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Figure 1: A single RGB-D image (left) is used to create a novel view for a parallax photograph revealing occluded re-
gions (right) with a corresponding degradation model (inset: red and blue respectively indicate higher and lower degradation).

Abstract
Images remain the most popular medium to capture our surroundings. Although significant advances have been
made in developing image editing tools, the key challenge is to intelligently account for missing depth information.
The growing popularity of depth images offers a new avenue to revisit image editing tasks. In this work, we
investigate how even coarse depth information can be exploited to address some of the fundamental challenges in
image editing namely producing correct perspective, handling occlusion, and obtaining segmentation. To this end,
we propose a novel image degradation model that predicts how well an image edit can be performed in presence
of coarse depth information. Technically, we create proxy geometry to summarize available depth information,
and use it to predict occlusions and ordering between image patches, complete occluded regions, and anticipate
image-level changes under camera movement. We evaluate the proposed image degradation model in the context
of parallax photography from single depth images.

1. Introduction

Images remain the most dominant and ubiquitous of visual
mediums. A vast selection of tools exists supporting various
image editing and manipulation tasks. Typically, users are
interested in manipulating scene content or camera pose in
order to mimic being in the original 3D scene. However, the
lack of actual geometry and depth information makes such
edits theoretically impossible to perform correctly.

Beyond full scale 3D acquisition, one can alternatively
capture a lightfield of the scene to accurately support many
advanced manipulations (e.g., change in camera pose, sim-
ulate depth of field effects, etc.). This, however, comes at
the cost of specialized and costly imaging setup. In this pa-
per, we show that even very coarse and incomplete depth in-
formation can vastly simplify many image processing tasks.
This is particularly relevant given the growing ubiquity of
depth sensors that capture high resolution RGB informa-
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tion with loosely synchronized noisy depth information. We
demonstrate such depth information can be used to plausibly
handle occlusion, perspective, and completion effects — all
from single view inputs. Figure 1 shows an example.

More interestingly, we propose an image degradation
model that predicts the success likelihood of a proposed ma-
nipulation. The motivation behind the degradation model
comes from two observations: (i) image completion algo-
rithms are limited and can leave undesirable artefacts and
(ii) by introducing depth information to an image it enables
the control of occlusions by changing camera viewpoint.
The objective of the image degradation model is to identify
poorly completed regions and prevent them from being re-
vealed. Technically, we use the rough depth information to
help create a planar proxy based abstraction of the input im-
age. We propose an iterative algorithm to segment the input,
while estimating the corresponding planar proxies to act as
billboards for the respective segments. The information is
then used to create a layered set of planar proxies with in-
filled and clipped textures per layer. Finally, we estimate a
degradation score for new camera poses to predict the plau-
sibility of the synthesized image composition.

We evaluate our framework in the context of creating par-
allax videos from single images. This application demon-
strates a number of the challenges including segmentation,
image completion, perspective, occlusion and depth order-
ing in one use-case. We evaluate the proposed method on a
variety of scenarios with both planar and non-planar objects,
with and without texture.

2. Related Work

Traditional image editing. Given the popularity and ubiq-
uity of images, significant research has been devoted over the
last decades in developing image editing algorithms. Many
of them are commonly available as standard options in im-
age editing packages like Gimp, Photoshop, etc. The central
challenge is to plausibly account for the lack of depth in in-
put images. This makes it difficult to correctly handle per-
spective and/or occlusion effects. Even the most advanced
methods like PatchMatch [BSFG09] fail when scenes are
cluttered or a texture changes with the perspective of the ob-
ject. In the context of segmentation, the GrabCut segmen-
tation algorithm [RKB04] cannot satisfactorily segment ob-
jects from different depth with the same appearance. We im-
prove the results of these algorithms by the use of geometric
planar primitives.

Depth-aware image editing. Many depth-aware solutions
have been proposed to tackle specific use cases and prob-
lems. For example RepFinder [CZM∗10] use repeated ob-
jects in a scene to assist with image completion and depth
ordering, while, Caroll et al. [CAA10] use vanishing points
for artistically changing image perspective. We approach the
problem with noisy depth and want to deal with these chal-
lenges for more general scenes.

