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Abstract

In the context of content creation, there is an increasing demand for high-quality

digital models including object shape, texture, environment illumination, physical

properties, etc. As the design and preview presentations get exclusively digital,

the need for high-quality 3D assets has grown sharply. The demand, however, is

challenging to meet as the process of creating such digital 3D assets remains mostly

manual – heavy post-processing is still needed to clean-up captures from commercial

3D capturing devices or models have to be manually created from scratch. On the

other hand, low-quality 3D data is much easier to obtain, e.g., modeled by hand,

captured with a low-end device, or generated using a virtual simulator. In this

thesis, we develop algorithms that consume such low-quality 3D data and 2D cues to

automatically create enriched 3D content of higher-quality. Specifically, with the

help of low quality underlying 3D geometry, we explore (i) how to grab 3D shape

from 2D images while factorizing camera motion and object motion in a dynamic

scene; (ii) how to transfer texture and illumination from a captured 2D image to

3D shapes of the same category; (iii) how to decompose 360 environment map and

BRDF material from photos and reduce ambiguity by joint observation; and (iv) how

to model 3D garment shape and its physical properties from a 2d sketch or image.



Impact Statement

This thesis discusses several topics related to information transfer from 2D image

to 3D shape and design parameters. The proposed solution of 3D reconstruction

of a dynamic scene, texture transfer from 2D image to the related 3D surface,

illumination/material recovery from photo collections and garment modeling from

2D sketch extend the content of the current research community and may inspire

future research programmes.

In terms of methodology, this work develops an automated pipeline that lifts

information of 2D photograph into a 3D shape surface. This method may boost a 3D

shape dataset with realistic texture/illumination so that machine learning algorithms

may acquire better performance on several tasks when dealing with real-world

data. This work also develops a workflow using a trained neural network inside

an objective function in an optimization problem. As the neural network itself is

differentiable, the gradient of the objective function can be calculated efficiently.

Therefore, the optimization converges fastly.

The pipeline of texture/illumination transfer from an image to a 3D surface can

be used in many AI companies to improve the accuracy of their service in the real

world scenario. The outcome of our illumination/material recovery project can be

a powerful tool for indoor design or online property view. The garment modeling

system is jointly developed with Adobe Inc. The method bridges several parts of the

apparel industry and may be helpful to the next generation of garment manufactory

pipeline.
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Chapter 1

Introduction

The rapid development of computer graphics and computer vision has been fueled

by the easy availability of rich 3D geometric data which, in turn, inspired researchers

to process, analyze and understand collections of 3D data during the past decades.

In the recent years, repositories of 3D data also stimulated the evolution of data-

driven approaches heavily relying on the availability of large and high-quality dataset.

Furthermore, the study on the acquisition of 3D content itself has produced newer

and richer 3D content (e.g., texture, materials, physical parameters) that in turn has

resulted in new data-driven applications.

In the context of computer graphics, a realistic virtual 3D scenario is the

combination of geometry, illumination, texture, and material (as represented by

BRDF). To faithfully capture or model a 3D scenario, the extraction of such 3D

content plays a very crucial role. However, directly acquiring high-quality 3D content

remains difficult. Even for a high-end 3D acquisition device, the output still needs

heavy post-processing and clean-up before the data can be used. In this thesis, we

explore the problem of generating high-quality 3D data from easy-to-access 2D

content, i.e., photograph, sketch, etc. In addition to utilizing 2D content, we also

develop algorithms to marry knowledge learned from existing low-quality shape

collections and realistic physically-based virtual simulations.

We start by developing an algorithm to obtain 3D information of a real-world

scene by lifting it from multiple captured 2D images. The problem of estimating

motion of camera and geometry structure of a captured scene, which is known as
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the Structure-of-Motion problem, has been well studied over decades. However,

previous work relies on the assumption that the target scene is static during imaging.

In the first part of this thesis, we propose a method that extracts the 3D structure

of each rigid part and the relative motion between camera and objects from a pair

of images captured from a dynamic scene. Starting from a pre-boosting step, we

establish rich correspondences between the image pair. The correspondences are

then grouped and 3D structure is extracted by a continuous optimization framework.

