learning has lead researchers to

investigate ways to represent shapes via neural networks. While the immediate use

of neural networks in this context is to represent entire shape spaces by using the

same set of weights to decode any shape from a shared latent space, other methods

use a shape-specific set of weights to represent a specific instance. This approach

captures geometric detail efficiently and accurately and creates outputs that are on

par with existing 3D models, while holding novel properties not attainable with

surface meshes, such as differentiability. These neural representations for shape in-

stances were demonstrated to be useful in geometry processing applications such as

efficient rendering [4], level of details [3], surface parametrization, and inter-surface

mapping as we discussed in Chapter 3.

The choice of the shape representation, and of the neural network’s architec-

ture, plays a critical role in how efficiently the capacity of the network is utilized.

Existing representations usually use MLPs to model the shape as a function that

maps points either from a 2D atlas to the surface Chapter 3 or points in a 3D vol-

ume to an implicit function such as a distance field [7]. The disadvantage of these
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Figure 5.1: Neural Convolutional Surfaces (NCS) can faithfully represent a given ground-
truth shape while disentangling coarse geometry from fine details, leading to
a highly accurate representation of the shape. Compared to other state-of-the-
art methods neuralLOD [4] and Acorn [3], NCS achieves significantly more
accurate results for the same memory footprint.

architectures is that they entangle geometric details and overall shape structure, and

do not have a natural mechanism to reuse the network weights to represent repeating

local details, as Convolution Neural Networks (CNNs) achieve on images. Some

methods indeed opt to use 2D images to represent geometry [1], however those

exhibit finite resolution and hence cannot model surfaces with details in sub-pixel

resolution. Alternatively, instead of a single global MLP, some prior techniques

leverage repetitions by breaking the shape into smaller 3D voxels, each represented

by an SDF function [3], however, these representations do not account for the fact

that surface details are usually aligned with the surface, and thus, are less effective

at representing local geometric textures that flow with the shape.

In this chapter, we set to define a representation that achieves separation of

local geometric details (”texture”) from the global coarse geometry of the model,

and thus leads to the reuse of network weights for repeating patterns that change

their orientation with the surface. We achieve this by extending the atlas-based rep-

resentation discussed in Chapter 3. Here, we encode a surface as combination of a

coarse surface, defining the general, coarse structure of the shape, represented via

an MLP, along with an associated fine detail map, which adds geometric texture on

top, represented via a CNN, which defines a continuous map of offsets. The geo-

metric details are added to the coarse geometry either along its normal directions, or

as general displacement vectors. Since the local displacement details are expressed
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with convolutional kernels, they can effectively be reused across similar regions of

the surface. We call this hybrid representation Neural Convolutional Surfaces.

This architecture enables the network to disentangle the fine CNN represen-

tation from the coarse MLP representation, in a completely unsupervised manner,

i.e., without the need to supervise the split explicitly during fitting. We show that

the inductive bias in our designed architecture leads to automatic separation of the

shapes into coarse base shapes and reusable convolutional details, see Figure 5.1.

We evaluate NCS on a range of complex surfaces and explore the associ-

ated trade-off between representation quality and model complexity. We compare

against a set of state-of-the-art alternatives (e.g., NeuralLod [4], ACORN [3], Neu-

ral Surface Maps Chapter 3) and demonstrate the achieves better accuracy at a

fraction of the model-complexity – between 1% to 10% parameters. Addition-

ally, we demonstrate that the convolutional aspect of the representation makes it

interpretable, leading to applications including detail modification within individ-

ual shapes and details transfer across different models – see Figure 5.8.

5.2 Neural Convolutional Surfaces

Our goal is to represent a 3D surface S ⊂ R3 with a neural network gθ , so that

the parameters θ compactly encode the surface. We assume to have computed a

bijective parametrization of the surface into the unit circle in 2D (we use SLIM [23]

in all our experiments). We consider this parametrization as a map from the unit

disk to the surface D : {x ∈R2 : ‖x‖ ≤ 1}→ S, mapping a 2D point q to a 3D point

p ∈ S on the surface. Following Chapter 3, we fit the network gθ to approximate

this function: gθ (q)≈ s(q).

We propose Neural Convolutional Surfaces (NCS) as an accurate and compact

neural approach to model s. The NCS gθ consists of two modules: (i) a coarse

module, gc
φ

, based on a standard MLP-based model, which aims to approximate

the coarse shape of the surface; and (ii) a fine module, gd
ψ , which adds detailed

displacements to the coarse surface. Internally, this fine module is comprised of a

CNN component generating a grid of codes, which are interpolated and fed to an
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Figure 5.2: Overview of Neural Convolutional Surfaces. Surfaces S are represented by
two models, a coarse model gc

φ
that encodes a coarse version S̃ of the surface

and allows computing a local reference frame F, and fine model gd
ψ that encodes

geometric detail as offsets p̂ from the coarse surface, in coordinates of the local
reference frame.

