
Exploratory Design of Mechanical Devices
with Motion Constraints

Author version∗

Robin Roussel
University College London
London, United Kingdom

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK
Grenoble, France

robin.roussel.15@ucl.ac.uk

Marie-Paule Cani
LIX, École Polytechnique

Palaiseau, France
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK

Grenoble, France

Jean-Claude Léon
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK

Grenoble, France

Niloy J. Mitra
University College London
London, United Kingdom

ABSTRACT
Mechanical devices are ubiquitous in our daily lives, and the motion
they are able to transmit is often a critical part of their function.
While digital fabrication devices facilitate their realization, motion-
driven mechanism design remains a challenging task. We take
drawing machines as a case study in exploratory design. Devices
such as the Spirograph can generate intricate patterns from an
assembly of simple mechanical elements. Trying to control and
customize these patterns, however, is particularly hard, especially
when the number of parts increases.We propose a novel constrained
exploration method that enables a user to easily explore feasible
drawings by directly indicating pattern preferences at different
levels of control. The user starts by selecting a target pattern with
the help of construction lines and rough sketching, and then fine-
tunes it by prescribing geometric features of interest directly on the
drawing. The designed pattern can then be directly realized with an
easy-to-fabricate drawing machine. The key technical challenge is
to facilitate the exploration of the high dimensional configuration
space of such fabricable machines. To this end, we propose a novel
method that dynamically reparameterizes the local configuration
space and allows the user to move continuously between pattern
variations, while preserving user-specified feature constraints.

We tested our framework on several examples, conducted a user
study, and fabricated a sample of the designed examples.

KEYWORDS
computational design, design space, constrained exploration, draw-
ing machines, mechanical motion, fabrication

1 INTRODUCTION
Toy of the Year in 1967, the Spirograph is a simple-to-use family
of interlocking cogs and teethed rings allowing to draw a great
variety of patterns. Although many other mechanical drawing tools
preceded and followed it (see Fig. 1), this modest set of gears has
marked a generation, and remains one of themost well-remembered
today. As a product of the relationship between art and technology,

∗For citations, please refer to the published version at https://doi.org/10.1016/j.cag.
2018.05.023

drawing machines are still popular across artists [15], enthusiastic
inventors [13], and makers [34]. The simplicity of the mechanical
parts involved makes them easily fabricable with modern personal
fabrication devices, which in turn open the door to a level of cus-
tomization leading to new and fascinating patterns. Beyond this
goal, the inverse problem of finding the machine tracing out a
specific trajectory has numerous applications (see e.g. Coros et
al. [8]).

Designing such machines, however, is particularly challenging.
First, many mechanical devices transform an input rotation into a
more complex cyclic output by combining oscillations of different
periods and amplitudes. To produce a closed end-effector curve,
the radii of mating gears (or equivalently, the number of teeth)
need to have rational ratios. It is easy to enforce this constraint by
restricting radii to natural numbers; the size of the pattern can still
be controlled by a global scaling factor. The downside is that the
design space becomes much more complex to explore: as the period
is governed by modular arithmetic between radii, the visual output
can radically change from one value to the next. Furthermore, the
number of design parameters obviously increases with the number
of parts. While this greatly enriches the space of possible curves,
manually refining a design becomes difficult with as little as three
continuous parameters. Indeed, nonlinearities make the influence
of each control hard to grasp, and each one possibly influences the
bounds of the others, making the space harder to explore.

In this paper, we propose a constraint-based exploration frame-
work to design complex mechanical trajectories by interacting
directly with the output pattern. In contrast to previous work [1],
we focus on: (i) highly structured curves, which would be tedious
to edit point by point, and (ii) allowing the continuous exploration
of local design variations, rather than recomputing a new solu-
tion after each curve edit. Indeed, the latter has the disadvantage
that modifications made in one place of the pattern may result in
unexpected changes somewhere else. Our method, on the other
hand, allows the user to define visual preferences and explore the
resulting constrained subspace.

Our exploration workflow consists in a coarse-to-fine definition
of visual preferences that progressively refine the choice of curves.
First, as an entry point into the design space, the user draws a coarse

https://doi.org/10.1016/j.cag.2018.05.023
https://doi.org/10.1016/j.cag.2018.05.023


(a) (b)

(c) (d)

Figure 1: Some examples of drawing machines: (a) Spiro-
graph, (b) Hoot-Nanny, (c) Harmonograph, (d) Cycloid draw-
ing machine.

sketch that defines the global properties (e.g., order of rotational
symmetry) and appearance of the desired pattern. After selecting an
initial curve among suggestions proposed by the system, changes
can be made via sliders within a domain that respects the feasibility
constraints of the corresponding mechanism. When one slider is
moved, the bounds of the others are automatically updated. As a
key interaction, the user can define visual preferences directly on the
drawing. These take the form of special points on the curve that can
be constrained according to their geometric properties. The user can
then explore local variations closest to these specifications via new
handles that are automatically generated. Once the user is satisfied,
the shape of the mechanical parts is automatically generated and
exported for laser cutting fabrication (see Fig. 2).

Technically, we enable the above key interaction with a novel
dynamic reparameterization method that locally samples the high
dimensional configuration space of a given mechanism, measures
closeness to the user-defined preferences, approximates the closest
subspace, and exposes new parameters to navigate this subspace.

We evaluated the effectiveness of our design tool on several test
scenarios, conducted a user study, and fabricated several physical
prototypes able to draw patterns created by the users. Overall, we
found that dynamic reparameterization allowed users to reliably
make meaningful fine scale adjustments to their pattern designs.

This paper extends the previous conference work [28] by sig-
nificantly extending the pattern retrieval step (including a novel
technique to reduce the search space), providing new figures, a
more detailed explanation of the fabrication process, and a virtual
extension to a mechanical character to demonstrate the generality
of our method.

2 RELATEDWORK
Drawing machines have a long history in mathematics [19], art [12],
and as toys. Before the computer era, they were the only way to

accurately draw certain curves, with applications in architecture,
astronomy, engineering, etc. [16]. While simulating such machines
is nowadays relatively easy, the inverse problem of mapping an
arbitrary end-effector trajectory to a reasonably simple mechanism
remains a challenge. One of the most fundamental results in this
regard is Kempe’s universality theorem [21], which states that for
any arbitrary algebraic plane curve, a linkage can be constructed
that draws the curve. The constructive method proposed by Kempe,
however, produces mechanisms with so many links that they are
impossible to fabricate in practice. There have beenmany endeavors
since then; to cite only one, Liu et al. [24] recently proposed a
method to reproduce trigonometric plane curves with either Scotch
yoke mechanisms or serial chains. Robotic arms and CNCmachines
have not made this problem obsolete, since there are situations
where size is an issue (e.g. MEMS or nano applications), or electric
power is unavailable or undesirable.

The following paragraphs discuss related advances in compu-
tational design and fabrication, with different application settings,
both for inverse modeling and design exploration.

Computational design from target motion. In the context of au-
tomata design, researchers have investigated replicating target mo-
tion using an arrangement of mechanical parts in a classic instance
of inverse problem setup. The general approach involves sampling
configurations from a library of components to retrieve a local ar-
rangement of parts, and then refining the shape parameters using
a gradient-descent based optimization to fit the target motion. For
example, Zhou et al. [39] and Coros et al. [8] design automaton
characters, while Ceylan et al. [7] design automata to replicate
mo-cap sequences.

