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Abstract
Evolution has resulted in highly developed abil-
ities in many natural intelligences to quickly
and accurately predict mechanical phenomena.
Humans have successfully developed laws of
physics to abstract and model such mechanical
phenomena. In the context of artificial intelli-
gence, a recent line of work has focused on es-
timating physical parameters based on sensory
data and use them in physical simulators to make
long-term predictions. In contrast, we inves-
tigate the effectiveness of a single neural net-
work for end-to-end long-term prediction of me-
chanical phenomena. Based on extensive eval-
uation, we demonstrate that such networks can
outperform alternate approaches having even ac-
cess to ground-truth physical simulators, espe-
cially when some physical parameters are unob-
served or not known a-priori. Further, our net-
work outputs a distribution of outcomes to cap-
ture the inherent uncertainty in the data. Our ap-
proach demonstrates for the first time the possi-
bility of making actionable long-term predictions
from sensor data without requiring to explicitly
model the underlying physical laws.

1. Introduction
Most natural intelligences possess a remarkably accurate
understanding of some of the physical properties of the
world, as needed to navigate, prey, burrow, or perform any
number of other ecologically-motivated activities. In par-
ticular, evolutionary pressure has caused most animals to
develop the capability to perform fast and accurate predic-
tions of mechanical phenomena. However, the nature of
these mental models remains unclear and is being actively
investigated (Hamrick et al., 2016).
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Humans have developed an excellent formal understand-
ing of physics; for example, at the level of granularity at
which animals operate, mechanics is nearly perfectly de-
scribed by Newton’s laws. However, while these laws are
simple, their application to the description of a natural phe-
nomena is anything but trivial. In fact, before such laws can
be applied, a physical scenario needs first to be abstracted
(e.g., by segmenting the world into rigid objects, describing
those by mass volumes, estimating physical parameters).
Then, except for the most trivial problems, predictions re-
quire the numerical integration of very complex systems
of equations. It is therefore unclear whether animals would
perform mechanical predictions in this manner.

In this paper, we investigate how an accurate understand-
ing of mechanical phenomena can emerge in artificial sys-
tems, mimicking natural intelligence. Inspired by a number
of recent works, we look in particular at how deep neural
networks can be used to perform mechanical predictions
in simple physical scenarios (Fig. 1). Among such prior
works, by far the most popular approach is to use neural
networks (Wu et al., 2016) to extract from sensory data lo-
cal predictions of physical parameters, such as mass, ve-
locity, or acceleration, that are then integrated by an exter-
nal mechanism such as a physical simulator to obtain long
term predictions. In other words, these approaches look at
how an AI can abstract sensory data in physical parameters,
but not how it can integrate such parameters over longer
times. Further, such an approach assumes access to a sim-
ulator that accurately abstracts the physical world with ap-
propriate Newtonian equations. Other attempts have also
tried to replace the physical engine with a neural network
(Battaglia et al., 2016) but did not really attempt to observe
the physical world and deduce properties from it but rather
to integrate the physical equations.

By contrast, in this paper we perform end-to-end prediction
of mechanical phenomena with a single neural network,
implicitly combining prediction and integration of physical
parameters from sensory data. In other words, while most
other approaches predict instantaneous parameters such as
mass and velocity from a few video frames, our model di-
rectly performs long-term predictions of physical param-
eters such as position well beyond the initial observation
interval. Thus, as our main contribution, we propose to do
so by learning an internal representation of a physical sce-
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nario which is induced by the observation of a few images
and then is evolved in time by a recurrent architecture.

One of the challenges of extrapolating physical measure-
ments is that the state of a physical system can be deter-
mined only up to a certain accuracy, and such uncertainty
rapidly accumulates over time. Since no predictor can be
expected to deterministically predict the future, predictors
are best formulated as estimating distribution of possible
outcomes. In this manner, predictors can properly account
for uncertainty in the physical parameters, approximations
in the model, or other limitations. Thus, our second contri-
bution is to allow the neural network to explicitly model un-
certainty by predicting distributions over physical parame-
ters rather than their value directly.