MLP in order to get the final fine offset vector. These two modules are then added

to get the final map from 2D to 3D,

gθ (q) := gc
φ (q) + Fgc

φ
(q) gd

ψ(q), (5.1)

where Fgc
φ

is a rotation to the local reference frame at a coarse surface location and

θ = (φ ,ψ). Please refer to Figure 5.2 for an overview. These two models are trained

jointly, with only the target mapping s as supervision. Intuitively, the coarse-fine

separation allows the fine model gd
ψ to expend capacity only on the high-frequency

geometric texture of the surface. Repeating structures in this geometric texture can

be modelled efficiently by the shared weights of the convolution kernels.

We describe the coarse model next in Section 5.2.1, the fine model in Section

5.2.2, the local reference frame in Section 5.2.3, and the overall training setup in

Section 5.2.4.

5.2.1 Coarse Model

The coarse model represents a smooth, coarse version of the ground truth surface

S, which serves as a basis, by providing a well defined local coordinate frame at

any surface point, for applying the detailed geometric texture predicted by the fine

model.

Our coarse model approximates a coarse version of s with a low-capacity MLP,

which takes as input a 2D coordinate q in the unit disk and outputs the corresponding

point p̃ on the coarse surface: p̃ = gc
φ
(q). The limited capacity of the MLP ensures

that only a coarse approximation of the surface is modelled, while the MLP’s archi-
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tecture enforces smoothness of the coarse surface, thereby delegating reconstruction

of sharp, fine, and repeating structures to the fine model. Note that we do not use

intermediate supervision for the coarse surface p̃.

5.2.2 Fine Model

The fine model represents a detailed geometric texture that is applied to the coarse

surface gc
φ

. The fine model is designed to first generate a high-resolution 2D grid of

codes, and then interpolate the codes and map the interpolated code to 3D displace-

ment vectors via a small MLP. This is facilitated by three components: (i) we keep

a low-resolution input grid of learned features (i.e., a low-resolution 2D image with

multiple channels) Ω ∈ RD0×H0×W0; (ii) a CNN fν transforms and up-samples(2x

per layer) the feature map into a high-resolution 2D grid of codes; and (iii) for a

given 2D query point q that falls into a grid cell, the 4 grid codes at that cell’s cor-

ners are interpolated, and a small 2-layer MLP hξ finally maps the interpolated code

into a local displacement vector:

gd
ψ(q) = hξ

(
fν(Ω)|q

)
, (5.2)

where X |q denotes bilinear interpolation of the image X at q (assuming pixel coor-

dinates in [−1,1]2) and ψ = (Ω,ν ,ξ ). Intuitively, the feature map Ω stores coarse

information about the geometric surface details that is refined by the CNN fν , in-

troducing learned priors stored in the shared CNN kernels. The interpolation for a

given sample q is performed in feature space as opposed to 3D space, and followed

by a small MLP to allow for complex non-linear interpolating surfaces between the

pixels of the CNN output. For details of the model architectures, please refer to the

supplementary material.

5.2.2.1 Patches

Directly discretizing the full parameter domain of s on a grid has two drawbacks:

(i) The resolution of the pixel grid processed by the CNN would need to be very

large to accurately model small geometric detail; and (ii) the initial mapping s may

exhibit significant area distortion, i.e., there can be a large difference between scale
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factors in different regions of the mapping, making a single global resolution inef-

ficient.

To avoid these problems, we split the surface S into small overlapping patches

R0, . . . ,Rm with each having a separate local parametrization ri : [−1,1]2 → Ri.

Since each patch only covers a small region of the surface, the distortion within

each individual mapping is small, and the resolution of the pixel grid in each patch

can be lower, without compromising geometric detail. Further, since we assume the

fine model is CNN-based, we can learn and reuse the same CNN kernels for each

one of our patches without harming our goal of training the fine model to represent

repeated geometry, now simply split into different patches.

5.2.2.2 Patch-based model

Once we decompose the input into multiple patches, Equation 5.2 can be general-

ized as:

gd
ψ(q) =

1
∑i wi(q)

∑
i

wi(q) hξ

(
fν(Ωi)|li(q)

)
, (5.3)

with wi(q) = max
(
0,−db

i
(
li(q)

))
,

where li(q) maps the global parameters q to the local patch parametrization ri, and

the contribution of overlapping patches to a point q is weighed as a function of the

signed distance db
i from the boundary of the patch to li(q) in the parameter domain

of the patch. We train the same MLP and CNN (with shared weights ν ,ξ ) over

all patches, thereby encouraging the CNN to reuse filters across patches; the only

different parameter between different patches is the coarse input feature grid map

Ωi that is assigned to each patch.