Finally, a post-boosting step is proposed to generate high-quality dense 3D point

cloud for each rigid part in the scene. To the best of our knowledge, this work is

the first to investigate the reconstruction problem of a dynamic scene with rigid

segments from only a pair of images.

Next, we observe that texture attached on a 3D shape is a very important feature

in many applications, especially in the context of scene understanding. Although 3D

shape with high-quality geometric details continues to get richer and richer, it is still

hard to efficiently create 3D content with acceptable texture appearance. A general

observation on the relationship between geometry and texture indicates that they

are not one-to-one corresponded. In the second part of this thesis, we discuss the

problem that aims to semantically color a 3D shape by utilizing information from a

given captured image of a similar textured object. The problem is challenging as an

object’s texture as seen in a photograph is distorted by many factors, including pose,

geometry, and illumination. These geometric and photometric distortions must first

be factorized before the pure underlying texture to a new object can be transferred

to produce a texture-consistent 3D model. Instead of relying on hard-to-obtain

dense correspondences, we factorize the problem into the reconstruction of a set of

base textures (materials) and an illumination model for the object in the image. By

exploiting the estimated geometry of a similar 3D model, we reconstruct reliable

texture regions and correct for the illumination, from which a full texture map can

be recovered and applied to the model.

Next, we recall that the appearance of an object is the result of the complex

reaction of both illumination, material, and texture. From a single observation,
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such as an image captured under uncontrolled settings, faithfully factorizing the

appearance is an ill-defined problem. However, among the real-world objects, a large

portion of them are non-textured and similar proxy geometry can be retrieved from

a 3D shape database. Furthermore, although every single observation is captured

in an uncontrolled way, the same object could have been captured multiple times,

or multiple objects might be captured in one scenario provide a weak form of

regularization. Such a setting can be exploited to estimate the illumination and

material with joint observations of non-textured objects. In the third part of the

thesis, we propose to make use of a set of photographs to jointly estimate the non-

diffuse materials and environment lighting in an uncontrolled setting. Our key

observation is that seeing multiple instances of the same material under different

illumination (i.e., environment), and different materials under the same illumination

provide valuable constraints that can be exploited to yield a high-quality solution (i.e.,

specular materials and environment illumination) for all the observed materials and

environments. Similar constraints also arise when observing multiple materials in a

single environment, or a single material across multiple environments. Technically,

we enable this by a novel scalable formulation using parametric mixture models that

allows for simultaneous estimation of all materials and illumination directly from a

set of (uncontrolled) Internet images. The core of this approach is an optimization

procedure that uses two neural networks that are trained on synthetic images to

predict good gradients in parametric space given observation of reflected light.

3D shape collections are getting ubiquitous nowadays. The above assumptions,

however, is not satisfied for categories of non-rigid objects, such as the shape

of clothes draped over the human body. When estimating 3D content associated

with such categories of objects, 3D shape database will be insufficient to directly

provide a reasonable geometry proxy with enough details. As designing real and

virtual garments is extremely demanding with rapidly changing fashion trends and

increasing need for synthesizing realistically dressed digital humans for various

applications, we need simple and effective workflows to facilitate authoring sewing

patterns customized to garment and target body shapes to achieve desired looks.
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Traditional workflow involves a trial-and-error procedure wherein a mannequin is

draped to judge the resultant folds and the sewing pattern iteratively adjusted until

the desired look is achieved. This requires time and experience. Instead, we present a

data-driven approach wherein the user directly indicates desired fold patterns simply

by sketching while our system estimates corresponding garment and body shape

parameters at interactive rates. The recovered parameters can then be further edited

and the updated draped garment previewed. Technically, we achieve this via a novel

shared shape space that allows the user to seamlessly specify desired characteristics

across multimodal input without requiring to run garment simulation at design time.

We present and evaluate the algorithms developed for producing various editable

3D assets from low-quality 2D assets.

In Chapter 2, we review the existing literature related to this thesis.

In Chapter 3, we present an approach that reconstructs both the 3D structure of

each rigid part as well as their motions between two images captured from a dynamic

scene. This consist of material that has been published as [3].