In more interactive design settings, Umetani et al. [36] design pa-
per airplanes based on their predicted flight dynamics; Thomaszewski
et al. [33] use global optimization to design linkage-based charac-
ters; while Bächer et al. [1] develop a system to support interactive
editing of fabricable linkages. Recently, Ion et al. [20] took a differ-
ent approach by generating 3D-printable microstructures that are
able to transmit movement through shearing of their constitutive
cells.

The main goal of the above efforts is to either approximate a
given motion, or indirectly edit a target automata or linkage-based
kinematic chain. Formulating these problems as optimizations sug-
gests that the user already knows what she wants, and simply
wishes to obtain a specific motion as easily as possible. While some
parts of our method appear similar (e.g. the rough pattern retrieval
step), what we propose is a framework to support exploration and
progressive refinement, which had not yet been achieved in this con-
text. More formally, instead of trying to map a specific curve to a
point in design space, our method maps a set of curve constraints to
a design subspace. These approaches complete rather than oppose
each other: even in the first case, there is interest in being able to
explore local design alternatives, as it might reveal solutions that
the user had not thought of.

Guided exploration of valid designs. In a broader context of de-
sign exploration, researchers have studied various properties in
order to optimize a shape based on its intended usage. Examples
include shape optimization based on stability considerations [27],
or updating object shape for desired moment of inertia for object

2



Figure 2: Overview of our design workflow. The user first selects a mechanically feasible drawing by providing a rough
sketch (a), and is then able to interactively explore local alternatives (b) by defining visual constraints directly on the pat-
tern (here, the cusp position). The resulting machine is automatically exported to laser cutter profiles for fabrication. (c)

spin [2], adaptively adjusting object parts for better reinforcement
and strength [25, 38], designing hollow chambers for desired acous-
tic behavior [5], zero-waste furniture design [22], or modeling elas-
tic behavior of foam microstructures for procedurally generating
them for target material properties [26].

Closer to our concerns, Umetani et al. [35] proposed a furni-
ture modeling system that actively guides the user to navigate
valid regions of the design space; Bokeloh et al. [6] and Yumer
et al. [37] developed modeling systems that preserve high-level
structural and semantic relations in edited 3D models, while Koo
et al. [23] proposed the use of functional specifications to map
user prescriptions to constrained modeling for ‘works-like’ proto-
types of furniture. We have been inspired by the work of Shugrina
et al. [30], who precompute the domain defined by fabricability
and functionality constraints to expose sliders with valid ranges to
the user. In our work, however, additional constraints are defined
by the user at runtime directly on the drawing, and new sliders
are automatically generated to explore the resulting constrained
space. Recently, Guerrero et al. [17] proposed efficient local approx-
imations to enable exploration of pattern variations by dropping
different constraints in the input patterns. However, the method is
not suitable for variations that are additionally required to be phys-
ically realizable by drawing machines. As in these works, we aim
to ease the exploration of the feasible space, but apply this to the
problem of exploring the curve patterns produced by a mechanism,
instead of exploring designs of the mechanism itself.

Additionally, in a classical constrained modeling setup, design
from geometric constraints specifications has also been studied.
Ivan Sutherland’s Sketchpad [32] pioneered CAD software as the
first graphical interface to support geometric constraints. Analyz-
ing and solving such constraints have been tackled by Fudos et
al. [14] in a general setting, and Sitharam et al. [31] in the context
of mechanisms. Theoretically, even determining parameter bounds
characterizing the (constrained) solution domain remains a known
difficult topic [4]. Instead, in this work, we seek a general approx-
imation strategy supporting interactive design space exploration
for an intuitive workflow.

3 OVERVIEW
Mechanical drawing machines typically are arrangements of cogs
and parts, with an end-effector that traces out intricate 2D patterns.
Each such machine physically realizes an algebraic expression con-
necting the machine part parameters to the output drawing. This
tight coupling between the parameters and the resultant pattern
variations makes the designers’ task of exploring the design space
very challenging. Specifically, while on one hand modifying a single
parameter may cause several simultaneous changes (e.g., twisting
and scaling), on the other hand a single desired change often re-
quires synchronous manipulation of multiple parameters. Our goal
is to decorrelate these variations. Rather than trying to find the
best possible separation (which tends to be subjective or context-
dependent), our goal is to allow users to define their own visual
constraints or invariants in the drawing space, so that other varia-
tions can be explored independently.

There are two main technical challenges to tackle: first, mecha-
nisms are often described by a relatively high number of parameters
(3-8 in our examples), both continuous and discrete, and whose
valid domain is implicitly defined by a set of non-linear constraints;
second, mapping invariants in the drawing to a corresponding pa-
rameter subspace cannot be done analytically in the general case,
as the relation between parameter changes and drawing changes is
very complex.

We address these challengeswith a two-stepworkflow (see Fig. 2).
The first step, described in Sec. 4, consists in selecting an appropriate
machine by defining global pattern characteristics and providing a
coarse sketch. This step notably allows to assign and fix all discrete
parameters. During the second step, described in Sec. 5, local con-
tinuous variations can be explored while dynamically specifying
visual invariants. Our key contribution is twofold: identify a set of
recurring geometric regularities involving relevant feature points
that can be tracked as the drawing changes (Sec. 5.1), and a novel
local approximation method that allows to explore the subspace
where such regularities appear (Sec. 5.2).

We evaluate our method in several ways (see Sec. 6). First, we
demonstrate a number of cases where our invariants allow mean-
ingful changes in the drawing (Sec. 6.1). Second, we validated the
feasibility of our drawing machines by fabricating several proto-
types (Sec. 6.2). Lastly, we conducted a user study to assess the

3



Figure 3: Starting from a user sketch (left), we retrieve the
best matching patterns in the database – lower value indi-
cates a better candidate.

ability of invariant-based parameterization to efficiently help navi-
gating the configuration space (Sec 6.3).

Let us now define the notation used in the rest of the paper. Each
type of machine is described by:

• A set of design parameters p = (pd , pc ) (the concatenation
of discrete and continuous parameters), evolving in a de-
sign space D implicitly bounded by a system of algebraic
constraints C(p) (typically nonlinear).

• A simulator that works out the trajectory Dp(t), t ∈ [0,T]

(where T is the period) traced by the end point. It also pro-
vides a time series of the positions and orientations of each
machine part for visual inspection.

• A representation Rp of the mechanism geometry at different
levels of detail (coarse for visual checking, detailed for export
and fabrication).

In this paper, ‘configuration space’ or ‘parameter space’ refers to
D, while ‘curve space’ or ‘drawing space’ denotes the Euclidean 2D
space of the trajectory.

4 PATTERN RETRIEVAL
The first step of the design workflow is an inverse problem: finding
the parameter combination solution of

min
p∈D′

d(Dp,S) (1)

where S is a spline fitted to the user’s sketch (Section 4.1), D ′ is a
subspace of D computed from the features of S (Section 4.2), and d
is a measure of dissimilarity between curves (Section 4.3). Since the
patterns produced by drawing machines are most often abstract,
intricate, and generally tedious to sketch precisely, the result may
only coarsely match the user’s intent. Our goal in this step is to
find a value for the discrete parameters (i.e. the radii), so that the
remaining continuous space can be explored.

Once S and D ′ are computed, a set of Nb best matching candi-
dates Di

p is retrieved via brute force comparison of S to drawings
sampled inD ′. Redundant drawings are avoided (to a certain extent)

by making sure that the radii are coprimes (i.e. they do not share a
divisor other that 1). This is enforced by sampling values from the
Farey sequence (without the first term), which can be computed
with linear complexity in the number of terms [29]. Continuous
parameters, on the other hand, are naively sampled (within feasible
bounds) using grid search. The Nb best matches are presented to
the user, who can thus choose the best p (see Fig. 3).