5.2.3 Local Reference Frame

The output of the fine model gd
ψ(q) is a displacement vector p̂ of the coarse surface

at p̃ = gc
φ
(q). Naively adding p̃+ p̂ would render the displacements sensitive to the

local orientation of the coarse surface. Hence, to encourage consistency between

the displacements, we define them in a local coordinate frame Fgc
φ

aligned to the
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tangent space of the coarse surface, measured via the Jacobian of the coarse surface

mapping, as:

Jc := [Jc
u,J

c
v] =

[
∂gc

φ

∂qu
,
∂gc

φ

∂qv

]
, (5.4)

where qu and qv are the two coordinates of the global parametrization The local

coordinate frame as a function of q is then defined as:

Fgc
φ

:= [n, Jc
u, n∧Jc

u] with n = Jc
u∧Jc

v, (5.5)

where n returns the normal of the coarse surface and ∧ denotes the cross product.

Note that, although not shown in the expressions above, each of the axis vectors are

normalized to be of unit length.

5.2.4 Training

As discussed earlier, the coarse and fine modules together define a neural network

mapping 2D points to 3D. We fit this combined map to the ground truth surface

mapping s via an L2 loss:

Ljoint =
∫

QS

‖gθ (q)− s(q)‖2
2 dq, (5.6)

where QS is the subregion of the global parameter domain Q that maps to the surface

S.

5.3 Experiments
We now detail the various experiments we performed. We compare NCS’s recon-

struction quality to other methods, move on to ablations, and finish with a additional

applications enabled by our representation.

5.3.1 Baselines

We compare NCS against three state-of-the-art methods for neural shape represen-

tations: ACORN [3], NGLOD [4], and Neural Surface Maps (NSM) (Chapter 3).

We compare the methods on a variety of shapes with different amount and type

of geometric details (see Table 5.2). In this section we provide comparisons on
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Figure 5.3: Accuracy ↓ versus Memory cost ↓ for different models. NCS achieves better
reconstruction quality with significantly lower memory footprint. The values
are reported in log scale. Bottom row shows our results. Given our reconstruc-
tions, we do not use more than 1M parameters.

different shapes. Note that all models are scaled to a unit sphere.

5.3.2 Metrics

All models are evaluated along two main axes:

• Accuracy ↓: measured by the Bidirectional Chamfer distance between output

and ground truth surfaces, assess the faithfulness of the representation.

• Memory cost ↓: measured as the number of parameters required by a repre-

sentation, determines the compression of the model. Typically parameters are

represented as 32 bit floats, so multiplying by 4 gives the number of bytes.
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Table 5.1: Comparison of shape representations with 100K parameters wrt Chamfer dis-
tance ↓. Numbers are multiplied by 103.

NGLOD [4] (Sparse) NGLOD [4] IDF [2] NCS
Armadillo 1.95 1.34 1.06 0.54

Bimba 2.30 2.07 2.09 1.04
Dino 1.70 1.55 2.55 1.48

Dragon 1.57 1.12 0.62 0.57
Grog 2.06 1.06 0.81 1.28

Seahorse 1.26 1.15 - 0.44
Elephant 4.06 2.24 3.93 2.49
Gargoyl 6.30 - 8.51 2.29

5.3.3 Comparison

As can be seen in Figure 5.3 and Table 5.1, for the same number of parameters,

our method achieves significantly higher accuracy than the state of the art. Fur-

thermore, in all cases but one (Lucy), our method’s accuracy exceeds all others

methods even when using 10 times less parameters. As shown in Figure 5.4, our

method preserves detail such as the dragon’s scales and Bimba’s braids much more

accurately than both ACORN and NGLOD. Furthermore, both competing meth-

ods exhibit discretization artefacts or noise, while our method provides a smooth,

artefact-free surface.

We offer additional comparisons against the concurrent method IDF [2] in Ta-

ble 5.1. IDF [2] fails to correctly describe the iso-surface of Dino and Elephant.

Note that iso-surfaces produced by IDF include excess geometry that wraps around

the shape. To offer a numerical comparison, we manually removed the additional

excess surface. IDF completely fails to represent the Seahorse and hence we leave

a ‘-’ in the table.

5.3.4 Feature enhancement

Since the CNN encodes local geometric detail, we can edit geometric detail by ma-

nipulating the CNN’s feature maps. In Figure 5.5 we perform feature enhancement

on a few models by scaling up the CNN output, before feeding it into the MLP of

the fine model. Similarly, we can perform smoothing, by scaling down the same

features.
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(a) GT (b) ACORN (c) NGLOD (d) NCS

Figure 5.4: Surface representation: The reconstruction quality of our method, compared
with ACORN [3] and NeuralLOD [4] for two models, using the same number
of network parameters on each method model size (100K parameters in this
example). Our result exhibits higher accuracy and reconstruction of fine details,
while not exhibiting artefacts such as artificial edges or aliasing.
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(a) Original (b) Smoothing (c) Sharpening

Figure 5.5: Sharpening and smoothing: Our NCS naturally decomposes shapes into
coarse shapes and fine details. Boosting or suppressing the fine details and
reconstructing the shapes, naturally results in exaggeration or smoothing of
surface features.