In our experiments, we let convolutional neural networks
choose their own internal representation of physical laws.
A soft prior is that convolutional architectures encourage
learning structures that are local and spatially homoge-
neous, similar to the applicable physical laws that are also
local and homogeneous. However, the network is never
explicitly told what physical laws are. Our third contri-
bution, therefore, is to look at whether such networks can
learn physical properties that generalise beyond regimes
observed during training.

The relation of our work to the literature is discussed in sec-
tion 2. The detailed structure of the proposed neural net-
works is given and motivated in section 3. These networks
are extensively evaluated on a large dataset of simulated
physical experiments in section 4. A summary of our find-
ing can be found in section 5.

2. Related Work
In this work we address the problem of long-term predic-
tion of object positions in a physical environment without
voluntary perturbation with an implicit learning of physical
laws. Our work is closely related to a range of recent works
in the machine learning community.

Learning intuitive physics. To the best of our knowl-
edge (Battaglia et al., 2013) was the first approach to tackle
intuitive physics with the aim to answer a set of intuitive
questions (e.g., will it fall?) using physical simulations.
Their simulations, however used a sophisticated physics
engine that incorporates prior knowledge about Newtonian
physical equations. More recently (Mottaghi et al., 2016)
also used static images and a graphic rendering engine
(Blender) to predict movements and directions of forces
from a single RGB image. Motivated by the recent success
of deep learning for image processing (e.g., (Krizhevsky
et al., 2012; He et al., 2016)) they used a convolutional ar-
chitecture to understand dynamics and forces acting behind

Camera

Input images t = 0 . . . 3

t = 19 t = 29 t = 39

RNN

Figure 1: MechaNets. We consider the problem under-
standing and extrapolating mechanical phenomena with re-
current deep networks. An orthographic camera looks at
a red cube sliding down a black slope with random incli-
nation and heterogeneous friction coefficient (indicated in
the top image by the fake coloured tiles). The camera ob-
serves the cube for four frames (bottom left) and a recurrent
network (bottom middle) predicts the long term motion for
up to 40 frames (bottom right). Our goal is to investigate
two which extent recurrent networks can develop an inter-
nal representation of physics.

the scenes from a static image and produced a “most likely
motion” rendered from a graphics engine. In a different
framework (Lerer et al., 2016) and (Li et al., 2016) also
used the power of deep learning to extract an abstract repre-
sentation of the concept of stability of block towers purely
from images. These approaches successfully demonstrated
that not only was a network able to accurately predict the
stability of the block tower but in addition, it could iden-
tify the source of the instability. Other approaches such
as (Agrawal et al., 2016) or (Denil et al., 2016) also at-
tempted to learn intuitive physics of objects through manip-
ulation. None of these approaches did, however, attempt to
precisely model the evolution of the physical world.

Learning dynamics. Learning the evolution of an ob-
ject’s position also implies to learn about the object’s
dynamics regardless of any physical equations. While
most successful techniques used LSTM-s (Hochreiter &
Schmidhuber, 1997), recent approaches show that propa-
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gation can also be done using a single cross-convolution
kernel. The idea was further developed in (Xue et al., 2016)
in order to generate a next possible image frame from a sin-
gle static input image. The concept has been shown to have
promising performance regarding longer term predictions
on the moving MNIST dataset in (De Brabandere et al.,
2016). The work of (Ondruska & Posner, 2016) also shows
that an internal hidden state can be propagated through time
using a simple deep recurrent architecture. These results
motivated us to propagate tensor based state representa-
tions instead of a single vector representation using a series
of convolutions. In the future we also aim to experiment
with approaches inspired by (Xue et al., 2016).

Learning physics. Works of (Wu et al., 2015) and its ex-
tension (Wu et al., 2016) propose methods to learn phys-
ical properties of scenes and objects. However in (Wu
et al., 2015) the MCMC sampling based approach assumes
a complete knowledge of the physical equations to esti-
mate the correct physical parameters. In (Wu et al., 2016)
deep learning has been used more extensively to replace the
MCMC based sampling but this work also employs an ex-
plicit encoding and computation of physical laws to regress
the output of their tracker. (Stewart & Ermon, 2016) also
used physical laws to predict the movement of a pillow
from unlabelled data though their approach was only ap-
plied to a fixed number of frames.