4.1 Sketching and spline fitting
The user first draws a rough sketch. Construction lines can be used
to pre-set the order of rotational symmetry: the pen strokes are
then automatically symmetrized (see Fig. 4).

Our input is therefore a sequence of Ns disconnected, noisy
strokes (represented as polylines) that we want to turn into a
smooth closed spline. Obviously, if Ns = 1 we can fit the spline
directly. Otherwise, our goal is to obtain the shortest closed path
that runs through all strokes. This amounts to a variant of the trav-
eling salesman problem (TSP), where part of the path is already
fixed. We start with the integer program formulation of Dantzig
et al. [9], and make the following modification. Let the 2Ns ends
of each stroke be the vertices V of a complete undirected graph.
The set of edges E in this graph corresponds to the connections
between each end. In order to force the connection between two
ends of the same stroke, we define the coefficient of each edge as

ci j =

{
−k if i and j belong to the same stroke,
di j otherwise,

(2)

where di j is the Euclidean distance between the vertices i and j,
and k is a positive constant. For k high enough, it is always more
advantageous for the solver to connect the two ends of a given
stroke together, while still having the freedom of choosing the con-
nection order. We use the Gurobi solver [18] for this optimization,
which relies on a linear-programming based branch-and-bound al-
gorithm. We obtain an ordering of the strokes as well as the points
within these strokes (given by the order of the ends). Lastly, we
concatenate the strokes and fit a closed cubic B-spline S with a
user-defined smoothing factor.

We note that while the TSP is NP-hard, in practice the number
of strokes tends to be small; therefore, in all of our examples, the
processing time of the entire step was around 0.01s.

4.2 Reducing the search space
To prevent the grid search from becoming prohibitively expensive,
we prune the search space with a number of empirically determined
rules. First of all, the degree or rotational symmetry, if there is such
a symmetry, is always equal to the reduced radius r1 of the leading
gear G1 (‘reduced’ meaning that all radii have been divided to
become coprimes). Second, the frequency spectrum of the pattern
is a useful source of information regarding the other radii. Indeed,
each pattern is a result of the combination of periodic movements
produced by the gears. Our strategy starts by computing the discrete
Fourier transform (DFT) of a target curve to discover the dominant
frequencies, before translating them in terms of gear radii.

First, we sample Nf equally spaced parameter values in [0, 1]
and compute the corresponding points along the target spline S.
For convenience, we write these 2D points as complex numbers

4



Figure 4: Examples of splines fitted to input sketches. Each
sketch required only 1-4 strokes that were automatically
symmetrized.

xn ∈ C, and compute the DFT X = F {x} with

Xk =

Nf −1∑
n=0

xn · e
− 2π i
Nf

kn ∀k ∈ [0 . .Nf − 1]. (3)

The DFT is, by definition, a sampling of the discrete-time Fourier
transform (DTFT), which is itself a continuous function of frequency.
Each value Xk of the DFT corresponds to a frequency fk given by

fk =
fs
Nf

k ∀k ∈

[
−
Nf

2
. .

Nf

2
− 1

]
, (4)

where fs is the signal sampling frequency. The different interval for
k compared to Eq. 3 is not a problem since X is periodic over this
range. Moreover, by construction, our input curve spans exactly
one period T . Therefore, fs = Nf /T and Eq. 4 becomes

fk =
k

T
∀k ∈

[
−
Nf

2
. .

Nf

2
− 1

]
. (5)

Our goal is to find the equation of motion closest to the input curve;
therefore, T is a priori unknown. As we will see, however, we do
not need to determine its actual value.

The middle graph in Fig. 5 illustrates the (fk , |Xk |)mapping, also
called frequency spectrum, for a given curve (where we arbitrarily
set T = 1). As we can see, for such a clean curve only a few frequen-
cies dominate, symmetrically distributed around the fundamental
frequency f 1. Two of the simplest machines (Spirograph and Cy-
cloid Drawing Machine) present a second dominant frequency f 2,
while the Hoot-Nanny even displays a third dominant frequency
f 3 (both f 2 and f 3 being accompanied by their harmonics). We
postulate that the number of such frequencies increases by one for
each new pair of mating gears in the system (unless of course they
cancel each other out). In practice, however, f 3 may be a multiple
of f 2, in which case it is indistinguishable from f 2’s harmonics;
this is a case where our analysis would only partially reduce the
search space.

|X
k|

a
u
to
co
rr
(|
X
k|
)

fi

Figure 5: Fourier analysis of a Hoot-Nanny drawing. The
radii are (4, 3, 2), and the highest peaks of Fourier spectrum
happen at frequencies (−3, 1, 3). One can easily check the va-
lidity of Eq. 6.

To compute the radii of the NG gears from the frequencies f i ,
we have experimentally found that the radius of gear Gi satisfied

ri =
lcm(n1, . . . ,nNG )

ni

with ni =

{
T | f i | if i = 1,
T | f i − f 1 | ∀i ∈ [2 . .NG ],

(6)

where lcm() is the least common multiple, and ni is the number of
rotations ofGi over one period. From the frequency formula (Eq. 5),
it is clear that T cancels out; therefore, we can simply set T = 1
from the start, thus obtaining integer frequencies.

Eq. 6 can be verified in the case of the epitrochoid (i.e. the curve
produced by a Spirograph with one gear rolling outside the other),
whose Cartesian equation of motion is[

x(t)
y(t)

]
= rR(q + 1)

[
cos(t)
sin(t)

]
− d

[
cos ((q + 1) t)
sin ((q + 1) t)

]
t ∈ [0,T] (7)

with q = rF
rR , where rF and rR respectively denote the radii of the

fixed and rolling gears, and d is the distance from the pen hole
to the center of the gear. Since Eq. 7 is conveniently written as a

5



Fourier series, and q + 1 > 1 whatever the radii, it is clear that

f 1 =
1
2π

and f 2 =
q + 1
2π
. (8)

Taking the ratio,

f 1

f 2
=

1
q + 1

⇐⇒ q =
f 2 − f 1

f 1

⇐⇒ rF f 1 = rR (f 2 − f 1).

(9)

Since rF and rR are supposed coprimes,

rF f 1 = rR (f 2 − f 1) = lcm(f 1, f 2 − f 1), (10)

which is indeed a specific case of Eq. 6. The proof for other machines
involves much more complex equations of motion, but we can
intuitively understand why it still works: different linkages only
affect the amplitude of the oscillations, and not their frequencies;
the latter only depend on the radii of mating gears. Therefore, for
instance, the frequency spectrum of a Hoot-Nanny can be seen as
a sum of epitrochoids.

The challenge, then, is to determine the f i from the spectrum
of S. First, we can safely set the f0 peak (constant component) to 0,
effectively centering the curve. Second, while f 1 is the highest peak
for the (Elliptic) Spirograph, this is not necessarily true for other
machines (see Fig. 5). The spectrum, however, always tends to be
symmetric; therefore, we perform an autocorrelation of the Fourier
peaks (i.e. a discrete convolution of the peaks with themselves) to
make the fundamental detection more robust. If the machine has
only two gears, determining f 2 is easy: it is the next maximal peak.
The case of the Hoot-Nanny is more complex, as we saw that its
frequency spectrum appears to be the sum of its two gear matings
spectra considered separately. This has two consequences. First,
f 2 and f 3 can only be distinguished if they are coprimes (which
happenswhen the corresponding radii are also coprimes); otherwise
their harmonics overlap. While all three radii are constrained to
share no common divisor, any pair of them taken separately still
can, which is why f 2 and f 3 are not necessarily coprimes. Second,
their order in the spectrum remains ambiguous no matter what:
the next highest peak after f 1 can correspond to r2 or r3, while the
Hoot-Nanny curves are sensitive to the order of r2 and r3.