5.3.5 Detail transfer

Our disentanglement of coarse and fine detail enables us to perform detail transfer,

similarly to IDF [2]. Figure 5.6 show results of our method, transferring creases

from one model to the other. Similarly to IDF, we achieve this by training one

coarse network for the source shape and one for the target shape. The fine network

is trained to accurately fit the source shape. We then transfer the details to the target

shape with a forward pass using the source global and local parametrization

5.3.6 Ablation

Figure 5.7 evaluates the necessity of various components in our framework:

(i) scalar displacements: we restrict the fine network to only apply scalar displace-

ments along normal directions, instead of displacement vectors as used in the full

model. This significantly hinders the ability of the fine model to add details on top

of the coarse model, leading to an oversmoothed result that resembles the coarse
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(a) Source (b) Target

(c) IDF (d) NCS

Figure 5.6: Detail transfer: our architecture intrinsically decomposes shapes into coarse
base models and associated geometric details, which allows us to transfer
learned details from one model to another base shape. In this case, from one
pair of shorts (a), to another pair of shorts (b). The fitter coarse model for each
of the two pairs is shown at the top. Here we compare our detail transfer re-
sults with those of IDF [2]. To transfer details we replace the source coarse
model with the target coarse one, and reconstruct the shape. Note, this is pos-
sible because the global geometry images, source and target, are aligned. In
case of misalignment, an inter-surface map between the coarse models could
be computed using, e.g., Section 3.2.

model; (ii) PCA only: we remove the coarse model and use only the fine model. For

the local reference frame F required by the fine model, we pre-compute and store

the PCA frame of the ground truth patch. This causes the fine model to spend its

capacity on re-creating the coarse geometry, and as a result, artefacts and ripples

appear in the reconstruction.

5.3.7 Interpretability of the kernels

The use of a CNN in the fine branch of our network’s architecture leads to inter-

pretable kernels, i.e., specific kernels react to specific details of the geometry. In

Figure 5.8 we show an example in which we select a region on the model, find

features that are activated strongly in that region, and then highlight other areas
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(a) GT (b) normal (c) PCA (d) NCS

Figure 5.7: Ablation study: a) the ground truth model; b) adding scalar displacement
along the normal direction (to a learned base coarse model) yields smoothed-
out results; c) adding displacement vectors to a per-patch canonical coordinate
frame (established using patch’s PCA axes) yields artefacts and surface ripples;
d) our reconstruction is sharp and does not exhibit artefacts.

Figure 5.8: Our method yields interpretable convolutional kernels: we select one spike
(highlighted) on the dino, identify the CNN features that are strongly active
in its region, and then identify other regions where the same features are active.
High correlation (hotter colours) implies regions with similar geometric details.

in which those features are activated. As we can see, the features associated with

one of the Dino’s spikes also affect all other spikes. This shows that our kernels

are reused across the model, explaining our network’s ability to represent detailed

models with a smaller number of network parameters than previous methods. This

may also lead to future work where we use the same kernels to a larger collection
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0.0

2.2

(a) 1 patch (b) 700 patches (c) >2000 patches

Figure 5.9: Effect of number of patches. Representing a shape with a single patch, results
in high distortion in the underlying parametrization (red in (a)). Decomposing
the base domain into many small patches (c) leads to much lower per-patch
distortion. However, this comes at the cost of a much increased memory budget
to represent the shape. Medium size patches (b) strikes a balance by reducing
the per-patch distortion while still being light in the final memory requirement.

of surface, to learn more specific and robust features.

5.4 Implementation details
Patches are found by randomly sampling patch centres ci on S and selecting all

points within a geodesic radius ρ: Ri = {p | dgeo(p,ci) ≤ ρ}. We use an iterative

approach: after creating a patch, all points inside the patch are marked as forbidden

for the following patch centres with a probability η , which controls the amount of

overlap between patches. In our experiments, we set η = 0.5 and ρ = 0.04 times

the maximum extent of S along any coordinate axis. Figure 5.9 shows the effect of

the choice of number of patches.

In terms of training performance, we observed that we can achieve better re-

sults with a training schedule that starts by warming up the coarse model before

slowly ramping up training of the fine model:

L = (1−λ )Ljoint +λLreg (5.7)

with Lreg =
∫

QS

‖gc
φ (q)− s(q)‖2

2 dq.

We start with λ = 1 and progressively decrease λ → 0 over the warm-up phase,

which lasts for 100K iterations. At the same time, we increase the learning rate of
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Table 5.2: Evaluation and distribution of the network parameters between the different
modules in our architecture, for various models tested in the paper, of size 100K.
The latent codes use the majority of parameters, while the other components are
self-contained.

Coarse Fine TOT.
#V #F MLP Code CNN MLP params

Armadillo 172K 346K 13K 93K 6K 467 113K
Bimba 50K 100K 9K 115K 6K 467 130K

Lucy 877K 1753K 13K 96K 4K 435 114K
Dino 26K 51K 4K 120K 6K 467 130K

Dragon 451K 902K 13K 99K 6K 467 119K

the fine model and decrease the learning rate of the coarse model over the warm-

up phase: the learning rate of the coarse model follows a cosine annealing sched-

ule [177], down to a minimum learning rate of 0 at the end of the warm-up phase,

while the learning rate of the fine model is set to 1e− 4 minus the coarse learning

rate. The total number of iteration varies based on the complexity of the model, e.g.,

between 800K to 1.4M iterations, using the RMSProp optimizer.