A recent approach for editing man-made objects in 3D is
to allow the user to create 3D proxies for objects in the scene.
One example approximates objects with cuboids [ZCC∗12]
and another generalized cylinders [CZS∗13]. The results for
both are impressive but require substantial and specialized
user-interaction [WCM15]. Our approach also uses geomet-
ric primitives for editing objects in 3D, however, we demon-
strate that it is not necessary to accurately parameterize the
objects for a range of interactions.

Our application of parallax photography shares motiva-
tion with viewpoint changes from a single image demon-
strated by [OCDD01] . Their application again has signifi-
cant interaction to assign a depth to each segment. Tour into
the picture [HAA97] allow users to make animations from
a single image by changing viewpoints, but do not complete
occluded regions or achieve a parallax effect.

Rendering 3D Models in Images. Recent applications com-
bine images with 3D models with impressive results in either
editing the scene [KSES14] or realistically compositing ob-
jects in the scene [KSH∗14]. These require 3D models, that
match objects in the scene, to be available for edits to be
made. We aim to use the depth information as go between the
image and the 3D model. RGB-D images have become in-
creasingly popular and many methods have been proposed to
address the common challenges of segmentation and depth
map completion [EPD12, LRL14, SMZ∗14].

Our application of parallax photography can be com-
pared with [ZCA∗09] who create Parallax Photographs
from LightField images. Their results are impressive but as
a Lightfield is sampling the ray space the input is a lot richer
(and heavy-weight). Instead RGB-D images are much eas-
ier to acquire. However, the simplicity introduces a number
of new problems such as segmentation, occlusion and image
completion.

3. Overview

Our application takes as input a single registered RGB-D im-
age captured using a camera and calibrated consumer depth
sensor. The RGB-D inputs have high density RGB measure-
ments, but poor and incomplete depth information (see Fig-
ure 3). The goal is to utilize the available information to
create an image degradation model to predict how success-
ful typical image manipulations will be. In other words, the
degradation model characterizes edits as simple, or difficult
and likely to show artifacts.

In order to build such a model, we analyze an input
RGB-D image to create an intermediate representation.
Specifically, we segment the input (either automatically or
semi-automatically), billboard-approximate them using pla-
nar proxies, obtain the relative ordering of the respective
planes, and infill the occluded regions for each segment.
We then build an image degradation model that captures the
plausibility of the infilled pixels. The effectiveness of the
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Figure 2: Method overview: (a) Input RGB + depth image; (b) incomplete point cloud with noisy data (note the misalignment
of RGB and depth); (c) segmentation, primitive fitting, and depth completion; (d) occlusions identified and infilled using the
primitives (shown for one segment); (e) degradation model built for infilled pixels; (f) decomposed and completed layered scene;
and, (e) new view synthesized from user defined camera pose is flagged by the degradation model as undesirable.

proposed image degradation model is evaluated by using it
to find suitable camera paths to create aesthetically pleasing
parallax photographs from single images.

Figure 3: Example RGB-D input: Point cloud rendered from
original camera pose (left) showing large regions of miss-
ing depth information labeled in red. When rendered from a
different camera pose (right) the point cloud reveals many
points have mislabeled depth values. The coarseness of the
data emphasises the need for decomposing the scene into
geometric proxies.

Our pipeline has three stages: (i) Scene decomposition
and completion wherein we propose an iterative approach
for image segmentation, depth map completion, and planar
proxy fitting. These primitives are then used to determine
occlusions and improve image completion. (ii) An image
degradation model is then created consisting of a degrada-
tion score for each of the occluded pixels in each segment,
completed in the previous step, representing the plausibility

of the completed pixel. The degradation model consists of a
spatial term and texture term. The intuitive idea behind these
terms is that pixels close to known pixel values and in a low
texture region should receive a low degradation score, versus
those far from known pixels with a large amount of texture
variations. Finally, we use the decomposed and completed
scene with the computed degradation model in the (iii) cam-
era path generation for a parallax photograph. Starting from
user specified camera key frames we utilize the degradation
model to find a good camera path between them.