In another related approach (Fragkiadaki et al., 2015) at-
tempted to build an internal representation of the physical
world. Using a billiard board with an external simulator
they built a network which observing four frames and an
applied force, was able to predict the 20 next object veloci-
ties. Generalization in this work was made using an LSTM
in the intermediate representations. The process can be in-
terpreted as iterative since frame generation is made to pro-
vide new inputs to the network. This can also be seen as a
regularization process to avoid the internal representation
of dynamics to decay over time which is different to our
approach in which we try to build a stronger internal repre-
sentation that will attempt to avoid such decay.

Other research attempted to abstract the physics engine
enforcing the laws of physics as neural network models.
(Battaglia et al., 2016) and (Chang et al., 2016) were able
to produce accurate estimations of the next state of the
world. Although the results look plausible and promis-
ing, long term predictions are still an issue in such frame-
works. Note, that their process is an iterative one as op-
posed to ours, which propagates an internal state of the
world through time.

Approximate physics with realistic output. Other ap-
proaches also focused on learning the production of real-
istic future scenarios ((Tompson et al., 2016) and (Jeong

et al., 2015)), or inferring collision parameters from
monocular videos (Monszpart et al., 2016). In these ap-
proaches the authors used physics based losses to produce
visually plausible yet erroneous results. They however
show promising results and constructed new losses taking
into account additional physical parameters other than ve-
locity.

3. Mechanics Networks
In this section, we introduce a number of neural network
models that can predict the behaviour of a simple mechan-
ical system. We start by describing the physical setup and
then we introduce the proposed network architectures.

3.1. Physical setup

The physical setup (Fig. 1) consists of a small object slid-
ing down an inclined plane. For notational simplicity, we
identify the 3D Euclidean space with the underlying vec-
tor space R3 and denote as p = (px, py, pz) ∈ R3 the
coordinates of points as well as of vectors. The plane,
which for simplicity passes through the origin, has equa-
tion π = {p ∈ R3 : 〈n,p〉 = 0}, where n is the plane
unit normal vector. In addition to the normal n, capturing
the inclination, the plane has also a Coulomb friction co-
efficient ρ, which in the simple case is homogeneous, but
which can also be a spatially varying quantity ρ : π → R+.

We set the camera to be located above the plane, at height
h > 0, centered at point (0, 0, h), and looking down-
wards along the Z-direction (0, 0,−1). The camera axes
are aligned to the world axes and the camera projection
model is orthographic; in this setting, a world point p sim-
ply projects to pixel (px, py) in the image. Note that h does
not have an influence on the generated image and can be
dropped.

The sliding object is a cube with center of mass q(t) =
(qx(t), qy(t), qz(t)) at time t, which projects to pixel
y(t) = α(qx(t), qy(t)) +β in the image. Here we consider
Hi×Wi = 128×128 images with pixels of size α = 1 and
offset β = (−64,−64). Initially, the cube is placed at rest
on top of the plane at a random location (q0x, q

0
y), and then

starts to slide under the effect of gravity. The cube motion
is also affected by friction.

An experiment instance is a tuple α = (q0x, q
0
y,n, ρ), con-

sisting of the values of the initial object position, the plane
normal, and the friction coefficient or distribution. The in-
clination n is arbitrary (within limits), such that the object
can slide in any direction. These parameters, as well as
many other constant parameters described in section 4.1,
are passed to a physical simulator and rendered to simu-
late the experiment, resulting in a sequence of color im-
ages XαT = (xα(0),xα(1), . . . ,xα(T −1)). The simulator
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(VGG)
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MechaNet3 MechaNet4
MechaNet1
MechaNet2

Input images t = 0 . . . 3

Figure 2: Overview of our proposed pipeline. The first
four images of a sequence first pass through a partially pre-
trained feature extraction network to build the concept of
physical state. It then recursively passes through a prop-
agation layer to produce long-term predictions about the
future positions of the objects. Extrapolation requires us to
handle the notion of uncertainty, which is why MechaNet4
performs the best under changing physical conditions in
Scenario S2, see Table 2.

also produces the ground-truth center of mass projections
YαT = (yα(0), . . . ,yα(T − 1)). Note that, for the purpose
of learning predictors, physics needs not to be specified fur-
ther; while in fact a complete set of parameters are required
to run the physical simulation, the predictor learns automat-
ically to extract the required information from the observed
images.