5.5 Limitations
Although the CNN-based architecture leads to significant compression by reusing

the kernels across object-centric local coordinate frames, the kernels themselves

are still regular, 2D Euclidean image kernels, and hence are not rotationally invari-

ant, as they ideally should be to handle geometry. This hinders perfect reuse of

kernels across the shape, e.g., in cases of asymmetric features that are reoriented

on the shape (rotated on the local tangent space), for example, the scales on the

dragon. Furthermore, the kernels cannot be reused to capture local deformations of

the underlying geometric details. Lastly, we note that in some cases our pipeline,

in absence of intermediate supervision, may associate coarse structures as fine, e.g.,

Lucy’s (the angel) torch in Figure 5.10 is reconstructed mainly by the fine module

of our networks, and as a result is reduced in size when the details are smoothed.

5.5.1 Improvement over Neural Surface Maps

In this chapter we extended the neural representation discussed in Chapter 3. While

the underlying framework remains the same, i.e., encoding a shape as 2D→ 3D
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(a) Original (b) NCS coarse (c) Simplified

Figure 5.10: Limitation: NCS extract a coarse representation in an unsupervised manner
(b) from a 3D mesh (a). However, this technique may categorize important
structures, e.g., the torch or hand, as details instead of part of the structure.
Conversely, classic simplification approaches offer more control (c).

map, here we decouple the shape structure from its details. This formulation, along

with the convolutional inductive bias, reduces the number of parameters required to

represent a 3D model.

Nevertheless, the discussed representation is limited to shapes topologically

equivalent to disks, as NSM. Furthermore, the overall optimization still requires

significant amount of time, matters of hours.

5.6 Conclusions
Neural Convolutional Surfaces enable faithfully representing a given surface via

a neural network, with higher accuracy and a smaller network capacity (e.g., 10-

80x) compared to multiple state-of-the-art alternatives. Key to our method is an

inductive bias in the network architecture that results in a split representation, with

an MLP producing a coarse abstraction of the shape, and a fine detail CNN-like

layer that adds geometric displacements based on the local reference frame the local

UV charts.

We demonstrate that this coarse-fine disentanglement emerges naturally, with-

out any intermediate supervision, and leads to the fine module reusing its convo-

lutional kernels, which in turn enable meaningful geometric operations like mesh
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smoothing and feature exaggeration.

Future Work

While we focused on faithfully representing individual shapes for the scope of this

work, we intend to follow-up the next goal, of capturing distributions of shapes.

We observe that geometric details is often reused across shapes and hence we can

aspire to learn a universal dictionary of CNN detail kernels, that can then be applied

across a diverse set of shapes, where the global structures are captured by shape-

specific coarse abstractions. Such a universal dictionary of local geometric details

will be a close analogue of low level features learnt on images (e.g., VGG features

learnt using ImageNet), which, in turn, will enable both manipulation or transfer of

details, as well as compression of shapes with a fixed universal shape-dictionary.



Chapter 6

Conclusions

6.1 Summary

In this thesis, we discussed neural surface representations, introduced a neural map-

ping framework that enables inter-surface map optimization, and we relaxed the

required constraints of this framework by removing the human in the loop. Finally,

we introduced a convolutional shape representation that enables surface manipula-

tion and detail transfer. Here we summarize our contributions in each chapter.

In Chapter 3 we defined a surface representation as a map. A surface is rep-

resented by an MLP which maps a 2D point to 3D, we dubbed it a neural surface

map. Such description is continuous and thus can be composed with other maps.

In particular, we show that by composing it with a neural map, acting as a bridge

between two neural surfaces, it is possible to optimize an inter-surface map. We

compare such mapping with classic method [93] and state of the art [167] showing

that NSM provides better continuous and bijective maps.

Despite the mathematical advantages the framework offers, it presents several

drawbacks. Thus, in Chapter 4, we extended it by describing a seamless neural

surface (sNSM) that relaxes the constraints on the boundary. By combining this

representation with the foundational model, DinoV2 [21], we obtain an automatic

inter-surface map between two genus-0 shapes. These maps have been compared

with state-of-the-art methods [166, 103] and classic approaches [114], demonstrat-

ing comparable results while offering better continuity and bijectivity.
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Finally, in Chapter 5 we introduce a CNN based map-representation. In this

context, the shape is decoupled between coarse structure and detail, where the for-

mer is encoded by a shallow MLP and the latter by a CNN. Intuitively, details

repeat across the shape and thus can be compressed and stored efficiently with a

CNN, while the pose or structure is global information. This representation, NCS,

demonstrates better compression capacity than state-of-the-art methods [3, 4] while

being extremely faithful. Furthermore, the representation can be used to transfer

details between shapes, such as wrinkles, or to exaggerate features.

