
Data-driven Modelling of Shape
Structure

Melinos Averkiou

Department of Computer Science

University College London

This dissertation is submitted for the degree of

Doctor of Philosophy

August 2015

http://geometry.cs.ucl.ac.uk/averkiou
http://www.cs.ucl.ac.uk
http://www.ucl.ac.uk

Declaration

I, Melinos Averkiou confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been indicated
in the thesis.

Melinos Averkiou
August 2015

http://geometry.cs.ucl.ac.uk/averkiou

Abstract

In recent years, the study of shape structure has shown great promise, by taking steps
towards exposing shape semantics and functionality to algorithms spanning a wide
range of areas in computer graphics and vision. By shape structure, we refer to the set
of parts that make a shape, the relations between these parts, and the ways in which
they correspond and vary between shapes of the same family. These developments
have been largely driven by the abundance of 3D data, with collections of 3D models
becoming increasingly prominent and websites such as Trimble 3D Warehouse offering
millions of free 3D models to the public. The ability to use large amounts of data inside
these shape collections for discovering shape structure has made novel approaches to
acquisition, modelling, fabrication, and recognition of 3D objects possible. Discovering
and modelling the structure of shapes using such data is therefore of great importance.

In this thesis we address the problem of discovering and modelling shape structure
from large, diverse and unorganized shape collections. Our hypothesis is that by using
the large amounts of data inside such shape collections we can discover and model
shape structure, and thus use such information to enable structure-aware tools for 3D
modelling, including shape exploration, synthesis and editing.

We make three key contributions. First, we propose an efficient algorithm for co-
aligning large and diverse collections of shapes, to tackle the first challenge in detecting
shape structure, which is to place shapes in a common coordinate frame. Then, we
introduce a method to parameterize shapes in terms of locations and sizes of their parts,
and we demonstrate its application to concurrently exploring a shape collection and
synthesizing new shapes. Finally, we define a meta-representation for a shape family,
which models the relations of shape parts to capture the main geometric characteristics
of the family, and we demonstrate how it can be used to explore shape collections and
intelligently edit shapes.

Acknowledgements

First of all I would like to express my deepest gratitude to my advisor, Niloy J. Mitra,
for his invaluable advice, guidance and support throughout my studies. During the past
four years he has been a true mentor, sharing his knowledge and expertise, patiently
teaching me how to conduct and communicate research, and keeping me focused on
my goals. Most importantly, he has taught me to always aim high and reach out of my
comfort zone.

I am truly grateful to all my collaborators and co-authors: Vladimir G. Kim, Youyi
Zheng, Oliver van Kaick, Noa Fish, Daniel Cohen-Or, and Olga Sorkine-Hornung.
Without their help and contribution, this work would not have been possible. I am also
indebted to Leonidas Guibas, the members of his group at Stanford, and Qi-Xing Huang
in particular, for giving me the opportunity to spend time in their lab, for their support,
collaboration and hospitality.

I would like to express my gratitude to all members, past and present, of the Smart
Geometry Processing group in UCL: Bongjin Koo, Aron Monszpart, Moos Hueting,
James Hennessey, Tuanfeng Wang, Nicolas Mellado and Martin Kilian; as well as
all members of the VECG group in UCL. For all the fruitful discussions, arguments,
motivation and help they have provided, I am very thankful. I would also like to
thank Yiorgos Chrysanthou, for introducing me to Niloy, encouraging me to pursue my
research dreams and providing me with support and advice throughout my studies.

My research has been supported by EPSRC, the Rabin Ezra Scholarship Trust, the
A. G. Leventis Foundation and the Cyprus State Scholarship Foundation. I acknowledge
and express my immense gratitude for their support.

Last but not least, I would like to thank my friends and family. To my friends in
London: Michalis, Loizos, Fotis, Andreas, Christos, Theodosis, Alexis; and my friends
back home: Nikoletta, Panayiotis, Sofronis, Pavlos, Stelios, Elena, Nectarios; thanks
for the countless memories, the fun times and the serious times. To my family, thank
you for giving me a good education and for teaching me what matters in life. Special
thanks to the most important person in my life, Christina, for her patience throughout
these years, for supporting and encouraging me in every step, and for always being by
my side. Thanks everyone, this is for you.

To Christina.

Table of contents

List of figures xv

List of tables xxiii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4

2 Related Work 7
2.1 Structure Discovery and Modelling 7

2.1.1 Shape Alignment . 7
2.1.2 Shape Co-analysis . 12

2.2 Structure-aware Shape Processing 16
2.2.1 Shape editing . 16
2.2.2 Shape synthesis . 18
2.2.3 Shape exploration . 21

3 Efficient co-alignment of shape collections 23
3.1 Motivation . 23
3.2 Overview . 26
3.3 Method . 28

3.3.1 Normalization . 28
3.3.2 Autocorrelation descriptor 29
3.3.3 Shape clustering . 30
3.3.4 Intra-cluster alignment . 30
3.3.5 Inter-cluster alignment . 31

3.4 Evaluation . 32
3.4.1 Experimental setup . 32
3.4.2 Per-class performance . 33

xii Table of contents

3.4.3 Efficiency improvement . 34
3.4.4 Effect of clustering . 36
3.4.5 Effect of human supervision 37
3.4.6 Scalability . 38
3.4.7 Computational complexity 38
3.4.8 Discussion . 39

4 Template-based shape parameterization 43
4.1 Motivation . 43
4.2 Overview . 46
4.3 Method . 47

4.3.1 Initial analysis . 48
4.3.2 Abstracted encoding . 49
4.3.3 Efficient embedding . 50
4.3.4 Abstracting missing shapes 52
4.3.5 Grouping shapes . 53
4.3.6 Constrained abstract shape synthesis 53
4.3.7 Part-based geometric shape synthesis. 56

4.4 Evaluation . 56
4.4.1 Datasets . 56
4.4.2 User feedback . 57
4.4.3 Baseline comparison . 57
4.4.4 Comparison to Chaudhuri et al. [15] 59
4.4.5 Comparison to Jain et al. [46] 61
4.4.6 Constrained synthesis . 63
4.4.7 Restoring contacts . 63
4.4.8 Discussion . 64

5 Meta-representation of shape families 65
5.1 Motivation . 65
5.2 The Meta-representation . 67
5.3 Learning the Meta-representation . 69
5.4 Using the Meta-representation . 74

5.4.1 Exploration of shape families 74
5.4.2 Guided shape editing . 74
5.4.3 Coupled shape editing . 79

5.5 Evaluation . 80

Table of contents xiii

5.5.1 Exploration of shape families 80
5.5.2 Guided shape editing . 83
5.5.3 Coupled shape editing . 84
5.5.4 Discussion . 85

6 Conclusions 89
6.1 Summary . 89
6.2 Future Work . 91

References 95

Appendix A Efficient co-alignment of shape collections results 105

Appendix B Template-based shape parameterization results 169

List of figures

1.1 The process of discovering and modelling structure from a shape col-
lection. Starting from an unorganized shape family, we first need to
co-align shapes (see Chapter 3) in order to then solve for segmentation
and correspondence between them. We can then model such structure,
for example using a template-based parameterization of shapes (see
Chapter 4) or a set of geometric distributions (see Chapter 5). Different
shape processing applications such as synthesis, exploration and editing
can be powered by having a representation of shape structure. 2

3.1 Shape collections typically come with inconsistent orientations (a).
PCA-based alignment (b), or aligning to an arbitrarily chosen base
model (c) is prone to error. The problem with pairwise alignments is
attributed to several minima in alignment distances (Epair), arising due
to near-symmetries of shapes. We introduce an autocorrelation-guided
algorithm to efficiently sample the minima (red boxes) and jointly
co-align the input models (d). 24

3.2 We use autocorrelation shape descriptors to predict model similarity
without explicitly comparing them. If two shapes Si and S j are in-
deed similar with respect to their rotational near-symmetries, we use
their autocorrelation descriptors Ei and E j to predict potential relative
alignment configurations between Si and S j that should be further in-
vestigated. In this example, the top half shows similar models whose
autocorrelation functions can be used to predict their relative align-
ment; the bottom half shows dissimilar models whose autocorrelation
functions provide confusing signals for their relative alignment. . . . 25

3.3 We normalize and sample points on each shape, compute its autocorre-
lation descriptor Ei, and store the set of Ei’s local minima (highlighted
by red boxes). 27

xvi List of figures

3.4 We show the autocorrelation functions (EA,A,EB,B) for two motorcycles
(A,B), and their pairwise energy function (EA,C,EB,C) when comparing
to a bike (C). A and B are aligned to the global axes while C is rotated
60° around z axis. Note how this causes the two minima of EA,A and
EB,B (at 180° and 360°) to shift by 60° in EA,C and EB,C. We can
therefore expect to find an alignment of the two motorcycles and the
bike at 240° or 60°, so there is no need to sample other rotations. . . . 28

3.5 Algorithm overview. Starting from a set of shapes, we normalize and
compute their autocorrelation descriptors to cluster the shapes. We
then align the shapes first within and then across the clusters using
a graph-based discrete formulation wherein we intelligently sample
candidate alignments for each shape guided by their autocorrelation
descriptors. 29

3.6 Multi-Dimensional Scaling embedding of autocorrelation descriptors
for a dataset of chairs in 2D, with points colored according to the cluster
they belong. Note how chairs are separated from long benches as they
have different sets of self-symmetries. 30

3.7 We plot the fraction of models (y-axis) aligned within a prescribed angle
threshold (x-axis), for 10 datasets. All our results are substantially better
than a baseline of random alignments, which would only give about
8% accuracy for a threshold of 15�. Similarly to all shape matching
techniques, our method suffers from near-symmetries of shapes. . . . 34

3.8 We compare our method (green) to our implementation of the UNI-
FORM method (blue), where the results are averaged over 10 datasets.
Our method outperforms the UNIFORM method in accuracy. Most
importantly, it has less computational complexity than UNIFORM, as it
requires 2-16 times (depending on the dataset) less samples of Ei, j to
align shapes within all clusters, compared to UNIFORM (see Table 3.1). 35

3.9 We plot the fraction of bikes aligned within a prescribed angle thresh-
old, for our method and UNIFORM method with increasing number
of samples. The accuracy of UNIFORM increases as the number of
samples increases, at the cost of longer running time, while our method
achieves higher accuracy at a fraction of the time. 36

List of figures xvii

3.10 We evaluate the effect of the clustering part of our pipeline by compar-
ing our method with clustering performed (green) to our method with
clustering turned off, i.e. all shapes jointly aligned in one step (blue).
This plot shows results averaged over 10 datasets. Clustering and align-
ing shapes in two steps increases accuracy on average, compared to
jointly aligning all shapes. 38

3.11 We evaluate the effect of human supervision by comparing the accuracy
of our unsupervised alignment pipeline (green) to the accuracy achieved
with human supervision (blue), for the chairs and the airplanes datasets.
Supervision helps improve accuracy for these low-performing datasets,
using just 6 manually-prescribed rotations for chairs and 21 for planes. 39

3.12 Randomly selected shapes from our datasets, indicating their pose
before (odd rows - in gray) and after (even rows - in green) alignment.
Red boxes mark mis-aligned shapes. 41

4.1 We analyze unorganized model collections using template-based ab-
stractions to create a low-dimensional embedding of the underlying
shape space. The user can then explore this low-dimensional space to
create novel shapes by clicking in the empty regions (for example, the
red rectangles). In each case, a model was synthesized by deforming
and recombining parts from neighbouring models. 44

4.2 Our system comprises of an exploration view to show the 2D embedding
of the input models; an icon view to show representative models for
the current group(s); and a model view for showing the abstracted or
synthesized models created using our system. 46

4.3 We start from a collection of semantically-related shapes and first anal-
yse them in an offline step, solving for alignment, correspondence,
segmentation and a deformable template, in order to obtain template-
based shape descriptors. Then, in an interactive interface, we compute
2D embeddings and clusterings of the shape descriptors to reveal varia-
tions and shape groups that in turn guide the user selections. The user
can quickly explore the template-based abstract shape space by hov-
ering the mouse over the 2D embeddings, and click in empty regions
of the space to synthesize new shapes based on parts selected from
neighbouring shapes and deformed appropriately. 48

xviii List of figures

4.4 Combining a random selection of chair models (top), even when they
are consistently segmented, is challenging. The models have different
proportions of parts that make a part selection based on visual inspec-
tion of the superimposed models (bottom-left) confusing and can easily
result in meaningless part ensembles (bottom-right). Instead, we ex-
pose a constrained and intuitive part-based model shape space for easy
exploration and synthesis. 49

4.5 In the case of models with multiple components (left), we use the
extracted part distributions obtained from the shape collection [54]
to obtain an initial point labeling (middle-bottom) and part abstrac-
tion (middle-top). We refine the segments using a labeling optimiza-
tion (right). 50

4.6 We embed the input models using their corresponding fitted template-
based abstractions. We perform an efficient landmark-based embedding
and analyze the points to obtain a parameterized template abstracting
the underlying shape space. As the user navigates the embedded space,
the extracted variation modes are used to lift the points (shown in red)
back to high-dimensional configuration vectors to synthesize template
abstractions. The distribution of the pairwise distances between the
embedded points is used to estimate a suitable clustering radius for
mean-shift clustering. 52

4.7 A typical hierarchical exploration session using our interface. After
initial analysis, the system displays the top level templates (top-left).
As the user selects the green mode, the member models are embedded
(level 1) and 4 dominant clusters are detected. The user selects the next
representative and its member models are re-embedded. When a single
cluster is discovered, its representatives and dominant variation modes
are shown (bottom-right). 53

4.8 Illustrative example of the different constraints handled in our frame-
work. (Left) In this 2D example, the configuration vector X 2 R12

represents the abstracted model with 3 parts. For example, the two
contact constraints involve the orange-green and orange-blue boxes and
hence the corresponding fi(X) involves the corresponding coordinates
of X . (Right) Our system restores these constraints during the real-time
exploration using a QP formulation. 54

List of figures xix

4.9 Our system allows to preview possible geometric realizations in an
empty region around the embedded points (top-right). Each of the
retrieved models (models a-e) is deformed to match the query configura-
tion (indicated as a red box). Parts from the deformed models (middle)
are then combined to create different plausible shapes (right). 55

4.10 Sets of models created in our user experiment. Please refer to Ap-
pendix B for the full set of results. Our system enables rapid synthesis
of diverse models. 58

4.11 Example models created by User 1 (picked at random) for comparison
to Chaudhuri et al. [15] system. Note that both sets of models created
for task T1 contain diverse and plausible shapes, as was requested in
the task. 60

4.12 We evaluate our method in a shape interpolation scenario such as in
Jain et al. [46]. First (middle-left), the back legs of source are replaced
with the back legs of target. Then (middle-center), the back of source is
replaced with the back of target. Finally (middle-right), the front legs of
source are replaced with the front legs of target. Note that our method is
more robust to strong deformations because it uses the full shape space
to model the shape variations and thus deforms parts appropriately to
fit a particular point in shape space, unlike Jain et al. [46] who do not
deform parts. 62

4.13 The synthesized models can be further refined using docker-based part
deformation. In these examples, the parts of the chair and bike are
brought back into contact based on nearest part dockers. 63

5.1 Meta-representations of two shape families, where we show one proba-
bility distribution from each representation. Here, we see the distribu-
tion for the angle between the main axes of airplane wings and fuselage,
and the angle between the main axes of chair backs and legs. There
are two major modes in each distribution, where examples of shapes
corresponding to the black dots are shown. Besides such exploration,
the meta-representation can be used for applications like guided edit-
ing: the user deforms selected shapes, taking them to lower probability
states (red dots), and then the system, guided by the meta-representation,
returns them to higher probability states (green dots). 66

xx List of figures

5.2 Part abstraction: given the segmented and labeled shapes in (a), we
compute the convex hull of each part (b), and then use the hulls to
extract an OBB for each part (c), while also consistently ordering the
OBB axes across different shapes. 69

5.3 (a) Given a pair of parts represented as two OBBs with their axes
colored in red, green, and blue, illustrated in 2D in (b), we compute
a set of binary relations that describe their relative arrangement. We
consider: (c) SCALE, (d) ANGLE, and (e) CONTACT relations. 70

5.4 Bandwidth selection to create the kernel density estimator (KDE): (a)
Automatic selection with our criterion (red bars are training values). (b)
Small bandwidth: note how there are many modes and gaps. (c) Large
bandwidth: a single mode is created. 73

5.5 The meta-representation enables the exploration of shape repositories:
when clicking on different locations of the distributions, the exploration
tool presents models with the selected relation values. (a) shows a unary
relation for the blue parts, while (b) shows a binary relation between the
green and blue parts. The shapes are ordered according to an increase
of the selected relations values (black dots). Note that the 3rd and 4th
chair both correspond to the highest peak. The red bars are all the
training samples used to build the distributions. 75

5.6 Top row: representative abstract configurations automatically obtained
from the meta-representations of families of chairs, bikes, tables, and
planes. Bottom row: corresponding representative shapes synthesized
for the abstract configurations. 81

5.7 Gallery of editing results guided by the meta-representation: each
example shows the original shape and one or more edits where the
user rotated or scaled one part. The shapes optimized according to the
meta-representation are shown after the arrows. 82

5.8 Correcting a chair with a severe deformation using the meta-representation. 83
5.9 Guided editing tool. Bottom: a sequence of three edits. Top: three

relations and the values corresponding to the parts involved in the edits
are shown before and after optimization (blue is the first edit, red is the
second, and green is the third). 84

List of figures xxi

5.10 Coupled editing of a family of shapes obtained with the meta-representation:
the distribution on the left (angle in radians between the main axes of
seats and legs) is directly manipulated by a user, who changes the curve
to acquire the more compact profile on the right. As a result, all the
models in the set are automatically deformed to conform to the new
distribution (bottom row). 85

5.11 Inconsistencies in the alignment of different OBBs. 86

A.1 Comparison of our method (green) and UNIFORM method (blue), for
all datasets . 106

A.2 Comparison of our method with clustering (green) and our method
without clustering (blue), for all datasets 107

A.3 This figure illustrates the accuracy of our full unsupervised alignment
pipeline (green) in comparison to the accuracy achieved if a human
aligns shapes between clusters manually (blue). We plot the fraction of
models aligned within a prescribed angle threshold, averaged over our
10 datasets. 108

A.4 Comparison of our unsupervised pipeline (green) and our supervised
pipeline (blue), for all datasets . 109

A.5 Bikes dataset before (odd rows - in gray) and after (even rows - in green)
alignment. 112

A.6 Cars dataset before (odd rows - in gray) and after (even rows - in green)
alignment. 115

A.7 Noisy cars dataset before (odd rows - in gray) and after (even rows - in
green) alignment. 119

A.8 Chairs dataset before (odd rows - in gray) and after (even rows - in
green) alignment. 122

A.9 Chairs (big) dataset before (odd rows - in gray) and after (even rows -
in green) alignment. 151

A.10 Cups dataset before (odd rows - in gray) and after (even rows - in green)
alignment. 154

A.11 Helicopters dataset before (odd rows - in gray) and after (even rows - in
green) alignment. 157

A.12 Planes dataset before (odd rows - in gray) and after (even rows - in
green) alignment. 160

A.13 Ships dataset before (odd rows - in gray) and after (even rows - in green)
alignment. 163

xxii List of figures

A.14 Snowmobiles dataset before (odd rows - in gray) and after (even rows -
in green) alignment. 164

A.15 Sofas dataset before (odd rows - in gray) and after (even rows - in green)
alignment. 167

B.1 Dataset: bike, Our method. 170
B.2 Dataset: chair, Our method. 171
B.3 Dataset: plane, Our method. 172
B.4 Dataset: bike, Baseline. 173
B.5 Dataset: chair, Baseline. 174
B.6 Dataset: plane, Baseline. 175
B.7 Comparison: 100 airplanes, Task: T1, Method: Our method 176
B.8 Comparison: 100 airplanes, Task: T1, Method: Chaudhuri et al. [2011] 177
B.9 Comparison: 100 airplanes, Task: T2, Method: Our method 178
B.10 Comparison: 100 airplanes, Task: T2, Method: Chaudhuri et al. [2011] 178

List of tables

3.1 The first two columns show the time, spent on solving the optimization
from Section 3.3.4 for our method and UNIFORM. Inter-cluster align-
ment time is excluded since it is the same for both methods. The third
and fourth columns show the number of samples taken from Ei, j in the
same optimization problem. Note that our method is faster than UNI-
FORM, which takes 32 samples for pairwise alignments. Our method
becomes more computationally expensive for classes of shapes that
exhibit more symmetries, such as cups, airplanes and helicopters. . . . 37

4.1 User study on Task T1 comparing our method with a random selection
from a dataset. Voting indicates number of time users voted for our
method vs random selection (where votes for both are summed with
individual votes), and timings are in minutes. 59

4.2 Comparison to Chaudhuri et al. [15], tasks T1 and T2 were accom-
plished with two different interfaces. Voting columns indicate number
of time users voted for results produced with our method vs their ap-
proach (where individual votes are summed with votes for both methods). 61

Chapter 1

Introduction

1.1 Motivation

Geometry processing has grown into a significant research area concerned with the
design of efficient algorithms for the acquisition, reconstruction, analysis, modelling,
manipulation, and fabrication of complex 3D models [9]. Fundamental problems in
geometry processing, such as segmentation, smoothing, remeshing, deformation and
correspondence [9] have been well studied in the context of single shapes or pairs of
shapes.

However, the explosion in the amount of 3D content freely available in online
repositories such as Trimble 3D warehouse provides new challenges in such fundamental
problems, as well as opportunities for investigating new shape properties, by exploring
consistency across multiple semantically-similar shapes. These semantically-similar
shapes, potentially very different geometrically and topologically, form what we now
call shape families, or shape collections. For example, a family, or collection, of
airplanes can be seen in Figure 1.1. It contains various different types of airplanes, such
as large carrier jets or fighter jets, with one, two, or even four engines, among others.
They are geometrically different, but they all belong to a family of airplanes.

This great increase in the size of online 3D repositories has been largely driven by
a sharp rise in the amount of cheap geometry acquisition devices and modelling tools.
Such massive shape repositories now contain millions of freely available 3D models and
have given a push to data-driven methods for discovering shape structure, making novel
approaches to acquisition [56, 57], modelling [15], fabrication [77], and recognition of
3D objects [81, 104] possible.

Shape structure has thus become an emerging topic of research in geometry process-
ing over the past few years. It has shown potential in deriving semantics and function

2 Introduction

Discovering structure!

Input!
Shape Family!

Modelling structure!

Co-alignment!
Chapter 3!

Segmentation &!
Correspondence!

Template-based
parameterization!

Chapter 4!

Meta-
representation!

Chapter 5!

Exploration!

Synthesis!

Editing!

Figure 1.1: The process of discovering and modelling structure from a shape collection. Starting
from an unorganized shape family, we first need to co-align shapes (see Chapter 3) in order
to then solve for segmentation and correspondence between them. We can then model such
structure, for example using a template-based parameterization of shapes (see Chapter 4) or a
set of geometric distributions (see Chapter 5). Different shape processing applications such as
synthesis, exploration and editing can be powered by having a representation of shape structure.

from pure geometry and exposing such rich information to algorithms that have tra-
ditionally operated on low-level geometry. Structure, in the case of shapes, is used
to describe the set of meaningful parts which compose a shape and the mathematical
relations of these parts, such as various types of symmetry, parallelism, concentricity,
co-planarity and others [70]. Extending this notion to a family of shapes sharing com-
mon semantics, we additionally seek to discover and describe the ways in which these
parts correspond and vary between shapes.

The common observation behind data-driven structure-aware shape processing
methods is that by learning a model of structure for a shape or family of shapes, we can
use such information to reason about shapes at a higher level of abstraction, departing
from the existing focus on low-level geometry. This allows, for example, surface
reconstruction by detecting objects [71] and reusing existing shape parts [83] rather
than pure point clouds, sampling a generative model to synthesize novel shapes [48, 100]
rather than creating shapes from scratch, and designing functional, ready to print models
from existing primitives [59] rather than worrying about mechanical properties. This
observation seems to hold well for man-made shapes, which have been the focus of
most research effort so far, and are the focus of this thesis.

Such recent advancements illustrate that all stages of the content creation pipeline
are significantly accelerated by harvesting models of structure. Accelerating content
creation results in cost reduction and increases the size of online shape repositories,
providing more data for learning structure, thus creating a feedback loop of continu-
ous development. As shape collections continue to grow, discovering and modelling
structure from existing data is both important and challenging.

1.1 Motivation 3

A number of these challenges are related to the manner in which shape repositories
are constructed. First, online shape repositories are typically unorganized and contain
loose and noisy semantic tags for each object. In the example of Figure 1.1, to collect
a set of airplanes, one would have to use text-based search in a shape repository to
retrieve a set of models that are tagged similarly to the text query. The results of such a
search would most likely include outliers that would need to be cleaned up, as many
models are not tagged properly. Second, models in such collections are not consistently
oriented. Most of them have consistent up vectors, but, as Figure 1.1 illustrates, they
point in different directions. Third, these collections have no information on how shapes
relate to each other or how they vary from one another.

Manually resolving these problems is not scalable, as these collections continue
to grow. Similar challenges have been faced by early data-driven image processing
algorithms, when millions of images started flooding the web. Advances in that area
have now been used to organize, explore and export correlations and semantics from
the millions of images online. Inspired by such advances, we would like to overcome
these challenges in deriving and using structure from shape collections.

In this thesis we address the problem of discovering and modelling shape structure
from large, diverse and unorganized shape collections. 1.1). Our hypothesis is that by
taking advantage of the large amounts of data inside such shape collections, we can
discover and model shape structure, thereby allowing us to use such information to
enable several structure-aware shape processing methods, with an impact in exploration,
synthesis, editing and deformation of shapes (see Figure 1.1).

Our input is a collection of semantically-related man-made shapes, for example a
collection of airplanes (see Figure 1.1), which have a consistent up vector. One can
retrieve such a collection from an online repository automatically using text-based
search. If the models in the collection have no consistent up vector, one can use
the upright orientation method of Fu et al. [29] to consistently orient them in the
upward direction. By man-made, we mean any shape representing an object built by
humans, excluding complicated structures such as buildings. This includes anything
from small objects like cups, to furniture, mechanical devices like bikes and cars, and
even helicopters and airplanes. We make no assumptions on the quality of the models or
the existence of any information on how they relate to each other. This means that our
input contains low-polygon, non-manifold shapes, or even polygon soups, as well as
professional-quality models. Finally, shapes inside the same collection can vary widely
in geometry and topology, but they still exhibit structural similarities related to their
semantics and functionality, which we aim to discover.

4 Introduction

We focus less on discovering structure and more on modelling the structure from
collections of shapes. Specifically, first we propose an algorithm to rigidly align a set of
shapes, which is the first step in discovering structure. Then, we introduce a method to
parameterize shapes based on box templates, and finally, we suggest a model of shape
part relations in a shape family, as an attempt in modelling structure. We demonstrate
how our results can be used for various structure-aware geometry processing tools,
including exploration of shape collections, shape synthesis, and intelligent shape editing,
among others.