Contributions. Our key contribution is an approach to use
coarse depth to simplify image manipulation tasks. Central
to this is a novel image degradation model that captures the
quality of synthetic regions of images. Additionally we pro-
pose a method for creating proxy geometry to summarize
coarse depth information and exploit these proxies when
dealing with common challenges such as segmentation, oc-
clusions, and perspective changes.

4. Method

All of our RGB-D images are captured using an Apple iPad
and Occipital StructureSensor. The StructureSensor has a
range of 0.4m to 3.5m+ with precision 0.5mm at 40cm,
30mm at 3m. In practice the upper bound is further but preci-
sion degrades, which, our pipeline mitigates. We use Occipi-
tal’s calibration app to register the color and depth channels.

The RGB-D images are input into our system (see Fig-
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ure 2 for pipeline). We convert the data to a point cloud and
estimate pointwise normals using local PCA fitting. Note
that the data is largely incomplete (marked in black in the
depth channel) and also there is misalignment between color
and depth channels as seen in the point cloud. The scene
is then segmented using color and depth information (au-
tomatically or with user guidance), abstracted with planar
primitives, and completed using guidance from the obtained
primitives.

4.1. Scene Decomposition and Completion

The main goal of this step is to simultaneously performs seg-
mentation, planar primitive fitting and pixel assignment. We
couple these three steps in an iterative approach that reas-
signs pixels to primitive to improve the segmentation and
obtain improved primitive fits. Figure 4 shows an example.

Scene decomposition. First, we segment the RGB image
into SLIC SuperPixels [ASS∗12] (Figure 4c) and fit planar
primitives to the different segments. We encode the fitted
primitives in the normal-intercept form as n ·p+d = 0. We
cluster the superpixel plane primitives using k-means in the
R4 space. Empirically, we found k = 20 provided good re-
sults (Figure 4d). We again fit planar proxies to the super-
pixel clusters to obtain a rough initial segmentation. Essen-
tially, the clustering step links superpixels sharing similar fit-
ted planes. This allows non-locally linking superpixels, for
example walls are identified to be coming from the same
plane even under occlusion.

An alpha-expansion graph cut [BK01] is used to improve
upon the initial superpixel segmentation. The graph cut al-
lows (k + 1) possible labels that a superpixel could be as-
signed, representing the current segments and their primi-
tives from the superpixel clustering, and an additional pos-
sible assignment of a plane at large distance away. We use
a unary cost for each label that encourage the average dis-
tance between the label’s plane primitive and all points in a
superpixel to be small and the average angle between point
normals and plane normal to be similarly small.

Eu(i) :=
1
N

N

∑
i=1

(|pi ·nprim +dprim|)+λexp(−|nsp ·nprim|).

In our tests we set λ = 1000. Note that for pixels with no
assigned depth value (i.e., missing depth) we skip the unary
term. If a whole superpixel has no depth data then it is given
a uniform cost for all primitives.

The pairwise cost for the graph encourages the neighbour-
ing primitives to have similar color and depth as:

Ep(i, j) := αexp(−|ci− c j|)+βexp(−|di−d j|) (1)

where, cx and dx respectively denote the mean color and
depth values assigned to the current segmentation primi-
tives and normalized between 0 and 1. We used α = 1000
and β = 200 in our tests. Again, we exclude the depth term

here if one of the pixels in a superpixels have no associated
depth value. Finally, we refit planar segments to the updated
segmentation results. The SuperPixel level graph cut can be
seen in Figure 4e.

We then iteratively refine the segmentation and depth map
but now working at the pixel level. Each of the three itera-
tions consists of performing a pixel level alpha expansion,
updating the primitives, and updating the depth map. Specifi-
cally, the alpha expansion uses the same terms as previously.
However, as we are working at the pixel level the point to
primitive distance is no longer averaged, nor is the color or
depth term in the pairwise cost. We update the depth map by
setting each point’s position as the ray-plane intersection for
the assigned primitive. In the first iteration, we only reassign
the pixels with already known depth to correct flying pix-
els. Subsequently, we visit the remaining pixels to also fill in
regions with missing depth.