6.2 Limitations and Future Work
The broad adoption of a surface representation involves investigating many chal-

lenges. In this section, we elaborate on some future avenues for the proposed rep-

resentation.

Speed: while the proposed representation lends itself to multiple geometric tasks, it

is still far from being used in real-world applications due to the computational time

required for training. In the future, we plan to investigate meta-learning solutions

to speed up the optimization of such networks.

Appearance: meshes decouple geometry and appearance, and indeed, it is possible

to change texture coordinates or vertices colours without affecting the geometry.

Currently, the representations defined in this thesis can only store geometry. We

wish to investigate dynamic appearance encoding that is decoupled from the under-

lying geometry.

Rendering: classic graphics pipelines require a triangle mesh to visualize models.

Although proposed representations can be converted to meshes, this would entail

the loss of the continuity property. We plan to investigate alternative methods that

enable rendering models without converting triangular meshes, thus rendering the

continuous surface encoded in the network.

Extension to any genus: current representations require cutting the shape open.

While this can be manually done for simple meshes, it is extremely constraining

for complex models with any genus. We plan to extend neural surfaces to the same
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genus maps. For example, by using [209] it is possible to overfit a sphere-to-shape

map, sidestepping the need for a cut.

Point clouds : following Chapter 3, shapes are encoded point-wise, thus NSM may

encode point clouds. Although in such cases the initial parametrization is not avail-

able, or not straightforward to define, several works [210, 211] learn to morph a

sphere to a point cloud through a Neural-ODE [212]. Unfortunately, all these meth-

ods rely on priors encapsulated into a large collection of shapes, thus for single-

shape representation, we must impose geometric priors.

Dynamic compression: although the NCS can significantly compress shapes by

reusing the kernels across object-centric local coordinate frames, the kernels them-

selves are still regular, 2D Euclidean image kernels. Further improvement can be

obtained by optimally placing these kernels, with a dynamic size, where planar re-

gions do not require to encode much information.

Dataset representation: geometric details are often reused across several shapes,

we aspire to learn a universal dictionary that can be applied across a diverse set of

shapes, while the global structures are captured by shape-specific coarse abstrac-

tions. This universal dictionary of local geometric details will be a close analogue

of low-level features learned on images (e.g., VGG features [213], Dino-ViT [130],

or CLIP[214]). A prominent example is human skin which exhibits pores, or micro

wrinkles, such structure repeats on the entire surface and across different models.

Thus a global dictionary would effectively compress these details and their varia-

tion.

Interpretability: the neural convolutional surface formulation has the potential to

scale across multiple models and enable interpretable shape modelling, and anal-

ysis. Our initial experiments demonstrate a weak correlation between kernels and

detail. We intend to pursue this as a future avenue.

6.3 Remark
In this thesis, we discussed two neural surface representations that enable shape cor-

respondence, surface editing, compression, and detail transfer. To evaluate them, we
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compared them with state-of-the-art neural representations, highlighting the flexi-

bility, fidelity, and continuity these descriptions provide on artistic data. Further-

more, we described several future research directions. We expect the exploration of

these questions to benefit augmented reality, shape modelling, cinematic industry,

and graphics applications more broadly.



Appendix A

Neural Surface Maps

A.1 Approximating Surfaces

A neural surface map fA can approximate a given surface A by overfitting the atlas

fA : R2 → A accurately to the inverse of the parametrization P−1
A . Each neural

surface map consists of a ten-layer residual fully-connected network with Softplus

activation.

In Figure A.1 we compare different activation functions such as LeakyRelu and

Relu. These non-smooth functions introduce artefacts, such as unwanted wrinkles

Figure A.1 (b and c). Overlooking this behaviour might bear negative effects in map

composition as these introduced details can be amplified or inject distortion in the

final map. The use Softplus alleviates these artefacts, but biases the map towards

smooth surfaces will have minor discrepancies from the ground truth, as some areas

(a) (b) (c)

Figure A.1: A MLP-based neural surface map with different activation functions. Softplus
(a) maps are smooth. LeakyReLU (b) and ReLU (c) are more oscillatory.
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will be smoothed out.

A.2 Analytical Maps
As discussed in main body of this thesis, we can directly compose a neural map

with analytical surfaces. Below we list the functions used.

Figure8:

fB(t,s) =


x = (3+ cos( t

2) · sin(s)− sin( t
2) · sin(2s)) · cos(t)

y = (3+ cos( t
2) · sin(s)− sin( t

2) · sin(2s)) · sin(t)

z = sin( t
2) · sin(s)+ cos( t

2) · sin(2s)

, (A.1)

where t = π(1+u) and s = π(1+ v).