1.2 Contributions

In our work we make three key contributions in discovering and modelling shape
structure. Figure 1.1 gives a high-level overview of the process of discovering, modelling
and using shape structure, noting our contributions.

Efficient co-alignment of shape collections. Deriving structure from a collection
of shapes typically requires solving for correspondences between shape surfaces and
compatible segmentations of shapes into parts. Solving for such correspondences
and segmentations first requires bringing shapes to a common coordinate frame, thus,
alignment is the first step to discovering structure. We devise a fast algorithm for rigidly
co-aligning a set of shapes belonging to the same family. In contrast to state of the art
methods [41] that uniformly sample the rotation space in search for the best alignment
that minimizes distances between all shape surfaces, we observe that only a small set of
rotations are responsible for erroneous alignments, thus greatly reducing the amount of
candidate alignments we need to examine per shape. Using rotational self-symmetries
of shapes to pinpoint this small set of rotations allows us to develop an algorithm that
is not only several times faster than uniform sampling, but is also more accurate on
average.

We evaluate our algorithm on a large benchmark with ten different shape families by
comparing to state-of-the-art methods and we report improvements in both efficiency
and alignment accuracy. Chapter 3 provides details of our alignment algorithm.

Template-based shape parameterization. With the growing size of shape reposito-
ries, it is becoming more challenging to explore and understand the kinds of shapes
inside such collections. At the same time, understanding these variations and exploring
these datasets is becoming more necessary for various data-driven shape processing
methods like part-based synthesis, which enables non-expert users to synthesize novel
shapes by assembling parts extracted from model databases. We propose a way to

1.2 Contributions 5

parameterize shapes belonging to the same family, based on positions and sizes of tem-
plate boxes fit to each shape. By jointly analyzing the arrangements and sizes of parts
across models, we are able to hierarchically embed the models into low-dimensional
spaces.

We then demonstrate how a user can utilize the parameterization to explore the
shape family by clicking in different areas of the embedded shape space and by selecting
groups of shapes to zoom on specific shape clusters. More importantly, any point in
the embedded space can be lifted to an arrangement of parts to provide an abstracted
view of possible shape variations at that point. The abstraction can further be realized
by appropriately deforming parts from neighboring models to produce synthesized
geometry.

We evaluate our method’s ability to explore and synthesize novel shapes through
a large user study on four different shape families, and we report the plausibility and
diversity of the synthesized results as judged by human participants, compared to results
achieved with state-of-the-art methods. We also evaluate the quality of our shape space
embedding via a reachability experiment, where we report how our parameterization is
affected by excluding random shapes. Our experiments indicate that our explorative
shape synthesis paradigm, combining shape exploration with synthesis, can be used
by people with virtually no 3D modelling experience to rapidly generate plausible and
diverse shapes comparable to the previous methods. Chapter 4 provides details of our
template-based parameterization.

Meta-representation of shape families. Taking our template-based shape abstrac-
tion one step further, we introduce a model of structure to characterize a family of
shapes. We call this model a meta-representation, that represents the geometric essence
of a family of shapes. The meta-representation learns the configurations of shape parts
that are common across the family, and encapsulates this knowledge with a system of
geometric distributions that encode relative arrangements of parts. Thus, instead of
predefined priors, what characterizes a shape family is directly learned from the set of
input shapes. The meta-representation is constructed from a set of co-segmented shapes
with known correspondence, relying on previously discovered shape structure.

It can then be used in several applications where we seek to preserve the iden-
tity of the shapes as members of the family. We demonstrate applications of the
meta-representation in exploration of shape repositories, where interesting shape config-
urations can be examined in the set; guided editing, where models can be edited while
maintaining their familial traits; and coupled editing, where several shapes can be col-
lectively deformed by directly manipulating the distributions in the meta-representation.

6 Introduction

We evaluate our meta-representation in intelligently editing shapes and exploring
shape collections on several shape families and illustrate a multitude of cases where our
smart editing tool outperforms state-of-the-art methods. Chapter 5 provides details of
our meta-representation.

List of publications. Parts of this thesis have been published as follows:

• The efficient co-alignment algorithm in Chapter 3 has been published in:
AVERKIOU, M., KIM, V. G., AND MITRA, N. J. Autocorrelation Descriptor for
Efficient Co-alignment of 3D Model Collections. Computer Graphics Forum 34,
8 (2015). In Press.

• The template-based shape parameterization in Chapter 4 has been published in:
AVERKIOU, M., KIM, V. G., ZHENG, Y., AND MITRA, N. J. ShapeSynth:
Parameterizing Model Collections for Coupled Shape Exploration and Synthesis.
Computer Graphics Forum (Eurographics) 33, 2 (2014), 125–134.

• The meta-representation of shape families in Chapter 5 has been published in:
FISH*, N., AVERKIOU*, M., VAN KAICK, O., SORKINE-HORNUNG, O.,
COHEN-OR, D., AND MITRA, N. J. Meta-representation of Shape Families.
ACM Transactions on Graphics (SIGGRAPH) 33, 4 (2014), 34:1–34:11. *joint
1st authors.

Additionally, the following publications are directly connected to the work presented in
this thesis:

• The template-based shape parameterization in Chapter 4 has been used to generate
large amounts of synthetic 3D content to train object proposal estimators for depth
images, as published in:
ZHENG, S., PRISACARIU, V. A., AVERKIOU, M., CHENG, M.-M., MITRA,
N. J., SHOTTON, J., TORR, P. H., AND ROTHER, C. Object Proposals Estimation
in Depth Image Using Compact 3D Shape Manifolds. In Proceedings of German
Conference on Pattern Recognition (2015). In press.

• An unsupervised algorithm for the detection of recurring part arrangements and
shape co-segmentation, which is the second step in discovering shape structure
(see Figure 1.1) has been published in:
ZHENG, Y., COHEN-OR, D., AVERKIOU, M., AND MITRA, N. J. Recurring Part
Arrangements in Shape Collections. Computer Graphics Forum (Eurographics)
33, 2 (2014), 115–124.

Chapter 2

Related Work

Shape structure can be defined as the set of meaningful parts which compose a shape and
the mathematical relations of these parts, such as various types of symmetry, parallelism,
concentricity, co-planarity and others [70]. Extending this notion to families of shapes,
we would also like to know how these parts correspond and vary between shapes.
Extracting structure from a shape collection therefore amounts to discovering a common
set of parts, their correspondence over shapes in the collection, and the relations of
these parts. Armed with a model of structure, structure-aware shape processing tools
attempt to preserve it by minimizing the deviation from the relations discovered, which
are formulated as constraints. Methods for shape exploration, editing and synthesis,
among others, benefit from such a model. In the following, we review related work in
discovering and modelling structure, as well as using structure for shape processing,
noting our contributions in each stage.

2.1 Structure Discovery and Modelling

Discovering a decomposition of a shape into meaningful parts is the classic segmentation
task [79]. Ensuring that these parts are consistent between the shapes in a collection re-
quires establishing correspondence at the level of parts or points on a shape surface [93].
Segmentation and correspondence are usually jointly solved for in recent co-analysis
methods. We discuss the main steps for discovering and modelling structure, starting
from alignment which is the first step required by co-analysis of shape collections.

2.1.1 Shape Alignment

Solving for correspondence and segmentation requires bringing shapes to a common co-
ordinate frame, thus, alignment is the first step to discovering shape structure. Alignment

8 Related Work

is also a common problem encountered in shape reconstruction [6], matching [43, 54],
exploration [4, 31, 53], automatic synthesis [30, 48], and classification [41]. In shape ac-
quisition, local alignment, or registration, is a necessary step to building a 3D model of
a scanned object [18], since scans are always partial and need to be pairwise-aligned in
order to be brought into a common coordinate frame. In shape retrieval [50], registration
is the first step in matching two shapes, since it aims to find the optimal transformation
at which the shapes can be compared for similarity.

In its general form, given a set of 3D shapes, the problem is to find a set of trans-
formations that optimally position all shapes with respect to one another. Quantifying
this optimal positioning has proved difficult in general, since first one has to define a
notion of distance between shapes. Thus, a variety of techniques have been developed
to address the problem. First, we discuss methods for aligning pairs of shapes, which
could be used to align all models to a randomly picked reference. Such methods can be
influenced by the choice of the reference shape. Then, we discuss recent approaches
that tackle this problem by considering multiple shapes simultaneously, ensuring that
all pairs are aligned well.

Pairwise alignment. Typically, pairwise alignment algorithms fix one shape and
search for a transformation for another one that minimizes the distance between them.
Horn et al. [37] demonstrate that optimal translation and scale can be found by aligning
centroids of objects and normalizing the variance in distance of points to their center of
mass. Therefore, most techniques focus on searching for the optimal rotation that aligns
objects. Exhaustive search is computationally prohibitive since the space of possible
rotations is large. Thus, approaches for pairwise shape alignment have attempted to
reduce the search space using ideas that fall in three main categories, namely, Principal
Component Analysis [47], voting, and Iterative Closest Point [6]. Various descriptors
have also been proposed in the area of shape retrieval to deal with the alignment of
shapes.

Principal Component Analysis. Methods based on Principal Component Analysis
(PCA) [47] for alignment have been favoured because of their simplicity and low
computational complexity. This however comes at the cost of accuracy since these
methods are good at aligning very similar shapes, but fail to align shapes with even
slight dissimilarities. PCA-based methods involve computing the eigen decomposition
of the covariance matrix of a shape represented as a mesh or point set. The rotation that
aligns a pair of shapes is then chosen as the one that maps their eigenvectors. The size
of the mesh faces needs to be taken into account when calculating the covariance matrix
in order to produce more accurate results, as indicated by Vranic et al. [94].

2.1 Structure Discovery and Modelling 9

PCA alignment often produces inaccurate results for two reasons. The first is the
inherent ambiguity in choosing the direction of the eigenvector to map to. Flipping the
direction of an eigenvector preserves its property of being a valid eigenvector, therefore
there are two possibilities for mapping to each of the three eigenvectors, and a total of
eight possibilities of aligning a shape to its eigenvectors. The second reason is that even
when two shapes are aligned using their principal axes, they may still not be optimally
aligned, as even small geometrical dissimilarities in two shapes can cause their principal
axes to differ very much, as illustrated by Funkhouser et al. [31] and Kazhdan et al. [50].

Early approaches have tried to tackle the first problem, by solving the axis ambiguity
using a simple ’heavier axis’ flip [25]. In this method, the number of points on each
side of the centre of the shape is counted. The shape’s calculated principal axes are
then flipped accordingly so that the shape is ’heavier’ on the positive side. Later
work by Kazhdan et al. [50] suggested that the ’heavier axis’ flip method is unstable
because most shapes have a nearly equal amount of points on both sides of an axis.
An alternative way of solving the axes ambiguity problem by an efficient axis search
method was proposed in the same work [50]. This is essentially an exhaustive search
over the eight possible axis mappings, accelerated by calculating simultaneous dot
products of spherical harmonics components. A more recent approach by Chaouch et
al. [13] recognized both weaknesses of the PCA alignment methods and proposed a
modification where only the most appropriate principal axes are selected for mapping
to, according to a planar reflection criterion. In the worst case, only one of the principal
axes may be selected, and then a local translation-invariant cost is used to find the rest
of the axes.

Another way to reduce the search space is to detect upward orientation first [29],
and then only look for rotations around the up axis [41, 54]. In Fu et al. [29], the upright
orientation of man-made shapes can be accurately found by recognizing that they are
designed to stand on flat surfaces, thus reducing the rotation search space to a small set
of candidates, according to the geometric properties related to this functionality.

Voting Methods. If the correspondence of sets of points on both shapes is known, a
rigid transformation can be computed which minimizes the distance of these points [23],
essentially aligning the two shapes. The problem is that this correspondence is never
known in advance, and is actually part of the structure discovery problem.

Voting methods, such as geometric hashing [62] or the generalized Hough trans-
form [5] quantize the transformation space and attempt to approximate the correct
transformation by trying different possible correspondence options. They repeatedly
select pairs of triplets from the two shapes, compute the rigid transformation that aligns

10 Related Work

them and cast a vote in the entry corresponding to this transformation. At the end, the
transformation with the most votes is deemed to be the optimal one. These methods are
quite expensive because they sample all triplets of points from both shapes.

Iterative Closest Point. A different class of algorithms seeks to estimate and refine
the correspondence of sets of points on both shapes, thereby aligning the shapes. The
most well known of these, a local alignment solution for shapes already in close
proximity and pose, is the classic Iterative Closest Point (ICP) algorithm [6, 18]. This
algorithm aims to find the optimal rigid transformation by repeatedly choosing subsets
of points on the two shapes’ surface, establishing correspondences between them
and refining the current guess for the transformation. Rusinkiewicz et al. [74] give
a thorough review of the variants of this algorithm that have been introduced over
the years and describe a combination of methods that gives good alignment results.
Funkhouser et al. [30] used a volumetric ICP method to align new parts with existing
shapes before stitching them. The ICP method was compared to the previous PCA
’heavier axis’ flip method [25], and was found to outperform it. In a different effort from
Sharf et al. [82], a variant of the ICP method, dubbed soft-ICP was used to attach new
parts to an existing model. This method calculates a different rigid transformation for
aligning every pair of correspondent point neighbourhoods in the overlapping regions of
the new part and the existing model, resulting in a non-rigid transformation for blending
the new part into the model.

The main issue with ICP approaches is that they are sensitive to the point selection
strategy and especially to the way correspondences are established between selected
points. For this reason, good initial estimates of the relative rigid transformation between
shapes are normally required for this family of methods to produce accurate alignments.
More recent work from Gelfand et al. [33] has relied on computing point descriptors and
selecting points according to the uniqueness of their descriptor, which in turn helps find
more optimal correspondences between two shapes. There are several other variants of
the ICP algorithm, including methods that solve for non-rigid deformation [12] or those
that leverage intrinsic geometry [40].

Rotation-invariant descriptors. Some methods have tried to describe shapes using
various rotation-invariant descriptors so that pose information is factored out. One
well-known approach is that of using spherical harmonics to describe shapes in a
rotation invariant way [52]. A simple approximation method was used by Chen et
al. [17], who defined a ’lightfield’ shape descriptor based on the Fourier coefficients
extracted from the renderings of a shape from various camera positions on a rotating
dodecahedron. Their approach implies that the best alignment of two shapes will be

2.1 Structure Discovery and Modelling 11

found at the minimum distance between their descriptors. A different approach from
Kazhdan et al. [51], used spherical harmonics transformations of shape descriptors
based on spherical functions, along with assumptions on the axial symmetry of objects
to accelerate the search for the best alignment of two shapes, by leaving out much of
the space of rotations.

Co-alignment of shape collections. When aligning a collection of 3D models, con-
sidering all pairs independently is highly inefficient. To reduce the matching complexity,
Huber et al. [45] introduced the idea of using a shape graph to align multiple scans
of the same object in a common coordinate frame. However, when considering a
heterogeneous collection of shapes, picking a single alignment reference becomes
challenging.

To address this challenge, Huang et al. [41] and Zheng et al. [106] pose the co-
alignment problem as a labeling problem in the alignment space. The solution space is
uniformly sampled to generate candidate labels, and the cumulative pairwise alignment
error is evaluated against possible labelings to pick the best co-alignment solution.
Choosing the right label for every shape such that the sum of distances between all
shapes is minimized is equivalent to a quadratic assignment problem, which is known
to be NP-hard to solve. Various approximations exist for solving such problems, posed
as Markov Random Fields (MRF) [64, 65]. The shape graph notion is also used by Kim
et al. [53, 54] for co-aligning shapes and solving for correspondence and segmentation,
while at the same time, a number of other methods [42, 43, 72] propose improving
graph consistency as a means to improve shape correspondence.

Contribution. We would like to be able to align large and diverse collections of
shapes, in an efficient and robust manner. Pairwise shape alignment methods are used
as part of recent co-alignment methods, but on their own, they are not applicable to
shape collections, because they are not designed to handle diverse shapes with wide
geometric variations. Many of these methods are dedicated to local refinement of
initial alignments for similar shapes, while our focus is on global co-alignment of shape
collections, typically containing large in-class variations. Thus, trivially extending
them to shape collections will lead to inaccuracies when dissimilar pairs of shapes are
aligned.

Recent co-alignment methods on the other hand promise more accurate results by
posing the problem as finding a global solution that minimizes distances between all
shapes together, and carefully choosing which pairs shapes are to be considered using
the shape graph. However, they are computationally expensive, since they uniformly
sample the solution space for each space. We observe that for most shapes this uniform

12 Related Work

sampling leads to a large number of unnecessary computations, since many alignments
yield very high distance between shapes. Typically, only a few relative angles lead to
local minima in the pairwise distances and need to be resolved by the joint matching.
Our key observation is that these minima arise due to rotational near-symmetries of
shapes, and thus can be estimated for each shape independently. For instance, bikes have
two rotational near-symmetries at 0 and 180 degrees around their up vector, and this is
the main source of confusion for most co-alignment algorithms. We therefore propose
an efficient algorithm that generates the same quality of results with a significantly
smaller computational overhead. Chapter 3 gives details on our method.

2.1.2 Shape Co-analysis

In this section we give an overview of work in segmentation and pairwise correspon-
dence as a means of discovering structure, and focus our attention on collective analysis
of shape families.

Segmenting a mesh into a set of parts is a classic topic in geometry processing,
with applications in mesh parameterization, matching and editing. It can be formulated
as an optimization problem, in which, given a set of mesh faces, vertices and edges,
the goal is to find a discrete partitioning of the mesh such that an objective function
measuring some convexity criterion is minimized or maximized, subject to a set of
constraints [79]. As an optimization problem, it can be solved borrowing various ideas
from image segmentation and machine learning, such as region growing, clustering and
spectral analysis [79].

Finding a meaningful set of correspondences between a pair of shapes is an im-
portant topic in shape analysis. The problem can be stated as, given a pair of input
shapes, find a meaningful map between their surfaces. Depending on the application,
different approaches can be broadly classified to ones that compute full versus partial
correspondence, or dense versus sparse correspondence [93].

Discovering structure in the case of large and diverse shape collections proves
more challenging than the single shape case. Nevertheless, both correspondence and
segmentation can benefit from the collective information provided by a set of shapes
rather than a single shape or pair of shapes in isolation.

Correspondence for shape families. Correspondence-finding algorithms often suf-
fer from high distortion in cases where the geometry of input shapes is vastly different,
for example when shapes are related by non-isometric deformations. Blended weight-
ing [55], which computes a weighted combination of several low-dimensional maps, has
been proposed as a way to alleviate this problem. Using blending, the output consists of

2.1 Structure Discovery and Modelling 13

the best set of correspondences taken from each map, essentially combining the best
features of each individual map.

Another major problem for correspondence-finding algorithms arises for shapes
with different topology and connectivity, e.g. when shapes are missing parts. Fuzzy cor-
respondences [53] have been proposed to solve this, with the key idea being that in cases
where reliable correspondence cannot be established, a probability of correspondence
can be used instead. The main idea behind this method is the use of diffusion maps
to connect reliable correspondences via different paths along a shape graph, together
with a way to detect noisy maps via path consistency. These fuzzy correspondences
provide an interesting tool to explore shape collections with rich variations in geometry
and topology. Additionally, a number of methods have been proposed for improving
correspondence maps by using shape graphs and enforcing cycle consistency when
composing maps along graph paths [42, 43, 72].

Co-segmentation for shape families. Solving for shape segmentation and then for
part-level correspondence can be difficult since the segmentation results for each indi-
vidual shape do not necessarily lead to corresponding shape parts. Potentially more
accurate results can be achieved if segmentation and part correspondence are both
solved for in conjunction. A recent trend of research has been based upon this obser-
vation, turning to co-segmentation, or more generally, co-analysis approaches, which
jointly optimise for segmentation and part-correspondence in a collection of shapes. In
general, these co-analysis algorithms can be broadly classified according to the machine
learning method they use. There are supervised, semi-supervised, and unsupervised
co-segmentation methods.

Supervised methods [49, 91] rely on an input set of manually segmented and labeled
shapes, which is then used to probabilistically segment and label the actual input set
of shapes. They require more user interaction than semi-supervised methods, as they
involve considerable user effort for manually segmenting and labeling shape training
sets. This fact makes them less appealing for co-segmenting very large shape collections.

Semi-supervised methods require more limited user input for interactively learning
the co-segmentation of a set of shapes. The recent method by Wang et al. [95] allows
the user to iteratively mark constraints such as ’must-link’ or ’no-link’ that would refine
the results, while at the same time automatically suggesting such constraints to the user.
This approach indicates that with relatively limited user intervention, co-segmentation
results can be nearly perfect. Some recent methods have focused on extracting a
consistent hierarchy for a set of shapes [92], or consistent part arrangements [105] from
an input family of shapes.

14 Related Work

Unsupervised co-segmentation methods do not rely on any assumptions other than
requiring the input shapes to belong to the same semantic class, for example a set of
chairs or a set of tables. The Shuffler part-based modelling system [60], solves for
a compatible segmentation between input shapes by first over-segmenting individual
shapes into a hierarchical segmentation according to a convexity measure and then
collecting segments together to form parts by optimizing a cost function that uses
convexity and geodesic distances between would-be compatible parts.

The work from Golovinskiy et al. [34] pre-aligns input shapes and then clusters
shape faces into parts by first constructing a graph connecting neighbouring faces on the
same shape and corresponding faces on other shapes according to a distance measure,
and then optimizing for a separation of the graph using a graph-cut algorithm. The
style-content separation work of Xu et al. [99], first over-segments shapes into parts, and
then clusters them into different styles according to their anisotropic part scales. Shapes
in each cluster are then co-segmented using Golovinskiy et al.’s [34] approach, and
inter-cluster correspondence is achieved through minimizing a deformed-to-fit criterion
between potential corresponding parts. This approach achieves better quality results for
collections of shapes with greater variability that can be explained through the different
part-scale clusters.

Sidi et al. [84] propose spectral clustering of shape segments resulting from an
initial over-segmentation procedure, according to a feature descriptor using diffusion
maps. Compared to previous approaches, they can handle cases where corresponding
parts differ in pose, location or even cardinality since they use a descriptor space for
clustering rather than the original shape spatial coordinates. They also take advantage
of connections between shapes, e.g. in the case where corresponding parts are very
dissimilar, correspondence between them can still be established if there is a path
of correspondences linking these parts through other parts. This has recently been
improved further by Hu et al. [38], by using clustering in multiple sub-spaces rather
than concatenating all shape features in a single descriptor space.

Other unsupervised methods for solving the co-segmentation problem include linear
programming [39], multi-label optimization [69], and template fitting [54]. Template-
fitting [54] is of particular interest, as it jointly solves for alignment, correspondence,
segmentation and a deformation model to describe the variations in a shape family,
starting from a set of primitive template boxes, either computed automatically, or with
user supervision.

Recently, the concept of symmetric functional substructures [106] has been proposed
for part-based model synthesis from semantically-related families of shapes. The key

2.1 Structure Discovery and Modelling 15

idea is that starting with a graph of shape parts for each shape, connected through
relations such as symmetry and contact, we are able to match corresponding sub-graphs
based on symmetry that should bear the same functionality. This creates a notion of
correspondence between the triplets of parts involved in the sub-graph, which can
then be substituted in and out of models to create novel models which retain their
original functionality. In this way, this approach implicitly creates a correspondence
between shape parts at a higher level of part triplets, without solving for direct part
correspondence. A similar idea has been explored in Zheng et al. [105], where an
unsupervised algorithm was developed for detecting recurring part arrangements, based
on spectral clustering in a part-pair, box-based geometric descriptor space.

Contribution. The majority of works on shape co-analysis focus on consistently
segmenting sets of shapes using a range of strategies. The question of how to use
such results to model and re-use structure has not yet been thoroughly investigated. In
particular, one important question is how to use such results to explore and understand
the types of variations that exist in large shape collections.

We try to answer this question in Chapter 4, where we propose a parameterization
of a shape collection based on positions and sizes of template parts fit to shapes that
allows to concurrently explore the collection and synthesize new shapes. Such a
parameterization can also be used to generate large amounts of synthetic 3D content to
train object proposal estimators for depth images, as demonstrated by Zheng et al. [104].

Another question is how to use such results to extract and encode a representation
of structure that can capture the geometric essence of a shape family. The works more
closely related to this idea are those of Chaudhuri et al. [15] and Kalogerakis et al. [48].
Inspired by earlier efforts to represent shapes as parts and their connections [30], they
used a part-based representation as the basis for learning probabilistic models to describe
shape families. These models represent topological information such as the likelihood
of the presence of certain parts and the cardinality of these parts, and the existence of
certain shape styles according to the topology and geometry of the shapes. The models
can be used to synthesize new shapes, but parts are placed with an automatic procedure.

We attempt to answer this question in Chapter 5, where we propose a meta-
representation of shape structure in the form of a probabilistic model that can be
used for editing and exploring shape collections. While our model is also based on a
part-representation, we instead focus on the geometry of the part configurations. We
learn the relative positioning and appearance of shape parts that is typical for a family
of shapes. Thus, our work complements the models from previous work, which focus
on topology.

16 Related Work

2.2 Structure-aware Shape Processing

Different research areas in geometry processing can benefit from a model of structure.
We review related work in shape editing, repository exploration, and shape synthesis,
and demonstrate how structure can be beneficial in these areas.

2.2.1 Shape editing

Shape editing has been a classic topic in geometry processing over the past few decades.
A naive algorithm for editing would consist of low-level mesh operations such as moving
individual mesh vertices and possibly adding and removing mesh faces. However, this
quickly becomes inefficient and complex to handle for large meshes.

Free-form deformation. Early approaches have been based on free-form deforma-
tion [21, 78], where instead of moving individual vertices, a group of vertices are
affected by a weighted combination of a small set of basis vectors, represented as a
cage enclosing the shape’s geometry. The goal of such approaches is to apply smooth,
low-frequency deformations affecting the global structure of a shape while at the same
time preserving high-frequency details of the shape. Their main drawback is that the
results of user edits, applied by manually adjusting the cage control points, are not
always intuitive due to the global impact of all control points to the mesh surface.

Subsequent approaches [87, 90] have relied on preserving physics-based properties
such as elasticity, to remove the need for manually prescribing and manipulating control
points. Such properties have been modelled according to a constraint energy which
should be minimised so that the properties as preserved as much as possible. A large
body of work has been devoted to preserving such properties [10].

Structure-aware editing. Structure-aware editing methods recognise the need for
preserving global shape properties, unlike surface-based editing tools [88, 102], which
aim to preserve local differential properties. Such global properties come in the form of
relations among discovered shape parts, such as symmetry, parallelism and planarity,
among others. A notable example of such methods is the iWires system [32], where
a set of sharp 1D lines, called wires, are detected on a mesh, in analysis phase, along
with their relations such as symmetry, parallelism, coplanarity, colinearity. Then in
the interactive editing phase, the user edits the mesh, an initial elastic deformation
solution is computed, and finally relations between wires are preserved in an iterative
propagation algorithm. Similar in spirit is the approach from Zheng et al. [107] which
uses component-wise boxes and generalised cylinders instead of wires, as proxies for

2.2 Structure-aware Shape Processing 17

discovering and preserving part relations while editing. Xu et al. [101] use slippable
motion analysis to detect joints on shapes, which can then be used as articulations to
deform them by bending these articulations. Li et al. [66] introduce arterial snakes as
feature curves used to deform 3D shapes that are inherently 1D. Habbecke et al. [35]
focus on efficiently solving the constrained minimization problem that results from
such relation-preserving interactive editing applications. They study under-constrained
editing systems, linearize the constraint functions and examine the nullspace of possible
solutions.