From a practical point of view however, the goal of this step is
only to reduce the search space, not to completely determine the
radii. If the order of r2 and r3 is uncertain, we test both combinations;
if the amplitude of a peak is too low, we leave the corresponding
radius undetermined and sample it along the continuous parameters
during grid search. Any pruning of the search space is good to take,
since the complexity is combinatorial in the number of parameters.
Using a sampling density of 4 values per dimension for all machines
in our dataset, our experiments showed that curve retrieval was
faster by an order of magnitude when at least one parameter value
was fixed.

4.3 Curve dissimilarity measure
Let us consider two curves CA and CB represented as polylines with
NA and NB vertices respectively. In the previous version of this
method [28], curves were compared by normalizing and aligning

Figure 6: Comparison of best matching curves for a given in-
put spline (top row), respectively obtained with the distance
field metric (middle) and the Procrustes distance (bottom).

them, then computing their respective distance fields FA and FB
defined as

∀x ∈ R2 F∗(x) = inf
x′∈C∗

∥x′ − x∥, (11)

and finally computing the symmetric distance

dF (CA,CB ) = max

{
1
NA

NA∑
i=1

FB (xAi ),
1
NB

NB∑
i=1

FA(xBi )

}
. (12)

In words, each side of the max tells us, on average, how close a point
from one curve is to the other curve. Intuitively, dF quantifies how
curves differ in terms of the ‘density’ of strokes in a region of space.
From a practical point of view, this metric accepts a wide range
of inputs, as each curve could be a collection of polylines, or even
a binary image obtained from a picture. On the other hand, this
metric is not as precise as e.g. Procrustes analysis [10] or the discrete
Fréchet distance [11], two classic curve dissimilarity measures. The
former requires NA = NB , but inherently normalizes and registers
the curves with linear complexity inNA andNB , while the latter has
(sub-)quadratic complexity. Having the same number of vertices
is not difficult in our new method, since we can resample S to
match the size ofDp. Therefore, we adopt a symmetrized Procrustes
distance as our new measure, defined as

dP (CA,CB ) = min

{ N∑
i=1

∥xAi − xBi ∥
2,

N∑
i=1

∥xAi − xBN−i+1∥
2
}
, (13)

where N = NA = NB . Here, one curve is compared to the other
with its vertices taken in increasing, then decreasing order. This is
because the regular Procrustes distance depends on the order of
the sampling, and we do not know if S and Dp are drawn in the
same direction.

6



Table 1: Sampling and computation times for the three ex-
amples of Fig.6. There were 12248 samples before pruning.

Time per sample (s)

Input
drawing # samples Sampling

time (s)
Distance
field

Procrustes
distance

Loops 376 0.85 0.0100 0.0006
Trefoil 360 1.04 0.0154 0.0007
Whirl 600 0.94 0.0225 0.0008

Average 0.0159 0.0007

Three comparisons between the distance field metric and the
Procrustes distance are given Fig. 6. Both metrics were used to
explore the same dataset of candidate curves and retrieve the best
matching one. We observe that while the distance field metric is
able to capture the general aspect of the curve, it is insensitive to
other aspects such as the arc length because of its image based
nature. Thus, for example, the trefoil knot in the middle is eval-
uated as similar despite looping twice. Furthermore, our timing
measurements (see Table 1) show that the Procrustes distance be-
tween curves at a resolution of 1024 points is more than 20 times
faster than the distance field metric between curves rasterized at a
resolution of 512 by 512 pixels.

5 CONSTRAINED EXPLORATION
Once the the discrete parameters of the machine are fixed, the user
can focus on fine tuning the continuous parameters. We note that
an intuitive system should allow the user to edit different features
of the drawing as independently as needed. This is not always
possible: the smaller the number of degrees of freedom, the harder
it is to prevent several changes from happening at the same time. For
instance, a drawing machine with a single continuous parameter
would not benefit from our system. Conversely, as the number of
parameters increases, so does the extent to which modifications can
be decorrelated. However, the exact combination of parameters that
allows a constrained change is generally complex to determine, as it
requires to either solve a system of non-linear equations, or to resort
to manual trial-and-error. Hence, our goal is to efficiently identify,
abstract, and expose the space of valid machine configurations
subject to the specified constraints.

We allow the user to specify visual preferences as geometric prop-
erties that should stay fixed when a change is made. Note that this
is different from handle-based deformation as the user indicates
what shouldn’t change during editing, rather than a specific target
change. Then, our system computes a new parameter space that
incorporates the previous machine-specific and global constraints
with the new shape invariant(s). The resulting space can be explored
via sliders, whose bounds are dynamically updated after each mod-
ification. The user can subsequently add more invariants, which
further constrain the solution space until no remaining degree of
freedom is left.

We first introduce the shape invariants that are supported and
how they are dynamically computed and tracked (Section 5.1). Then,
we propose a local reparameterization method that enables the user

Figure 7: Example of Points of Interest in a drawing.

to intuitively explore the resulting invariant space in the form of
desirable pattern variations (Section 5.2).

5.1 Pattern invariants
The curves generated by drawing machines are often highly struc-
tured and can be described at several levels of detail. If we attempt
to decompose such a shape, the smallest discernible element is the
point. However, not all points are perceptually equal: some have
particular properties that make them stand out, such as intersection
points and curvature maxima (see Fig. 7). We call them Points of
Interest (PoI). Such points have generic attributes, such as Euclidean
coordinates in curve space, and one (or two) associated time (or
arclength) values. They also display properties which are specific
to their type, such as the angle made by curve tangents at an inter-
section point, or the value of the curvature at the maximum (see
Fig. 8).

Next, we define Relations of Interest (RoI), as relations that hold
either between a PoI and an external object (e.g., a PoI lying on
a geometric primitive), or between a group of PoIs (e.g., the dis-
tance between two PoIs). Any relation that can be expressed as an
algebraic equation involving one or more features of one or more
PoIs can be implemented in the system. While higher-level entities
could also be considered, such as edges between PoIs, cells formed
by edges, or even envelopes formed by sequences of PoIs, we cur-
rently only support PoIs and RoIs, as they are easier to compute
and track in the parameter space. We note that the computation
of the invariant subspace is agnostic of the nature of the features
defined by the user.

Selection and computation. During the interactive session, the
PoIs closest to the user’s mouse are highlighted. Selecting one (or
two) of them opens a menu allowing the user to choose a feature
to freeze.

For generality, we compute the PoIs on a discretized curve output
by the simulation, instead of solving for them analytically. Curva-
ture maxima are straightforward to obtain, as discrete curvature on
polyline vertices is easy to compute. Finding the self-intersections
of a polygon, however, is more involved, as the naive algorithm
(testing every pair of segments) has a complexity that is quadratic
in the number of sides. This problem has been extensively studied

7



and several methods (essentially sweep-line based) have been pro-
posed. We use the Bentley-Ottmann algorithm, whose complexity
is O((n + k) log(n)), with n line segments and k crossings.

Tracking. Key to our approach, PoIs must be tracked as contin-
uous parameter values change: in other words, when considering
two patterns relatively close in the parameter space, we need to
establish correspondences across the PoIs allowing us to quantify
how much a specific PoI property has changed between two curves,
and therefore, to build an invariant space.