Enneper:

fB(u,v) =


x = u · (1− u2

3 + v2)/3

y = −v · (1− v2

3 +u2)/3

z = (u2− v2)/3

. (A.2)

Catenoid:

fB(u,v) =


x = cosh(v) · cos(u)

y = cosh(v) · sin(u)

z = v

. (A.3)

Mobius:

fB(u,v) =


x = (1+ 3v

2 cos(3u
2 )) · cos(3u)

y = (1+ 3v
2 cos(3u

2 )) · sin(3u)

z = 3v
2 · sin(3u

2 )

. (A.4)
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Neural Semantic Surface Maps

B.1 Computing rendering correspondences

As discussed in the main manuscript, we render the two surfaces from a given view-

point to get two renderings, RA
V and RB

V . We leverage DinoV2 [21] to extract seman-

tic features in the image space, thus obtaining λ A
i and λ B

i as features of rendering

of RA
V and RB

V , respectively. Then, to segment foreground/background we rely on

PCA’s first component of these features as it naturally groups them in opposite half-

spaces.

Finally, we match features with the cosine similarity between all feature pairs

from the same viewpoint, as score Si j. We define the match of patch i ∈ RA
V as the

patch j ∈ RB
V with the highest cosine similarity, and vice versa, the match of patch

j ∈ RB
V as the patch i ∈ RA

V with the highest cosine similarity. In summary, the pair

(i, j), i ∈ RA
V , j ∈ RB

V is a match, if

Si j = max
k

Sik or Si j = max
l

Sl j. (B.1)

B.1.1 Patch generation, feature extraction, and PCA

Images are split into (non-overlapping) patches of 14 pixels. Then, DinoV2[21]

embeds these patches in a forward pass. Following [135], we use keys as feature

vectors.

To segment foreground/background we rely on PCA’s first component of the
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Source BIM ICP Smooth-Shells ZoomOut Ours

Figure B.1: Qualitative comparison SHREC19: Functional maps-based methods pro-
duce good maps, although often being discontinuous. Ours explicitly encour-
ages continuity and bijectivity.

features. As discussed in [21], the features’ sign naturally groups them in opposite

half-spaces. As the sign is appointed randomly, we use the attention mask from the

last layer to select the correct half-space: we average the first PCA component of

the features and take the half-space which agrees with the positive attention mask.

Matches are estimated only between foreground patches.

Finally, to unproject a match to 3D, we first translate a patch to a pixel using

the known patch size, and then identify the 3D point on each shape (ray casting).

B.2 Comparison Details
We discuss the main considerations for/against the competing algorithms we com-

pare against.

Blended Intrinsic Maps (BIM) [114] is a classic method that uses geometric

priors without any learning component. Namely, it picks a subset of self-consistent

and low-distortion conformal maps and then blends them using weighted averages.

Individual conformal maps can handle very non-isometric surfaces, however, they
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can produce high isometric distortion even in near-isometric cases. Note also that

the resulting blended map is not a homeomorphism nor even continuous.

ZoomOut [166] and Smooth-shells [103] are both functional maps-based meth-

ods. ZoomOut starts with a small functional correspondence matrix and iterative

upsamples it in the spectral domain. Smooth-shells follow a similar coarse-to-fine

scheme, relying on shells as a proxy for functional basis. To handle self-symmetries,

Eisenberger et al. [103] incorporate MCMC to evaluate multiple possible functional

maps.

We initialize ZoomOut’s map (C21) as an identity of size 4 as by official im-

plementation. Then, we refine it until it contains 50 eigenvectors. Similarly, for

Smooth-shells we follow the official implementation and use MCMC to bootstrap

the map using Kmin = 6 and Kmax = 20. and evaluating Nprop = 500 proposal. In

both cases, no landmarks are used. Finally, for ICP we first align the two input

shapes as described in Sec. 3.1, and then estimate the nearest neighbour for each

vertex.

We depict maps for the different methods on SHREC19 in Figure B.1. State-

of-the-art methods work well as they exploit geometric cues, although they are sus-

ceptible to self-symmetries (see BIM[114] first row). Conversely, ”Ours” relies

purely on visual cues, with no isometric regularization, thus being less accurate on

average.

B.3 Metrics
In all experiments, all shapes are automatically normalized and centred.

Bijectivity We estimate the map’s bijectivity of the shape vertices for all baselines.

For ICP, BIM, ZoomOut, and Smooth-shells we map all vertices forward (A→ B)

and then backward (A← B), using the forward and backward map respectively.

Then, we compute the geodesic distance between the starting vertex and its forward-

backward map.

Similarly, for consistency we evaluate ”Ours” bijectivity only for the shape

vertices. In particular, we map a vertex in A onto B’s 2D domain through h, and
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then, we use the piecewise linear map for 2D-3D. For B to A, we pull-back vertices

through barycentric coordinates after mapping forward all A’s triangles. Empiri-

cally, for ”Ours” we never observe flips; while for baselines, correspondences are

always given, thus, no ambiguity arises.



Appendix C

Neural Convolutional Surfaces

C.1 Comparisons
For all baselines, [3, 4, 2], we used authors’ implementations. See Figure C.2 for

qualitative a evaluation of NCS, with (b), and without details (c).