One notable example of a constraint-aware shape editing system is the ShapeUp
framework by Bouaziz et al. [11]. This is a general framework consisting of a number
of projection operators that can project shape vertices, polygons, 1-ring neighborhoods
and higher-order constructs onto a set of plug-and-play constraints that can be added
according to the user goals. The system then iterates between projecting the shape
vertices onto the user constraints, and optimizing their positions in a linear fashion,
until convergence. It can be used for a number of applications beyond shape editing,
including parameterization, shape space exploration, and mesh optimization.

The structure-aware editing solutions discussed above do not change the topology
of the shape being edited. A recent body of work from Bokeloh et al. [7, 8] aims to
perform topological changes by discovering regular patterns of geometry in the original
shape, and then copying and composing such patterns in a way that leads to the creation
of novel shapes that preserve the detected regularity properties. Such regular patterns
are not always easy to detect, so in a different approach, irregular resizing of geometry
such as architectural buildings has been studied by Li et al. [67], by decomposing
original shapes into a hierarchy of parts defined by the user, along with constraints such
as replicate, delete and scale.

Contribution. State of the art structure-aware editing tools are good at detecting and
subsequently preserving various kinds of relations and shape properties. However, they
do so by only employing information from the shape being edited. We argue that there is
more to learn by observing a family of shapes with similar semantics and functionality,
rather than a single shape in isolation. Learning the common structure of a shape family
has been demonstrated by Yumer et al. [103], however their approach expresses this
as a simplified abstract mesh, which serves as the most representative mesh for all the
shapes in the collection, not a truly usable model of structure. Our approach, detailed
in Chapter 5, aims to learn and model such structure in a probabilistic model, similar
in concept to the one used by Chaudhuri et al. [15], but with a multitude of unary and
pairwise part relations. We use this model to illustrate various shape editing tools.

18 Related Work

2.2.2 Shape synthesis

The concept of part-based shape synthesis was demonstrated in the Modeling by Exam-
ple system [30] which allows the user to retrieve models from a database by text-based
or shape-based search, cut-out desirable parts and stitch them to the model being built.
The concepts behind this modelling tool were similar to existing data-driven tools like
Shape by Example [86], in that new shapes were created out of existing shapes. The
important difference to these tools however was that parts of shapes were recombined to
create new shapes instead of interpolating between them. This work also demonstrated
and addressed the main challenges in part-based modelling, namely that shapes are
difficult to cut into meaningful parts, they have many degrees of freedom so they are
hard to position and stitch together and they have no obvious similarity measure for
locating relevant parts. Subsequent part-based tools focused on providing solutions to a
number of these challenges, either comprehensively or individually.

Manual cut-paste methods. In the Modeling by Example system by Funkhouser et
al. [30], new models are built by retrieving models from a shape database, manually
cutting parts from them and attaching them together. Every new part is translated
and scaled to match the center of mass and scale of the part it replaces, according to
the method from Horn et al. [37]. Funkhouser et al. [30] recognize that this simple
strategy for placing new parts is not adequate for cases where model parts have complex
structural relationships between them. For example, one cannot easily replace the door
of one car with the door of another type of car without the proper deformation.

In minimal-cut composition [36], given two models approximately aligned by the
user and user-defined constraints on which parts to keep from each model, the minimal
cut on both models is found using a volumetric approach similar to constructive solid
geometry approaches, after which the models are stitched together to form a new shape.
In this work, there was a part-in-whole alignment of parts of interest, e.g. alignment of
a dog and a cow according to their heads and not the whole shape. This was done using
simple PCA for a coarse placement and ICP for refined placement of the parts.

In the SnapPaste system [82], a cut-paste paradigm was employed where users cut
parts and overlap them to existing shapes until they automatically snap into place. A
variant of the ICP method, dubbed soft-ICP was used to place and attach new parts to
an existing model. This method calculates a different rigid transformation for aligning
every pair of correspondent point neighbourhoods in the overlapping regions of the new
part and the existing model, resulting in a non-rigid transformation for blending the new
part into the model. This method is interactive, so the approximate placement is done
by the user, until enough overlap exists between the new part and the existing shape,

2.2 Structure-aware Shape Processing 19

when soft-ICP takes over and creates the snapping effect, merging the new part to the
shape. The problem is that both the new part and the shape need to have clear boundary
loops, and if this is not the case, they need to be cut.

Automatic shuffling. In the Shuffler system [60], a collection of semantically similar
shapes is compatibly segmented into parts, which are then shuffled between shapes by
the user to create new shapes. A common adjacency graph is created for each pair of
shapes, which becomes disconnected when a part is shuffled out, forcing parts in the
broken branches to be transformed to be aligned with the shuffled in part. This method
can only work for consistently segmented shapes that have the same part connectivity.

Similarly to the Shuffler system, interpolation between two shapes using parts from
both shapes to create new variations has been studied recently by Jain et al. [46]. In
this work, the parts selected from pairs of shapes in order to create a new shape are
brought together by enforcing their contacts using a spring-mass system. This can be a
good way to enforce contacts between adjacent parts from the source shapes, however,
beyond contacts, it does not take into account the deformation that may be needed in
order to fit parts together.

Sketch-based interfaces. Tools employing ideas from sketch-based modelling have
also been developed to synthesize novel shapes. In Lin et al. [68], user sketches are
used to cut parts from models and define the expected silhouette of their intersection,
after which particle sampling is used to create a new mesh to fuse the parts together.
Lee et al. [63], propose a system similar in concept to the Modelling by example system,
where relevant parts are found and attached to shapes using sketches of the user. Every
new part is placed in the scene using optimisation, in order to match the outline of the
user’s sketch and be in stable contact with the rest of the scene.

A different sketch based part assembly tool was developed by Xie et al. [97], for
exploring design possibilities by scribbling over existing model parts in order to replace
them with different parts from a set of pre-segmented models. This tool allows fast
refinement of design choices and employs pre-learned context information to improve
the part retrieval process. A similar tool for designing 3D scenes with many objects,
rather than a single object, was developed by Xu et al. [98].

Data-driven automatic synthesis. In order to address the synthesis challenge of lo-
cating shape parts relevant to the modelling task, data-driven suggestions [16], context-
based search [27, 28] and probabilistic graphical models [15] have recently been used.
At the same time, automatic methods have been proposed, that take as input a collection
of semantically-similar shapes and create novel variations of these shapes using prob-
abilistic graphical models [48], or evolutionary algorithms [100]. Placing parts from

20 Related Work

different shapes together in a plausible way is the main challenge for these automatic
approaches.

The probabilistic model of Kalogerakis et al. [48] ensures that only parts with
compatible contacts are instantiated together, for example a seat from a chair with four
legs would be instantiated in a new shape along with four legs and not with a single
stool leg. The contacts of a part in the original shape can then be used together with
least-squares minimization to attach it to other parts and form new shapes.

The evolutionary algorithm approach of Xu et al. [100] uses crossover and mutation
operators on shape parts to create new shapes. Crossover is defined on pairs of shapes
and requires the selection of a subset of parts from one shape to replace parts on the
second shape according to some correspondence confidence. Mutation is performed
randomly on the properties of the controllers of some of the parts of shapes resulting
from crossover. The connectivity, proximity, ground contact and other properties of the
structure of the parent shapes are preserved using the structure-preserving controller
framework of Zheng et al. [107]. Symmetric functional substructures [106] have also
been proposed for automatic part-based model synthesis from semantically-related
families of shapes.

Contribution. Most methods for shape synthesis perform a simple copy-paste op-
eration that places parts in the new shape. Depending on the application, a simple
alignment of the new part to the old part can be done in cases where replacement of a
single part is performed [30], or a more involved alignment and distance minimization
for enforcing contacts can be done in more complex cases [60]. Structure-aware mod-
els [15, 48, 100, 106] have been employed more recently for adjusting shape parts in
order to enforce a variety of complex structural constraints inherited from the parent
shapes involved in the part-based synthesis process. Such methods do not provide the
user with a high-level preview of the space of possible models that can be synthesized.

Based on a template-based shape parameterization, in Chapter 4 we propose an
automatic part-based synthesis tool that is both fast and intuitive to use, by embedding
a shape collection in a low-dimensional, hierarchical shape space. Out tool provides
structure-preserving shape synthesis, and at the same time provides a solution to one of
the major problems of part-based synthesis tools, namely the difficulty in locating shapes
and shape parts relevant to the goals of the modelling session. This is a very common
problem for modellers, especially at the initial, open ended stages of modelling, where
their image of the target 3D model is vague. The template-based shape parameterization
in Chapter 4 can also be used to generate large amounts of synthetic 3D content to train
object proposal estimators for depth images, as demonstrated by Zheng et al. [104].

2.2 Structure-aware Shape Processing 21

2.2.3 Shape exploration

The ability to explore shape collections to understand the types of shapes contained
inside, as well as the variations between these shapes is becoming more necessary as
these collections continue to grow. Locating shapes relevant to the modelling task in
hand is a crucial part of structure-aware modelling tools. A number of methods have
been proposed to tackle this challenge, ranging from basic shape matching and retrieval,
to recent qualitative exploration methods.

Geometric similarity. Shape retrieval based on nearest neighbour search in geometric
shape descriptor space has been used in early systems for exploring collections of 3D
shapes. Descriptors can be rotation-invariant, in which case alignment is not needed
beforehand, and ideally they must be low-dimensional and sufficiently descriptive.
Earlier systems [31] required an initial shape to be given as input in order to locate
shapes similar to it. The Modelling by Example system [30] used text search as well
as shape-based search to retrieve models relevant to the modelling task. Shape-based
search was implemented using a volumetric descriptor, and the shape being built was
used as the query shape. The user was also given the ability to add more weight to parts
of the shape that were more important in the search. A review of shape matching using
geometric features can be found in Kazhdan et al. [50]. Later efforts in geometric-based
shape retrieval employ sketch-based interfaces [24, 63, 80], allowing the user to search
for models by drawing 2D sketches of their outline.

Context-based search. Context from 3D scenes has been used as a means to explore
collections and retrieve shapes. In Fisher et al. [27], a box was used to locate models
that fit in specific parts of a 3D scene. The box is drawn approximately at the part of
the scene and the size that the user requires, and the most relevant models are suggested
as a result. This is made possible by building scene graphs of objects in 3D scenes
and extracting tags related to their name. Given the geometry, the tags and the spatial
relationship of two models using the scene graph, it is possible to predict the relevance
of a query model and the models in the database. In later work [28], this concept was
extended to use kernels on scene graphs to compare query models as well as whole
scenes for similarity. The same idea has also been applied for synthesizing novel 3D
scenes using a sketch-based interface [98].

Correspondence-based search. Shape retrieval methods based on geometric descrip-
tors or context are only applicable when a user has prior knowledge of the shapes inside
a collection, which is itself a challenging task for unorganized datasets. Ovsjanikov et
al. [73] observed this fact and proposed an alternative exploration tool. Their system

22 Related Work

is based on extracting a template-based deformation model that explains the contin-
uous variations in the input collection, and then deforming the extracted template to
locate relevant models. Kim et al. [53] focus on extracting point-wise fuzzy correspon-
dences between shapes in a collection, and using these correspondences to guide shape
exploration.

Semantic similarity. Probabilistic graphical models have been used for retrieving
parts relevant to a modelling task [15]. In this work, a shape collection is used to build
a Bayesian network that describes the semantic as well as the geometric relationships
of shape parts. Then at runtime, inference on the Bayesian network, given the observed
shape built so far, is used to suggest parts semantically and stylistically relevant to
the observed shape. This model is extended by Kalogerakis et al. [48] to not only
suggest relevant parts but also build entire shapes automatically in order to enrich shape
collections with new shapes.

Qualitative exploration. Tools based on qualitative organization [44] and dynamic
embedding [58, 75] have been proposed for exploring shape collections. Although such
systems provide intuitive local exploration of existing models, none of these methods
allow synthesizing novel shapes during the exploration session. Talton et al. [89] propose
an intuitive interface that tightly couples exploration and synthesis for parameterized
model families. This is the first example of a coupled exploration and shape synthesis
interface in the literature. However, it assumes a compact parameterizable design
space [1, 96], which is impractical for large shape collections with complex variations.

Contribution. Early approaches for exploring shape collections relied on text-based,
geometric-based, and sketch-based search. Recently, context, probabilistic graphical
models, correspondence, and qualitative exploration methods have been used to improve
the exploration process. We offer a solution to the problem of exploring large, diverse
and unorganized shape collections, through an approach that parameterizes shapes using
a template abstraction and embeds them in a low-dimensional, hierarchical shape space
that lends itself to fast and intuitive exploration. Our approach provides the added
benefit of allowing rapid and intuitive part-based shape synthesis, tightly coupled with
the exploration interface. Chapter 4 provides details on our approach.

Chapter 3

Efficient co-alignment of shape
collections

3.1 Motivation

Consistent alignment of 3D shapes is a fundamental problem in the process of analyzing
shape collections and discovering structure. Bringing all shapes to a common coordinate
frame is required for shape matching, analysis and visualization of variations, as well
as classification of large geometric collections. Placing shapes in a canonical frame
facilitates part- or point-level correspondence establishment and subsequent transfer of
information across the different shapes, which is necessary for many of these methods.
The raw shape collections, however, rarely come consistently aligned. While for
small collections such models can be manually pre-aligned, unsupervised automatic
algorithms are essential for large to very large-scale model collections. For instance,
a collection of 1000 chairs can be aligned manually by a human in around 8 hours,
compared to a few minutes using our unsupervised co-alignment algorithm. In the
scope of this thesis, consistent alignment of 3D shapes is the first step needed for
discovering shape structure from large and diverse shape collections. The results from
this chapter are used in Chapters 4 and 5 to model structure and power structure-aware
shape modelling tools.

A simple solution to the consistent alignment problem is to individually align each
shape by mapping its principal axes to the global x-, y-, z- axes [30]. Although this
approach scales linearly with the number of models, it is unfortunately unstable, and can
suffer from misaligned axes (see Figure 3.1,b). Another solution is to align each shape
to an arbitrarily chosen reference shape by exhaustively searching for the best alignment
in the space of pairwise relative orientations. This method, however, is heavily biased

24 Efficient co-alignment of shape collections

a. Input shapes!

b. PCA-aligned shapes! c. Aligned to a reference!

0 50 100 150 200 250 300 350 400

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Model 24 to Model 9

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 60 to Model 9

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 78 to Model 9

θ!

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Model 60 to Model 24

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Model 78 to Model 24

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 78 to Model 60

d. Autocorrelation-guided !Energy function samples:!
360 angles x 3 pairs!

Energy function samples:!
2 angles x 6 pairs!co-alignment!

θ!

θ!

θ!

θ!

θ!

Epair!

Epair!

Epair!

Epair!

Epair!

Epair!

…!

…!

…!

Figure 3.1: Shape collections typically come with inconsistent orientations (a). PCA-based
alignment (b), or aligning to an arbitrarily chosen base model (c) is prone to error. The
problem with pairwise alignments is attributed to several minima in alignment distances (Epair),
arising due to near-symmetries of shapes. We introduce an autocorrelation-guided algorithm to
efficiently sample the minima (red boxes) and jointly co-align the input models (d).

on the initial choice of model and can degrade in the case of large shape variations
across model collections (see Figure 3.1,c).

A better strategy that avoids the bias of aligning shapes independently is to co-align
all the models simultaneously, without arbitrarily committing to a single reference model.
However, directly comparing all the model pairs at all possible relative alignments is
expensive and quickly becomes unattractive as the size of shape collections grows. An
alternative is to select a subset of model pairs from the collection, uniformly sample
their pairwise alignments, and use consistency in the alignment of these pairs to co-align
the models using a labeling formulation (e.g., [41, 53, 106]). Even such methods are
computationally expensive, as the uniform sampling of pairwise alignments leads to a
large number of unnecessary comparisons which yield orientations that would never be
chosen as optimal.

We focus on the co-alignment problem in the context of large and diverse shape
collections and propose a method that goes beyond redundant uniform sampling of
relative orientations, leading to efficient and accurate alignments. Our hypothesis is
that by taking advantage of the rotational near-symmetries of shapes, we can drastically
reduce the complexity of shape collection co-alignment, without sacrificing alignment
accuracy. We first make two key observations: (i) A pair of similar shapes is easy to align
even using simple alignment methods; while shapes with large geometric variations are
difficult to align due to multiple candidate alignments with small inter-surface distance.
(ii) Comparing a shape to itself, i.e., the autocorrelation function of a shape reveals
insights into the possible sources of confusion arising out of self-similarity. Based on
the first observation, we only align similar shape pairs and then diffuse the alignment
information to other shapes through a shape graph. However, this requires first to

3.1 Motivation 25

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Model 62 autocorrelation

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 14 to Model 1

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 1 autocorrelation

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 5 autocorrelation

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Model 14 autocorrelation

0 50 100 150 200 250 300 350 400
0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

0.405
Model 62 to Model 5

?!
?!

autocorrelation! pairwise energy! autocorrelation!

relative angle!

di
st

an
ce
!

di
st

an
ce
!

di
st

an
ce
!

relative angle! relative angle!

relative angle!

di
st

an
ce
!

di
st

an
ce
!

di
st

an
ce
!

relative angle! relative angle!

autocorrelation! pairwise energy! autocorrelation!

Figure 3.2: We use autocorrelation shape descriptors to predict model similarity without
explicitly comparing them. If two shapes Si and S j are indeed similar with respect to their
rotational near-symmetries, we use their autocorrelation descriptors Ei and E j to predict potential
relative alignment configurations between Si and S j that should be further investigated. In this
example, the top half shows similar models whose autocorrelation functions can be used to
predict their relative alignment; the bottom half shows dissimilar models whose autocorrelation
functions provide confusing signals for their relative alignment.

identify which shape pairs are similar without explicitly comparing them. We exploit
the second observation to not only determine which shape pairs to explicitly compare,
but more importantly, to discover which relative alignments can potentially lead to
ambiguity and hence should be further examined. For example, in Figure 3.1,d our
method efficiently co-aligned a set of bikes, sampling only two low-energy alignments
for each pair of shapes.

Models in shape collections (e.g., Trimble 3D Warehouse, TurboSquid) typically
come with consistent up vectors. If this is not the case, one can use the method of Fu et
al. [29] to consistently orient the shapes upward. Therefore, co-aligning them effectively
involves resolving a 1-dimensional rotational ambiguity about the up vector. We propose
a descriptor based on rotational autocorrelation of a shape, and an associated method
that allows us to intelligently sample only a small number of candidate alignments
for shapes. This results in an efficient algorithm that is also input sensitive, i.e., the
running time depends on the extent of co-alignment ambiguity in the corresponding
shape collection.

Figure 3.2 illustrates the relationship between rotational autocorrelation and ambi-
guities in alignments, in the context of a chair-bench shape collection. The algorithm is
robust as it only considers symmetrically-similar shapes while deciding which shape
pairs to compare. For example, it would not choose to compare the bottom two shapes
in Figure 3.2 since they have a different set of self-symmetries.

26 Efficient co-alignment of shape collections

Starting from an input set of shapes with similar semantics, for example a set of
bikes, we compute the autocorrelation descriptor per shape, and use it to cluster input
shapes such that shapes with similar rotational symmetry end up in the same cluster.
We then build an alignment graph per cluster of shapes, and align shapes inside the
cluster by efficiently sampling their candidate alignments and minimizing a formulation
of the sum of pairwise shape distances allowing multiple local minima, using the
autocorrelation descriptor as a guide. Finally, we align shape clusters by a modified
formulation of the sum of pairwise shape distances, this time from shapes between
clusters.

We prepared ten diverse benchmark datasets with ground truth alignments, and
evaluated our approach against alternative alignment strategies. We report comparable
alignment accuracy to state-of-the-art methods at only a fraction of the time. Specifically,
we observe 2-16x speed improvement in our tests.

3.2 Overview

Our algorithm takes a collection of shapes S = {Si, i = 1, . . . ,n} as input, and produces
a canonical transformation for every shape Ti = RiT norm

i , where normalization T norm
i is

performed for each shape independently, and the key focus of our work is effectively
estimating Ri that minimizes distances between all pairs of shapes. We assume that
T norm

i aligns the up vector of shape Si to z-axis, and parameterize Ri by a rotation around
up vector, Ri = Rotz(qi). We formulate our objective function as:

E := Â
i, j

Ei, j(qi,q j), (3.1)

where Ei, j estimates how well Si and S j align if rotated by qi and q j respectively.
Sampling the energy function Ei, j is the most expensive step of the algorithm since
it requires computing distances between surfaces for all relative angles of the form
Di, j = {qi�q j}.

They key observation behind our work is that ambiguity in shape alignments usually
arises due to approximate rotational symmetries of shapes. For example, in Figure 3.2
the individual autocorrelation descriptors of the benches already provide valuable clues
as to which relative angles between the two benches can be ambiguous, even without
explicitly comparing the two benches. In other words, if shapes are expected to be
similar, one does not need to evaluate pairwise energy to predict this potential ambiguity
since the shapes would exhibit similar near-symmetries. Thus, we estimate the number

3.2 Overview 27

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Model 87 autocorrelation

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Model 56 autocorrelation

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Model 1 autocorrelation

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Model 30 autocorrelation

…!

Figure 3.3: We normalize and sample points on each shape, compute its autocorrelation
descriptor Ei, and store the set of Ei’s local minima (highlighted by red boxes).

of ambiguous alignments between pairs of objects, as well as the relative angle between
the ambiguous alignments by analyzing autocorrelation function:

Ei(q) := Ei,i(0,q), (3.2)

which captures how similar is a shape Si to itself under a rotation q . Figure 3.3 shows
an example.

In particular, we expect self-symmetries of shape Si to form an algebraic group of
ki elements: Gsymm

i = {q symm
i,li = 0, . . . ,q symm

i,ki
}, where Si is self-similar under rotation

q symm
i,li . Thus, for each shape Si we only need to consider ki canonical alignments related

by angles in the symmetry group. In order to evaluate Ei, j, however, these canonical
alignments have to be consistent between Si and S j, thus groups have to be co-aligned
by an offset alignment q off

i (see Figure 3.4). Note that finding offset alignment q off
i is

much easier than finding canonical alignment qi, since we only need to find how to align
one element of a group, without needing to resolve ambiguities. We estimate the offset
by aligning each shape to an arbitrary reference Sr as: q off

i := argminq 0 Ei,r(q 0,0).
Thus, for any Ei, j, we only need to consider:

Di, j = {(q off
i +q symm

i,li)� (q off
j +q symm

j,l j
)}, li = 1, . . . ,ki; l j = 1, . . . ,k j (3.3)

alignments, which drastically reduces the number of pairwise distances we need to
compute to find all interesting minima in Ei, j.

The above formulation assumes that all objects in the collection exhibit the same
approximate rotational symmetries. This, however, may not be true for heterogeneous
data. One possibility is to take a product of symmetry groups to take all canonical
orientations into account, but this would increase the number of pairwise distance

28 Efficient co-alignment of shape collections

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Model 82 autocorrelation

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25
Model 92 autocorrelation

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 82 to Model 26

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 92 to Model 26

A! B!

C!

EA,A! EB,B!

EA,C! EB,C!

Figure 3.4: We show the autocorrelation functions (EA,A,EB,B) for two motorcycles (A,B), and
their pairwise energy function (EA,C,EB,C) when comparing to a bike (C). A and B are aligned
to the global axes while C is rotated 60° around z axis. Note how this causes the two minima
of EA,A and EB,B (at 180° and 360°) to shift by 60° in EA,C and EB,C. We can therefore expect
to find an alignment of the two motorcycles and the bike at 240° or 60°, so there is no need to
sample other rotations.

computations. Instead, we group objects based on their rotational self-symmetries
using the similarities in their autocorrelation descriptors and optimize for alignments of
objects within the same group. After all objects within the same group are co-aligned,
we estimate inter-group alignment by solving a smaller optimization problem that only
includes a few edges between shapes in different groups.

3.3 Method

Given a collection of shapes S := {Si} our method produces canonical transformations
{Ti}. The algorithm starts with per-shape analysis to find normalizing transformations
T norm

i and autocorrelation descriptors Ei for each shape. Next, we group shapes based
on their descriptors, extracting clusters of shapes that share similar symmetries. The
method co-aligns models in each cluster by leveraging autocorrelation descriptors to
decide which pairs of models to align and which alignments to sample. After this intra-
cluster alignment, our algorithm aligns the different clusters via another optimization.
Our pipeline is summarized in Figure 3.5, and the rest of this section describes each
step in detail.

3.3.1 Normalization

To estimate per-shape normalization T norm
i , we scale the height to be one, and translate

the center of bounding box to [0,0,0.5], such that the ground plane is z = 0. All shapes
used in our experiments have consistent upward orientation. For other datasets one can

3.3 Method 29

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Model 5 autocorrelation

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12
Model 38 autocorrelation

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12
Model 72 autocorrelation

−2 −1 0 1 2 3 4 5 6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Input! Autocorrelation descriptors! Clusters! Co#aligned+models+

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Model 6 autocorrelation

Results within clusters!

Compute !
autocorrelations! Clustering!

Intra-cluster!
alignment!

Inter-cluster!
alignment!

Figure 3.5: Algorithm overview. Starting from a set of shapes, we normalize and compute their
autocorrelation descriptors to cluster the shapes. We then align the shapes first within and then
across the clusters using a graph-based discrete formulation wherein we intelligently sample
candidate alignments for each shape guided by their autocorrelation descriptors.

also use the method of Fu et al. [29] to consistently orient the shapes upward. The goal
then is to find a rotation around the up-vector for each shape that would consistently
co-align all shapes.

3.3.2 Autocorrelation descriptor

We leverage understanding of rotational near-symmetry of a shape to group shapes
that have similar symmetries and efficiently sample good co-alignments. To represent
the symmetry of each shape Si, we compute the autocorrelation descriptor Ei, which
measures how much the shape correlates with itself, under a rotation:

Ei(q) = [DS(Si, Rotz(q) Si)], q 2 [0,2p], (3.4)

where Rotz(q) is a rotation around the up vector by q degrees, and DS : Si⇥S j ! R
measures distance between surfaces Si and S j. In order to compute distances in our
experiments we uniformly sample 1000 points, Pi, on each surface, compute the mean
distance from all Pi to their nearest point in Pj and the mean distance from all Pj to their
nearest point in Pi, and take the maximum of the two. We uniformly sample Ei with
360 samples.