Given two drawings D and D ′ and a reference PoI πD
r on D,

a naive criterion for such correspondence is to superimpose both
drawings and take the closest PoI in D ′. In some configurations
however, several PoIs can overlap each other, leading to ambiguities.
This search can be made more robust by considering proximity in
terms of the arc length (see Fig. 9):

πD′

r B argmin
Λ(πD

r ) − Λ(πD′

i )

 , (14)

where Λ(π ) gives the arc length (or pair of arc lengths) of π and
i indexes the PoIs in D ′. This is especially true in the case of
drawing machines where the tracer needs to make a full turn before
coming close again to the same area. Moreover, it should be noted
that the matching PoI does not always exist: some intersections or
curvature maxima are only present in a limited range of parameter
values. Therefore, we define a distance threshold σPoI between the
reference PoI and its match, and discard curves for which this limit
is exceeded. This threshold can also be used to make the search
more efficient: indeed, candidate PoIs in other curves need only be
computed in the circle of radius σPoI centered at the reference PoI.

5.2 Exploring the invariant space
Once the desired pattern invariants have been selected by the user,
the challenge is to explore the resulting constrained parameter
space. In the general case, the invariant space is difficult to deter-
mine analytically. Therefore, we opt for a sample-based local linear
approximation (see Fig. 10 for an illustration).

Curvature 
maximum Intersection

Radius of 
curvature Lying on a line Position Intersection 

angleDistance

Figure 8: Types of Points of Interest (PoI) and associated in-
variants supported by our system.

Figure 9: Using unambiguous features to discriminate be-
tween Point of Interests. Although the red intersection
point is close to the others, we can still differentiate it us-
ing the pair of arc lengths values at the crossing.

In terms of interaction, our algorithm aims to provide the user
with new sliders that allow interactive exploration. Since the ap-
proximation we use is only linear, regular re-projections and re-
approximations of the invariant subspace are required. We perform
them each time a slider is released after a move, which is preferable
to continuous updates for two reasons: it ensures interactivity and
allows reversible changes, ie. give the user the ability to come back
continuously to a previous design while keeping the button pressed.
We now describe our approach for sub-space approximation.

We consider an n-dimensional continuous parameter space im-
plicitly bounded by several machine-intrinsic constraints, contain-
ing a pointp0 associated with the initial drawingD0. For simplicity,
we assume a single user-defined invariant expressed by

dFi

(
F (πD0

r ), F (πDi
r )

)
= 0 (15)

where Di is the drawing associated to a neighboring point pi , F
is the feature of interest (real- or vector-valued), and dFi is the
Euclidean distance in the corresponding feature space.

First, we sample neighboring points pi , within the feasible con-
tinuous parameter domain, taking them on a grid whose resolution
is adapted dimension-wise to the length of the feasible range. We in-
stantiate the associated drawings Di , and track the corresponding
PoI πDi

r . We define the invariance score as

Si B exp(−dFi ). (16)

We will use these scores as weights for the regression of the
solution space. Before that, we filter the samples to keep only a
fraction of the highest weights. We assume, given the locality of the
neighborhood, that the resulting domain is convex and not disjoint.

Then, to perform the regression, we use a Weighted Principal
Component Analysis (WPCA) centered on the starting point. Since
the weights are our invariance scores, this algorithm provides a
basis of vectors ordered by decreasing contribution to the invariant
space. A local basis can therefore be taken as the first m Princi-
pal Components, wherem is the dimensionality of the invariant
subspace. It is important to note thatm cannot simply be deduced
from the number of algebraic constraints, which are not necessarily
independent. In other words, some constraints may be redundant,
either between themselves or with the intrinsic constraints of the
mechanism.

8



Pt of interest

p1

p2

Figure 10: Illustrating the invariant space with 2 continuous
parameters. The user identifies a PoI directly on the curve
and specifies its desired invariant (here: position). Our sys-
tem then locally samples the parameter space, evaluates an
invariance score (shown as a color map), and performs a lin-
ear regression on the sample values. Sweeping the regressed
solution (cyan line) amounts to exploring desirable curves
(e.g., maroon curve).

In order to determine the dimensionality of the resultant space,
we first make sure that it is not reduced to a singleton by checking
the number of samples with a sufficiently high invariance score
(superior to σinv = 0.9). If less than two points are found, we
consider that the system is over-constrained and invite the user
to remove one invariant. The WPCA gives us the proportion of
variance explained by each Principal Component. Defining v1r el as
the highest relative variance in the set, we keep all components
whose proportion is superior to σvar = 0.1v1r el . Each axis of the
resulting subspace is mapped to a slider shown to the user. If no
component is filtered out, we consider that all the invariants were
redundant with the intrinsic constraints, and hence keep the origi-
nal parameterization.

Next, we compute the bounds of the resultant solution space.
Since the approximation is local, we do not need to allow too wide
an amplitude around the starting position. Since each Principal
Component is normalized, we put coarse bounds at −2 and 2. Even
then, the intrinsic constraints may impose tighter bounds along
some dimensions, which depend on the value of the other parame-
ters; therefore, they need to be re-computed every time a slider is
moved. We formulate this as a sequence of non-linear constrained
optimization problems: for each parameter, with the other param-
eters held fixed, we successively find its minimal and maximal
values. Please note that this optimization only uses the intrinsic
constraints of the system, which do not require a simulation or
the evaluation of PoIs (see supplementary document for details).
Further, since we assumed that the local neighborhood was convex
and connected, we expect a single range of possible values within
the coarse bounds.

We are now ready to present the user with a set of sliders that can
be moved while respecting the invariants. Once a slider is released,

we update our model accordingly. First, we project the current
position back onto the solution space, by finding the point closest
to this position that maximizes the invariance score. Then, we re-
compute a local approximation of the solution space, following the
procedure that has just been described.

In addition, wemake the systemmore intuitive to use by ensuring
that the sliders have a temporally consistent visual effect on the
drawing. Indeed, re-approximating the invariant subspace may
typically result in the Principal Components flipping or rotating (see
Fig. 11). Flipping can be easily resolved by comparing the old and
new principal directions pairwise – since their order is preserved –
and flipping them back if necessary. Rotation of principal directions,
which typically happens when the spread is symmetrical (Fig. 11c),
can be avoided by projecting the previous local basis onto the new
one, and normalizing the resulting vectors. This ensures a consistent
behavior of the sliders throughout the exploration.

6 RESULTS AND DISCUSSION
Our database of mechanisms contains four parametric models
whose specifics are given in the supplementary document. Table 2
summarizes the main characteristics of these machines. While the
Spirograph, the Cycloid Drawing Machine and the Hoot-Nanny are
motivated by existing drawing machines, the elliptic Spirograph
was designed by the authors to experiment with non-circular gears.

Various patterns designedwith our system are shown in Figs. 2, 10, 12
and 13. Constrained exploration results are provided in Fig. 12 and
in the accompanying videos, where we compare slider manipulation
in the chosen design space to the corresponding changes happen-
ing to the base parameters. We further evaluated our method in
two ways: first, we ensured that it produces mechanically func-
tional machines by fabricating prototypes; second, we conducted a
user study to assess the intuitiveness of our system compared to a
forward simulator.

6.1 Constrained exploration results
We demonstrate examples of curve invariants for each row in Fig. 12.
They were kept voluntarily simple to emphasize the effect of a
given constraint (see the accompanying videos for more complex
examples). Let us discuss each of these experiments.

