

SeeThrough: Finding Chairs in Heavily Occluded Indoor Scene Images

Moos Hueting University College London Pradyumna Reddy University College London Ersin Yumer Adobe Research Vladimir G.Kim Adobe Research Nathan Carr Adobe Research Niloy J.Mitra University College London

Goal: extract 3D scene mock up from single image (focused on chairs and other highly occluded objects)

Context is Important

Global context

Local context No context

Context is Important

Global context

Local context No context

input

stage

Keypoint estimation

Keypoint Dataset

Input image

Objectnet3D Ground truth annotation

Selecting Vertices of the overlaid CAD model

cvgl.stanford.edu/projects/objectnet3d/

Keypoint thresholding

Ground truth keypoints

Network output

After thresholding

Local maxima

Keypoint thresholding

result

Vanishing point estimation

LUCL

result

PCA template

UCL

Fit parameters

Transform parameters

Template parameters

Candidate Set

Candidate selection

Unary Costs: measure how well the key points explain the object

Pairwise Costs: Capture relationship between objects

Relative transform

Candidate selection

UCL

Results and Dataset

Results and Dataset

Real World Images SeeingChairs

lm2CAD

Ours

Real World Images SeeingChairs

Im2CAD

Ours

Real World Images SeeingChairs

Ours

	AvgMaxIoU (precision)	AvgMaxIoU (recall)	AvgMaxIoU (F1)	
3D-INN [128] + FasterRCNN [94]	0.316	0.150	0.198	
SeeingChairs [6]	0.195	0.128	0.149	
Ours	0.386	0.250	0.293	
	PercCorrect (precision)	PercCorrect (recall)	PercCorrect (F1)	
3D-INN [128] + FasterRCNN [94]	0.263	0.124	0.165	
SeeingChairs [6]	0.071	0.043	0.052	
Ours	0.298	0.167	0.207	
	PercCorrectFull (precision)	PercCorrectFull (recall)	PercCorrectFull (F1)	
3D-INN [128] + FasterRCNN [94]	0.04	0.015	0.021	
SeeingChairs [6]	0.013	0.007	0.009	
Ours	0.285	0.161	0.198	
	AvgMax2DIoU (precision)	AvgMax2DIoU (recall)	AvgMax2DIoU (F1)	AngleDiff (in degrees)
3D-INN [128] + FasterRCNN [94]	0.526	0.336	0.401	55.8
SeeingChairs [6]	0.372	0.325	0.341	11.4
Ours	0.628	0.470	0.525	7.3

Goal: extract 3D scene mock up from single image (focused on chairs and other highly occluded objects)

Main insight: cases with significant occlusion can be improved by using high-level contextual knowledge about how scenes "work"

Main result: resulting scene mock ups significantly better than combinations of state-of-the-art methods which are reliant on object detection algorithms.

- •First, we plan to extend the evaluation to more classes of objects beyond those considered.
- •Second, one can explore higher fidelity models to better recover fine scale features in the recovered models.
- •Finally, we would like to explore templates that can express a broader understanding of the multi-object spatial relationships including symmetry and regularity.

Acknowledgement

This work is in part supported by the Microsoft PhD fellowship program, and ERC Starting Grant SmartGeometry (StG-2013-335373). Also, special thanks to Aron Monszpart, James Hennessey, Carlo Innamorati, Paul Guerrero, and other group members for invaluable help at various stages of the project.

Thank You

Code available:

geometry.cs.ucl.ac.uk/projects/2018/seethrough/paper_docs/Code_Data.zip