Figure 3.3 shows an example for a set of helicopters. The autocorrelation descriptor
is normalized by dividing each entry of Ei(q) by Âq Ei(q). We use k-d trees to speed
up the nearest point search which is the most expensive part in the distance function
computation. There exist alternative measures of shape surface distance, such as
Hausdorff distance. We chose the mean nearest point distance described above as it is
less prone to outliers.

30 Efficient co-alignment of shape collections

−2 −1 0 1 2 3 4 5 6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 3.6: Multi-Dimensional Scaling embedding of autocorrelation descriptors for a dataset
of chairs in 2D, with points colored according to the cluster they belong. Note how chairs are
separated from long benches as they have different sets of self-symmetries.

3.3.3 Shape clustering

We group shapes based on their symmetries to ensure that we can effectively sample the
pairwise alignment energy function and to find groups that can be co-aligned robustly.
In particular, we group the input shapes into a set of clusters Ci using a graph-based
technique. We take the kth largest pairwise distance in autocorrelation descriptor space
as threshold t and connect all shapes with distance smaller than t with an edge. We
then find connected components of the resulting graph to get the set of clusters Ci. In
our experiments we set k to 10% of the number of shape pairs, which resulted in 6-21
clusters, depending on the dataset.

We use L1-norm distance between the autocorrelation descriptors to measure ap-
proximate earth-movers distance. Figure 3.6 demonstrates the clustering result on a
chair-bench dataset, embedded in 2D using Multidimensional Scaling. Note how chairs
and benches are separated in two clusters: benches typically have two near-symmetries
with a potential confusion in a rotation by p , while chairs pose a bigger challenge with
a larger number of near-symmetries.

3.3.4 Intra-cluster alignment

Next, we co-align all shapes within each cluster Ci. Note that the shapes in Ci share
similar symmetries, and thus we can take advantage of Ei to efficiently sample pairwise
energy Ei, j. First, we smooth Ei using moving average with a span of 0.03p and compute
all of its local minima which gives us the group of symmetric rotations: Gsymm

i , where

3.3 Method 31

each rotation q symm
i,li 2 Gsymm

i leads to an ambiguity that needs to be resolved by joint
optimization. Note that the minima in Gsymm

i are defined in shape Si’s coordinate system,
starting with 0 rotation, thus we need to bring all shapes to some canonical alignment
space. This is however an easier problem than joint alignment, because it is sufficient to
find one element of the group to estimate the offset alignment q off

i , which would define
canonical alignments of shapes. We pick the shape Sr nearest to the cluster’s center in
descriptor space and estimate offset angle q off

i as: q off
i := argminq 0 Ei,r(q 0,0), which

we solve using an exhaustive search over 1 degree increments. With this offset, we
can now effectively sample the pairwise energy function using the offsets described in
Equation 3.3, as:

Ei, j(q) = [DS(Si, Rotz(q) S j)], q 2 Di, j. (3.5)

In practice, we use a Markov Random Field (MRF) labeling problem to minimize
Equation 3.1, where possible canonical rotations for each shape Si define the number of
labels. In our case, these canonical rotations are q off

i +q symm
i,li with li = 1, . . . , |Gsymm

i |.
In order to select the set of shape pairs (i, j), we sparsely sample pairs of shapes
by looking at m = 20 nearest neighbours in autocorrelation descriptor space. This
parameter is set so that the resulting shape graph is kept sparse but remains connected.

We use the Maximum A Posteriori estimation method described by Leordeanu et
al. [65] to optimize Equation 3.1. The input to this method is a matrix containing the
pairwise potentials for each pair of connected shapes and each possible label (alignment)
assigned to the shapes, as well as a vector of unary potentials, which we use to keep the
shape with the median autocorrelation descriptor fixed, by assigning a large score to
only one of its labels. The method tries to maximize the labeling score xT B x+U x,
where B is the pairwise potential matrix, U is the unary potential vector and x is the
binary vector containing the solution. The solution vector x obeys discrete many-to-one
labeling constraints such that x(i) = 1 if node i is labeled with label i, which means
that shape Si should be rotated according to the angle corresponding to label i. This
method has a running time of only a few seconds for a dataset containing 100 shapes,
and places no smoothness assumptions on the objective function, in contrast to standard
graph-cut optimization methods. The output of this step is an angle q ic

i for each shape
in the cluster, chosen from the candidate canonical rotations.

3.3.5 Inter-cluster alignment

After co-aligning shapes in each cluster, our method estimates inter-cluster alignments.
In particular, we construct another joint alignment MRF problem where we seek to

32 Efficient co-alignment of shape collections

select one rotation for every cluster out of a set of possible rotations (labels). First we
apply rotation Rotz(q ic

i) from intra-cluster alignment to each shape of every cluster.
We keep the largest cluster fixed, and compute the energy for each pair of clusters by
connecting pairs of shapes from the two clusters and summing their pairwise energy
Ei, j. Since shapes in different clusters do not share similar symmetries, we densely
sample the pairwise energy Ei, j with 32 uniform samples. We choose mc = 20 edges
for each pair of clusters (same as in intra-cluster alignment), connecting shapes that
have the most similar autocorrelation descriptors Ei from the two clusters. The output
of this optimization is an angle for each cluster, which can then be added to the angle
q ic

i from the intra-cluster alignment step to obtain the final canonical rotation qi for
each shape.

3.4 Evaluation

In this section, we evaluate our method on ten diverse shape datasets, ranging in size
from 32 shapes to 1000 shapes. We design experiments to evaluate the performance of
our method on different shape classes, quantify the efficiency improvement, the effect of
various choices we made when designing the algorithm, and scalability. The following
results are reported using an implementation of our method and competing methods in
Matlab, run on a quad-core 2.2 GHz laptop with 16GB RAM.

3.4.1 Experimental setup

Datasets. Although many previous techniques rely on shape co-alignments, there is
no standard benchmark for quantitatively evaluating these methods. Hence, in order
to evaluate our approach we create a large and diverse benchmark with ground truth
alignments for ten different datasets.

First, we use the correspondence benchmark provided by Kim et al. [54] that in-
cludes a small number of consistently annotated feature points for 100 bikes (including
bicycles and motorcycles), 100 chairs (including armchairs and benches), 100 heli-
copters, and 104 airplanes. All models have consistent upward orientation aligned to
the global z axis. After normalizing the models as described in Section 3.3.1, we fix
one shape in the collection, and align every other shape to it by finding the optimal
rotation around the z axis that minimizes the L2 distance between the ground truth
correspondences.

Second, we downloaded six additional datasets from Trimble 3D Warehouse includ-
ing 32 snowmobiles, 100 cars, 100 cups, 100 ships, 100 sofas, and 1000 chairs. All

3.4 Evaluation 33

models in each collection have a consistent upward orientation. Finally, we manually
prescribe ground truth rotation for each model. We believe that the benchmark can be
valuable for evaluating future algorithms and is thus made freely available along with
an implementation of our algorithm in Matlab and all our results, in [3].

Evaluation metric. We evaluate the performance of our method based on how accu-
rately it co-aligns shapes in a dataset. For each shape Si, let the ground truth rotation
around the up vector be denoted by q gt

i , and an algorithmically predicted angle by qi.
We measure the alignment error a(i, j) of a method based on the distance between the
true and predicted relative angles as:

a(i, j) = |(q gt
i �q gt

j)� (qi�q j)|. (3.6)

In the following comparisons, we plot the fraction of shape pairs (y-axis) whose
alignment error a(i, j) is smaller than a threshold (x-axis).

3.4.2 Per-class performance

Figure 3.7 shows the accuracy of our method for different datasets, and Figure 3.12
shows images of resulting alignments for a random selection of shapes. For a relatively
strict threshold of 15� angle our method correctly aligned 80% of models for most
datasets. Note that in all cases the results are significantly better than a random rotation,
which would only achieve about 8% for 15� threshold. Low accuracy in some datasets
is caused by near-symmetries. For example, the position of wings along the fuselage
of an airplane can incorrectly favour nose-to-tail alignment. This problem is common
for all shape matching algorithms, and our method is not designed to resolve this issue:
it only speeds up the optimization time significantly by focusing on these challenging
ambiguities.

Near-symmetries decrease accuracy both in intra-cluster and inter-cluster alignment.
For example, the two biggest clusters of the airplanes dataset get around 70% and 85%
accuracy for 15� angle. In comparison, models in the biggest clusters of the (small)
chairs dataset are aligned with about 90% accuracy within each cluster, which is then
reduced to about 60% by the inaccurate inter-cluster alignment. Please note that user
supervision can significantly improve accuracy at a very small cost in the latter case.
Section 3.4.5 gives the details and Figure 3.11 shows how accuracy is affected by
supervision; in particular, we can get above 90% accuracy at a 15� angle threshold for
(small) chairs with just 6 manual alignments (only one per cluster).

34 Efficient co-alignment of shape collections

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Threshold (degrees)

%
 o

f
p

a
ir

w
is

e
er

ro
rs

 b
el

o
w

 t
h

re
sh

o
ld

Sofas
Helicopters
Snowmobiles
Chairs (big)
Cars
Cups
Ships
Bikes
Chairs
Planes

Figure 3.7: We plot the fraction of models (y-axis) aligned within a prescribed angle threshold
(x-axis), for 10 datasets. All our results are substantially better than a baseline of random
alignments, which would only give about 8% accuracy for a threshold of 15�. Similarly to all
shape matching techniques, our method suffers from near-symmetries of shapes.

3.4.3 Efficiency improvement

Our main contribution is the method for efficient sampling of shape rotations based on
potential ambiguities caused by near-symmetries. Hence, we compare our method to the
state-of-the-art approach that uniformly samples the rotations as proposed by Huang et
al. [41]. In their approach they assume that shapes are consistently aligned in the upward
direction and take 32 uniformly-sampled rotations around the up vector for each pair
of shapes Si and S j. Their method is designed to compute fine-scale correspondences,
and thus they further co-deform the shapes using affine transformations and free-form
deformations. Since the goal of our work is rigid co-alignment of models we only keep
the first step of their pipeline that optimizes for rotations. To ensure fair and consistent
comparison, we modify our implementation to mimic the method of Huang et al. [41]
(titled as UNIFORM in all figures). In particular, we uniformly sample the rotation
space, but we keep the same graph connectivity and inter-cluster alignment step for
both methods.

Figure 3.8 demonstrates accuracy results averaged over all datasets. For the full
set of results and per-dataset comparisons please refer to Appendix A. Our method
achieves better accuracy with significantly less computational overhead. We gain the

3.4 Evaluation 35

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Threshold (degrees)

%
 o

f
p

a
ir

w
is

e
er

ro
rs

 b
el

o
w

 t
h

re
sh

o
ld

Ours

Uniform

avg t=358.3sec

avg t=1551.9sec

Figure 3.8: We compare our method (green) to our implementation of the UNIFORM method
(blue), where the results are averaged over 10 datasets. Our method outperforms the UNI-
FORM method in accuracy. Most importantly, it has less computational complexity than UNI-
FORM, as it requires 2-16 times (depending on the dataset) less samples of Ei, j to align shapes
within all clusters, compared to UNIFORM (see Table 3.1).

most significant improvement over 0� � 15� thresholds since UNIFORM method is
constrained to samples at 11� increments. Table 3.1 further provides detailed timing for
each dataset. We get up to 16 times speedup (e.g., for ships) due to the symmetry-guided
sampling of the energy function (the two rightmost columns compare the number of
times the energy was computed). Table 3.1 also suggests that our method is input-
sensitive, since datasets with more near-symmetries such as cups, helicopters, and
planes take longer to align. However, even for these datasets our method is 2-3 times
faster than the UNIFORM method.

One can further improve the accuracy as well as change the running time of the
UNIFORM method by changing the sampling frequency. Figure 3.9 shows a represen-
tative comparison on a bike dataset, of our method and the UNIFORM method with
various numbers of samples. As the number of samples increases, both accuracy and
complexity of UNIFORM method increase. In contrast, our method achieves accuracy
that is comparable to the 64-sample UNIFORM method, at a fraction of the time. Note
that, theoretically, by taking 360 samples of the rotation space for each shape, it is
possible to get up to 100% alignment accuracy for a very small threshold, if the shape
distance function has a single global minimum. This comes at a great cost however,

36 Efficient co-alignment of shape collections

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Threshold (degrees)

%
 o

f
p

a
ir

w
is

e
er

ro
rs

 b
el

o
w

 t
h

re
sh

o
ld

Bikes−16 samples
Bikes−32 samples

Bikes−64 samples
Bikes−Ours

t=224sec

t=472.7sec

t=1071.8sec

t=45.5sec

Figure 3.9: We plot the fraction of bikes aligned within a prescribed angle threshold, for
our method and UNIFORM method with increasing number of samples. The accuracy of
UNIFORM increases as the number of samples increases, at the cost of longer running time,
while our method achieves higher accuracy at a fraction of the time.

as it is a brute force approach that is more than 10 times slower than the 32-sample
UNIFORM method, and has a very large space complexity. For example the MRF
optimization requires a 36000⇥36000 pairwise potential matrix for co-aligning 100
shapes with 360 labels each. Assuming a single-precision floating point representation
for its entries, this matrix needs 5.184 gigabytes to be stored in memory, which is very
large, even for high-end computers.

3.4.4 Effect of clustering

We examine the effect of the clustering step in our alignment pipeline. This step
is designed to handle heterogeneous collections where shapes do not have similar
symmetries. In particular, we cluster shapes based on their symmetry descriptors and
then optimize for per-cluster rotations.

We compare the alignment accuracy of the results produced with the clustering step
and by aligning all shapes jointly. The average alignment accuracy over all datasets
can be seen in Figure 3.10. Note that the use of clustering and the two-step alignment
procedure increases accuracy by around 15% for the 15� threshold. For the individual
accuracy results of all datasets, please refer to Appendix A.

3.4 Evaluation 37

Ours
(sec)

UNIFORM
(sec)

Ours
(#Ei, j)

UNIFORM
(#Ei, j)

Sofas 18.2 345.1 1902 29184
Helicopters 124.6 450.4 12180 36544
Snowmobiles 7.6 69.4 818 5824
Chairs(big) 3000.5 12149.5 291273 930528
Cars 23.8 435.3 2614 37696
Cups 116.3 434.6 11699 36320
Ships 17.6 384.6 1900 30400
Bikes 45.5 472.7 3560 32224
Chairs 93.6 428.4 9046 34688
Airplanes 135.2 349.5 14300 30944
AVERAGE 358.3 1551.9 34929 120435

Table 3.1: The first two columns show the time, spent on solving the optimization from
Section 3.3.4 for our method and UNIFORM. Inter-cluster alignment time is excluded since it is
the same for both methods. The third and fourth columns show the number of samples taken
from Ei, j in the same optimization problem. Note that our method is faster than UNIFORM,
which takes 32 samples for pairwise alignments. Our method becomes more computationally
expensive for classes of shapes that exhibit more symmetries, such as cups, airplanes and
helicopters.

3.4.5 Effect of human supervision

While all results presented in previous sections were created fully automatically, our
method can also efficiently leverage human supervision during the inter-cluster align-
ment step. After aligning shapes within each cluster, the user can further align different
clusters to avoid unreliable matching of dissimilar shapes. In particular, our method
picks a representative shape from each cluster (i.e., the shape nearest to the cluster’s
center in descriptor space). Then the user is prompted to consistently rotate representa-
tive shapes for all clusters. This bears little overhead since the number of clusters is
small in comparison to the size of the collections (6-21 clusters for the small datasets,
34 clusters for the 1000-chair dataset) and the number of required manual alignments is
equal to the number of clusters.

We simulate the human supervision using the ground truth angles. In particular,
we pick a rotation that correctly aligns the representative shape of each cluster to
the representative shape of the biggest cluster. Figure 3.11 shows the accuracy of
our method with and without human supervision for the chairs and airplanes datasets.
For the results on all other datasets, please refer to Appendix A. These two datasets
had the lowest performance in terms of accuracy for the unsupervised approach (see
Figure 3.7). With the supervision, the accuracy increases to over 90% for chairs and

38 Efficient co-alignment of shape collections

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Threshold (degrees)

%
 o

f
p

a
ir

w
is

e
er

ro
rs

 b
el

o
w

 t
h

re
sh

o
ld

Clustering

No Clustering

Figure 3.10: We evaluate the effect of the clustering part of our pipeline by comparing our
method with clustering performed (green) to our method with clustering turned off, i.e. all
shapes jointly aligned in one step (blue). This plot shows results averaged over 10 datasets.
Clustering and aligning shapes in two steps increases accuracy on average, compared to jointly
aligning all shapes.

70% for airplanes. The improvement is prominent for chairs since most of the errors in
that dataset are due to incorrect inter-cluster alignment.

3.4.6 Scalability

To demonstrate the scalability of our method, we test it on a large dataset of 1000
chairs. We set the parameter k, which controls the clustering radius to k = 2.5% since
the dataset has higher diversity in comparison to the smaller collections. Since this
dataset is much larger than the other datasets, we also iteratively increase the number
of nearest neighbours that are connected by an edge, starting from m = 20 (used for
all other datasets) and increasing m in increments of 15, until all individual graphs are
connected (terminating at m = 50). Table 3.1 demonstrates the timings for the 1000
chairs dataset, where our method outperforms UNIFORM by 4 times.

3.4.7 Computational complexity

Since most of the computation time is spent on sampling the pairwise objective function
Ei, j, we measure the computational complexity in terms of number of samples that have

3.4 Evaluation 39

0 5 10 15 20 25 30
0

20

40

60

80

100

Threshold (degrees)

%
 o

f
p

a
ir

w
is

e
er

ro
rs

 b
el

o
w

 t
h

re
sh

o
ld

Unsupervised
Supervised

(a) Chairs

0 5 10 15 20 25 30
0

20

40

60

80

100

Threshold (degrees)

%
 o

f
p

a
ir

w
is

e
er

ro
rs

 b
el

o
w

 t
h

re
sh

o
ld

Unsupervised
Supervised

(b) Planes

Figure 3.11: We evaluate the effect of human supervision by comparing the accuracy of our
unsupervised alignment pipeline (green) to the accuracy achieved with human supervision
(blue), for the chairs and the airplanes datasets. Supervision helps improve accuracy for these
low-performing datasets, using just 6 manually-prescribed rotations for chairs and 21 for planes.

to be computed. The intra-cluster alignment for a given cluster c requires NcmMi sam-
ples, where Nc is the number of shapes in a cluster, m is the number of edges per shape
(set to 20 in our experiments) and Mi = |Gsymm

i | is the number of candidate alignments
(i.e., the number of approximate symmetries) per shape (2-12 in our experiments). The
inter-cluster alignment requires KmcMc samples, where K is the number of clusters
(6-21 for all datasets), mc is the number of edges we use to connect clusters (set to 20 in
our experiments), and Mc is the number of candidate rotations per cluster pair (set to
32 uniform samples). The UNIFORM method has similar complexity, but the candidate
per-shape alignments Mi is set to constant Muniform = 32 rotations. Thus our method
only speeds up the intra-clustering step as long as Mi = |Gsymm

i |< Muniform and Nc > 1.
We report timings in seconds for each dataset for our method versus UNIFORM in

Table 3.1. Our method outperforms UNIFORM between 2 (for planes) and 16 times (for
ships) in terms of number of Ei, j evaluations.

3.4.8 Discussion

As indicated by our comparisons, our method is several times faster and more accurate
on average than the UNIFORM method for the ten datasets we tested it on. While our
method makes no assumptions regarding symmetry of the input shapes, it is designed to
improve efficiency only if shapes have a small number of near-symmetries, e.g., as we
can see in Table 3.1, the improvement for bikes is more significant than for cups. In
practise however, we have not observed any shape with more than 12 near-symmetries.

40 Efficient co-alignment of shape collections

Our technique also assumes that there is a meaningful alignment for each shape in the
input collection, and thus it can be sensitive to outlier objects. To test this, we collected
a dataset of 109 cars from Trimble 3D Warehouse, with around 10% of the cars having
additional noisy geometry or wrong up vectors. Our method achieved 75% accuracy
at 10 degrees threshold, compared to over 90% for our original clean 100 car dataset.
For results on the original clean car dataset as well as the noisy car dataset please refer
to Appendix A. We also note that our method’s efficiency degrades significantly if the
clustering step produces a large number of small clusters, since we uniformly sample
alignments in the inter-cluster alignment step. We have not encountered this in practice
when dealing with collections that contain shapes from the same category. Lastly, our
method only relies on geometry and ignores any additional cues such as texture, which
often come with shapes retrieved from online collections. It would be interesting to
study how such cues can affect alignment efficiency and accuracy.

3.4 Evaluation 41

Figure 3.12: Randomly selected shapes from our datasets, indicating their pose before (odd
rows - in gray) and after (even rows - in green) alignment. Red boxes mark mis-aligned shapes.

Chapter 4

Template-based shape
parameterization

4.1 Motivation

In Chapter 3 we presented a fast method for co-aligning semantically similar shape
collections, taking the first step towards discovering and modelling shape structure.
Armed with consistently aligned shapes, we are now ready to propose a method for
modelling structure from a shape collection, and demonstrate its application in two
challenging problems, namely, exploring shape collections and synthesizing novel 3D
content.

Creating 3D content is a fundamental problem in computer graphics, one that
requires skill, artistic sense and training. It is a difficult task that requires a lot of time
with existing modelling tools. This is time that 3D artists often do not have, especially
in the initial, open-ended stages of modelling, when the artist’s image of the target
object to be modelled is vague. In this exploratory modelling phase, it is beneficial
for a modeller to quickly browse existing shapes, seeking for inspiration. Online
3D shape repositories like Trimble 3D Warehouse are now becoming commonplace,
containing millions of free 3D models that can be used for this purpose. However,
they are typically unorganized and do not lend themselves to such inspiration-seeking
exploration. The unorganized nature of such collections, and the modeller’s goal of
inspiration-driven exploration reveal two important challenges. The first is, how to
organise and effectively navigate such model collections. The second and perhaps more
important is, how to provide previews of possible shapes that might be missing from
such collections, so that the modeller can gain some inspiration of new shapes to create.
So far these two challenges have been treated separately in the literature. Our belief is

44 Template-based shape parameterization

parameterized embedding

Figure 4.1: We analyze unorganized model collections using template-based abstractions to
create a low-dimensional embedding of the underlying shape space. The user can then explore
this low-dimensional space to create novel shapes by clicking in the empty regions (for example,
the red rectangles). In each case, a model was synthesized by deforming and recombining parts
from neighbouring models.

that they can be better addressed in a coupled manner. We propose a solution to both
challenges by introducing a method to effectively organise such model collections, that
provides fast and intuitive exploration of existing shapes, as well as rapid overview
of novel shapes that can be synthesized (see Figure 4.1). Our hypothesis is that by
modelling shape structure in terms of shape part positions and dimensions we can
parameterize the shapes inside a collection, which will allow us to explore the collection
in a meaningful way and synthesize novel shapes in a coupled manner. The challenge is
how to construct this parameterization as shape collections have no information on how
shapes are decomposed into parts and how these parts correspond from one shape to
another shape.

There are a few common paradigms for exploring model repositories. Previous
approaches have ranged from text-, shape- or sketch-based retrieval [24, 31], to template-
based exploration [73], fuzzy correspondences [53] and qualitative exploration using
dynamic embedding [44, 58]. Shape- and sketch-based retrieval methods rely on the
user having a clear image of the target shape and repositories containing sufficiently
similar shapes, an assumption which is often violated. Although the rest of the methods
provide intuitive local exploration of existing models, they do not support synthesis of
novel shapes.

In the context of shape synthesis, since the Modeling by Example system [30]
introduced the idea of cutting parts from existing shapes and merging them into new
shapes, a number of methods have tried to solve individual challenges of this part-based
synthesis paradigm. The main challenge, that of locating and extracting appropriate

4.1 Motivation 45

parts, has been tackled using geometric [60] and relational [106] similarity, or by
sampling probabilistic graphical models [15, 48]. Such methods, however, do not
provide the user with a high-level preview of the space of possible models that can be
synthesized. Additionally, the user is required to have a clear idea of the final shape
in order to effectively retrieve suitable models or model parts. This is often difficult,
especially in collections with significant model variations (see Figure 4.4).

Most similar to our work, Talton et al. [89] propose an interface that tightly couples
exploration and synthesis for parameterized model families. However, this method
assumes a compact parameterizable design space [1, 96], which quickly becomes
infeasible for raw model collections with diverse shape variations.

Our approach directly integrates exploration with synthesis for large and diverse
shape collections. The key to our method is extracting a template-based parameterizable
shape space that effectively factors out and encodes (part-) deformation across the
collection. An offline analysis reveals the structure of the shapes in the collection by
fitting a set of deformable templates made of primitive boxes to each input shape. The
automatically-learned templates produce co-aligned and co-segmented models with
known part deformations. An online hierarchical encoding step is then used to extract
local 2D embeddings of the underlying shape space.

The embeddings facilitate fast exploration of existing shapes by revealing the
different shape groups inside the collection and exposing the main modes of variability
for each group. At the same time, they also provide fast and intuitive synthesis of
novel shapes. We performed a user study to evaluate our system on several large model
collections and compared with alternative systems. Figure 4.1 shows some of the
models created by the different users of our system.

In summary, our contributions are:

• A template-based parameterization of shapes that allows a hierarchical organiza-
tion of large model collections by embedding part-aware shape descriptors into
low dimensional spaces, providing a basis for coupled shape exploration and
synthesis;

• a novel exploration interface based on the embedding that is able to reveal
groupings of shapes in separate clusters and summarize the main modes of
variation inside each cluster; and

• a novel tool for the synthesis of new shapes from existing shapes, seamlessly tied
to the exploration interface.

46 Template-based shape parameterization

model viewexploration view

icon view

Figure 4.2: Our system comprises of an exploration view to show the 2D embedding of the
input models; an icon view to show representative models for the current group(s); and a model
view for showing the abstracted or synthesized models created using our system.

4.2 Overview

Our method takes as input a collection of semantically-related man-made shapes,
for example, a set of 3D chair models that can be downloaded from the web. An
offline analysis is then run on the input shape collection to compute the template-based
abstractions and descriptors for each shape (see Section 4.3). At runtime, an interactive
system is used to load the pre-analysed collection and allow concurrent exploration and
synthesis of shapes.

The system interface, shown in Figure 4.2, is split into three panels:

• the icon view that presents the different representatives for selecting among
different shape groupings;

• the exploration view that presents a set of embedded points, one for each shape
among the current selection of models; and

• the model view that presents the currently synthesized model, either abstracted as
a set of box proxies, or as a part-based synthesized model.

Input models are embedded in a 2D space using PCA on the template-based descrip-
tors calculated in the offline stage, such that models with similar deformations end up

4.3 Method 47

as neighbours, while dissimilar models are embedded to distant points (see Section 4.3).
The embedded points are automatically clustered using mean-shift clustering, and the
user is presented with a high-level overview of representative shapes for each cluster in
the icon view panel, with different colors indicating different clusters. When the user
selects one of the clusters, the corresponding models are re-embedded and the process
repeats. In this way, the user can traverse the hierarchically-organized models that are
grouped based on their descriptor similarity. Upon selecting a cluster that cannot be
split into more sub-clusters, one can study the main variation modes across models in
that cluster.