User assistance. In complex scenes, the above approach can
fail to detect small objects, or very similar objects (in depth
and color) can be wrongly merged. This is particularly a
challenge for mid to far objects, where the corresponding
depth precision is particularly poor. In such cases, we al-
low the user to scribble objects as specific segments. From
the scribble marked regions, we compute the region’s mean
color, cµ, point normal, nµ, and depth value, dµ. Using re-
gion growing, we append neighboring candidate pixels p to
the current region if the following conditions hold:

|cµ− cp|< λc AND dµ−dp < λd AND nµ ·np < λn

where, λc = 65, λd = 0.3(dmax− dmin) and λn = 25◦. This
rough segmentation is then used instead of the output of the
SuperPixel level alpha-expansion, and we continue with the
iterative segmentation, primitive fitting and depth map com-
pletion at the pixel level as previously described.

Billboarding. Note that we do not require the segmented re-
gions to be planar. While it is possible to work directly with
the 3D pointcloud segments, we demonstrate that billboard-
ing the pointset is a much simpler and sufficient for many of
the target applications (cf., [MSM11]). This drastically sim-
plifies subsequent processing steps while we can still plausi-
bly handle perspective and occlusion effects. However, some
segments are not well approximated by a plane and in some
cases result in a plane with poor orientation. Hence, we iden-
tify the non-planer segments based on the corresponding fit-
ting residue, and ‘billboard’ them fronto-parallel. Specifi-
cally, we assign the points to a plane with a normal facing the
camera. This avoids inaccurate planes being fitted to an ob-
ject, causing issues later in our pipeline. We found for scenes
with a large range setting the residue threshold to 2000 best,
scenes with medium range 1000 and small range scenes 300.

Occlusion map. Next, we identify which regions on the
primitives are occluded by foreground objects. For each
pixel we find the 3D point on each primitive using ray-plane
intersection. If the point’s depth is greater than the associated
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Figure 4: Scene decomposition: simultaneously performs segmentation, planar primitive fitting, and pixel depth assignment a)
Input RGB image b) Input depth map; note incomplete and missing regions c) SLIC Superpixels computed and planer primitives
fitting d) Clustering of SuperPixels plane primitives e) Alpha-expansion graph-cut at SuperPixel level f) First iteration of
alpha-expansion graph-cut on pixel level g) First iteration of planar primitive fitting and depth map completion h) Final image
segmentation i) Final primitive fitting and depth map completion j) Final segmentation and 3D proxies

value in the completed depth map and the pixel for this seg-
ment has no color information (i.e., is not visible in the input
image), we mark it as occluded. After searching over all the
points in a layer, we test if the marked occluded regions are
connected to a region on the primitive that is visible. This re-
moves false positive occlusions when the object has actually
ended, but this is not known at the primitive level. We further
clip the primitives by extending the visible edges into the oc-
cluded regions.The result for each layer are pixels marked as
being occluded that need to be infilled.

Fronto-parallel image completion. The final step is to
complete the occluded regions. As has been observed by
Huang et al. [HKAK14] image completion works better with
planer surfaces. As our scene is positioned around the depth
sensors optical center, we transform each primitive so it is
fronto-parallel with the camera by finding the rotation be-
tween the primitive’s normal vector and the vector pointing
down the negative z-axis. We apply this transformation to
the points in 3D, and find the corresponding 2D homogra-
phy and apply it to the image (see Figure 5). Thus we ex-
ploit the planar proxies to obtain fast and light-weight image
warping.

To deal with shadows before performing image com-
pletion, we grow the depth-occluded pixels slightly to in-
clude some visible pixels, removing any shadowing arte-
facts. We used the Photoshop implementation of Patch-
Match [BSFG09] for image completion. We warp the new
completed image back to the original pose by applying the
inverse rotation.

4.2. Image Degradation Model

We can use the created scene abstraction to propose a sim-
ple image degradation model that predicts plausibility of im-
age manipulations. In other words, it provides a confidence
score for the quality of the infilled pixels from the previous
step and penalize bad ones if they are revealed by proposed
image manipulations. The overall degradation of the image
is then the sum of pixel-level degradation scores visible in
the image. For example, in the case of parallax photography
from a single image, the degradation score is zero when the
camera is at the origin, and increases as we move further
from the original camera pose, however, not uniformly in all
directions. Hence, the score can inform the user which direc-
tions to pursue, and more importantly which ones to avoid.