(a) (b) (c)

a

b
c

Figure 11: Ensuring temporal consistency. Since the Princi-
pal Components may flip during a slider move from (a) to
(b), or rotate when the user explores a near position (c), the
axes of the new linear approximation are flipped or rotated
when necessary, within the subspace of interest, to remain
as consistent as possible with the original principal direc-
tions.

9



fix
ed

 p
os

iti
on

fix
ed

 c
ur

va
tu

re
fix

ed
 in

te
rs

ec
tio

n 
an

gl
e

P
oI

 m
ov

in
g 

al
on

g 
ra

di
al

 li
ne

fix
ed

 d
is

ta
nc

e 
be

tw
ee

n 
P

oI
s

co
m

bi
na

tio
n 

of
 c

on
st

ra
in

ts

4 2 0 2 4

4

2

0

2

4

3 2 1 0 1 2

3

2

1

0

1

2

Figure 12: Examples of constrained variations obtained with our system (original curves in blue, modified in red). Our gen-
erated sliders allow significant visual changes to the curves, while respecting the visual constraints (one per row, two at the
bottom).

10



Table 2: Mechanisms implemented in our system.

Name # exposed parameters
(discrete+continuous)

Spirograph (S) 2 + 1
Elliptic Spirograph (ES) 2 + 2
Cycloid Drawing Machine (CDM) 2 + 4
Hoot-Nanny (HN) 3 + 5

• Fixed point. The user fixed the location of the selected PoI.
On the left (CDM), the interior boundary was pulled in, while
keeping the external arc fixed. On the right (HN), the cusp
point is fixed, while increasing the symmetric lobes.

• Fixed curvature. The user fixed the curvature at the selected
PoI. In the left example (ES), the center was pulled in, while
maintaining the PoI’s curvature. In the right example (CDM),
the central part was reduced and rotated, while maintaining
the PoI’s curvature.

• Fixed intersection angle. The user fixed the angle between
tangents at the selected intersection point. In the left exam-
ple (ES), the center was pulled in while preserving tangency
between the curve segments (i.e., zero angle). In the right
example (CDM), the loop size was changed, while keeping
the inter-curve intersection angle (and symmetry).

• Moving along radial line. The user restricted the movement
of the PoI along a radial line. On the left (CDM), the center
was closed in while keeping the global orientation. On the
right (HN), the central part was pulled in and the curvature at
the cusp was changed, while keeping the original orientation.

• Fixed distance between 2 PoIs. The user fixed the distance
between 2 selected PoIs. In the left example (ES), the external
boundary size wasmaintained, while pulling the petals closer
together. In the right example (ES), the size of the petals was
held fixed, while pulling them apart.

• Multiple specifications: In these examples, multiple constraints
were specified on selected PoIs. On the left (CDM), the asym-
metry was changed while keeping the global orientation
and curvature of petals. On the right (HN), the petals were
made more ornamental while preserving their curvature and
restricting movement along radial line.

6.2 Precise modeling and fabrication
We fabricated several examples of machines (see Fig. 13):

• the elliptic Spirograph, an easy to fabricate two-parts mech-
anism that we used to validate the first invariants;

• the Hoot-Nanny, which demonstrates our ability to manage
devices with a wider range of parts and connectors.

Our general principle during the fabrication process was to laser-
cut the precision-critical, horizontal parts, and to 3D-print the re-
maining custom connectors, which notably ensure the transmission
of movement and support the different layers of flat components.
While the vector files given to the laser cutter are automatically
generated by a script, the 3D-printed components were designed

(a)

(b)

(c)

Figure 13: Examples of fabricated prototypes: (a) Elliptic
Spirograph with two curves drawn using a different ellip-
tic gear; (b) and (c) Instances of the Hoot-Nanny. Drawn pat-
terns on the right.

by hand using CAD software, requiring to adjust tolerances to help
the machine run smoothly.

One challenge encountered during fabrication was the design
of gear profiles. Such profiles are usually not represented in CAD
software, as they would unnecessarily make the geometric model
more complex; moreover, these pieces are traditionally manufac-
tured with normalized shaper cutters. Laser cutters, on the other
hand, require a precise geometric model as input. Therefore, we im-
plemented a procedural generation of involute gear profiles (which
optimize the transmission of torques, see Fig. 14), for both circular
and elliptical gears. The latter, which is less common, was derived
from a method by Bair [3].

Pictures of some of the fabricated examples are given Fig. 2 and 13.
Demonstration of their usage is given in the main supplementary
video.

(a) Involute (b) Sinusoidal (c) Cycloidal

Figure 14: Different possible gear profiles. Profile (a), al-
though more complex to generate, maximizes torque trans-
mission.

11



6.3 User study
We conducted a user study with 8 participants to validate the ef-
ficiency of a mode of exploration based on visual constraints. We
chose to focus on an important premise of our method – the fact
that defining visual preferences can help navigating the configura-
tion space more easily – rather than trying to evaluate the entire
pipeline. This choice allowed to focus on the core contribution of
constrained exploration, and made user sessions reasonably short
in time and easier to compare.

We defined the following protocol. Each user session was divided
into four pattern-editing tasks. In each of these tasks, the candidate
was asked to transform an initial curve A into a target curve B, using
sliders, in less than two minutes. The set of target patterns was the
same for all users, while initial patterns were randomly generated
for each new session. The editing operation had to be performed
twice: once with the basic machine parameters (subtask 1), and once
with parameters corresponding to a predefined visual invariant
(subtask 2). The interface was kept minimal, has shown in Fig. 15
left. In order to focus solely on the efficiency of the parameterization,
we designed both subtasks to be as close as possible interaction-wise.
First, the same number of sliders was exposed each time (despite
our method allowing to reduce this number), and the order in which
the subtasks successively appeared was randomized. Second, the
predefined invariant was not shown to the user. Lastly, we presented
the re-projection and re-approximation process as a little “helper”
which could be called by pressing the spacebar, triggering a change
in the curve and in the behavior of the sliders. This “helper” had
a negligible effect in the base case: a dummy waiting time was
triggered (inferior to the time required by the true “helper”), and a
tiny perturbation was added to the sliders. This managed to make
both versions completely indistinguishable for all users. At the end
of the session, candidates were presented with a table displaying
their results (see Fig. 15 right). For each task, they were asked to
rate the similarity with the target pattern between 0 and 5.

Results are given for two metrics (total time and perceived dis-
similarity) in Fig. 16. With comparable times, candidates were in
most cases able to reach a final result perceptually closer to the

Figure 15: Left: interface for a subtask of the user study (tar-
get pattern in grey). Right: summary sheet presented to the
user in order to rate the results (each column is respectively
the target pattern, and results of subtask 1 and 2 in an arbi-
trary order).

Figure 16: User study results (mean and standard deviation
bars). “BAS” and “INV” respectively denote the base and
invariant-space parameterizations.

target curve. The slightly higher times in our case can be attributed
to the re-approximation step, which could take up to three times
longer than the dummy step defined for the base case. This could,
however, be reduced with a more efficient implementation. More-
over, additional time-independent metrics, namely the total number
of slider moves and the total Euclidean distance travelled in the
parameter space (given as supplementary material), demonstrate
that our parameterization was more efficient.

Lastly, we note that this study only partially validates the effi-
ciency of our method, as candidates were not allowed to choose
their own invariants (which would have required a longer familiar-
ization time). Therefore, the intuitiveness of the Points of Interests
and associated invariants has not been assessed. Moreover, an edit-
ing task with a specific target does not exactly correspond to the
exploration scenario we envisioned for this method; it is, however,
easier to evaluate quantitatively.