More importantly, the user can preview plausible shapes in the empty regions of
the shape space of the original input collection. As the user hovers over any empty
region in the exploration view, the system shows a set of box proxies in the model view
which abstract a shape that can possibly be synthesized in that location of the shape
space. In this way, we provide a quick glimpse of possible models by exposing the
space spanned by the input collection. Constraints such as symmetry and contact are
directly preserved.

Once the user is satisfied with one of the abstracted shapes, she can click in the
location currently being hovered in order to view a plausible part-based synthesized
shape corresponding to that location. This novel shape is realised by first ranking corre-
sponding parts from neighbouring models, choosing the top-ranked parts, deforming
them to fit the abstract shape presented to the user, and finally combining them together.
The user can also browse through parts from neighbouring models lower in the ranking
by clicking on a part of the synthesized model.

4.3 Method

Starting from an unorganized collection of 3D shapes, the goal is to allow the user to
explore the shapes inside the collection and provide a preview of the possible shapes
that can be synthesized by appropriately combining parts from different input models.
In order to provide such exploration and synthesis capabilities, we have to overcome a
few key challenges:

• the input models typically have large shape variations that in turn obscure any
inherent consistency across the collection;

• the models do not come with any consistent segmentation; and

48 Template-based shape parameterization

input model collection extracted templates parameterized shape space synthesized geometry

offline
analysis

embedding
+ clustering

constrained
synthesis

geometry
synthesis

synthesized abstraction

user selection

Figure 4.3: We start from a collection of semantically-related shapes and first analyse them in an
offline step, solving for alignment, correspondence, segmentation and a deformable template, in
order to obtain template-based shape descriptors. Then, in an interactive interface, we compute
2D embeddings and clusterings of the shape descriptors to reveal variations and shape groups
that in turn guide the user selections. The user can quickly explore the template-based abstract
shape space by hovering the mouse over the 2D embeddings, and click in empty regions of the
space to synthesize new shapes based on parts selected from neighbouring shapes and deformed
appropriately.

• the collections typically include thousands of models, making realtime analysis
non-trivial.

For example, a visual investigation of the models in Figure 4.4 does not immediately
reveal the space of possible models that can be realized by combining parts from the
input models. We overcome these challenges by computing 2D embeddings of the
models, which facilitate exploring existing shapes and previewing possible part-based
synthesised shapes. The embeddings help to identify which models can be combined;
what respective parts can be combined; and finally how the parts can be deformed to
produce a plausible model. Below are the key steps of the method (see Figure 4.3).

4.3.1 Initial analysis

First, in an offline phase, we analyze the input collection of models {M1, . . .MN}, using
the method from Kim et al. [54]. Starting with an initial template represented as a set of
axis-aligned box proxies, the method jointly optimizes for alignment, part segmentation
with point-wise surface correspondence, and a compact deformation model to best
explain the input shapes. The deformation model assumes that each shape can be
approximated with a set of box-like parts that differ in position and scales. The method
is an iterative one and interleaves three steps: fitting, where every template is deformed
to fit to every shape; clustering, where shapes are assigned to their best-fitting template;
and refinement, where the set of templates is updated, with new templates spawned for
clusters not well explained by existing templates. The output of the analysis is a small
set of part-based templates, along with the alignment, segmentation and deformation
parameters that match each of the input models Mi to their corresponding template.

4.3 Method 49

naive part-based
synthesis

superimposed
models

Figure 4.4: Combining a random selection of chair models (top), even when they are consis-
tently segmented, is challenging. The models have different proportions of parts that make a part
selection based on visual inspection of the superimposed models (bottom-left) confusing and
can easily result in meaningless part ensembles (bottom-right). Instead, we expose a constrained
and intuitive part-based model shape space for easy exploration and synthesis.

4.3.2 Abstracted encoding

Based on the extracted distribution of the template parameters, we refine the segmen-
tations of the individual models Mi. We assume that each model comes with multiple
disconnected components, which is true for most models in Trimble 3D Warehouse that
we used in our experiments (see Figure 4.5-left). If this assumption does not hold, we
simply assign each triangle to its nearest box. Let {p1, p2, . . .} be the set of components
for model Mi. Our task is to associate each component with a template box. This is
essentially a labeling problem, where each pi can be assigned to a set of t candidate
boxes {l1, . . . , lt}. We formulate the labeling as a Markov Random Field minimization:

{li}? := argmin
{li}

Â
i

E(pi! la)+Â
i, j

E(pi! lb , p j! lg) (4.1)

The unary term E(pi! la) := vol(Bpi[la)� vol(Bla), where vol(Bpi[la) denotes the
bounding volume of component pi and template box la , and vol(Bla) denotes the
bounding volume of template box la , measures the increase of bounding volume of
the template box la when component pi is assigned to it. The pairwise term E(pi!
lb , p j! lg) measures the penalty when two neighboring components (based on shortest
distance between them) are assigned different labels (set to 1e-5 in our tests). In the

50 Template-based shape parameterization

part abstraction + labeling

initial segmentation refined segmentation

Figure 4.5: In the case of models with multiple components (left), we use the extracted part
distributions obtained from the shape collection [54] to obtain an initial point labeling (middle-
bottom) and part abstraction (middle-top). We refine the segments using a labeling optimiza-
tion (right).

end, for each model we get a set of abstracted boxes, each enclosing a part of the input
model (see Figure 4.5-right).

Let there be t different parts discovered across all of the extracted templates in the
initial offline analysis. We represent each input model Mi as a configuration vector
Xi 2 R6t , where each (axis-aligned) template box is represented by its centroid ci and
its dimensions si, i.e., its length/breadth/height. Parameters corresponding to missing
parts are set to zero.

We also detect the potential relations among the individual parts, i.e., symmetry and
contact relations, and propagate the information to their associated templates, which are
later used in the constrained synthesis phase. Note that the relations should be unified
across templates within a given family. To address this in a consensus stage, we collect
the relations among all the templates and use a greedy selection strategy to filter out
falsely detected relations. Improperly identified or conflicting relations can be manually
corrected, although advanced automated methods can potentially be used [70].

4.3.3 Efficient embedding

Both exploration and synthesis require a notion of neighbourhood among the models.
We use the abstraction obtained above to define such a dissimilarity distance between
model pairs Mi and Mj as follows: d(Mi,Mj) := kXi�Xjk. Note that since we also have

4.3 Method 51

Data: Input model collection M := {M1, . . .MN}.
Result: Embedding coordinates of the selected models.
1. Analyze the input collection M in an offline stage [54];
2. For each model Mi 2M, refine initial segmentation to obtain configuration
vector Xi 2 R6t ;
3. Set selection M M ;
4. while new selection M available do

i. Randomly pick n models M̃j for j = 1, . . .n from M as landmarks;
ii. Construct distance matrix Dn⇥n with elements di, j := d(M̃i,M̃j) for
i, j = 1, . . .n ;
iii. Compute MDS embedding of the landmark models M̃j using D to obtain
Ỹj 2 R2 ;
iv. For all Mi 2M and Mi /2 {M̃j}, find its k nearest neighbor models among
the landmark models and use distance-based interpolation to obtain embedded
coordinates {Yi}.
v. Compute (linear) basis vectors e1 and e2 for inverse mapping of embedded
coordinates to configuration vectors.
vi. Apply mean-shift clustering on the points {Yi} ;
vii. Update selection M and repeat hierarchically by returning to step #4 ;

end
Algorithm 4.1: Iteratively embed a selection of models M, which is then used for
exploration and synthesis.

the parameter distributions, one can instead use Mahalanobis distance. Thus, similar
models have near-zero dissimilarity score, while dissimilar model pairs get high scores.

We use the similarity values to embed the models into a low-dimensional parameter-
ized space. One option is to construct a N⇥N matrix with all the pairwise similarity
values (e.g., exp(�d(Mi,Mj)2/2s2)) between the input models and compute its spectral
embedding [53]. Such a direct computation, however, can be prohibitively expensive
(i.e., O(N3)) for large model collections.

Instead, we propose a sampling-based approach to efficiently build an embedding
of the models (see Algorithm 4.1). The key observation is that the embedding is largely
dictated by the members from different (unknown) clusters (c.f., [22]). Hence, working
with a random sampling of models as representatives yields an approximate embedding.
Note that we use the approximate embedding only when the number of models is large,
otherwise we perform the embedding with all the selected models.

We start by picking at random n landmark models, say {M̃j}, from the current set
of models M. Using the n landmark models, we compute their pairwise distance matrix
Dn⇥n and embed the models to R2 using multi-dimensional scaling (MDS) based on
singular value decomposition (SVD), to get {Ỹj}. For any other model Mi 2M, we

52 Template-based shape parameterization

full embedding sparse embedding
(n=200)

distance

selected cluster radius

an input model
synthesized
abstraction

Figure 4.6: We embed the input models using their corresponding fitted template-based ab-
stractions. We perform an efficient landmark-based embedding and analyze the points to obtain
a parameterized template abstracting the underlying shape space. As the user navigates the
embedded space, the extracted variation modes are used to lift the points (shown in red) back to
high-dimensional configuration vectors to synthesize template abstractions. The distribution of
the pairwise distances between the embedded points is used to estimate a suitable clustering
radius for mean-shift clustering.

compute its k nearest neighbors among the landmark models. We then interpolate the
embedded coordinates of the landmark models to compute the embedding of Mi, i.e.,
Yi Â j=1:k w jỸj/Â j=1:k w j, where w j := exp(�d(Mi,M̃j)2/2s2), with s set to the
diameter of set {X̃i} and M̃j denoting the j-th closest of the landmark models.

The above embedding method has a complexity of O(n2 +Nk logn). For example,
for a chair dataset with 2036 models, the sparse embedding takes about 0.6 sec, which
is about 12 times faster than full embedding (see Figure 4.6).

4.3.4 Abstracting missing shapes

At this stage, we have mapped the initial coordinates {Xi}! {Yi}. We solve for the
dominant linear variation modes e1 and e2 such that Yi ⇡ [(Xi · e1),(Xi · e2)] for all
i 2 [1,N] using a least squares formulation. Now, given any point (a,b), we can lift up
the point (from the empty region) to the configuration vector as (a,b)! ae1 +be2,
thus providing an abstracted model X as a preview for the empty region.

4.3 Method 53

starting
templates

embedding
(level 1)

embedding
(level 2)

embedding
(level 3)

representative models
(level 1)

representative models
(level 2)

main variation
modes (level 3)

Figure 4.7: A typical hierarchical exploration session using our interface. After initial analysis,
the system displays the top level templates (top-left). As the user selects the green mode, the
member models are embedded (level 1) and 4 dominant clusters are detected. The user selects
the next representative and its member models are re-embedded. When a single cluster is
discovered, its representatives and dominant variation modes are shown (bottom-right).

4.3.5 Grouping shapes

We cluster the embedded points using mean-shift clustering [20] in order to organize
the data into a hierarchy. We automatically select the clustering radius based on the
histogram of the pairwise distances between the embedded points. In the case of points
that can be grouped into multiple clusters, we can estimate a good clustering radius
based on the first valley (if any) of the histogram (see Figure 4.6).

Each of the extracted clusters can then be re-embedded to extract new basis vectors
(i.e., e1 and e2), eventually forming a hierarchical organization (see Figure 4.7). As
the user selects one of the clusters, she zooms into that particular cluster in order to
better study the fine-scale variations. The mean-shift clustering procedure gives a small
number of compact clusters at each level of the hierarchy. For example, in Figure 4.7, a
dataset of chairs gives five clusters at the top level, and two clusters at the second level,
when one of the top-level clusters is selected.

4.3.6 Constrained abstract shape synthesis

A direct derivation of box configuration X = ae1 +be2 from the embedding space can
result in models that deviate from a semantically valid one, e.g., symmetry being broken,
part-to-part contacts being lost, etc. We project the box configuration parameters to the
valid shape space using a constrained optimization. We observe that many relations
of interest (c.f., [70]) simply amount to linear constraints involving parameters of the
configuration vector, e.g., contact, reflective symmetry about known plane etc. Our goal

54 Template-based shape parameterization

X=

symmetry constraint

contact constraint

length constraint

synthesis without
constraints

synthesis with
constraints

Figure 4.8: Illustrative example of the different constraints handled in our framework. (Left) In
this 2D example, the configuration vector X 2 R12 represents the abstracted model with 3 parts.
For example, the two contact constraints involve the orange-green and orange-blue boxes and
hence the corresponding fi(X) involves the corresponding coordinates of X . (Right) Our system
restores these constraints during the real-time exploration using a QP formulation.

is to obtain a new configuration X̃ such that potential symmetry and contact relations
among parts are restored, while X̃ being as close to X as possible (see Figure 4.8). This
amounts to solving the following minimization:

argmin
X̃
kX̃�Xk2 such that f j(X̃) = 0 8 j = 1, . . .c (4.2)

where, fi(X̃)s is a set of c semantic constraints derived from the relations among the
parts. We support three main types of relations: symmetry, contact and equal length. We
detect these in the abstracted encoding step, as described in Section 4.3.2. Alternatively,
the user can directly specify them once on the initial template in the offline analysis.

Symmetry. Let two boxes, represented as (ci,si) and (c j,s j), where ci is the center
of the first box (likewise for the second box) and si is the scale vector (scale in x,y,z
dimension) of the first box (likewise for the second box), be reflective symmetric with
respect to a given plane. The corresponding constraints take the form:

((ci + c j)/2�o) ·n = 0; (ci� c j)⇥n = 0; si� s j = 0 (4.3)

where, n and o are the normal to the reflection plane and a point on the plane, respec-
tively.

Contact. When two boxes are in contact, they share a common contact point. Between
two boxes in contact, we assign the closest points as contact points. Thus, between two

4.3 Method 55

a b

c

d

e

tmodel a

model b

model c

model d

model e

deformed a

deformed b

deformed c

deformed d

deformed e

Figure 4.9: Our system allows to preview possible geometric realizations in an empty region
around the embedded points (top-right). Each of the retrieved models (models a-e) is deformed to
match the query configuration (indicated as a red box). Parts from the deformed models (middle)
are then combined to create different plausible shapes (right).

boxes, the contact constraint takes the form: ci + si/2 = c j + s j/2 (up to sign changes
due to which corners get selected).

Equal length. In certain cases, we want pairs of boxes to have similar dimensions (for
example, the legs of a chair should have equal height even if they are not symmetric).
Since the abstracted boxes are axis-aligned, such a constraint simply takes the form:
sy

i = sy
j, for example when equality along y-direction is desired.

The optimization in Equation 4.2 amounts to solving a quadratic program with
linear constraints. As the user explores the configuration space extracted from the input
collection, we perform the optimization to directly show the constrained solution (see
Figure 4.8). Note that the input templates, i.e. {Xi}, do not necessarily satisfy the
constraints. However, we do not project them to the constrained space since the parts
taken from the input models are later deformed to a constrained box model, as described
next.

56 Template-based shape parameterization

4.3.7 Part-based geometric shape synthesis.

As the user moves the mouse cursor over a point (a,b), our system shows the corre-
sponding box model, ae1 +be2, which has been constrained to produce abstracted box
model X̃ . Each such feature vector X̃ 2 R6t represents concatenated parameters for
t boxes X̃ = [x1, . . . ,xt], where xi is a 6-dimensional vector that encodes position and
dimensions of the i-th box. When the user is satisfied with the coarse arrangement of
parts, she can click and lock the system to the current box model. This immediately
prompts our system to fill the boxes with corresponding geometric parts from the k
nearest neighbours of X̃ in the 2D space. The goal is to select parts that are to be least
deformed in order to fill the boxes. Therefore, for each of the abstracted model’s boxes
xi, we select the corresponding geometric part x̄i with the smallest distance, from one
of the k nearest neighbours, i.e. argminx̄i

kxi� x̄i|. The selected set of geometric parts
are deformed, i.e. translated and anisotropically scaled, so that their box matches the
corresponding abstract model’s box. The user can continue exploring and visualizing
alternative part arrangements drawn over the selection, or refine the choice of selected
parts by clicking on a corresponding part x̄i in the model view. The click prompts the
system to cycle through the candidate geometric parts taken from the k nearest models
Mj, according to the distance kxi� x̄i| (see Figure 4.9). One can cycle through all k
possible geometric parts to fill a box of the abstract model in this manner.

4.4 Evaluation

In this section, we evaluate our template-based shape parameterization and the proposed
shape exploration and synthesis tool. First, we describe the data and experimental
setup, and evaluate the performance of our algorithm on diverse datasets obtained
from Trimble 3D Warehouse. While our coupled analysis, exploration, and synthesis
framework is the first of its kind, we compare parts of our system to state-of-art shape
synthesis methods from Chaudhuri et al [15] and Jain et al. [46], and evaluate our
constrained synthesis algorithm.

4.4.1 Datasets

We tested our framework using Trimble 3D Warehouse models obtained from Kim et
al.’s method [54]. We selected a subset of models such that the template fitting energy
is below 30, and hence our final analysis included 2062 chairs, 636 airplanes, and 114
bikes.

4.4 Evaluation 57

As an additional dataset, to compare with the authors’ implementation of the part-
based synthesis method of Chaudhuri et al. [15], we used their manually-segmented
dataset of 100 airplanes from Digimation ModelBank.

4.4.2 User feedback

Several participants with very little or no prior 3D modelling experience used our
system to explore existing model collections and create new shapes. The feedback was
positive and a variety of different models were created (see Appendix B for the full set
of results). Figure 4.10 shows a sample of models created by users of our system. Most
people appreciated the ability to quickly obtain a high-level overview of the modelling
space, refine the selection to a region via the hierarchical navigation, and finally obtain
an immediate preview of shapes to be synthesized.

Some users complained that the final models were at times disconnected, making
them look unrealistic. This is expected as we only enforce contact constraints at the
abstracted level of the boxes, and not on the original geometry. Section 4.4.7 gives
details as to how this problem can be alleviated.

4.4.3 Baseline comparison

We tested our initial hypothesis that the proposed template-based parameterization can
be used for synthesizing meaningful novel shapes, via a user study. The hypothesis of
the user study was that our system can generate more diverse sets of shapes, compared
to the original shape collections, thus proving that the goal of exploring and visualizing
missing shape variations for providing inspiration to modellers is achieved. For this
purpose, we evaluated our system on the chairs, airplanes and bikes datasets from
Trimble 3D Warehouse. We asked 8 volunteers from a computer science department to
use our system to perform an open-ended task on each dataset:

T1: Create the most diverse set of 5 shapes.
After a short demo instructing each person how to use our system and letting them use
the system for around 5 minutes, each of the 8 users created 5 chairs, 5 airplanes and 5
bikes, for a total of 40 chairs, 40 airplanes and 40 bikes. The order of completing task
T1 for the three datasets was randomised between users. Next, we validated the results,
by comparing the shapes created by the volunteers to a random selection of shapes from
the original datasets. Similarly to the previous work of Chaudhuri et al. [14, 15], we
recruited a different group of volunteers to compare randomly selected pairs of results
created by users of our method and models belonging to the random selection. Using

58 Template-based shape parameterization

User 1

User 6

User 3

Figure 4.10: Sets of models created in our user experiment. Please refer to Appendix B for the
full set of results. Our system enables rapid synthesis of diverse models.

a web interface, we presented two randomly chosen groups of results; 5 results from
one of our volunteers and 5 of the randomly selected models from the corresponding
original dataset. We described task T1 and asked:

• if the shapes look plausible; and

• if the shapes look diverse.

For each question, the evaluator had an option of selecting one of the groups, both, or
none. The first question was designed to evaluate whether our system trades plausibility
for diversity in the synthesized shapes.

Table 4.1 shows the results of the user study. In Figure 4.10, we present user-
created models in each category. All user-created models are provided in Appendix B.
According to Table 4.1, our method can indeed generate more diverse sets of shapes
compared to all the original datasets, which proves the hypothesis of the user study. Our
method also allows very fast creation of such diverse sets of results, with the average
time to complete task T1 per user ranging between just 3 and 5 minutes for each dataset.
Note however, that our method’s results are less plausible than the original models for

4.4 Evaluation 59

Dataset
Voting Time

(min)Plausibility Diversity
Our Random None Our Random None Our

bikes 77 64 2 69 58 11 5
chair 48 104 4 100 19 5 4

planes 53 81 2 68 48 6 3

Table 4.1: User study on Task T1 comparing our method with a random selection from a dataset.
Voting indicates number of time users voted for our method vs random selection (where votes
for both are summed with individual votes), and timings are in minutes.

all datasets except the bikes. This can be explained by the fact that final models look
disconnected at times, since we only enforce contact constraints at the abstracted level
of the boxes.

4.4.4 Comparison to Chaudhuri et al. [15]

We tested our initial hypothesis further, by comparing our system to a state-of-the-art
interactive synthesis tool from Chaudhuri et al. [15] via another user study. The system
from Chaudhuri et al. [15] is a suggestion-based modelling tool which takes advantage
of a probabilistic model trained offline using manually segmented and labelled shapes
to provide the most useful suggestions for parts related to the shape being modelled.
Compared to our automatic coupled exploration and synthesis tool, Chaudhuri et
al.’s [15] system is interactive and seeks to accelerate part-based modelling by providing
the most relevant shape parts to the modeller according to the shape being built. It also
relies on low-level geometric shape descriptors, unlike our method which only relies on
a coarse template based parameterization.

Using the same diversity hypothesis as before, we compared against this system by
focusing on high-level exploratory synthesis tasks. We used the authors’ implementation
of the method on their dataset of 100 consistently manually-segmented airplanes from
the Digimation ModelBank. Our initial analysis was modified to create deformable
templates from manually-segmented models and fit the templates to all models without
changing the segmentation. We recruited a different group of 10 volunteers with a
background in computer science, asking them to perform task T1, and:

T2: Create an airplane that is best suited to win a ‘dogfight’ (one-on-one aerial
combat) in a computer game. This is the same task as in [14].
Each user performed both tasks using both systems in a consistent order (T1, T2), while
we randomly permuted the order in which systems were used. Figure 4.11 summarizes
the results produced by the same user (selected at random) in both systems. All user-

60 Template-based shape parameterization

Our

Chaudhuri et al. 2011

Task 2

Task 2Task 1

Task 1

Figure 4.11: Example models created by User 1 (picked at random) for comparison to Chaud-
huri et al. [15] system. Note that both sets of models created for task T1 contain diverse and
plausible shapes, as was requested in the task.

created models for both systems are provided in Appendix B. We validated the results
using another group of volunteers in the same way as in the baseline comparison. For
task T1 we presented groups of 5 airplanes created from our system and 5 airplanes
created from the Chaudhuri et al. system [15], asking people whether the airplanes
are plausible and whether the user succeeded in her goal for the task, i.e. whether the
airplanes are diverse. For task T2 we presented the airplane created from our system and
the airplane created from the Chaudhuri et al. system [15], asking people whether the
airplane is plausible and whether the user succeeded in her goal for the task, i.e. whether
the airplane would win the aerial combat. We summarize the statistics in Table 4.2.

Although users of our system often produced implausible models when aiming at
diversity in task T1, resulting in lower plausibility scores for our method compared to
Chaudhuri et al. [15], the resulting sets of models were deemed comparable in diversity,
with our results getting 81 votes compared to 131 for Chaudhuri et al. [15], but with
a relatively large number of uncertain votes (38 votes for None). Furthermore, we
found that once the users became familiar with the space of shapes, they could very

4.4 Evaluation 61

Task
Voting Time

(min)Plausibility Task Accomplished?
Our Chaudhuri None Our Chaudhuri None Our Chaudhuri

T1 67 174 17 81 131 38 6 14
T2 132 150 13 158 180 12 2 4

Table 4.2: Comparison to Chaudhuri et al. [15], tasks T1 and T2 were accomplished with two
different interfaces. Voting columns indicate number of time users voted for results produced
with our method vs their approach (where individual votes are summed with votes for both
methods).

rapidly synthesize airplanes for task T2 that are comparable to results produced by
Chaudhuri et al. [15] in plausibility, as well as achieving the goal of the task which
was to create a combat-winning airplane. Note that the average time needed by every
user to complete both tasks with our system was about half the time they needed using
Chaudhuri et al.’s [15] system, which demonstrates that our system can be used to
complete such exploratory modelling tasks much faster than competing systems. We
find the diversity result particularly surprising since our embedded space is based on a
coarse box-abstraction rather than geometric details. Even then, our system exposes
interesting high-level part placement variations.

4.4.5 Comparison to Jain et al. [46]

Our method can also be used to interpolate between pairs of shapes, as in Jain et al. [46].
The system from Jain et al. [46] takes a pair of shapes as input, decomposes them into
parts based on connected-component analysis, builds a relation graph between the parts
and tries to match corresponding parts that can be safely exchanged between the two
shapes based on the relation graphs. A continuous slider then is used to control the
amount of parts taken from the source and target shapes, similar to an interpolation,
where intermediate shapes can be created combining parts from both shapes. Unlike our
method, their system only relies on pairs of shapes and no deformations are applied to
parts coming from the source and target shapes, causing visible artefacts when the two
shapes are not well-matched in terms of part proportions. In Figure 4.12 we demonstrate
two interpolations produced by our method, and our simplified implementation of Jain
et al.’s [46] method.

In our simplified implementation of Jain et al.’s [46] method, we manually select
two models in the 2D space, and use the line joining them as the interpolation space.
By moving along this line and forcing the system to only select parts from these two
models according to Jain et al.’s [46] strategy for picking parts, we simulate the output

62 Template-based shape parameterization

Jain et al. 2012

Our

Source Target

Figure 4.12: We evaluate our method in a shape interpolation scenario such as in Jain et al. [46].
First (middle-left), the back legs of source are replaced with the back legs of target. Then
(middle-center), the back of source is replaced with the back of target. Finally (middle-right),
the front legs of source are replaced with the front legs of target. Note that our method is more
robust to strong deformations because it uses the full shape space to model the shape variations
and thus deforms parts appropriately to fit a particular point in shape space, unlike Jain et al. [46]
who do not deform parts.

of their system. The difference is that in our system we compute the necessary part
deformations for synthesizing a plausible shape at any point of our shape space, in
contrast to Jain et al.’s [46] system, which does not deform shape parts but only enforces
contacts based on a spring-mass model.

A visible advantage of our method is that it produces more plausible shape variations
for intermediate shapes where the deformation is high (e.g., look at the chair legs).
The quality comes from: (i) appropriate part scaling to facilitate model assembly;
and (ii) neighboring models contributing to the deformations of intermediate models,
allowing richer variations.

Finally, unlike Jain et al. [46] who use contact and relation graphs to establish
approximate correspondence between parts, our analysis automatically segments the
input models and establishes part-level correspondence. It should also be noted that as
our approach is data-driven, performance improves as the dataset grows. The example
in Figure 4.12 is illustrated on a small dataset and hence it is an extreme case where our
method can produce visible distortions. In practise, we did not observe this effect when
working with the full datasets.

4.4 Evaluation 63

Figure 4.13: The synthesized models can be further refined using docker-based part deformation.
In these examples, the parts of the chair and bike are brought back into contact based on nearest
part dockers.