C.2 Expressive power.
Our construction is readily applicable to any genus, by cutting the mesh to a disk

it is possible to reconstruct any surface. See Figure C.1(a,b) for reconstruction

examples with different genus. However, Neural Convolutional Surfaces struggle

to represent accurately thin structures. See Figure C.1(c) for such a thin structure

our framework is able to reproduce.

Finally, the upsampling is fundamental design choice for the CNN. Without

(a) (b) (c) (d)
Genus 2 Genus 3 ThinStructure NoUpsampling

Figure C.1: Results on high genus, thin structures, w/o upsampling.
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Table C.1: Architecture details used for each shape presented in the paper.

Coarse Per-patch CNN fν Fine
MLP gc

φ
Code Ωi channels MLP hξ

Armadillo-100K 128-64-64 8×4×4 8 16-16
Bimba-100K 128-64 8×4×4 8 16-16

Dino-100K 64-64 8×8×8 8 16-16
Dragon-100K 128-64-64 6×6×6 8 16-16

Gargoyle-100K 64-64-64-64 6×4×4 6 16-16
Grog-100K 128-64-64 8×4×4 8 16-16

Seahorse-100K 128-64-64 8×8×8 8 16-16
Elephant-100K 128-64-64 8×6×6 8 16-16
Armadillo-1M 128-64-64 64×4×4 64 16-16

Bimba-1M 128-64 64×4×4 64 16-16
Dino-1M 64-64 64×8×8 64 16-16

Dragon-1M 128-64-64 66×6×6 64 16-16

upsampling the model is unable to capture details, see Figure C.1(d).

C.3 Architecture Details
For the model fν , we used a 5-layer residual CNN with ReLU non-linearities. The

fine MLP hξ uses a ReLU non-linearity after each layer except the last, and the

coarse MLP gc
φ

uses Softplus activations. Please refer to Table C.1 for complete

architecture details of each model.
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(a)

(b)

(c)

(d)

(e)

Grog Gargoyl Seahorse Elephant

Figure C.2: Representation quality – with (b) and without (c) details – of our method,
compared with the ground truth model (a). We limit Neural Convolutional
Surfaces to 100K parameters. We show inset zooms (e) of our reconstruction
for further assessment, with corresponding inset zooms (d) for ground truth.
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Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco

Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features

without supervision. arXiv preprint arXiv:2304.07193, 2023.



Bibliography 113

[22] Jan Bednarik, Shaifali Parashar, Erhan Gundogdu, Mathieu Salzmann, and

Pascal Fua. Shape reconstruction by learning differentiable surface represen-

tations. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 4716–4725, 2020.

[23] Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-

Hornung. Scalable locally injective mappings. ACM Transactions on Graph-

ics (TOG), 36(4):1, 2017.

[24] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In

Symposium on Geometry Processing, volume 4, pages 109–116, 2007.

[25] Noam Aigerman and Yaron Lipman. Orbifold tutte embeddings. ACM Trans-

actions on Graphics (TOG), 34(6):1–12, 2015.

[26] Yousuf Soliman, Dejan Slepvcev, and Keenan Crane. Optimal cone singu-

larities for conformal flattening. ACM Transactions on Graphics (TOG),

37(4):1–17, 2018.

[27] Rohan Sawhney and Keenan Crane. Boundary first flattening. ACM Trans-

actions on Graphics (TOG), 37(1):5:1–5:14, December 2017.

[28] Alex Baden, Keenan Crane, and Misha Kazhdan. Möbius Registration. Com-
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[196] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David,

Delio Vicini, Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy,

and Ziyi Zhang. Mitsuba 3 renderer, 2022. https://mitsuba-renderer.org.

[197] Michal Edelstein, Danielle Ezuz, and Mirela Ben-Chen. Enigma: Evolution-

ary non-isometric geometry matching. In ACM Transactions on Graphics

(TOG), 2020.

[198] Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. Shrec: shape retrieval

contest: Watertight models track. Online]: http://watertight. ge. imati. cnr.

it, 7, 2007.



Bibliography 135

[199] Roberto Dyke, Caleb Stride, Yukun Lai, and Paul Rosin. Shrec-19: shape

correspondence with isometric and non-isometric deformations. Proceedings

of the European Conference on Computer Vision Workshops, 2019.

[200] Dragomir Anguelov, Praveen Srinivasan, Hoi-Cheung Pang, Daphne Koller,

Sebastian Thrun, and James Davis. The correlated correspondence algorithm

for unsupervised registration of nonrigid surfaces. Conference on Neural

Information Processing Systems, 17, 2004.

[201] Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Numerical

geometry of non-rigid shapes. Springer Science & Business Media, 2008.

[202] Zhongjin Luo, Shengcai Cai, Jinguo Dong, Ruibo Ming, Liangdong Qiu,

Xiaohang Zhan, and Xiaoguang Han. Rabit: Parametric modeling of 3d

biped cartoon characters with a topological-consistent dataset. Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2023.

[203] Zz Lıan, Z Zhang, H El Elnaghy, J El Sana, T Furuya, A Gıachettı, Alp Güler,
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