3.2. Neural network architectures

We focus on long-term predictors Φ : XT0 7→ YT that take
as input the first T0 = 4 framesXT0

of a video sequenceXT
and produce as output a long-term estimate YT of the loca-
tion of the object’s center of mass at times t = 0, 1, . . . , T ,
where T � T0.

Our method comprises three building blocks (Fig. 2): a
feature extractor, a propagation network and an estima-
tion network. The core of our model is the internal rep-
resentation of the physics, initialized by the feature extrac-
tor, updated by the propagation module, and decoded by
the estimation module. We compare two representation
types: a vector representation, in which each frame is en-
coded as C-dimensional vector (or 1 × 1 × C tensor), and
a H ×W × C tensor representation. The importance of
this difference is that the vector representation is spatially
concentrated, whereas the tensor representation is spatially

distributed.

Next, the three modules are discussed in detail.

(i) Feature extraction network. The predictor YT =
Φ(XT0) starts by extracting information from T0 video
frames. Similarly to (Fragkiadaki et al., 2015), the RGB
channels of the images are concatenated in a single Hi ×
Wi × 3T0 tensor and this is processed by a convolutional
neural network φinit, obtaining a φinit(x0, . . .xT0−1) ∈
RH×W×C tensor output. These features serve as the in-
ternal physical representation of our network that is prop-
agated through time. Inspired by (Fragkiadaki et al.,
2015), we start from the VGG16 network pre-trained on
ImageNet (Simonyan & Zisserman, 2015). The network is
cut and the last layer adapted as needed. In particular, start-
ing from a (Hi,Wi) = (128, 128, 3) image, the vector rep-
resentation uses the (H,W,C) = (1, 1, 128) dimensional
output of layer fc6, and the tensor representation uses the
(8, 8, 512) dimensional output of conv5 instead. All fea-
ture extraction layers are frozen in training, except the new
layer fc6 and conv1, whose shape changes.

(ii) Propagation network. The internal representation
initialized by the feature extractor is evolved through time
by the propagation network F : RH×W×C → RH×W×C .
Formally, the internal state St is initialized as S0 =
φinit(XT0

) and updated by iteratively applying F as St+1 =
F (St) = F t(φinit(XT0)) for t ≥ 1 (note that there is an in-
dex shift between state and time, so that St predicts the
objct position at time t + T0 − 1). For the vector repre-
sentation, the propagation network is an LSTM with 128
hidden units. Since there are no more observations after
T0, the LSTM input at time t is set to the internal state of
the LSTM at the previous time. This is similar in approach
to (Cho et al., 2014), although our output is directly fed
to the network without re-embedding. For the distributed
representation, we use a simple chain of two convolution
layers (with 256 and 512 filters respectively, of size 3 × 3,
stride 1, and padding 1) interleaved by a ReLU layer. When
using discrete probability map, the representation St is nor-
malised channel-wise in L2 norm after each update in order
to avoid the decay of intermediate propagation layers.

(iii) Estimation network. In the simplest instance, the
network predictor estimates directly the values ŶT =
(ŷ(0), . . . , ŷ(T − 1)) of the object’s center of mass ŷ(t) ∈
R2 during the sequence. The learning loss is simply the av-
erage squared distance between predicted and ground-truth
locations:

L(ŶT ,YT ) =
1

T

T−1∑
t=0

‖ŷ(t)− y(t)‖2.

As discussed above, however, it is preferable to predict the
uncertainty of the estimate as well. While in some cases
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this cannot improve accuracy directly (i.e in the bivari-
ate gaussian case), it is interesting to see if a network is
able to develop an internal sense of prediction errors. Fur-
ther, probabilistic modelling may help the network discount
difficult-to-predict points during training, which may oth-
erwise work as outliers negatively affecting training.