4.4.6 Constrained synthesis

We evaluate the quality of our constrained synthesis via a leave-one-out experiment.
First, starting with model collection M, we compute its embedding e1,e2 and then
select a particular model Mi embedded as (a i,b i). We then remove the model Mi and
re-analyze M\Mi to obtain embedding f1, f2 and re-synthesize the model as a if1 +b if2.
We then compare the effect on the embedding of leaving out Mi.

We found the variation marginal and negligible in most cases. This is not surprising
since our landmark-based embedding, and hence the extracted dominant modes are
mainly dictated by the n random selected models. If the landmarks remain unchanged,
the embedding does not change. Even with different landmarks the changes are small as
shown in Figure 4.6. We further use the new embedding to reconstruct the box structure
for the model Mi given its coordinates (a i,b i), and we found that reconstruction error
is within 1% of original box dimensions.

4.4.7 Restoring contacts

The low plausibility scores we observed in the two user studies and while talking to users
of our system can be explained due to our choice to enforce contacts at the abstracted
level of template boxes. In a post-processing step, it is possible to restore contacts using
an optimization procedure that minimizes the distance between compatible dockers
detected on each pair of parts in contact, as shown in Figure 4.13. We expect that the
plausibility scores for our results will reach the scores of Chaudhuri et al.’s system [15]
if this post-processing step is applied. This step was not the focus of our work, as we
have chosen to focus on parameterizing the shape space and creating a fast coupled
exploration and synthesis tool that gives rapid inspiration to modellers.

64 Template-based shape parameterization

4.4.8 Discussion

We evaluated our template-based model of structure and the associated exploration
and synthesis method using 4 datasets ranging from 100-2000 models with 18 users
synthesizing more than 500 novel shapes, validated by more than 30 different people,
with 164 pairwise comparisons. Synthesized shapes were deemed plausible and diverse
by users of our system.

In this Chapter we focused on abstracting the input models by axis-aligned box-
templates, thus providing our first model for shape structure based on a template-based
shape parameterization. Given that, our system is not suitable for datasets where
the coarse structure of the shape does not correlate with its functionality or desired
properties. In Chapter 5, we extend our work in this Chapter and we present a different,
probabilistic model for shape structure which is based on oriented box templates. Such
an abstraction is challenging to parameterize, but can provide better understanding
of the underlying shape space, improved clustering and more meaningful exploration
of shapes, as demonstrated in Chapter 5. We also demonstrate the application of this
probabilistic model in intelligent and coupled shape editing in Chapter 5.

As our method relies on coarse box templates, it would also be interesting to
investigate supplementing the shape space with part-based geometric descriptors. The
challenge then is to appropriately combine the high-level box descriptors with low-level
geometric descriptors. Fully evaluating the effect of enforcing contact constraints at the
level of part geometry rather than at the level of template boxes is also something that
remains to be done. Furthermore, it will also be interesting to use contact and relation
graphs, as in Jain et al. [46] to maintain the structure of the synthesized shape variations.

Perhaps most importantly, it would be intriguing to explore the possible applications
of our method to other areas. Since the extracted parameterized space provides an
abstracted representation of the underlying shape space, problems like pose estima-
tion, scan completion and object recognition can be investigated as projections to this
parameterized space. In object recognition specifically, the template-based shape param-
eterization presented in this Chapter can be used to generate large amounts of synthetic
3D content to train object proposal estimators for depth images, as demonstrated by
Zheng et al. [104].

Chapter 5

Meta-representation of shape families

5.1 Motivation

In Chapter 4 we presented a method for modelling shape structure using data from large
unorganized shape collections. The method relies on a parameterization of a collection’s
shapes using axis-aligned box primitives. We demonstrated its application in exploring
a shape collection and rapidly creating novel 3D content that can provide inspiration to
a modeller. Such a model of structure is not suitable for all datasets as not all shape parts
are well approximated by axis-aligned boxes, and relations between shape parts are not
taken into account in that model. In this Chapter, we extend our work from Chapter 4
to model structure in a probabilistic manner, taking into account shape part relations
and moving into high-level shape co-analysis. We illustrate how such a probabilistic
model can be used to explore shape collections as well as intelligently edit shapes both
individually and in a coupled manner.

High-level shape analysis goes beyond low-level analysis of the geometric properties
of shapes and attempts to extract higher-level semantic information to aid in shape
manipulation [70]. As part of this effort, single shapes, particularly man-made objects,
have been analyzed to extract semantic relations that can be made useful in various
applications. One example is in applying constraints on a shape editing process, thereby
achieving an intelligent edit where the prescribed geometric characteristics of the
manipulated shape are preserved [32, 66, 101, 107]. Ideally, the aim is to understand
the essence of the family of shapes directly from their object geometry, in order to use
this knowledge in the applications to determine the geometric shape and configuration
of shape parts.

Analyzing an individual shape, however, is inherently limited as we are looking
at a single example from a specific class of shapes. It is difficult to understand what

66 Meta-representation of shape families

4

3

2

1

0
0 0.2! 0.4! 0.6! 0.8! 0

1

2

3

4

5

0 0.5! 1.5!1

Figure 5.1: Meta-representations of two shape families, where we show one probability distri-
bution from each representation. Here, we see the distribution for the angle between the main
axes of airplane wings and fuselage, and the angle between the main axes of chair backs and
legs. There are two major modes in each distribution, where examples of shapes corresponding
to the black dots are shown. Besides such exploration, the meta-representation can be used
for applications like guided editing: the user deforms selected shapes, taking them to lower
probability states (red dots), and then the system, guided by the meta-representation, returns
them to higher probability states (green dots).

really characterizes the family of the shape without additional information or other
examples from the same class. Humans typically rely on their prior knowledge to infer
this information. Hence, with the growth of shape repositories, researchers have focused
on co-analyzing sets of shapes in order to benefit from the collective information in
the group [39, 49, 54, 84, 95]. However, the typical outcome of these methods, a
segmentation and/or correspondence, does not really summarize properties that define
the shapes as elements of a set.

Our hypothesis is that by modelling shape structure in a probabilistic manner using
the relations of shape parts, we can summarize shape families and thus pose problems
such as shape editing as preserving the familial validity of shapes. Starting from a set of
co-segmented shapes, we create a representation that captures the essence of the shape
family, towards the goal of quantifying validity of the shapes. We call this representation
a meta-representation. Specifically, we learn a system of geometric distributions to
encode relative arrangements of parts across the family. Note that our representation is
complementary to the one proposed by Kalogerakis et al. [48] who learn a Bayesian
network to capture co-occurrence statistics of parts for the purpose of shape synthesis.
Instead, we focus on the distribution of part arrangements as learned from a collection
of shapes. For example, in the case of a family of planes, we discover that there are two
main modes for the angle between the wings and fuselage (see Figure 5.1).

5.2 The Meta-representation 67

The meta-representation can then be used in a wide array of applications where one
seeks to preserve the familial identity of a manipulated shape. Essentially, instead of
assuming generic priors on allowed deformations (e.g., as-rigid-as-possible deforma-
tion [87]) or semantic relations (e.g., parallel or orthogonal part configurations being
preferred [32, 107]), we directly use the representation to determine likely arrange-
ments of parts. As our main application, we use the meta-representation to guide the
editing of a shape to ensure that it remains a valid element of the set by keeping its
main geometric characteristics. Thus, a desirable deformation amounts to refining part
geometries and positions to increase validity as quantified by the meta-representation.
The meta-representation then provides such guidance. In practice, this is realized by an
editing tool that constrains parts to a valid space as the shape is edited.

Furthermore, by summarizing the input shape family, the meta-representation can
also be used for exploring the set of shapes. In addition, it provides a collective handle
to simultaneously refine a collection of shapes. For example, the user can directly edit
the system of distributions, while our system adjusts the input shapes according to the
prescribed meta-representation. This leads to a novel and intuitive coupled editing tool
for sets of shapes.

We evaluate the proposed representation on various datasets and demonstrate the
advantage of having such a meta-representation both for analyzing and manipulating
shape families.

5.2 The Meta-representation

In this section, we describe the meta-representation at a high-level. In the subsequent
sections, we give details on its construction and how it can be used for different
applications.

Assumptions about the input. We assume that the input shapes are coming from
the same family and are pre-segmented and consistently labeled. That is, the label of
each shape segment is taken from a pre-defined set of labels that are relevant to the
particular family. We follow this assumption both for the training set that defines the
meta-representation and those shapes that are handled by the applications (which may
not be part of the training set). Several unsupervised algorithms exist to automatically
obtain such a labeled segmentation from an input set of shapes [38, 39, 54, 61, 69, 84,
105], as well as semi-supervised algorithms [95]. Note that most of these algorithms
automatically segment the shapes and assign generic labels. The user can then assign
semantic names to the labels.

68 Meta-representation of shape families

Next, each shape part is represented as an oriented bounding box, and we compute
a set of relations for the boxes. The relations are functions that capture geometric
configurations of the boxes and they can be unary, capturing the appearance of a
single box in relation to the entire shape, and binary, capturing the relative positioning
and appearance of a pair of boxes. The purpose of the relations is to capture any
consistency of geometric configuration between the parts across the input shapes.
The box representation and the relations that we compute are described in detail in
Section 5.3.

The meta-representation. The goal of the meta-representation is to capture the
essence of a specific family of shapes in terms of the geometric relationships between
their shape parts. The meta-representation can then be used to estimate whether the
parts of an unknown shape are in a typical arrangement for the family of shapes in
question. Thus, it is natural to encode the meta-representation as a probabilistic model
of the relations. In our work, we encode it as a probability density function (PDF)
independently for each relation, and associate the PDFs to the part labels. Then, given
parts with respective labels, we can query the PDFs to infer the probability of the part
configuration. Figure 5.1 shows an example.

More formally, given a set of labels L := {l1, . . . , lm}, and a superset of relations
R := {R1, . . . ,Rn}, divided into sets of unary relations U := {Ui} and binary relations
B := {B j}, the meta-representation encodes a PDF for label li and unary relation Uk:

PDFli,Uk(r) :R!R, (5.1)

and a PDF for every pair of labels {li, l j} and binary relation Bk:

PDFli,l j,Bk(r) :R!R. (5.2)

The collection of PDFs can be used to estimate the probability of a specific value r 2R
for any relation Rk. They can be learned from the observed relation values extracted
from a training set, as explained in Section 5.3, and used for different applications, as
discussed in Section 5.4.

Complexity of learning the model. Our main assumption when designing the meta-
representation is that the relations and labels are statistically independent, implying
that we learn a PDF separately for each relation and individual or pair of labels. Such
a simplified model is unable to capture any correlation that may exist between the
relations. For example, the angle between the front wing and fuselage of an aircraft
may be strongly tied to the angle between the fuselage and stabilizer of the aircraft,

5.3 Learning the Meta-representation 69

(a)! (b)! (c)!

Figure 5.2: Part abstraction: given the segmented and labeled shapes in (a), we compute the
convex hull of each part (b), and then use the hulls to extract an OBB for each part (c), while
also consistently ordering the OBB axes across different shapes.

characterizing the style of the aircraft as a fighter jet or a passenger airplane. However,
learning such a model involving correlations between all relations would require a great
amount of training data (on the order of thousands of shapes), since otherwise outliers
can easily bias the learning.

Nevertheless, our simplified model, which encodes only unary and pairwise relations
while ignoring their correlation, makes it easy to learn a more robust model from much
smaller training sets (only hundreds to dozens of shapes). It is also more space- and
time-efficient, allowing us to obtain a quick assessment of the likelihood of a part
configuration. However, this comes at a cost: the meta-representation can sometimes
lead to conflicts and contradictory constraints. We handle such errors by looking for
a solution where we recover correlation by consistency of the pairwise relations (see
Section 5.4). In summary, our design choice makes the representation and learning
simpler, albeit at the cost of a more involved framework for applications.

5.3 Learning the Meta-representation

The meta-representation is learned from a training set of shapes from the same family
S := {S1, . . . ,Sn}. As a pre-processing step, the shapes are all normalized to the unit
sphere, aligned using the algorithm presented in Chapter 3 and consistently segmented
using a state-of-the-art unsupervised co-segmentation method [84]. First, an abstracted
representation is computed for each shape part (see Figure 5.2). Next, a set of relations
is computed for every individual part and between every pair of parts (see Figure 5.3).
Finally, a statistical model that describes the relations is learned. We now discuss these
steps in detail.

70 Meta-representation of shape families

(a)! (b)! (c)! (e)!(d)!

Figure 5.3: (a) Given a pair of parts represented as two OBBs with their axes colored in red,
green, and blue, illustrated in 2D in (b), we compute a set of binary relations that describe their
relative arrangement. We consider: (c) SCALE, (d) ANGLE, and (e) CONTACT relations.

Part abstraction. Each input shape Si is pre-segmented into a set of parts P i :=
{Pi

1, . . . ,P
i
m}. This is done using the unsupervised co-segmentation method of Sidi et

al. [84], which performs spectral clustering of potential shape parts in a geometric
descriptor space. Any minor discrepancies in the segmentation are manually fixed.
Note that some shapes may not have all the parts (e.g., a chair may not have arms). We
represent each shape part Pi

j of a shape Si as an oriented bounding box (OBB). The
OBB for part Pi

j is described by its center ci
j, three normalized axes (ai

j,1,a
i
j,2,a

i
j,3), and

the extents (ei
j,1,e

i
j,2,e

i
j,3) of the axes. In order to extract an OBB for a part, we build a

set of candidate OBBs and select the one that better captures the symmetries of the part,
using the method described below. This method yields more meaningful results than
other approaches we experimented with, such as principal component analysis (PCA),
or selecting minimum volume boxes.

The construction works as follows 1: We first compute the convex hull of the part’s
vertices. Each of the faces of the convex hull defines a plane onto which we project
all the vertices of the hull. Next, we compute the 2D bounding box (with minimum
area) of the projected vertices [76], and extrude the bounding box by following the
direction of the plane’s normal until we reach the most distant vertex of the hull. This
defines a candidate OBB. Finally, we choose the candidate with the maximum number
of reflective symmetry planes.

To test whether any of the three planes defined by the center ci
j and the axes

(ai
j,1,a

i
j,2,a

i
j,3) possesses a reflective symmetry, we uniformly sample points on the

surface of the part and reflect them across the potential symmetry plane. We then
measure the distance of the reflected points to the surface. If a sufficient fraction (> 0.9)
of the reflected points is closer than a threshold (0.0001), we mark the corresponding

1Noa Fish was responsible for developing the OBB extraction method.

5.3 Learning the Meta-representation 71

plane as a reflective symmetry plane. If there is more than one box which maximizes
the number of symmetry planes, we break tie by selecting the one with the minimum
volume. If none of the candidate boxes have symmetry planes, the smallest volume box
is selected. Note also that, similar to [107], we detect parts with rotational symmetry
and mark them as special primitives with only one meaningful (rotation) axis.

Consistent axes ordering 2. To ensure that the axes of part boxes are consistently
ordered across different shapes, we assume that all the shapes have the same upright
orientation and face the same direction. We sort the OBB axes so that they best align
with the global shape axes. Specifically, the first axis is set as the one that best aligns
with the global x-axis, and the second axis as the one that best aligns with the y-axis and
is orthogonal to the first chosen axis. This procedure ensures a consistent ordering for
the majority of shapes. We manually override the automatic fix when the orientation is
not consistent. However, due to the regularity of part arrangements in the selected sets,
we only needed to fix the orientation for two shapes. An example of the part abstraction
and axes ordering is shown in Figure 5.2. The consistent ordering leads to a meaningful
representation of relations, as described next.

Inter-part symmetry 3. A shape may contain multiple parts with the same label
and in many cases these parts are reflectively symmetric. In order to detect reflective
symmetry between two parts with the same label, we employ a variant of the reflective
symmetry detection described above. Here, the candidate plane is simply that given by
the vector connecting the two centers of the parts along with the half-way point between
the centers.

Part relations. Given a shape Si, we compute a set of unary relations for every part
Pi

j and a set of binary relations between every pair of parts (Pi
j,P

i
k). We define a set of

relations to describe the geometric configuration of the shape parts. In our work, we
choose unary relations that capture mainly the extent of each part axis relative to the
scale of the entire shape:

EXTENTS(Pi
j) := {ei

j,t/di}, 8t = 1 . . .3, (5.3)

where di is the diagonal of the bounding box of shape Si.

2Noa Fish was responsible for developing the Consistent axes ordering method.
3Noa Fish was responsible for developing the Inter-part symmetry detection method.

72 Meta-representation of shape families

The binary relations capture relative rotations, translations and scales between parts
(illustrated in Figure 5.3):

SCALES(Pi
j,P

i
k) := {ei

j,t/ei
k,u}, 8t = 1 . . .3;u = 1 . . .3,

ANGLES(Pi
j,P

i
k) := {\(ai

j,t ,a
i
k,u)}, 8t = 1 . . .3;u = 1 . . .3,

CONTACTS(Pi
j,P

i
k) := {ti

j,1, t
i
j,2, t

i
j,3, t

i
k,1, t

i
k,2, t

i
k,3},

(5.4)

where ti
j,m = 2kv jkcos(\(v j,ai

j,m))/ei
j,m

with v j = pint(Pi
j,P

i
k)� ci

j.

Essentially, the contact relation between parts (Pi
j,P

i
k) is represented as the relative

placement of the intersection point between their two boxes (pint), in the scaled coor-
dinate system of Pi

j and of Pi
k. The intersection point, if it exists, is found by forming

a grid of points on the frame of each box and testing containment of each grid point
within the other box. We set pint to be the average of the set of points which are found
to be contained.

Note that the chosen set of relations is redundant and may over-constrain the
configuration between two boxes. The redundancy, however, makes estimation more
robust.

Probability density function. As outlined in Section 5.2, we collect the relations for
individual boxes and between pairs of boxes for all the shapes in the set, and then build
the PDFs for unary (PDFli,Rk) and binary (PDFli,l j,Rk) relations. Each PDF is effectively
represented by a 1D kernel density estimator (KDE) [85]. Kernel density estimation is
a standard non-parametric technique for estimating the PDF of a random variable, and
represents the density as a sum of kernels g, each centered at one training sample (one
relation value) xl 2 X :

KDE(r) :=
|X |

Â
l=1

g(r� xl,h)/|X |, (5.5)

where X is the entire set of training samples, and h is the bandwidth of the kernel. For
our model, we use the common Gaussian kernel:

g(t,h) := exp(�t2/2h2)/
p

2ph2 with t 2 (�•,•).

Selecting an appropriate kernel bandwidth is an important problem, illustrated in
Figure 5.4. If the chosen bandwidth is too small, as shown in (b), the distribution does
not generalize well, and several modes and gaps exist in the density function. If a large

5.3 Learning the Meta-representation 73

0!

2!

4!

6!

8!

1.4! 1.5! 1.6! 1.7! 1.8! 1.9! 1.4! 1.5! 1.6! 1.7! 1.8! 1.9! 1.4! 1.5! 1.6! 1.7! 1.8! 1.9!
0!

2!

4!

6!

0!

5!

10!

15!

20!

(a)! (b)! (c)!

Figure 5.4: Bandwidth selection to create the kernel density estimator (KDE): (a) Automatic
selection with our criterion (red bars are training values). (b) Small bandwidth: note how there
are many modes and gaps. (c) Large bandwidth: a single mode is created.

bandwidth is selected, as in (c), then important low probability regions are smoothed
out in the distribution. Finally, with the correct bandwidth, as in (a), a more meaningful
distribution with three large modes is created.

In our work, the bandwidth h is set based on a fixed scale parameter relative to the
range of data in the distribution:

h := s · (perc95X�perc5X) , (5.6)

where perc5 denotes the 5th percentile of X , and the scale s = 0.05 was determined
experimentally by observing common PDFs for our datasets. Using the percentiles
instead of the full data range makes the selection more robust by ignoring outliers. This
criterion works well in practice when compared to other well-known alternatives such
as cross-validation with the mean integrated squared error or rules of thumb [19]. These
criteria are more suitable for finding a cluster structure in the data, and tend to separate
the distribution into several modes. On the other hand, our criterion based on a scale
parameter allows us to select the appropriate level of detail so that the distributions
generalize well.

In general, note that the PDFs capture the commonality of the data in terms of the
frequency of values. In regions of the KDE with a large number of training samples, the
sum of Gaussians will create peaks with high function values, spread according to the
variance of the samples, while regions with only a few samples will have lower function
values. Thus, since the KDE represents a continuous density function, the area under
the curve corresponds to the probabilities. In practice, to extract a probability p(r) for a
specific value r, we integrate the function around a small e-interval of r:

p(r) :=
Z r+e

r�e
KDE(r) dr. (5.7)

74 Meta-representation of shape families

In our implementation, we set e = 0.01 of the range of values in the PDF. Note that the
probabilities cannot be easily used in an absolute sense, as they will be influenced by
the structure of modes in the distribution. However, they can be used in a comparative
manner, to compute the probability gain after changes to the relations.

5.4 Using the Meta-representation

In this section, we discuss different usages of the meta-representation. The represen-
tation, which summarizes the input shape collections, can be directly used for finding
interesting shape configurations in the collection, reshaping any input model guided
by the meta-representation, or for collectively editing all the input shapes by directly
manipulating the meta-representation.

5.4.1 Exploration of shape families

Given the set of PDFs that define the shape meta-representation, we developed a tool
for exploring interesting shape clusters closely tied to the configurations of certain parts.
The motivation behind this is that any relation’s PDF can exhibit multiple areas where
probability density is higher, which in turn means that several shapes posses similar
values for that relation. For example, by looking at the angle between the fuselage and
wing of an airplane, we might observe a cluster of planes with orthogonal wings, and a
cluster of planes with angled wings (see Figure 5.1).

In our exploration interface, the user starts by loading a family of shapes along with
their extracted meta-representation. The user then selects any shape as a guidance, and
picks one or two shape parts that she wants to use for exploring configurations inside
the shape family. Then, any of the unary and binary relations can be selected, and the
corresponding PDF can be inspected. Clicking anywhere on the PDF causes the set
of loaded shapes to be sorted according to their distance from the clicked value. Then
the user can browse through the nearest shapes around the clicked value, in increasing
distance. This immediately defines an ordering of the shapes that allows the user to
explore the shapes which are most similar in terms of exhibiting that specified value for
the relation and the parts in question (see Figure 5.5).

5.4.2 Guided shape editing

Editing a shape can be a difficult task as various geometric and semantic aspects of
the shape need to be considered to ensure a valid result. We take advantage of the

5.4 Using the Meta-representation 75

Extent of the chair legs in relation to the entire shape! Scale difference between width of back and seat!

D
en

si
ty
!

D
en

si
ty
!

0

1

2

3

4

0.4! 0.6! 0.8! 1.2!1 1.4! 1.6! 0.6!
0

2

4

6

8

0.8! 1 1.2! 1.4!

(a)! (b)!

Figure 5.5: The meta-representation enables the exploration of shape repositories: when
clicking on different locations of the distributions, the exploration tool presents models with the
selected relation values. (a) shows a unary relation for the blue parts, while (b) shows a binary
relation between the green and blue parts. The shapes are ordered according to an increase of
the selected relations values (black dots). Note that the 3rd and 4th chair both correspond to the
highest peak. The red bars are all the training samples used to build the distributions.

meta-representation as a facilitator for this task, and use it as a guidance tool when
editing shapes, to create a shape where the part configuration is similar to that observed
in the shape family.

We propose an interactive shape editing tool where a user can manipulate the parts
of a shape to create a variation of that shape. The user can scale, rotate, and translate
one or more parts of the shape. Once an editing action has been carried out, the tool
consults the meta-representation to restore the validity of the deformed shape. We can
think of the user edit as taking the shape to a certain point in the space of all relations
(i.e., points on the different PDF curves), which is associated with a probability given
by the meta-representation. Next, our goal is to achieve a part arrangement so that the
shape parts move to a (nearby) configuration with higher probability, corresponding to
a valid shape. In this process, we constrain the deformation to take the shape to the
closest valid state, so that the current part configuration is preserved as much as possible.
We first formulate the problem using the meta-representation, and then propose an
optimization to enable interactive applications.

Guided editing formulation. We pose the problem of taking an edited shape to a
valid state as an optimization where we seek to increase the probability of the part
configurations. This can be accomplished by modifying the part configurations so
that the probability of their relations is locally maximized. Thus, assuming that the

76 Meta-representation of shape families

configuration of the shape parts P is described by a matrix C with normalized entries,
we can pose the deformation goal as

Def(P) := argmax
C

Obj(C,P), (5.8)

where the objective function is given by

Obj(C,P) := exp(�lkC�C0k)+’
8Pi

pPi(Ci)⇥

’
8{Pi,Pj}

p{Pi,Pj}(Ci,Cj).
(5.9)

Here, C0 denotes the initial configuration of the parts, Ci is the entry of C corresponding
to the configuration of part Pi (i.e. it is the row of C that contains the center, three axes
and extents of these axes for the OBB describing part Pi), pPi is the unary probability of
part Pi, given by

pPi(Ci) = ’
k

pli,Uk(fUk(Ci)), (5.10)

and p{Pi,Pj} is the pairwise probability of parts Pi and Pj:

p{Pi,Pj}(Ci,Cj) = ’
k

pli,l j,Bk(fBk(Ci,Cj)), (5.11)

where li and l j are the labels of Pi and Pj, respectively, pli,Uk is the probability according
to Equation (5.7) applied on PDFli,Uk , pli,l j,Bk is the probability from PDFli,l j,Bk , fUk is a
function that computes the value of relation Uk according to the configuration Ci of part
Pi, and similarly fBk is a function that computes the value of relation Bk according to
the configurations Ci and Cj of parts Pi and Pj. We used a scale factor l = 0.1.

Thus, the first term of the objective function ensures that the solution does not deviate
far from the initial part configuration, while the second term captures the probability of
the entire part configuration as a combination of probabilities for individual parts and
pairs of parts, computed according to the meta-representation. We now describe how to
find such a solution.

Global optimization. We can directly search for a solution to the objective function
in (5.9) with a non-linear optimizer, such as the BFGS quasi-Newton method. Note that
the representation for the part configurations in the objective function is independent
of the relation set. The relations R are designed to capture the properties that the
configuration should satisfy to ensure shape validity, while the configurations C give
the actual part positioning. In our implementation, we encode each Ci in terms of the

5.4 Using the Meta-representation 77

position of the OBB center, the scales of its three main axes, and three Euler angles that
describe the rotation of the OBB. Thus, the optimizer can directly search for the part
configurations that satisfy the objective function.

However, this problem is a non-linear optimization of size |C|, which can take a
considerable amount of time to solve when the input shapes consist of several parts. For
example it would take several minutes for a chair with four legs, a seat and a back, as C
would be a 6⇥15 matrix). Since our goal is an interactive tool, we propose a heuristic
solution to speed up the computation of this objective, which we describe next.

Progressive solution. We break the global problem into a series of local optimization
steps. In each step, we pick one part P? and solve for its position according to a set
of parts that have already been fixed. Next, P? is added to the set of fixed parts, and
we continue with the remaining part(s). We first describe how to determine a good
propagation order (i.e., which part to fix next), and then how to position (i.e., fix) the
selected part.