6.4 Discussion
Our method presents several limitations, which open the way for
future developments:

• The curve metric used for pattern retrieval, while efficient,
does not necessarily reflect perceived proximity between
drawings. A possible improvement could be to train a feature-
based curve metric with a perceptual study, as done by Coros
et al. [8], while being aware that perception tends to be
application dependent, and may not be as general.

• Our naive grid-based local sampling method is combinato-
rial in the number of parameters, which allowed to keep
interactive rates up to only six continuous parameters in our
single-threaded Python implementation; we note, however,
that computing samples and PoIs could be done in parallel,
and that a subset of the most significant parameters can be
preselected before applying our method.

12



• Bounded sliders are straightforward to implement, but they
lack a clear meaning in terms of visual effect on the drawing.
Possible improvements include adding intuitive visual clues
beside each slider, or more advanced controls.

• Lastly, transforming an abstract mechanical model into a
fabricable assembly remains a tedious task, as many phys-
ical aspects that are neglected (gear backlash, defaults in
3D-printed parts, frictions and instabilities) may end up im-
pairing the final drawing quality. This notably explains why
we were not able to reliably build machines with a higher
number of gears: while our method is completely able to
handle more complex devices virtually, the accumulation of
physical errors made the resulting prototypes too unstable
to produce drawings of satisfying quality.

The specific application domain presented in this paper, while
interesting from an educational and artistic point of view, could be
seen as limited in terms of practical value. The core concepts of our
method, however, are not bound to drawing machines: they remain
valid for more general mechanisms, as illustrated in Fig. 17. Fol-
lowing our previous work [28], we selected one of the elementary
mechanisms from Coros et al.’s paper [8] and added it to our sys-
tem. Connecting a ‘leg’ to the end-effector (animated with inverse
kinematics), we can imagine a situation where a user wishes to
have the foot kicking a ball at the maximum of curvature (therefore
deciding to fix its position) while exploring the various trajectories
taken by the foot to reach this position.

Furthermore, designing cyclic motions is also relevant in indus-
trial settings such as assembly lines, where the available constraints
on a point of interest could be extended to speed and force, with
no change needed in the rest of the pipeline.

Lastly, this method should be applicable to a wider range of
generative design systems with a set of continuous and discrete
parameters as input, assuming access to a reasonably fast forward
simulation (or procedural generation) leading to an output having
measurable (and desirable) invariants.

7 CONCLUSION
We presented a framework for exploring and fabricating drawing
machines. The user can directly select among different machines
along with their parameter settings using high-level scribbles, and
then refine the retrieved drawing pattern by specifying constraints
on dynamically computed feature points.

The main idea is to locally sample the design space and regress to
the subspace that best preserves user-specified constraints on Points
of Interest in the drawing. We linearize the space using a weighted
PCA and expose the desirable region of the design space to the user.
The user can simply navigate the solution space using an intuitive
slider interface. We tested our setup on several classical drawing
machines, designed various patterns using it, and fabricated a few
prototypes to demonstrate the effectiveness of the approach.

In the future, we would like to extend our framework in differ-
ent ways. An important next step would be to support interactive
topological changes to machine configurations and allowing users
to seamlessly transition across such variations directly by sketch-
ing curves and indicating suitable invariants. Another interesting
extension would be to support 3D space curve drawing machines

Initial curve
New curve
Pt of interest

Figure 17: Extension to amechanical character: a leg kicking
a soccer ball.

which would be relevant for recently introduced 3D doodle pens.
Finally, we plan to investigate how our dynamic reparameterization
approach can be used in other contexts of design exploration where
analytically solving for and characterizing valid solution spaces is
too expensive and impractical.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their valuable
comments and suggestions. We also thank Aron Monszpart for
proofreading the paper and Estelle Charleroy for helping with
the video. This work was supported by the European Research
Council Starting Grant SmartGeometry 335373 and Advanced Grant
Expressive 291184, and gifts fromAdobe. Prototypeswere fabricated
with the Equipex Amiqual4Home (ANR-11-EQPX-0002).

REFERENCES
[1] Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit:

Interactive Linkage Editing Using Symbolic Kinematics. ACM Trans. Graph. 34,
4, Article 99 (July 2015), 8 pages. https://doi.org/10.1145/2766985

[2] Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014.
Spin-it: Optimizing Moment of Inertia for Spinnable Objects. ACM Trans. Graph.
33, 4 (2014), 1–96. https://doi.org/10.1145/2601097.2601157

[3] Biing W. Bair. 2002. Computerized tooth profile generation of elliptical gears
manufactured by shaper cutters. Journal of Materials Processing Technology 122,
2-3 (2002), 139–147. https://doi.org/10.1016/S0924-0136(01)01242-0

[4] Hichem Barki, Lincong Fang, Dominique Michelucci, and Sebti Foufou. 2016.
Re-parameterization reduces irreducible geometric constraint systems. CAD
Computer Aided Design 70 (2016), 182–192. https://doi.org/10.1016/j.cad.2015.07.
011

[5] Gaurav Bharaj, David I W Levin, James Tompkin, Yun Fei, Hanspeter Pfis-
ter, Wojciech Matusik, and Changxi Zheng. 2015. Computational Design of
Metallophone Contact Sounds. ACM Trans. Graph. 34, 6 (2015), 1–13. https:
//doi.org/10.1145/2816795.2818108

[6] Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun. 2012. An
algebraic model for parameterized shape editing. ACM Trans. Graph. 31, 4 (2012),
1–10. https://doi.org/10.1145/2185520.2335429

[7] Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly.
2013. Designing and fabricating mechanical automata from mocap sequences.
ACM Trans. Graph. 32, 6 (2013), 1–11. https://doi.org/10.1145/2508363.2508400

13

https://doi.org/10.1145/2766985
https://doi.org/10.1145/2601097.2601157
https://doi.org/10.1016/S0924-0136(01)01242-0
https://doi.org/10.1016/j.cad.2015.07.011
https://doi.org/10.1016/j.cad.2015.07.011
https://doi.org/10.1145/2816795.2818108
https://doi.org/10.1145/2816795.2818108
https://doi.org/10.1145/2185520.2335429
https://doi.org/10.1145/2508363.2508400


[8] Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira
Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Compu-
tational Design of Mechanical Characters. ACM Trans. Graph. 32, 4 (2013), 1–83.
https://doi.org/10.1145/2461912.2461953

[9] G. Dantzig, R. Fulkerson, and S. Johnson. 1954. Solution of a Large-Scale Traveling-
Salesman Problem. Journal of the Operations Research Society of America 2, 4
(1954), 393–410. https://doi.org/10.1287/opre.2.4.393

[10] Ian L Dryden and Kanti V Mardia. 1998. Statistical shape analysis. Vol. 4. Wiley
Chichester.

[11] Thomas Eiter and Heikki Mannila. 1994. Computing Discrete Frechet Distance.
Technical Report CD-TR 94/64. Information Systems Department, Technical
University of Vienna.

[12] Max Ernst. 1942-7. Young Man Intrigued by the Flight of a Non-Euclidean Fly.
(1942-7). Collection: Hamburger Kunsthalle, Hamburg/Pietzsche Collection.

[13] Joe Freedman. 2015. Cycloid Drawing Machine | leafpdx. http://leafpdx.bigcartel.
com/product/cycloid-drawing-machine. (2015). Accessed: 2018-04-30.

[14] Ioannis Fudos and CmHoffmann. 1997. A graph-constructive approach to solving
systems of geometric constraints. ACM Trans. Graph. 16, 2 (1997), 179–216.
https://doi.org/10.1145/248210.248223

[15] James Nolan Gandy. 2016. James Nolan Gandy. http://www.jamesnolangandy.
com/. (2016). Accessed: 2018-04-30.

