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Curved Folding

[Albers, 1927] [Huffman, 1970s] [Epps, 2007]

Models made of paper and PVC.
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Developable surfaces with curved creases

A static surface that results from folding a given crease pattern.
Folding dynamics have not been considered so far.
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Developable surfaces with curved creases



High Level Idea
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String actuated folding

Given a crease pattern we are looking for a network of strings that drives the folding when
being pulled. Starting from a folding sequence

S : [0, 1]× U → R3

(t ,u) 7→ S(t ,u)

U = S(0)

S(1)

U

we compute a set of actuation points and a network of strings in order to reproduce the
given deformation S.
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Observation
Any actuation mechanism that reproduces the target motion S also

has to reproduce the deformation fields X (t), t ∈ [0, 1].

S
sampling // S(t1) S(t2) S(t3) . . . S(tn)

X (t1) X (t2) X (t3) . . . X (tn) linearization

S∗ solution
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Analyzing a folding motion

Attach an arbitrary string si to the rest shape S(t0):

sisisisisisisisisisisisisisisisisi

S(t0)
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Each Xi(t0) is the deformation field induced by string si ,
connecting exactly two surface points.
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We call the Xi(t0) actuation modes.



Local Problem
At time t0 find strings si that reproduce S|[t0−ε,t0+ε].

Local action of si is described by Xi(t0).

Because of linearization:
joint deformation field of {si } is superposition of the Xi(t0).



Local Solution
Finding strings si whose joint deformation reproduces S|[t0−ε,t0+ε]

is equivalent to finding actuation modes Xi(t0) that reproduce X (t0):∑
λiXi(t0) ≈ X (t0).



Actuation mode selection

Sample crease curves to get a set S = {si }
m
i=1 of candidate strings.

At S(t0) compute the corresponding modes Xi(t0).

Find representation of X (t0) in terms of the modes Xi(t0),

X (t0) ≈
m∑

i=1

λi(t0)Xi(t0).
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Actuation mode selection

Compute a sparse solution according to

λ∗ = arg min
λ

[
ω‖λ‖0 + ‖X −

m∑
i=1

λiXi‖2

]
(1)

‖λ‖0 =

m∑
i=1

(λi 6= 0) ? 1 : 0 (sparsity)

‖X −
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λiXi‖2 (fitting)
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Actuation mode selection

Introducing auxiliary variables ξi , one can show that

‖λ‖0 = min
ξ

m∑
i=1

(1 − ξi)

subject to λiξi = 0 and 0 6 ξi 6 1.

The variables ξi act as indicator variables:[
λi = 0 ⇐⇒ ξi = 1

]
and

[
λi 6= 0 ⇐⇒ ξi = 0

]
[Feng et al.: Comp. Formulations of `0-norm Optimization Problems, 2015]
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2 compute Xi(t0), i = 1, . . . ,m
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4 pick the si with ξi = 0
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Towards a global solution

1 initialize S = {si }
m
i=1

2 compute Xi(t0), i = 1, . . . ,m

3 solve (1)

4 pick the si with ξi = 0

[Wächter, Biegler: On the implementation of a primal-dual interior point filter line search algorithm for

large-scale nonlinear programming, 2006]



Towards a global solution
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Global optimization

Only one ξi per si independent of the number of poses S(tj):

min
ξ,λ

ω m∑
i=1

(1 − ξi) +

n∑
j=1

‖Xj −

m∑
i=1

λijXij‖2

 (2)

subject to
0 6 ξi 6 1, λijξi = 0, i = 1, . . . ,m, j = 1, . . . , n.
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λijXij‖2
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subject to
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Have to pay unit cost 1 to use si .
Re-using it at other time steps is free!



Results



Quad



Quad



Quad

|S| = 66



Quad

|S| = 66

#1



Quad

|S| = 66

#1 #2



Quad

|S| = 66

#1 #2 #3



Quad

|S| = 66

#1 #2 #3



Quad



Apricot (Design by J. Mitani)
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Limitations

Not every shape is foldable using strings

Material weight and gravity not considered

No exterior actuation points

Future work

Motion design

Staged folding (keyframes)

} Combined pattern, shape, and
motion optimization
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Thank you!

http://geometry.cs.ucl.ac.uk/projects/2017/string-actuated/