Determining a propagation order: Given a set of fixed parts F := {P1, . . . ,Pm}, our
goal is to select part P? from the set of remaining parts M := {Pm+1, . . . ,Pn} that still
need to be moved to a fixed position. For each pair of parts (Pk,Pl) with Pk 2F ,Pl 2M ,
let Bi

c(Pk,Pl) be the current value of relation Bi between parts Pk and Pl , and Bi
opt(Pk,Pl)

its value after searching for a higher probability state of Pl according to the fixed part Pk.
Let, p(Bi

c(Pk,Pl)) and p(Bi
opt(Pk,Pl)) be the corresponding probabilities. We define

the probability gain as,

PG[Bi(Pk,Pl)] := d · [p(Bi
opt(Pk,Pl))� p(Bi

c(Pk,Pl))] (5.12)

where,
d = |Bi

opt(Pk,Pl)�Bi
c(Pk,Pl)|/Ri(k, l),

Ri(k, l) = max
c

{Bi
c(Pk,Pl)}�min

c
{Bi

c(Pk,Pl)}.

We select the part with the maximum gain as the part to be fixed next, i.e. we choose,
P? argmaxl,i PG[Bi(Pk,Pl)].

Given a relation value Bi
c(Pk,Pl), we follow the ascending gradient direction from

this value to a local maximizer in the distribution, according to the PDF corresponding
to Bi. This provides a target value Bi

opt(Pk,Pl). Note that if Bi
c(Pk,Pl) happens to be in

a very low probability region, we jump to the closest mode of significant probability.
We also bypass modes that have a probability that is lower than a threshold (0.01 in our
experiments). Figure 5.1 shows examples of such movements.

78 Meta-representation of shape families

Solving for a part position: We now position the selected part P? given a set
of already fixed parts F . One option is to directly use a modified formulation of
Equation (5.8) wherein configuration C only considers the parts in F and P?; and only
relations involving (P?,Pk) for all Pk 2F are considered.

However, in practice, we found an approximate method to be much faster and
more suitable for interaction. In this approximate method, each of the fixed parts
independently suggests a new part position for P?; these positions are then combined
together for the final position. Specifically, each part Pk 2F proposes a position P?

k
based on the relations {Bi(Pk,P?)}. For an even smoother interactive experience, we
also experimented with defining the influence of a fixed part based on its adjacency. In
this setting, we only consider suggestions for P? given by its neighboring parts. We
found this approach to be approximately three times faster with little to no difference
in the resulting configuration. Since the relations that we consider over-constrain the
position of the part, for each part Pk 2 F , we sort the relations according to their
probability gain and select the subset of relations Bk that both maximizes the gain and
determines a unique position for P?

k . This subset also determines a confidence weight
wk Â j2Bk PG[B j(Pk,P?)] for this proposed position. The final position for P? is then
taken as the weighted average of the candidates P?

k .

Inter-part symmetry handling. Inter-part symmetries within a shape, which are
detected in the analysis phase (see Section 5.3), are utilized in our heuristic with the pur-
pose of symmetry preservation, since this is a natural constraint for man-made objects.
First, if the user deforms a part that has symmetric counterparts, the system begins by
applying a similar deformation to all its symmetric parts, so that they are consistently
configured prior to optimization. Next, throughout the optimization, symmetric parts
are deformed as a group: only a single part of the group is directly deformed and then
the deformation for the remaining parts is automatically inferred from that. Note that
same-label parts that are not symmetric also exhibit a measure of consistency in their
configurations, but to a lesser extent than symmetric parts. Therefore, such parts are
also handled as a group, i.e., their configurations are determined by the same set of
fixed parts, although they are optimized separately.

Comparison to global optimization. In comparison with an expensive global ap-
proach, we still achieve two goals. First, we maximize the probability of the relations
by moving each part to increase the overall probability gain. Although we do not
ensure a global maximum, we reach a local maximum of relation probabilities. This is
demonstrated by the following experiment: if we apply the global optimization to the
result of the progressive solution in Figure 5.7(b), the part configuration does not change

5.4 Using the Meta-representation 79

significantly, showing that the probabilities are indeed located at a local maximum.
Second, by starting the progressive solution from the user edit and following a local
optimizer path, we ensure that we do not deviate much from the initial solution as only
deformations that increase the overall probability are allowed.

In terms of complexity, one step of the propagation is much faster to solve (in the
order of seconds), as there is only a single part to be optimized at each step. Thus,
the aggregated time of all propagation steps is also much less than the time needed
to perform the global optimization, making this heuristic well suited to an interactive
tool. For example, the first deformation in Figure 5.7(b) takes 0.33 seconds with the
progressive solution, while the global optimization takes 1.8 hours.

Comparison to iterative optimization. Note that an iterative solution to the opti-
mization is also possible. In this case there are no fixed parts, and part positions are
solved for according to the propagation order in each iteration, until convergence. Such
a solution is similar to the ShapeUp framework by Bouaziz et al. [11], which iterates
between projecting the shape vertices onto the user constraints, and optimizing their
positions in a linear fashion, until convergence. We opted for a non-iterative solution,
as it is faster since there are no iterations involved. It is also simpler and more stable
as there are no convergence concerns. It is possible for an iterative scheme to get a
better solution than a single step method, however, in practise we found the difference
to be negligible in most cases. The ShapeUp system also operates at a lower level of
abstraction, as user constraints are applied at the level of shape vertices. Our method
works at the level of abstract primitives representing each shape part. The deformation
implied by our solution, i.e. the translation, scaling and rotation applied in order to map
the original part primitive to the optimized part primitive, is applied to the enclosed part
geometry to get the final optimized model after the user edit.

5.4.3 Coupled shape editing

Editing multiple shapes at the same time in a coupled manner can be faster and more
productive in situations where a modeler would like to perform the same type of edits to
a family of shapes. The meta-representation directly allows such coupled guided edits
through the relation PDFs. We have developed a coupled shape editing tool to illustrate
this concept.

In the coupled editing tool, the user starts by loading a family of shapes, as before,
pre-analyzed to extract the meta-representation. By selecting one or two parts from any
shape in the family, and specifying a relation, the user can view the corresponding PDF.
Recall that the PDF is built from a set of training samples of relation values coming

80 Meta-representation of shape families

from all the shapes in the family. The user can then edit the curve using a range of
different manipulations. She can click anywhere on the curve to select a point, and then
scale the training samples to the left and to the right of the selected point. This can be
used to set all training samples for that relation to a specific value that is desired (see
Figure 5.10 for an example where the angle between chair back and chair seat is set to a
very small range of around 90 degrees).

This manipulation of the curve immediately defines a mapping between the initial
training sample values and their newly specified values. We then iterate over all the
shapes and set the value for that specified relation to the new value coming from the
mapping induced by the new curve. This is done by rotating, translating and scaling
the parts in question so that the value for the specified relation between them is set to
the new value. This edit can break the relation between the rest of the parts for each
shape, therefore we use the original contact relations to rotate and translate these parts
until the contact relations are restored. Finally, since the meta-representation is no
longer valid after the training shapes have been edited, in the last step we recompute the
meta-representation based on the new part configurations for each shape in the family.

5.5 Evaluation

In this section, we describe the experiments performed to evaluate the meta-representation.
We designed three tools that illustrate the different areas where the meta-representation
may be of use.

For all our experiments, we used four datasets of man-made shapes. The largest
dataset contains around 400 chairs, taken from the COSEG benchmark database [95].
We also used a smaller dataset containing around 40 chairs, and two datasets with
around 20 bicycles and 20 planes [92]. Smaller datasets were chosen to demonstrate
that even with a small number of training samples, the meta-representation can capture
important and useful relations between shape parts. All the datasets were preprocessed,
starting from segmentation and consistent labeling, to establish correspondence between
parts, abstraction of shape parts into boxes, consistent ordering of box axes, building
the set of relations, and learning the model PDFs.

5.5.1 Exploration of shape families

Figures 5.1 and 5.5 show examples of exploration enabled by the meta-representation.
In Figure 5.1, the user selected the wings and fuselage of airplanes, and navigated
through the relations until selecting the angle between the first axis of the two parts.

5.5 Evaluation 81

Figure 5.6: Top row: representative abstract configurations automatically obtained from the
meta-representations of families of chairs, bikes, tables, and planes. Bottom row: corresponding
representative shapes synthesized for the abstract configurations.

Note that these axes are consistently ordered. The distribution shows that there are
two main modes in the set: one mode located at around 0 radians (corresponding to
wings orthogonal to the fuselage) and another mode centered at 0.7 radians (wings bent
by 40 degrees). By clicking on locations of the two modes, the system presents the
corresponding shapes. In Figure 5.5 (a), the user selected a unary relation for the chair
legs, corresponding to the extent of the vertical axis of the legs in relation to the size
of the entire shape. With the tool, the user can identify the three modes that exist and
display a few representative shapes. In (b), the scale difference between the second axis
of the seat and back is selected (corresponding to the chair width). We observe that
from the point of view of this relation, the chairs exhibit larger variation. The user can
form an understanding of the groups by inspecting a few shapes for each mode.

These examples show an advantage of the per-relation exploration: instead of pre-
selecting a single relation and clustering the shapes into a few representative groups,
the user is able to explore the set according to the relation that is relevant for a given
task (e.g., finding bar chairs with tall legs or jet airplanes with bent wings). This allows
the user to learn about the different shape variations that exist in the set (regarding the
specific relation selected), as well as how prevalent they are (as implied by the shape
of the distribution). Additionally, nearest neighbors can be retrieved according to a
specific relation, providing models in similar geometric configurations.

Representative abstraction: The meta-representation can also be utilized to enhance
exploration by automatically creating a representative box configuration and shape for

82 Meta-representation of shape families

(a)!

(c)!

(b)!

(i)!

(e)! (f)! (g)!

(h)!

(d)!

(j)!

(k)! (l)! (m)!

(n)! (o)!

(p)! (q)!

Figure 5.7: Gallery of editing results guided by the meta-representation: each example shows
the original shape and one or more edits where the user rotated or scaled one part. The shapes
optimized according to the meta-representation are shown after the arrows.

a given shape family. The abstraction is created as follows: given a set of shapes, we
first analyze the existence and number of instances of each semantic part. Since each
shape differs in this aspect, we only retain semantic parts that exist in s or more of the
shapes (we use s = 0.5). The number of instances of a semantic part is based on what
is most common across the set (e.g., common number of chair legs). We determine
the size properties of each part by querying the PDF of each extent relation for the
highest probability mode. In order to infer the relative rotations between the parts, we
employ an approach similar to the propagation method described in Section 5.4.2. Here,
however, as we aim to create an abstraction that is most indicative of the set, we consider
pure probability in place of probability gain. Using the PDFs for all angle relations, we
compute the highest probability mode for each relation, and each pair of parts, and use

5.5 Evaluation 83

Figure 5.8: Correcting a chair with a severe deformation using the meta-representation.

it to guide the propagation. Finally, we connect the parts based on an example shape for
which the contact relations are maximized. This provides a configuration of boxes that
represents a family of shapes. In order to create representative shapes, we find the parts
that are closest in size and configuration to each box in the abstraction and combine
them to form a shape, while deforming the parts to fit the abstract configuration. See
Figure 5.6 for representative abstractions and shapes computed for four sets. Note that
the representative abstraction is derived directly from the meta-representation and does
not assume any seeding model.

5.5.2 Guided shape editing

Figure 5.7 displays results of guided editing obtained with the progressive solution
described in Section 5.4.2, where the user deformed selected parts of the shapes and the
guided editing tool then returned shapes optimized according to the meta-representation.
Note that the examples in (a), (c), (e), (g), (h), and (i), were optimized with the meta-
representation extracted from the small set of chairs, while the other edits were guided
by the large set of 400 chairs.

We identify two improvements conveyed by the progressive optimization in these
examples. First, if the configuration of parts created by the user is less common for the
set, the system deforms the shape to a configuration with higher probability. This can
be seen in the first example in (b), where although the user bent the back of the chair,
the system rotated it back to a vertical position, as not many chairs have that specific
inclined angle in the set. On the other hand, if the back is deformed to a larger angle,
the system keeps the shape in this state, as there are more chairs with this configuration
(also see Figure 5.1). Secondly, although the edited part becomes disconnected from

84 Meta-representation of shape families

Angle between axis 1 of back and axis 2 of leg! Angle between axis 2 of back and axis 2 of leg! Scale difference between width of seat and leg!

D
en

si
ty
!

D
en

si
ty
!

D
en

si
ty
!

0

2

4

6

0

2

4

6

0

5

10!

15!

1.5! 2 2.5! 3 1.5!10 0.5! 0.4! 0.6! 0.8! 1 1.2! 1.4! 1.6! 1.8!

Figure 5.9: Guided editing tool. Bottom: a sequence of three edits. Top: three relations and the
values corresponding to the parts involved in the edits are shown before and after optimization
(blue is the first edit, red is the second, and green is the third).

the rest of the shape after the user edit, it is again connected to the shape as enforced by
the contact point relations.

More importantly, if the editing constraints were derived from a single shape, we
could incorrectly assume certain semantics, e.g., that the back and seat or wing and
fuselage in Figure 5.1 need to remain orthogonal. In this regard, the meta-representation
adds guidance with flexibility, by allowing more deformation freedom where the family
supports it, or constraining the shape if it does not. Figure 5.8 further exemplifies this
fact: although a chair is severely deformed, having lost its defining characteristics, the
guided editing system is able to correct it, showing the effect of the chair prior that is
present in the meta-representation.

Figure 5.9 shows a sequence of three editing operations applied on the same shape
to illustrate the function of the guided editing tool. We can see how after each edit,
multiple relation values are taken to lower probability states. These are then restored to
higher probability states by the optimization.

5.5.3 Coupled shape editing

An example of coupled editing is shown in Figure 5.10. The user directly manipulates
the distribution of angles between the first axes of chair seat and legs, to obtain a
simplified curve with less variation in the angles. Next, all the shapes are automatically
deformed to conform the set to the new distribution. Thus, all the inclined legs become
straight (forming an angle of 90 degrees with the seat), as angles that deviate too much
from 90 degrees have a probability of zero in the new distribution.

As discussed in Section 5.4.3, this is a useful application when the goal is to
collectively edit a set so that it satisfies specific geometric configurations. The overall

5.5 Evaluation 85

Angle between the main axes of seats and legs! Angle between the main axes of seats and legs!

D
en

si
ty
!

D
en

si
ty
!

0

2

4

6

1
0

2

4

6

21.5! 1 21.5!

Figure 5.10: Coupled editing of a family of shapes obtained with the meta-representation: the
distribution on the left (angle in radians between the main axes of seats and legs) is directly
manipulated by a user, who changes the curve to acquire the more compact profile on the
right. As a result, all the models in the set are automatically deformed to conform to the new
distribution (bottom row).

variation that exists in a relation can be reduced by manipulating the distributions, or
outlier models can be forced to conform to a specific range of values by removing their
data points from the PDFs. Thus, the distributions act as a higher-level representation
of the entire set, and the user is able to impact the geometry of several shapes by
manipulating this representation.

5.5.4 Discussion

In this Chapter we introduced a meta-representation to capture the essence of part
configurations in a family of shapes. This is accomplished with a system of distributions
of unary and binary relations of shape parts, which can then be used for applications such
as repository exploration, guided shape editing, and coupled editing of a set of shapes.
We addressed the shortcomings of the template-based model presented in Chapter 4,
by using a probabilistic model of shape part relations, abstracted through oriented
bounding boxes, instead of the simpler axis-aligned bounding box parameterization
used in Chapter 4. Nevertheless, there are some limitations and room for future work
on this meta-representation.

With the system of distributions learned from a family of shapes, we effectively
model shape validity in terms of probability, where the probabilities are derived from the
frequency of part configurations in the set. This is appropriate for an exploration tool,
as we are interested in exploring common styles in the set. The distributions can also
capture some of the shape semantics if the set contains a representative sample of shapes

86 Meta-representation of shape families

(a) (b)

Figure 5.11: Inconsistencies in the alignment of different OBBs.

from the family. In this context, there are some directions for introducing additional
semantics into the representation. One possibility is to allow the user to add forbidden
regions to the distributions, implying that part configurations with the corresponding
relation values should not exist in the set, potentially allowing asymmetric distributions.
In this way, the user can provide additional semantic information, such as disallowing
a chair back to bend forward, but still allowing it to bend backwards. Ultimately, the
user could also design the distributions by manually drawing the PDFs to imply the
semantics of the set.

Regarding our model, we introduced a criterion for selecting a satisfactory band-
width for each distribution, however, user supervision could also help in determining
the optimal bandwidth, yielding a more accurate system of distributions. Moreover, if
a shape possesses |P| parts, the representation consists of

�|P|
2
�
⇥ |R| curves. Thus,

another direction for future work is to design a more compact representation. This has
to be balanced with the fact that, as we are able to obtain more data, we would also seek
to learn the correlations of part relations, possibly requiring a more complex model.

Furthermore, although the OBB construction described in Section 5.3 is stable
across many shapes, it does not always yield optimal boxes, leading to inconsistent
results in the presence of ambiguities. For example, the legs of the swivel chairs in
Figure 5.11(a) cannot be oriented consistently based only on their symmetries, while
the boxes computed for the landing gears in Figure 5.11(b) are also incorrectly aligned
due to the geometry of the parts’ convex hulls. One possibility for circumventing these
problems could be to incorporate an algorithm that learns to predict the consistent box
orientation from the orientation of other parts in the same shape. Another alternative is
to replace the part primitives with other types of proxies, such as curves or sheets that
do not need alignment.

5.5 Evaluation 87

In terms of our implementation choices, different sets of relations can be used
with the meta-representation, as we experimented only with one specific set. For shape
editing, currently the ordering in which parts are deformed is determined by a probability
gain criterion, not by a semantic ordering of parts. For example, the stabilizer of a plane
can have more impact on wings than the fuselage. Thus, more sophisticated criteria
can be developed to determine such an ordering, and this can have a significant effect
on the resulting optimized shapes. Also, the unary relations are currently not taken
into account when optimizing the shapes with the progressive solution, as they are not
derived from the positions of other parts. Thus, these may also be added to the heuristic
solution. Finally, one more direction for future work is to use the meta-representation
directly for shape synthesis. This could be accomplished by appropriately introducing
variation in the relation values of the shapes, according to an existing set of distributions
or user-designed PDFs.

Chapter 6

Conclusions

The continuous increase in the size of shape collections presents opportunities as well
as challenges for geometry processing research in the near future. In this thesis we have
presented a number of contributions in discovering and modelling shape structure using
data from large, unorganized and diverse shape collections. We have also demonstrated
how these contributions impact different areas of geometry processing such as shape
co-alignment, organization and exploration of shape collections, automatic synthesis of
3D content, and intelligent editing and deformation of shapes.

6.1 Summary

We now summarize the contributions presented in this thesis and their impact to different
challenges in geometry processing.

First, in order to tackle the first challenge in deriving structure from a shape col-
lection, we devised a fast algorithm for rigidly co-aligning a set of shapes. Our key
observation was that only a small set of rotations are responsible for erroneous shape
alignments, in contrast to state-of-the-art methods that uniformly sample the rotation
space in search of the best alignments. Based on this observation we used rotational
self-symmetries of shapes to pinpoint these rotations, resulting in an algorithm that is
both several times faster than such uniform sampling methods, as well as more accurate
on average. In order to test our hypothesis, namely that we can reduce the complexity
of shape co-alignment without sacrificing accuracy using rotational self-symmetries,
we evaluated our algorithm on a large benchmark with ten different shape families. We
compared our method to a state-of-the-art method by Huang et al. [41] and we reported
2-16⇥ speed improvement and accuracy that is comparable on average or even superior
for certain shape families.

90 Conclusions

Second, as a contribution towards modelling shape structure, we presented an
analysis approach that extracts a template-based hierarchical parameterization for a
collection of shapes. Our parameterization is based on positions and sizes of template
boxes that are fit to each shape. We demonstrated how the parameterization can be used
to enable intuitive exploration of the collection and provide a high-level overview of the
underlying shape space. Perhaps more importantly, the parameterization can be used
for interactive synthesis of novel shape variations, just by clicking in the empty space.

In order to test our hypothesis, namely that by modelling shape structure in terms
of coarse shape part positions and sizes we can explore a collection and synthesize
diverse novel shapes in a fast manner, we evaluated our method through a large user
study on four different shape families. We reported the plausibility and diversity of the
synthesized results as judged by human participants, compared to results achieved with
the state-of-the-art method of Chaudhuri et al. [15]. Our user study indicates that our
proposed explorative synthesis interface, can be used by casual users to quickly explore
large shape collections, understand the variations inside these collections and create
more diverse shapes than the original datasets, while sacrificing some plausibility in
the process (plausibility will drastically improve by enforcing contacts at the level of
geometry as we explained). We also compared our method to a state-of-the-art shape
interpolation method by Jain et al. [46], and demonstrated an example where our method
creates more plausible shapes. This is because our method deforms shape parts to fit the
interpolated shapes while Jain et al.’s [46] method does apply any deformations. Finally,
we evaluated the quality of our shape space embedding via a reachability experiment,
where we reported that our parameterization is not affected by excluding random shapes.

Lastly, we introduced a model of structure to capture the relations of part configura-
tions in a family of shapes. We call this model, a meta-representation, as it characterizes
a family of shapes in terms of the relations of its shapes’ parts. The meta-representation
is a system of geometric distributions of unary and binary relations of shape parts,
including scale, rotation and translation, which are learned from sets of co-segmented
shapes with known correspondence.

In order to test our hypothesis, namely that probabilistically modelling shape struc-
ture using shape part relations can be used to summarize shape families, we evaluated
our meta-representation on several shape families. In particular, we showed three sce-
narios where the meta-representation can be exploited to accelerate shape processing; in
exploring a shape repository, to locate important shape configurations; in guided editing
of a shape, to preserve its familial traits; and in coupled editing of a set of shapes, to
collectively deform them via directly editing the geometric distributions.

6.2 Future Work 91

6.2 Future Work

Discovering and modelling shape structure from large shape collections poses a number
of research challenges, some of which we have tackled in this thesis, while others can
be the focus of future attempts.

Starting from the goal of deriving structure from shape collections, we observe that
there are still open questions. In this thesis, we presented a method for co-aligning
shapes that have a common up-vector. Although this is reasonable assumption for most
online shape repositories, there are still cases where this assumption can be broken. The
next logical step should therefore tackle this, with an algorithm that can efficiently co-
align a set of shapes, under no up-vector assumptions, bearing in mind that as datasets
keep growing, efficiency will become more essential. Combining our method and that
of Fu et al. [29] for upright orientation of man-made shapes can be one solution to this.
Extending our method to parameterize rotations in a 2D space, with a more complicated
search for autocorrelation minima might be another solution. Incorporating some
notion of semantics, or human supervision can possibly help in this search.

Co-segmentation and co-analysis methods in general do a good job for relatively
simple shapes with a small number of parts that can be approximated by primitive
shapes. However, they face problems with complex shapes composed of many small
parts that are not visibly protruding, for example motorcycles with complex engines.
We would like to have a method that can learn all possible different parts that exist in
a shape family, no matter how small or inconspicuous they are. This can be a model
describing interesting variations of shapes in terms of topology and geometry rather
than geometry alone. Collecting statistics from such a model can also help us reason
about shape functionality, by studying why shapes contain certain parts or why shapes
lack some parts.

Regarding models of structure, as demonstrated by our work in Chapters 4 and 5 it
is not trivial to evaluate success of a certain model or a specific method for modelling
structure. Depending on the application, a user study with human participants is an
appropriate way to judge the visual quality of the results, but there is still a need for more
quantitative comparisons, in the same spirit as the alignment benchmark presented in
Chapter 3 to evaluate alignment efficiency and accuracy. One possible route to explore
would be the development of a benchmark for evaluating shape deformation based on
ground truth expected results. This would allow us to compare several competing shape
editing or shape synthesis methods similar to the ones presented in this thesis. Selecting

92 Conclusions

a metric appropriate for the evaluation of such methods remains the most difficult part
in this process.

Structure can be used for a variety of shape analysis and processing tasks beyond
the ones described in this thesis. An intriguing area which has emerged only recently
is that of shape style, which is fundamentally connected to functionality. We are
interested in studying what separates style from functionality, and what is a way to
extract style from a shape. Whether subtracting functionality from a shape will give us
its style is largely unknown, and even in this case, the goal to extract style is far from
achieved, despite recent effort in this area. Structure can help answer such questions
as we observe more and more samples of the same shape family. Machine learning
techniques for extracting features, locating what features can differentiate style and
classifying shapes into styles can be a first attempt at the problem. In this thesis we
have focused on smaller scale man-made shapes, excluding buildings. Style however is
more well-defined for buildings, in terms of architectural style rules connected to the
story, age and functionality of each building. It would therefore be interesting to extend
the scope of our current work to buildings, and study problems such as unsupervised
clustering of buildings into architectural styles, extraction of building style features, and
reconstruction of buildings from point clouds or photographs based on style priors.

Shape functionality is also a very promising area on its own. The ability to reason
about shape functionality has been actively sought over recent years. Access to a
dictionary of functional shape parts can allow novel approaches for computer automated
design, where the designer would be instructing the system what is the intended function
for an object, and the details of what parts to choose and how to put them together
would be worked out automatically. Using motion captured human data along with very
simple primitive parts can be a first step towards defining the expected functionality and
exploring the space of possible designs. Reasoning about functionality of shapes can be
of great help in scene understanding and other fundamental computer vision tasks.

Finally, one very exciting avenue of future work would be the joint analysis of image
and shape collections. Image collections have a large body of research, while shape
collections are only recently being considered as a research topic. It is thus reasonable
to expect that the analysis of shape collections can benefit from already established
methods, practises and data from huge image collections. For instance, searching for 3D
models might possibly benefit from 2D image search, which has achieved high levels of
accuracy by now. What is more interesting, is if the opposite is also true, i.e. whether
data from shape collections can help provide solutions to challenges faced in image
collections. For example, 3D data might enable novel exploration interfaces for images,

6.2 Future Work 93

based on queries that are impossible with 2D information, e.g. show images of an
object from a certain viewpoint. The challenges in allowing such a joint analysis of two
different domains, linking 2D images to 3D shapes, are open to further investigation.
At the same time, it would be interesting to study how shape materials and texture can
assist in solving existing geometry processing problems. The texture of a model for
example, if present, can provide valuable cues towards aligning a set of shapes, that are
currently not taken into account, as explained in Section 3.4.8.

Our long term goal is to use data from large shape collections to develop novel
representations and shape analysis algorithms for understanding, learning and using
shape structure. In this effort, we would like to extend our current focus from man-made
shapes to bigger-scale structures such as buildings, and more interestingly, to organic
shapes that were not built by man. Eventually, the plan is to complete a framework for
discovering and modelling structure of any type of object, that can be used to address
challenges in all areas of geometry processing.

References

[1] ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. The Space of Human Body
Shapes: Reconstruction and Parameterization from Range Scans. ACM Transac-
tions on Graphics (SIGGRAPH) 22, 3 (2003), 587–594.