We propose to do so in two ways. In the first ap-
proach, we predict the mean and variance ŶT =
(µ(t),Σ(t); t = 0, . . . , T − 1) of a bivariate Gaussian dis-
tributionN (·;µ,Σ). The loss is the negative log-likelihood
of the measured object locations:

Lnrm(ŶT ,YT ) = − 1

T

T−1∑
t=0

logN (y(t);µ(t),Σ(t)).

In practice, the neural network estimates the two dimen-
sional vector µ(t) as well as a three dimensional vec-
tor λ1(t), λ2(t), θ(t) with the first two being the eigen-
values of Σ(t), and the third entry being the angle
of the rotation matrix in the decomposition Σ(t) =

R(−θ(t))
[
λ1(t) 0

0 λ2(t)

]
R(θ(t)). In order to ensure nu-

merical stability, eigenvalues are constrained to be in the
range [0.01 . . . 100] by setting them as the output of a
scaled and translated sigmoid λi(t) = σλ,α(βi(t)), where
σλ,α(z) = λ/(1 + exp(−z)) + α. For more details re-
garding the training procedure of this model please see sec-
tion 4.3.

In the second approach, we predict discrete probability
maps YT = (p(0), . . . , p(T − 1)), where p(t) ∈ RHi×Wi

and p(t)ij is the probability that the object’s center of
mass is contained in a 1 × 1 square centered at location
(j − Wi/2, i − Hi/2). Similar to the Gaussian loss, we
use the negative log-likelihood of the ground-truth obser-
vations as loss:

Lheat(ŶT ,YT ) = 2 log δ − 1

T

T−1∑
t=0

log p(t)by(t)e,

where b·e is the rounding operator and δ = 1 is the sam-
pling step.1 The probability maps p(t) sum to one and
are obtained by applying the softmax operator to a tensor
A(t) ∈ RHi×Wi estimated by the neural network:

p(t)ij =
eA(t)ij∑
mn e

A(t)mn
.

All the output predictions at time t + T0 − 1 are extracted
from the internal state St by a single layer L(St). The layer
L is linear and fully-connected layer for L and Lnrm, and a
deconvolutional layer similar to (Long et al., 2015) in the

1The correction 2 log δ results in the log-likelihood value of
the piecewise-constant continuous distribution corresponding to
the discrete one and makes likelihood values comparable for dif-
ferent step sizes δ, as well as comparable to the Gaussian log-
likelihood.

case of Lheat. Outputs at times t = 0, 1, . . . , T0 are all
predicted from S0 using an analogous but independently-
trained fully-connected layer L′. Overall, the output of the
predictor is given by:

Φ(XT0
) = (L′(S0)1, . . . , L

′(S0)T0
,

L(S1), . . . , L(ST−T0−1)).

4. Experiments
4.1. Data generation

Experiments consider three variants of the physical setup
described in section 3.1, called Scenarios S0, S1, and S2.
Different scenarios sample experiments α = (q0x, q

0
y,n, ρ)

of increasing difficulty. The parameters of each scenario
are summarised in Table 1 and described next. The plane
normal n was obtained by rotating the Z axis around the
X and Y axis by random angles θx, θy (Scenario S0 uses a
fixed inclination). For Scenarios S1 and S2, the Coulomb
friction coefficient ρ of the plane is homogeneous and sam-
pled uniformly at random. For Scenario S2, the plane is
split in 10 × 10 patches, each with a random friction co-
efficient sampled independently. The friction upper bound
was chosen so that the object always slides along the slope.

Scenario n rotation ρ
S0 θx = 0, θy = π

6
ρ ∈ U

(
10−4, 10−1

)
S1 θx, θy ∈ U

(
−π

6
, π
6

)
ρ ∈ U

(
10−4, 10−1

)
S2 θx, θy ∈ U

(
−π

6
, π
6

)
∀i,j=1...10 ρi,j ∈ U (0.5, 5)

Table 1: Data generation parameters.

The plane was rendered as a black object so that no static
visual cues allow deducing any of the physical parameters
except the initial position of the cube; instead the predic-
tor has to approximate physics as needed by observing the
motion of the object during the first T0 = 4 frames of each
experiment.