Figure 6: Degradation Model: The heat-maps visualize the
degradation model for one segment. The spatial term (left)
gently degrades the further known pixel values. The tex-
ture terms (middle) shows greater degradation around the
sharp texture boundaries of the checkerboard pattern but
low degradation in the centre of squares. The combined final
term (right) shows how high textured regions close to known
values will receive a moderate score; such regions further
from known pixels receive a high score.
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Figure 5: Image Completion: (a) Segments in their original position from input image (b) Segments made front-parallel to the
camera using 2D homography (c) Occluded regions determined and infilled using PatchMatch (d) Infilled segments returned
back to original pose.

Our proposed per-pixel degradation score consists of two
terms: a spatial term measuring proximity to known pixels
and a texture term measuring the plausibility of infilled tex-
tures.

The spatial term captures the intuition that deeper inside
occluded regions, our guesses will have access to less local
information for clues. We compute it by using a breadth-first
region growing approach starting at the boundary of known
and unknown pixels. The boundary grows by adding any
of the occluded pixels in the eight-connected neighborhood
of the current boundary. We repeat the process until all un-
known pixels have been visited. The degradation score is set
to 1 for the first layer and increments on each iterations.

The texture term captures the intuition that uniform (or
structured) regions are more likely to be plausibly infilled.
We compute it using a similar region growing approach. As
the boundary region grows the degradation score is the av-
erage sum of absolute difference between each pixel and its
(2k+1)× (2k+1) neighbourhood of visited or visible (i.e.,
known) pixels as:

texture(i, j) :=
1
N

k

∑
x=−k

k

∑
y=−k

|I(i+ x, j+ y)− I(i, j)|.

where, N is the number of pixels in the neighbourhood that
have been visited and the neighbourhood width k = 10. We

estimate the final degradation score for a pixel simply as
product of the two terms. Figure 6 shows an example.

4.3. Novel view synthesis

We can now use the layered texture-infilled planar proxies
to generate novel view images, and also score the plausibil-
ity of the synthesized view using the proposed degradation
model.

In the context of parallax photography, we have to gener-
ate a new image for each camera view along a path. The path
is defined by the user who selects two key frames parame-
terized by camera location and rotation; the remaining poses
on the path are linearly interpolated. Changing the camera
pose is equivalent to applying the same transformation to
all of the points in the scene, so our camera actually stays
in one place and the scene is moved. To generate the new
image equivalent to moving the camera position we warp
the planar proxies to a new pose using homographies. To
find the homographies we simply transform all the 3D points
by the transformation from the original camera pose to the
new pose, and project them onto the image plane. We store
the points’ original positions in the image plane and their
new positions. Then, we estimate homographies to map the
two sets of points using a RANSAC-based approach from
the OpenCV library. Finally, we transform the points back
to their original positions. We create the final image com-
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posite using the painters algorithm, iterating over the layers,
and updating the output image pixel if a lower depth value
(closer to camera) is found. Figure 7 shows some example
novel views and their degradation models.

5. Results

We evaluate our framework for creating parallax pho-
tographs with the degradation providing feedback on the
quality of the results. Figure 8 shows both of these in action
in a variety of settings. All the scenes are captured using a
StructureSensor. Please refer to the accompanying video for
full sequences.

Figure 8-kitchen shows how occluded regions can be de-
termined and completed effectively. The book stand, which
is partly occluded by the cereal box is reliably infilled (due to
fronto-parallel rectification) and still ensures that the back-
ground remains visible.

We demonstrate how we can deal with large regions of
missing depth, due to range limitation of consumer depth
sensors, by allowing segments be approximated by a far
away plane in Figure 8-park1 and Figure 8-park2 . In these
scenes, we are still able to have a parallax effect with only
two proxies in the scene.

The two statues in scenes park1 and park2, the pot in
scene kitchen, and the table a chairs in scene office show how

input image

synthesized image
(low degradation)

synthesized image
(high degradation)

degradation map (low) degradation map (high)

Figure 7: Novel View Synthesis: Input image (top) is used
to create two novels views (middle) with degradation models
(bottom). The left example has a low degradation score as
the revealed region only has moderate texture and is close
to known pixels. The right example has a high degradation
score as it reveals a high texture region and far from known
pixels.