[16] Pablo Garcia. 2016. DrawingMachines.org. https://drawingmachines.org/. (2016).
Accessed: 2018-02-01.

[17] Paul Guerrero, Gilbert Bernstein, Wilmot Li, and Niloy J. Mitra. 2016. PATEX:
Exploring Pattern Variations. ACM Trans. Graph. 35, 4, Article 48 (July 2016),
13 pages. https://doi.org/10.1145/2897824.2925950

[18] Inc. Gurobi Optimization. 2016. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com. (2016).

[19] Leon M. Hall. 1992. Trochoids, Roses, and Thorns - Beyond the Spirograph.
College Mathematics Journal 23, 1 (1992), 20–35.

[20] Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alis-
tar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016.
Metamaterial Mechanisms. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM, New York, NY, USA, 529–539.
https://doi.org/10.1145/2984511.2984540

[21] A. B. Kempe. 1875. On a General Method of describing Plane Curves of the
nth degree by Linkwork. Proceedings of the London Mathematical Society s1-7, 1
(1875), 213–216. https://doi.org/10.1112/plms/s1-7.1.213

[22] B. Koo, J. Hergel, S. Lefebvre, and N. Mitra. 2016. Towards Zero-Waste Furniture
Design. IEEE Transactions on Visualization and Computer Graphics 99 (2016).
https://doi.org/10.1109/TVCG.2016.2633519

[23] Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh Agrawala, and Niloy J. Mitra.
2014. Creating works-like prototypes of mechanical objects. ACM Trans. Graph.
33, 6 (2014), 1–9. https://doi.org/10.1145/2661229.2661289

[24] Yang Liu and J. Michael McCarthy. 2017. Design of Mechanisms to Draw Trigono-
metric Plane Curves. Journal of Computing and Information Science in Engineering
9, 2 (2017). https://doi.org/10.1115/1.4035882

[25] Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann
Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-
last: Strength to weight 3d printed objects. ACM Trans. Graph. 33, 4 (2014), 97.
https://doi.org/10.1145/2601097.2601168

[26] Jonàs Martínez, Jérémie Dumas, and Sylvain Lefebvre. 2016. Procedural Voronoi
Foams for Additive Manufacturing. ACM Trans. Graph. 35 (2016), 1 – 12. https:
//doi.org/10.1145/2897824.2925922

[27] Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung.
2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans. Graph.
32, 4 (2013), 81:1–81:10. https://doi.org/10.1145/2461912.2461957

[28] Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra. 2017.
SPIROU: Constrained Exploration for Mechanical Motion Design. In Proceedings
of the 1st Annual ACM Symposium on Computational Fabrication (SCF ’17). ACM,
New York, NY, USA, Article 7, 11 pages. https://doi.org/10.1145/3083157.3083158

[29] Norman Routledge. 2008. Computing Farey Series. The Mathematical Gazette 92,
523 (2008), 55–62.

[30] Maria Shugrina, Ariel Shamir, and Wojciech Matusik. 2015. Fab Forms: Customiz-
able Objects for fabrication with Validity and Geometry Caching. ACM Trans.
Graph. 34, 4 (2015), 1–100. https://doi.org/10.1145/2766994

[31] Meera Sitharam and Menghan Wang. 2014. How the Beast really moves: Cayley
analysis of mechanism realization spaces using CayMos. CAD Computer Aided
Design 46, 1 (2014), 205–210. https://doi.org/10.1016/j.cad.2013.08.033

[32] Ivan E. Sutherland. 1963. Sketchpad: A Man-machine Graphical Communication
System. In Proceedings of the May 21-23, 1963, Spring Joint Computer Conference
(AFIPS ’63 (Spring)). ACM, New York, NY, USA, 329–346. https://doi.org/10.1145/
1461551.1461591

[33] Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan
Grinspun, and Markus Gross. 2014. Computational Design of Linkage-based
Characters. ACM Trans. Graph. 33, 4, Article 64 (July 2014), 9 pages. https:
//doi.org/10.1145/2601097.2601143

[34] Valdis Torms. 2015. 3d printēts spirogrāfs. http://www.3domas.lv/2015/07/
pastaisits-spirografs_1.html. (2015). Accessed: 2018-04-30.

[35] Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012. Guided exploration
of physically valid shapes for furniture design. ACM Trans. Graph. 31, 4 (2012),
1–11. https://doi.org/10.1145/2185520.2335437

[36] Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014.
Pteromys: Interactive Design and Optimization of Free-formed Free-flight Model
Airplanes. ACM Trans. Graph. 33, 4 (2014), 1–10. https://doi.org/10.1145/2601097.
2601129

[37] Mehmet Ersin Yumer, Siddhartha Chaudhuri, Jessica K. Hodgins, and Levent Bu-
rak Kara. 2015. Semantic Shape Editing Using Deformation Handles. ACM Trans.
Graph. 34, 4, Article 86 (July 2015), 12 pages. https://doi.org/10.1145/2766908

[38] Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case Structural
Analysis. ACM Trans. Graph. 32, 4, Article 137 (July 2013), 12 pages. https:
//doi.org/10.1145/2461912.2461967

[39] Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining Guo.
2012. Motion-guided Mechanical Toy Modeling. ACM Trans. Graph. 31, 6 (2012),
1–127. https://doi.org/10.1145/2366145.2366146

14

https://doi.org/10.1145/2461912.2461953
https://doi.org/10.1287/opre.2.4.393
http://leafpdx.bigcartel.com/product/cycloid-drawing-machine
http://leafpdx.bigcartel.com/product/cycloid-drawing-machine
https://doi.org/10.1145/248210.248223
http://www.jamesnolangandy.com/
http://www.jamesnolangandy.com/
https://drawingmachines.org/
https://doi.org/10.1145/2897824.2925950
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1145/2984511.2984540
https://doi.org/10.1112/plms/s1-7.1.213
https://doi.org/10.1109/TVCG.2016.2633519
https://doi.org/10.1145/2661229.2661289
https://doi.org/10.1115/1.4035882
https://doi.org/10.1145/2601097.2601168
https://doi.org/10.1145/2897824.2925922
https://doi.org/10.1145/2897824.2925922
https://doi.org/10.1145/2461912.2461957
https://doi.org/10.1145/3083157.3083158
https://doi.org/10.1145/2766994
https://doi.org/10.1016/j.cad.2013.08.033
https://doi.org/10.1145/1461551.1461591
https://doi.org/10.1145/1461551.1461591
https://doi.org/10.1145/2601097.2601143
https://doi.org/10.1145/2601097.2601143
http://www.3domas.lv/2015/07/pastaisits-spirografs_1.html
http://www.3domas.lv/2015/07/pastaisits-spirografs_1.html
https://doi.org/10.1145/2185520.2335437
https://doi.org/10.1145/2601097.2601129
https://doi.org/10.1145/2601097.2601129
https://doi.org/10.1145/2766908
https://doi.org/10.1145/2461912.2461967
https://doi.org/10.1145/2461912.2461967
https://doi.org/10.1145/2366145.2366146

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Pattern Retrieval
	4.1 Sketching and spline fitting
	4.2 Reducing the search space
	4.3 Curve dissimilarity measure

	5 Constrained Exploration
	5.1 Pattern invariants
	5.2 Exploring the invariant space

	6 Results and Discussion
	6.1 Constrained exploration results
	6.2 Precise modeling and fabrication
	6.3 User study
	6.4 Discussion

	7 Conclusion
	References