Each experiment was run for at most 240 frames, or ter-
minated early if the object left the field of view. In order
to observe enough movement in each recorded sequence,
the first 30 video frames of each video were removed, and
the rest of the video was sub-sampled by a factor of 3. In
practice, most experiments consist of 40-50 images.

The dataset contains 12,500 experiments for each Scenario,
70% of which are used for training, 15% for validation, and
15% for test.

Implementation details. The object’s starting position is
initialized randomly using rejection sampling in such a way
that (q0x, q

0
y) falls in the slope quadrant that contains the

largest visible h coordinate. This procedure generates sam-
ples that have most of their trajectory visible to the camera.
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S0 S1 S2
Method Feat. Prop. T. Obj. L2 (ln perplexity) L2 (ln perplexity) L2 (ln perplexity)

20 40 20 40 20 40
Linear – – – 12.62 49.07 11.81 42.58 11.86 42.37

Quadratic – – – 6.67 37.95 8.21 46.34 8.35 47.29
SimNet (V) – – 1.21 1.89 1.93 5.16 5.67 24.69

MechaNet1 (V) LSTM L2 0.31 25.37 1.52 30.84 – –
MechaNet2 (T) conv L2 0.77 10.68 1.91 34.46 1.95 13.24
MechaNet3 (T) conv GL 0.55 15.74 2.26 26.04 – –

(0.97) (385) (4.08) (36) – –
MechaNet4 (T) conv SM 0.56 24.59 2.13 19.54 3.62 9.55

(0.49) (0.96) (3.19) (17.2) (5.24) (11.47)
10 15 20 25 30 35 40

Times
0

5

10

15

20

25

30

L2
 re

sid
ua

l (
pi

xe
ls)

Scenario S2
Linear
Quadratic
SimNet
MechaNet2
MechaNet4

Table 2: Long term predictions. (V) and (T) refers to the dimensionality of the internal state representations (vector and
tensor respectively). We expect (T) to maintain a 2D spatial model which leads to higher accuracy. The SimNet and all
MechaNet models observed the T0 = 4 first frames as input. All networks have been trained to predict the T = 20 first
positions, except in Scenario S2, where MechaNet1 and MechaNet4 have been trained to predict T = 30 frames in order to
experience enough variation in the underlying physical conditions, i.e., changing friction. Perplexity (loge values shown in
the table) is defined as 2−E[log2(p(x))] where p is the estimated posterior distribution. Right: error evolution on experiment
S2 for all time steps up to 40. Error bars denote 25th and 75th percentiles of the L2 loss in pixels.

Rendering and physical simulation use Blender 2.77’s
OpenGL renderer and the Blender Game Engine (relying
on Bullet 2 as physics engine) respectively. The object
is a cube of side 0.13 Blender units with mass = 1.
The simulation parameters are: max physics steps = 5,
physics substeps = 3, max logic steps = 5, FPS = 120.
Rendering used white environment lighting (energy = 0.7)
and no other light sources. The object color was set to
Lambertian red (RGB: 0.8, 0.04, 0.04) with no specular
component. The slope is completely black, covering the
whole field of view. The output images were stored as
128× 128 color JPG files. See Fig. 1 for an example initial
setting from Scenario S2.

4.2. Baseline predictors

Least squares fit. We compare the performance of our
methods to two simple least squares baselines: Linear and
Quadratic. In both cases we fit two least squares polyno-
mials to the estimated screen-space coordinates of the first
T = 10 frames. The polynomials are of first and second
degree(s), respectively. We estimate the object’s position in
this case by using the maximum location of the red channel
of the input image. Note, that being able to observe the first
10 frames is a large advantage compared to the networks,
which only see the first T0 = 4 frames.

Physics simulator. The SimNet baseline is used to eval-
uate the long term prediction ability of a neural network
that has access to an explicit physics simulator, in a man-
ner analogous to the work of (Wu et al., 2015). Similarly
to the other networks, SimNet observes the first T0 images
and aims to regress the physical parameters necessary to
predict the trajectory of the object using the physics engine.