[2] AVERKIOU, M., KIM, V. G., AND MITRA, N. J. Autocorrelation Descriptor
for Efficient Co-alignment of 3D Model Collections. Computer Graphics Forum
34, 8 (2015). In Press.

[3] AVERKIOU, M., KIM, V. G., AND MITRA, N. J. Autocorrelation Descriptor for
Efficient Co-alignment of 3D Model Collections - Project Website, 2015. [http:
//geometry.cs.ucl.ac.uk/projects/2015/coalignment/; accessed 21-July-2015].

[4] AVERKIOU, M., KIM, V. G., ZHENG, Y., AND MITRA, N. J. ShapeSynth:
Parameterizing Model Collections for Coupled Shape Exploration and Synthesis.
Computer Graphics Forum (Eurographics) 33, 2 (2014), 125–134.

[5] BALLARD, D. H. Generalizing the Hough transform to detect arbitrary shapes.
Pattern Recognition 13, 2 (1981), 111–122.

[6] BESL, P. J., AND MCKAY, N. D. A Method for Registration of 3-D Shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 2 (1992),
239–256.

[7] BOKELOH, M., WAND, M., KOLTUN, V., AND SEIDEL, H.-P. Pattern-aware
Shape Deformation Using Sliding Dockers. ACM Transactions on Graphics
(SIGGRAPH Asia) 30 (2011), 123:1–123:10.

[8] BOKELOH, M., WAND, M., AND SEIDEL, H.-P. A Connection between Partial
Symmetry and Inverse Procedural Modeling. ACM Transactions on Graphics
(SIGGRAPH) 29 (2010), 104:1–104:10.

[9] BOTSCH, M., KOBBELT, L., PAULY, M., ALLIEZ, P., AND LEVY, B. Polygon
Mesh Processing. Taylor & Francis, 2010.

[10] BOTSCH, M., AND SORKINE, O. On Linear Variational Surface Deformation
Methods. IEEE Transactions on Visualization and Computer Graphics 14, 1
(2008), 213–230.

[11] BOUAZIZ, S., DEUSS, M., SCHWARTZBURG, Y., WEISE, T., AND PAULY, M.
Shape-Up: Shaping Discrete Geometry with Projections. Computer Graphics
Forum (Symposium on Geometry Processing) 31, 5 (2012), 1657–1667.

http://geometry.cs.ucl.ac.uk/projects/2015/coalignment/
http://geometry.cs.ucl.ac.uk/projects/2015/coalignment/

96 References

[12] BROWN, B., AND RUSINKIEWICZ, S. Global Non-Rigid Alignment of 3D
Scans. ACM Transactions on Graphics (SIGGRAPH) 26, 3 (2007).

[13] CHAOUCH, M., AND VERROUST-BLONDET, A. Alignment of 3D models.
Graphical Models 71, 2 (2009), 63–76.

[14] CHAUDHURI, S., KALOGERAKIS, E., GIGUERE, S., AND FUNKHOUSER, T.
AttribIt: Content Creation with Semantic Attributes. In Proceedings of ACM
Symposium on User Interface Software and Technology (2013), pp. 193–202.

[15] CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L., AND KOLTUN, V. Prob-
abilistic Reasoning for Assembly-Based 3D Modeling. ACM Transactions on
Graphics (SIGGRAPH) 30, 4 (2011), 35:1–35:10.

[16] CHAUDHURI, S., AND KOLTUN, V. Data-Driven Suggestions for Creativity
Support in 3D Modeling. ACM Transactions on Graphics (SIGGRAPH Asia) 29,
6 (2010), 183:1–183:10.

[17] CHEN, D.-Y., TIAN, X.-P., SHEN, Y.-T., AND OUHYOUNG, M. On Visual
Similarity Based 3D Model Retrieval. Computer Graphics Forum (Eurographics)
22, 3 (2003), 223–232.

[18] CHEN, Y., AND MEDIONI, G. Object Modelling by Registration of Multiple
Range Images. Image and Vision Computing 10, 3 (1992), 145–155.

[19] CHIU, S.-T. A Comparative Review of Bandwidth Selection for Kernel Density
Estimation. Statistica Sinica 6, 1 (1996), 129–145.

[20] COMANICIU, D., AND MEER, P. Mean Shift: A Robust Approach Toward
Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence 24, 5 (2002), 603–619.

[21] COQUILLART, S. Extended Free-form Deformation: A Sculpturing Tool for 3D
Geometric Modeling. In Proceedings of ACM SIGGRAPH (1990), pp. 187–196.

[22] DE SILVA, V., AND TENENBAUM, J. B. Sparse Multidimensional Scaling Using
Landmark Points. Tech. rep., Stanford University, 2004.

[23] EGGERT, D. W., LORUSSO, A., AND FISHER, R. B. Estimating 3-D rigid body
transformations: a comparison of four major algorithms. Machine Vision and
Applications 9, 5 (1997), 272–290.

[24] EITZ, M., RICHTER, R., BOUBEKEUR, T., HILDEBRAND, K., AND ALEXA,
M. Sketch-based Shape Retrieval. ACM Transactions on Graphics (SIGGRAPH)
31, 4 (2012), 31:1–31:10.

[25] ELAD, M., TAL, A., AND AR, S. Content based retrieval of VRML objects: an
iterative and interactive approach. In Proceedings of Eurographics Workshop on
Multimedia (2002), pp. 107–118.

References 97

[26] FISH*, N., AVERKIOU*, M., VAN KAICK, O., SORKINE-HORNUNG, O.,
COHEN-OR, D., AND MITRA, N. J. Meta-representation of Shape Families.
ACM Transactions on Graphics (SIGGRAPH) 33, 4 (2014), 34:1–34:11. *joint
1st authors.

[27] FISHER, M., AND HANRAHAN, P. Context-based Search for 3D Models. ACM
Transactions on Graphics (SIGGRAPH Asia) 29, 6 (2010), 182:1–182:10.

[28] FISHER, M., SAVVA, M., AND HANRAHAN, P. Characterizing Structural
Relationships in Scenes Using Graph Kernels. ACM Transactions on Graphics
(SIGGRAPH) 30, 4 (2011), 34:1–34:12.

[29] FU, H., COHEN-OR, D., DROR, G., AND SHEFFER, A. Upright Orientation of
Man-made Objects. ACM Transactions on Graphics (SIGGRAPH) 27, 3 (2008),
42:1–42:7.

[30] FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P., KIEFER, W., TAL,
A., RUSINKIEWICZ, S., AND DOBKIN, D. Modeling by Example. ACM
Transactions on Graphics (SIGGRAPH) 23, 3 (2004), 652–663.

[31] FUNKHOUSER, T., MIN, P., KAZHDAN, M., CHEN, J., HALDERMAN, A.,
DOBKIN, D., AND JACOBS, D. A Search Engine for 3D Models. ACM Transac-
tions on Graphics 22, 1 (2003), 83–105.

[32] GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D. iWIRES: An
Analyze-and-Edit Approach to Shape Manipulation. ACM Transactions on
Graphics (SIGGRAPH) 28, 3 (2009), 33:1–33:10.

[33] GELFAND, N., MITRA, N. J., GUIBAS, L. J., AND POTTMANN, H. Robust
Global Registration. In Proceedings of Symposium on Geometry Processing
(2005), pp. 197–206.

[34] GOLOVINSKIY, A., AND FUNKHOUSER, T. Consistent Segmentation of 3D
Models. Computers & Graphics 33, 3 (2009), 262–269.

[35] HABBECKE, M., AND KOBBELT, L. Linear Analysis of Nonlinear Constraints
for Interactive Geometric Modeling. Computer Graphics Forum (Eurographics)
31, 2 (2012), 641–650.

[36] HASSNER, T., ZELNIK-MANOR, L., LEIFMAN, G., AND BASRI, R. Minimal-
Cut Model Composition. In Proceedings of IEEE Shape Modelling International
(2005), pp. 72–81.

[37] HORN, B. K. P. Closed-form solution of absolute orientation using unit quater-
nions. Journal of the Optical Society of America A 4, 4 (1987), 629–642.

[38] HU, R., FAN, L., AND LIU, L. Co-Segmentation of 3D Shapes via Subspace
Clustering. Computer Graphics Forum (Symposium on Geometry Processing)
31, 5 (2012), 1703–1713.

[39] HUANG, Q., KOLTUN, V., AND GUIBAS, L. Joint Shape Segmentation with
Linear Programming. ACM Transactions on Graphics (SIGGRAPH Asia) 30, 6
(2011), 125:1–125:12.

98 References

[40] HUANG, Q.-X., ADAMS, B., WICKE, M., AND GUIBAS, L. J. Non-rigid
Registration Under Isometric Deformations. In Proceedings of Symposium on
Geometry Processing (2008), pp. 1449–1457.

[41] HUANG, Q.-X., SU, H., AND GUIBAS, L. Fine-grained Semi-supervised Label-
ing of Large Shape Collections. ACM Transactions on Graphics (SIGGRAPH
Asia) 32, 6 (2013), 190:1–190:10.

[42] HUANG, Q.-X., WANG, F., AND GUIBAS, L. Functional Map Networks
for Analyzing and Exploring Large Shape Collections. ACM Transactions on
Graphics (SIGGRAPH) 33, 4 (2014), 36:1–36:11.

[43] HUANG, Q.-X., ZHANG, G.-X., GAO, L., HU, S.-M., BUTSCHER, A., AND
GUIBAS, L. An Optimization Approach for Extracting and Encoding Consistent
Maps in a Shape Collection. ACM Transactions on Graphics (SIGGRAPH Asia)
31, 6 (2012), 167:1–167:11.

[44] HUANG, S.-S., SHAMIR, A., SHEN, C.-H., ZHANG, H., SHEFFER, A., HU,
S.-M., AND COHEN-OR, D. Qualitative Organization of Collections of Shapes
via Quartet Analysis. ACM Transactions on Graphics (SIGGRAPH) 32, 4 (2013),
71:1–71:10.

[45] HUBER, D. Automatic Three-dimensional Modeling from Reality. PhD thesis,
Robotics Institute, 2004.

[46] JAIN, A., THORMÄHLEN, T., RITSCHEL, T., AND SEIDEL, H.-P. Exploring
Shape Variations by 3D-Model Decomposition and Part-based Recombination.
Computer Graphics Forum (Eurographics) 31, 2 (2012), 631–640.

[47] JOLLIFFE, I. T. Principal Component Analysis. Springer-Verlag, 1986.

[48] KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND KOLTUN, V. A
Probabilistic Model for Component-Based Shape Synthesis. ACM Transactions
on Graphics (SIGGRAPH) 31, 4 (2012), 55:1–55:11.

[49] KALOGERAKIS, E., HERTZMANN, A., AND SINGH, K. Learning 3D Mesh
Segmentation and Labeling. ACM Transactions on Graphics (SIGGRAPH) 29, 4
(2010), 102:1–102:12.

[50] KAZHDAN, M. Shape Representations and Algorithms for 3D Model Retrieval.
PhD thesis, Princeton, 2004.

[51] KAZHDAN, M. An Approximate and Efficient Method for Optimal Rotation
Alignment of 3D Models. IEEE Transactions on Pattern Analysis and Machine
Intelligence 29, 7 (2007), 1221–1229.

[52] KAZHDAN, M., CHAZELLE, B., DOBKIN, D., FUNKHOUSER, T., AND
RUSINKIEWICZ, S. A Reflective Symmetry Descriptor for 3D Models. Al-
gorithmica 38, 1 (2003), 201–225.

[53] KIM, V. G., LI, W., MITRA, N., DIVERDI, S., AND FUNKHOUSER, T. Explor-
ing Collections of 3D Models using Fuzzy Correspondences. ACM Transactions
on Graphics (SIGGRAPH) 31, 4 (2012), 54:1–54:11.

References 99

[54] KIM, V. G., LI, W., MITRA, N. J., CHAUDHURI, S., DIVERDI, S., AND
FUNKHOUSER, T. Learning Part-based Templates from Large Collections of 3D
Shapes. ACM Transactions on Graphics (SIGGRAPH) 32, 4 (2013), 70:1–70:12.

[55] KIM, V. G., LIPMAN, Y., AND FUNKHOUSER, T. Blended Intrinsic Maps.
ACM Transactions on Graphics (SIGGRAPH) 30, 4 (2011), 79:1–79:12.

[56] KIM, Y. M., MITRA, N. J., HUANG, Q., AND GUIBAS, L. Guided Real-Time
Scanning of Indoor Objects. Computer Graphics Forum (Pacific Graphics) 32
(2013), 177–186.

[57] KIM, Y. M., MITRA, N. J., YAN, D.-M., AND GUIBAS, L. Acquiring 3D
Indoor Environments with Variability and Repetition. ACM Transactions on
Graphics (SIGGRAPH Asia) 31, 6 (2012), 138:1–138:11.

[58] KLEIMAN, Y., FISH, N., LANIR, J., AND COHEN-OR, D. Dynamic Maps for
Exploring and Browsing Shapes. Computer Graphics Forum (Symposium on
Geometry Processing) 32, 5 (2013), 187–196.

[59] KOO, B., LI, W., YAO, J., AGRAWALA, M., AND MITRA, N. J. Creating
Works-like Prototypes of Mechanical Objects. ACM Transactions on Graphics
(SIGGRAPH Asia) 33, 6 (2014), 217:1–217:9.

[60] KRAEVOY, V., JULIUS, D., AND SHEFFER, A. Shuffler: Modeling with Inter-
changeable Parts. In Proceedings of Pacific Graphics (2007), pp. 129–138.

[61] LAGA, H., MORTARA, M., AND SPAGNUOLO, M. Geometry and Context
for Semantic Correspondences and Functionality Recognition in Man-made 3D
Shapes. ACM Transactions on Graphics 32, 5 (2013), 150:1–150:16.

[62] LAMDAN, Y., AND WOLFSON, H. J. Geometric Hashing: A General And
Efficient Model-based Recognition Scheme. In Proceedings of International
Conference on Computer Vision (1988), pp. 238–249.

[63] LEE, J., AND FUNKHOUSER, T. Sketch-based Search and Composition of 3D
Models. In Proceedings of Eurographics Workshop on Sketch-based Interfaces
and Modeling (2008), pp. 97–104.

[64] LEORDEANU, M., AND HEBERT, M. Efficient MAP Approximation for Dense
Energy Functions. In Proceedings of International Conference on Machine
Learning (2006), pp. 545–552.

[65] LEORDEANU, M., HEBERT, M., AND SUKTHANKAR, R. An Integer Projected
Fixed Point Method for Graph Matching and MAP Inference. In Proceedings of
Conference on Neural Information Processing Systems (2009), pp. 1114–1122.

[66] LI, G., LIU, L., ZHENG, H., AND MITRA, N. J. Analysis, Reconstruction
and Manipulation using Arterial Snakes. ACM Transactions on Graphics (SIG-
GRAPH Asia) 29, 6 (2010), 152:1–152:10.

100 References

[67] LIN, J., COHEN-OR, D., ZHANG, H. R., LIANG, C., SHARF, A., DEUSSEN,
O., AND CHEN, B. Structure-Preserving Retargeting of Irregular 3D Architec-
ture. ACM Transactions on Graphics (SIGGRAPH Asia) 30, 6 (2011), 183:1–
183:10.

[68] LIN, J., JIN, X., AND WANG, C. C. L. Sketch Based Mesh Fusion. In
Proceedings of International Conference on Advances in Computer Graphics
(2006), pp. 90–101.

[69] MENG, M., XIA, J., LUO, J., AND HE, Y. Unsupervised co-segmentation for
3D shapes using iterative multi-label optimization. Computer-Aided Design 45,
2 (2013), 312–320.

[70] MITRA, N. J., WAND, M., ZHANG, H., COHEN-OR, D., AND BOKELOH, M.
Structure-Aware Shape Processing. In Proceedings of Eurographics State-of-the-
art Reports (2013).

[71] NAN, L., XIE, K., AND SHARF, A. A Search-Classify Approach for Cluttered
Indoor Scene Understanding. ACM Transactions on Graphics (SIGGRAPH Asia)
31, 6 (2012), 137:1–137:10.

[72] NGUYEN, A., BEN-CHEN, M., WELNICKA, K., YE, Y., AND GUIBAS, L. An
Optimization Approach to Improving Collections of Shape Maps. Computer
Graphics Forum (Symposium on Geometry Processing) 30, 5 (2011), 1481–1491.

[73] OVSJANIKOV, M., LI, W., GUIBAS, L., AND MITRA, N. J. Exploration of
Continuous Variability in Collections of 3D Shapes. ACM Transactions on
Graphics (SIGGRAPH) 30, 4 (2011), 33:1–33:10.

[74] RUSINKIEWICZ, S., AND LEVOY, M. Efficient Variants of the ICP Algorithm.
In Proceedings of International Conference on 3D Digital Imaging and Modeling
(2001), pp. 145–152.

[75] RUSTAMOV, R., OVSJANIKOV, M., AZENCOT, O., BEN-CHEN, M., CHAZAL,
F., AND GUIBAS, L. Map-Based Exploration of Intrinsic Shape Differences
and Variability. ACM Transactions on Graphics (SIGGRAPH) 32, 4 (2013),
72:1–72:12.

[76] SCHNEIDER, P. J., AND EBERLY, D. H. Geometric Tools for Computer Graphics.
Morgan Kaufmann, 2003.

[77] SCHULZ, A., SHAMIR, A., LEVIN, D. I. W., SITTHI-AMORN, P., AND MA-
TUSIK, W. Design and Fabrication by Example. ACM Transactions on Graphics
(SIGGRAPH) 33, 4 (2014), 62:1–62:11.

[78] SEDERBERG, T. W., AND PARRY, S. R. Free-form Deformation of Solid
Geometric Models. In Proceedings of ACM SIGGRAPH (1986), pp. 151–160.

[79] SHAMIR, A. A Survey on Mesh Segmentation Techniques. Computer Graphics
Forum 27, 6 (2008), 1539–1556.

References 101

[80] SHAO, T., XU, W., YIN, K., WANG, J., ZHOU, K., AND GUO, B. Discrimina-
tive Sketch-based 3D Model Retrieval via Robust Shape Matching. Computer
Graphics Forum (Pacific Graphics) 30, 7 (2011), 2011–2020.

[81] SHAPIRA, L., SHALOM, S., SHAMIR, A., COHEN-OR, D., AND ZHANG, H.
Contextual Part Analogies in 3D Objects. International Journal of Computer
Vision 89, 2-3 (2010), 309–326.

[82] SHARF, A., BLUMENKRANTS, M., SHAMIR, A., AND COHEN-OR, D. Snap-
Paste: An Interactive Technique for Easy Mesh Composition. The Visual Com-
puter 22, 9 (2006), 835–844.

[83] SHEN, C.-H., FU, H., CHEN, K., AND HU, S.-M. Structure Recovery by Part
Assembly. ACM Transactions on Graphics (SIGGRAPH Asia) 31, 6 (2012),
180:1–180:11.

[84] SIDI, O., VAN KAICK, O., KLEIMAN, Y., ZHANG, H., AND COHEN-OR, D.
Unsupervised Co-Segmentation of a Set of Shapes via Descriptor-Space Spectral
Clustering. ACM Transactions on Graphics (SIGGRAPH Asia) 30, 6 (2011),
126:1–126:10.

[85] SILVERMAN, B. W. Density Estimation for Statistics and Data Analysis. Chap-
man & Hall, 1986.

[86] SLOAN, P.-P. J., ROSE III, C. F., AND COHEN, M. F. Shape by Example. In
Proceedings of Symposium on Interactive 3D Graphics (2001), pp. 135–143.

[87] SORKINE, O., AND ALEXA, M. As-Rigid-As-Possible Surface Modeling. In
Proceedings of Symposium on Geometry Processing (2007), pp. 109–116.

[88] SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M., RÖSSL, C., AND
SEIDEL, H.-P. Laplacian Surface Editing. In Proceedings of Symposium on
Geometry Processing (2004), pp. 175–184.

[89] TALTON, J. O., GIBSON, D., YANG, L., HANRAHAN, P., AND KOLTUN, V.
Exploratory Modeling with Collaborative Design Spaces. ACM Transactions on
Graphics (SIGGRAPH Asia) 28, 5 (2009), 167:1–167:10.

[90] TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. Elastically
Deformable Models. In Proceedings of ACM SIGGRAPH (1987), pp. 205–214.

[91] VAN KAICK, O., TAGLIASACCHI, A., SIDI, O., ZHANG, H., COHEN-OR, D.,
WOLF, L., AND HAMARNEH, G. Prior Knowledge for Shape Correspondence.
Computer Graphics Forum (Eurographics) 30, 2 (2011), 553–562.

[92] VAN KAICK, O., XU, K., ZHANG, H., WANG, Y., SUN, S., SHAMIR, A.,
AND COHEN-OR, D. Co-Hierarchical Analysis of Shape Structures. ACM
Transactions on Graphics (SIGGRAPH) 32, 4 (2013), 69:1–69:10.

[93] VAN KAICK, O., ZHANG, H., HAMARNEH, G., AND COHEN-OR, D. A Survey
on Shape Correspondence. Computer Graphics Forum 30, 6 (2011), 1681–1707.

102 References

[94] VRANIC, D. V., SAUPE, D., AND RICHTER, J. Tools for 3D-object retrieval:
Karhunen-Loeve transform and spherical harmonics. In Proceedings of IEEE
Workshop on Multimedia Signal Processing (2001), pp. 293–298.

[95] WANG, Y., ASAFI, S., VAN KAICK, O., ZHANG, H., COHEN-OR, D., AND
CHEN, B. Active Co-Analysis of a Set of Shapes. ACM Transactions on
Graphics (SIGGRAPH Asia) 31, 6 (2012), 157:1–157:10.

[96] WEBER, J., AND PENN, J. Creation and Rendering of Realistic Trees. In
Proceedings of ACM SIGGRAPH (1995), pp. 119–128.

[97] XIE, X., XU, K., MITRA, N. J., COHEN-OR, D., SU, Q., GONG, W., AND
CHEN, B. Sketch-to-Design: Context-based Part Assembly. Computer Graphics
Forum 32, 8 (2013), 233–245.

[98] XU, K., CHEN, K., FU, H., SUN, W.-L., AND HU, S.-M. Sketch2Scene:
Sketch-based Co-retrieval and Co-placement of 3D Models. ACM Transactions
on Graphics (SIGGRAPH) 32, 4 (2013), 123:1–123:15.

[99] XU, K., LI, H., ZHANG, H., COHEN-OR, D., XIONG, Y., AND CHENG, Z.-Q.
Style-Content Separation by Anisotropic Part Scales. ACM Transactions on
Graphics (SIGGRAPH Asia) 29, 6 (2010), 184:1–184:10.

[100] XU, K., ZHANG, H., COHEN-OR, D., AND CHEN, B. Fit and Diverse: Set
Evolution for Inspiring 3D Shape Galleries. ACM Transactions on Graphics
(SIGGRAPH) 31, 4 (2012), 57:1–57:10.

[101] XU, W., WANG, J., YIN, K., ZHOU, K., VAN DE PANNE, M., CHEN, F., AND
GUO, B. Joint-aware Manipulation of Deformable Models. ACM Transactions
on Graphics (SIGGRAPH) 28, 3 (2009), 35:1–35:9.

[102] YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND SHUM, H.-Y.
Mesh Editing with Poisson-based Gradient Field Manipulation. ACM Transac-
tions on Graphics (SIGGRAPH) 23, 3 (2004), 644–651.

[103] YUMER, M. E., AND KARA, L. B. Co-Abstraction of Shape Collections. ACM
Transactions on Graphics (SIGGRAPH Asia) 31, 6 (2012), 166:1–166:11.

[104] ZHENG, S., PRISACARIU, V. A., AVERKIOU, M., CHENG, M.-M., MITRA,
N. J., SHOTTON, J., TORR, P. H., AND ROTHER, C. Object Proposals Estima-
tion in Depth Image Using Compact 3D Shape Manifolds. In Proceedings of
German Conference on Pattern Recognition (2015). In press.

[105] ZHENG, Y., COHEN-OR, D., AVERKIOU, M., AND MITRA, N. J. Recurring
Part Arrangements in Shape Collections. Computer Graphics Forum (Eurograph-
ics) 33, 2 (2014), 115–124.

[106] ZHENG, Y., COHEN-OR, D., AND MITRA, N. J. Smart Variations: Functional
Substructures for Part Compatibility. Computer Graphics Forum (Eurographics)
32, 2pt2 (2013), 195–204.

References 103

[107] ZHENG, Y., FU, H., COHEN-OR, D., AU, O. K.-C., AND TAI, C.-L.
Component-wise Controllers for Structure-Preserving Shape Manipulation. Com-
puter Graphics Forum (Eurographics) 30, 2 (2011), 563–572.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	2.1 Structure Discovery and Modelling
	2.1.1 Shape Alignment
	2.1.2 Shape Co-analysis

	2.2 Structure-aware Shape Processing
	2.2.1 Shape editing
	2.2.2 Shape synthesis
	2.2.3 Shape exploration

	3 Efficient co-alignment of shape collections
	3.1 Motivation
	3.2 Overview
	3.3 Method
	3.3.1 Normalization
	3.3.2 Autocorrelation descriptor
	3.3.3 Shape clustering
	3.3.4 Intra-cluster alignment
	3.3.5 Inter-cluster alignment

	3.4 Evaluation
	3.4.1 Experimental setup
	3.4.2 Per-class performance
	3.4.3 Efficiency improvement
	3.4.4 Effect of clustering
	3.4.5 Effect of human supervision
	3.4.6 Scalability
	3.4.7 Computational complexity
	3.4.8 Discussion

	4 Template-based shape parameterization
	4.1 Motivation
	4.2 Overview
	4.3 Method
	4.3.1 Initial analysis
	4.3.2 Abstracted encoding
	4.3.3 Low-dimensionalEfficient embedding
	4.3.4 Abstracting missing shapes
	4.3.5 Shape clusteringGrouping shapes
	4.3.6 Constrained abstract shape synthesis
	4.3.7 Part-based geometric shape synthesis.

	4.4 Evaluation
	4.4.1 Datasets
	4.4.2 User feedback
	4.4.3 Baseline comparison
	4.4.4 Comparison to Chaudhuri et al. Chaudhuri2011
	4.4.5 Comparison to Jain et al. Jain2012
	4.4.6 Constrained synthesis
	4.4.7 Restoring contacts
	4.4.8 Discussion

	5 Meta-representation of shape families
	5.1 Motivation
	5.2 The Meta-representation
	5.3 Learning the Meta-representation
	5.4 Using the Meta-representation
	5.4.1 Exploration of shape families
	5.4.2 Guided shape editing
	5.4.3 Coupled shape editing

	5.5 Evaluation
	5.5.1 Exploration of shape families
	5.5.2 Guided shape editing
	5.5.3 Coupled shape editing
	5.5.4 Discussion

	6 Conclusions
	6.1 Summary
	6.2 Future Work

	References
	Appendix A Efficient co-alignment of shape collections results
	Appendix B Template-based shape parameterization results