Figure 9: Depth of Field: A DoF effect can be created using
the primitives. The left image shows the first frame of paral-
lax photograph with the book currently in focus. The right
image shows the final frame with the checkerboard in focus.
Throughout the sequence the camera’s depth of field remains
the same but as the camera moves forward the object in fo-
cus changes.

non-planar objects can be approximated by a plane primi-
tive. By using the plane fitting error we can identify such
objects and set their normal facing the camera and using the
segments centroid. This does, however, lead to inaccurate
perspective scalings in scene-office. Note that for non-planar
objects, we can also add a degradation term for views devi-
ating from fronto-parallel projection.

For each scene, we give examples of synthesized views
with low and high degradation scores. Qualitatively, the
degradation models captures image blemishes reasonably.
For example, in the scene-office, moving the camera too
far into the scene reveals a poorly infilled region that gets
flagged by a high degradation score. In scene-kitchen, pan-
ning right and forward reveals a much smaller segment on
high-texture infill, compared to panning right. Similarly with
the scene-living room the poorly infilled floor is also flagged
by the degradation model.

Some of the scenes required user-interaction for the seg-
mentation step. Figure 8-office required the table legs to be
highlighted to ensure the legs were segmented with the table
top; Figure 8-kitchen required user interaction to ensure the
orange tray was assigned to the back wall, not the wooden
stand; and Figure 8-living-room required the sofa and chair
to be tagged as separate objects.

Depth of Field. The primitive abstraction and depth can be
used in creating a depth of field effect, see Figure 9. The
user can control the camera’s depth of field by setting a fo-
cus depth value and range: pixels within the depth of field re-
main the same but those outside are blurred with a Gaussian
kernel. To get the complete depth of field effect the variance
parameter for the Gaussian Filter is made dependent on the
difference in each pixel’s depth with the depth of field range.

Limitations. Our approach works best when there are only
a handful of intersecting primitives. In scenes such as Figure
10 where there are too many intersecting primitives in close
depth proximity and appearance, we are unable to segment
and fit primitives correctly. The problem is complicated as
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input RGBD image layered + in�lled
3D scene abstraction

novel view synthesis
(low degradation)

novel view synthesis
(high degradation)

Figure 8: From top to bottom scenes: office, kitchen, living room, park1, park2. In each row, we show the input RGBD image,
the abstracted layered scene, novel view synthesis with low degradation (inset showing degradation map), novel view synthesis
with high degradation (inset showing degradation map), respectively.

the noise level in the depth measurement is higher than the
depth separation of the scene planes. The initial synthesis
looks plausible for small view changes, but when the user
makes bigger view change it reveals glaring artefacts break-
ing the illusion.

We only used planes as proxy geometry in our implemen-
tation. While we demonstrated that planes can solve many
of the challenges, more complex primitives are likely to pro-
vide more interesting results. For example, cylinders, where
appropriate, would provide more accurate occlusions and
perspective changes as the camera moves.
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Figure 10: Failure Case: For this input scene (left) where
there are many intersecting objects we are unable to accu-
rately fit primitives and determine occlusions (right). With-
out accurate proxies we are unable to correctly complete the
scene or synthesise new views.

6. Conclusion

We have presented a scene abstraction and image degrada-
tion model for single RGB-D images. We demonstrated how
a variety of objects, or even groups of objects, can be ap-
proximated by simple planar proxies created out of rough
depth information loosely synchronized with RGB informa-
tion. These proxies can then be used to determine occlu-
sions in a scene and assist with image completion in these
occluded regions. This scene abstraction allows for an im-
age degradation model to be created that captures the con-
fidence in the quality of the image completion step. We use
the model to assist the user in performing edits. We demon-
strated the use of the degradation model in the context of
parallax photography from single images.

In the future, we would like to further explore applications
of the image degradation model. One particular area of inter-
est is using it to create a smart interface for image editing.
Such an interface could allow the user to perform 3D edits in
the scene - by way of geometric proxies - and have the output
degradation evaluated. If the degradation is high the system
could suggest a similar alternative edit by moving objects in
the scene or adjusting the camera pose to one that has less
degradation.
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