The simulator is assumed to have access to a perfect model
of the underlying physical laws. The regression architec-
ture constitutes of the vector based feature extraction net-
work described in Section 3.2 with an extra fully-connected
layer on top to regress physical parameters. The network is
trained with an L2 loss to infer the current slope rotation
angles and friction coefficient (θx, θy, ρ), the object’s posi-
tion at the observed frames (t0, . . . , T0 − 1), and its final
velocity at frame T0 − 1.

We input the regressed parameters to the same physics sim-
ulation system that generated the dataset (Section 4.1) and
run the simulation to predict the following object positions
T0 . . . T . Note that, since the simulator used by the network
is the same as the one used to generate the data, this net-
work is given a significant advantage over the other models.

MN4 MN4 MN4 MN4 QD SN
10 20 30 40 – –

10 1.18 1.60 0.83 1.00 1.45 1.26
20 11.79 2.13 1.36 1.38 8.21 1.93
30 28.04 6.91 2.71 2.32 23.33 3.23
40 48.65 19.54 8.96 4.00 46.34 5.16

Table 3: Generalization capabilities. We compare predic-
tions obtained at different times in Scenario S1 from four
versions of the MechaNet4 (MN4) model that have been
trained to predict the first t = 10, 20, 30, and 40 frames
(rows). The train and test inputs always consists of the first
T0 = 4 images. For comparison, we also show the pre-
diction accuracy of the quadratic baseline (QD) (fit to the
first 10 inputs) and SimNet (SN). The numbers represent
the average, L2 loss measured in pixels (input image size:
128× 128).
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Figure 3: Qualitative results. (a) Predictions of various networks in an example drawn from Scenario S1. The number of
frames used to train each network is indicated in parenthesis; if omitted, it defaults to 20. (b) The same but for Scenario S2
and focusing on linear and quadratic fits, SimNet, MechaNet2 and MechaNet4 (30). (c) Example of uncertainty prediction
of MechaNet3 in Scenario S1.

4.3. MechaNets

Experiments consider four different variants of the me-
chanical prediction networks (MechaNet1 to 4 for short).
MechaNet1 and MechaNet2 are trained to optimise the
L; MechaNet1 uses the LSTM propagation network and
the spatially concentrated internal representation, whereas
MechaNet2 uses the simpler convolutional propagation net-
work but the distributed representation. MechaNet3 and
MechaNet4 are similar to MechaNet2, but they use proba-
bilist predictors, using the Gaussian and probability map
outputs, respectively. The four variants are summarized
in Table 2.

Implementation details. Network weights are initialized
by sampling from a Gaussian distribution. Training uses
a batch size of 50 using the first 10 to 40 frames of
each video sequence using RMSProp (Tieleman & Hinton,
2012). Training is halted when there is no improvement of
the L2 loss after 40 consecutive epochs; 1,000 epochs were
found to be usually sufficient for convergence.

Since during the initial phases of training the network
is very uncertain, the model using the Gaussian log-
likelihood loss Lnrm was found to get stuck on solutions
with very high variance Σ(t); to solve this issue, the regu-
larizer λ

∑
t det Σ(t) was added to the loss, setting λ = 10

for the first few epochs and then lowering it to λ = 0 when
the value of the determinant stablized under 100 on average
(this variance is comparable to the image size).

In all our experiments we used Tensorflow (Abadi et al.,
2015) r0.12 on a single NVIDIA Titan X GPU.

4.4. Results

Long term predictions. Table 2 and Fig. 3 compare the
baseline predictors and the four MechaNets on the task
of long term prediction of the object trajectory. We call
this “long term” in the sense that all methods observe only
the first T0 = 4 frames of a video (except the linear and
quadratic extrapolators which observe the first 10 frames
instead), to then extrapolate the trajectory to 40 time steps.

All networks can be used to perform arbitrary long predic-
tions; the table, in particular, reports the the average L2

prediction errors at time Ttest = 20 and 40. However, mod-
els in this table are only shown the first Ttrain = 20 frames
of each video during training.

Consider first the prediction results for Ttest = Ttrain =
20. All networks perform considerably better than the lin-
ear and quadratic extrapolators in all scenarios, with er-
ror rates 5-40× smaller. As expected, Scenario S1 and
S2 are harder than Scenario S0, which uses a fixed slope
and homogeneous friction, but the network prediction er-
rors are still small, in the order of 1-2 pixels. All net-
works perform similarly well, particularly in Scenarios
S1, with a slight advantage for the LSTM-based propa-
gation networks. SimNet is very competitive, as may be
expected given that it uses the ground-truth physics en-
gine for integration. However, in Scenario S2 this method
does not work well since the variable friction distribution
is not observable from the first T0 = 4 frames of a video;
MechaNet2 and MechaNet4, which can better learn such
effects, can account for such uncertainty and significantly
outperform SimNet.

Results are different for predictions at time Ttest = 40 �
Ttrain. All networks still outperform the extrapolators, but
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Figure 4: Uncertainty prediction using probability maps. The figure shows the output of MechaNet4 (40) on one
example sequence in Scenario S1.

in Scenarios S0 and S1 SimNet performs better than the
other networks: by having access to the physics simula-
tor, generalization is not an issue. On the other hand, this
experiment shows that the deep networks have a limited ca-
pacity to generalize physics beyond the regimes observed
during training. Among such networks, the ones modelling
uncertainty (MechaNet3 and MechaNet4) are able to gener-
alize better. Scenario S2 still breaks the assumptions made
by SimNet, and the other networks outperform it.

Generalization. The issue of generalization is explored
in detail in Table 3, focusing on MechaNet4 that exhibits
the best generalization capabilities. The table reports pre-
diction errors at T = 10, 20, 30, 40 for networks trained
with video sequence of length T = 10, 20, 30, 40 respec-
tively. Recall that predictors always observe only the first
T0 = 4 frames of each sequence; the only change is to al-
low the training loss to assess the predictors’ performance
on progressively longer videos during training.

As expected, training on longer sequences dramatically im-
proves the accuracy of longer term predictions, but also the
shorter term ones. Training on the full sequences, in par-
ticular, performs ∼ 20% better than SimNet. This confirms
that, while deep networks are able to learn physical rules
accurately for the range of physical experiences observed
during training, they do not necessarily learn rules that gen-
eralize as readily as conventional physical laws.

Predicting uncertainty. MechaNet3 and MechaNet4
predict a posterior distribution of possible object locations,
using a Gaussian and a probability map model respectively.
Table 2 shows that the latter model has significantly lower
perplexity, suggesting that the Gaussian model is somewhat
too constrained. Qualitatively, Fig. 3 and 4 show that both
models make very reasonable predictions of uncertainty,
with the uncertain area growing over time as expected.

5. Conclusions
In this paper we explored the possibility of using a single
neural network for long-term prediction of mechanical phe-
nomena. We considered in particular the problem of pre-
dicting the long-term motion of a cuboid sliding down a
slope of unknown inclination and heterogeneous friction.
Differently from many other approaches, we use the net-
work not to predict some physical quantities to be inte-
grated by a simulator, but to directly predict the complete
trajectory of the object end-to-end.

Our results, obtained from extensive synthetic simulation,
indicate that deep neural networks can successfully pre-
dict long-term trajectories without requiring explicit mod-
eling of the underlying physics. They can also reliably
estimate a distribution over such predictions to account
for uncertainty in the data. Remarkably, these models are
competitive with alternative predictors that have access to
the ground-truth physical simulator, and outperform them
when some of the physical parameters are not observable or
known a-priori. However, neural networks exhibit a lim-
ited capability to perform predictions outside the physical
regimes observed during training. In other words, the inter-
nal representation of physics learned by such model is not
as general as standard physical laws.

Several future directions remain to be explored. Given the
accuracy of mechanical simulators, synthetic experiments
are sufficient to assess the capability of networks to learn
mechanical phenomena. However, the obvious next phase
will be to test the framework on video footage obtained
from real-world data in order to assess the ability to do
so from visual data affected by real nuisance factors. The
other important generalization is to consider more com-
plex physical phenomena, including multiple sliding ob-
jects with possible interactions, rolling motion, and sliding
over non-flat surfaces.
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