In Chapter 4, we present an automated pipeline capable of transporting texture

information from images of real objects to 3D models of similar objects. This consist

of material that has been published as [4].

In Chapter 5, we propose a method that makes use of a set of photographs in or-

der to jointly estimate the non-diffuse materials and sharp lighting in an uncontrolled

setting. This consist of material that has been published as [5].

In Chapter 6, we present a share latent space learning technique that bridge

the 2D sketch space, parameter space, and 3D geometry space, together with an

interactive fashion design workflow. This consist of material that has been published

as [6].

In Chapter 7 we conclude with discussion about future research directions based

on the limitations of our methods.



Chapter 2

Background and Literature Review

Acquisition 3D content from a target scene is a long-studied topic in both computer

graphics and computer vision. In this chapter, the most relevant research into

structure-motion analysis, shape analysis, image decomposition, texture synthesis,

material-illumination modeling, photo-realistic image editing and garment capturing

and modeling are discussed. The research related to structure reconstruction and

motion understanding in Chapter 3 is discussed in Section 2.1, the research related

to image and shape analysis and texture manipulation in Chapter 4 is discussed in

Section 2.2, the research related to material and illumination estimation in Chapter 5

is discussed in Section 2.3 and the research related to garment modeling in Chapter 6

is discussed in Section 2.4.

2.1 Structure Reconstruction and Motion Under-

standing
Analyzing acquired scenes remains a central topic in computer graphics and vision.

The goal involves establishing correspondences, performing motion segmentation,

and detecting changes in the scenes. The complexity of the problem varies greatly

based on how much the objects move, how often recordings are made (i.e., isolated

images versus video sequence), and how reliably correspondence can be extracted.

On one hand, a static scene can be reliably reconstructed from a set of unorganized

images using SfM; while, on the other hand, advanced methods exist to perform

motion segmentation from video sequences by tracking correspondence. In Chapter 3,
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we study the problem in the context of dynamic environments recorded with only

single pair of images.

Motion factorization. Majority of the methods assume spatio-temporal coherence

and access to video sequences as input. Based on the factorization of a trajectory

matrix into motion and structure components, motion factorization, originally pro-

posed by Tomasi et al. [7], remains the method of choice for multi-body motion

segmentation [8, 9]. However, in real world settings with noisy inputs the method

can produce only partial (tracked) trajectories. Gruber et al. [10, 11] use Maximum

Likelihood Estimation to extend factorization to handle uncertainty and missing

data. More recently, advanced methods investigate the problem as selection from a

family of models while balancing between model complexity and modeling accuracy.

This results in a unified formulation [12, 13] that works robustly on a variety of

real-world video sequences. We consider [14] representing the state-of-the-art in

motion segmentation. Their system uses a cluster of 480 carefully synchronized

cameras to continuously capture changing scenes allowing tracking thousands of

points and handling non-rigid objects. The above methods, however, rely on access

to densely sampling video sequences, and hence are not applicable in our setting.

As shown in [14] (Figure 5.), the tracking accuracy drops significantly when less

number of views are used.

Motion grouping. The grouping problem has also been investigated as an instance

of subspace clustering, and algebraic methods such as GPCA are extended to deal

with missing data [15] and outliers [16, 17]. However, without the hypothesis of

spatio-temporal coherence (i.e., access to video sequences), the methods quickly

become impractical due to the exponential complexity with respect to both the

dimension of the ambient space and the number of moving objects in the scene.

More recently, analysis has been restricted to sparse, low-dimensional subspace

representations to encode trajectory data. [18] achieve impressive performance in

terms of accuracy on the Hopkins155 motion segmentation database [19]. With

the assumption of sparse observations, algorithms based on geometric model fitting

provide better potential. As claimed by [20], PEARL [20, 21] is largely considered
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as the state-of-the-art method for few-view motion segmentation. By injecting the

idea of model refitting, PEARL achieves higher accuracy on problems with a small

number of input frames. However, in real world scenes, PEARL’s α-expansion step

is adversely affected by outliers especially under large view changes. Please refer to

Section 3.5.3 for comparison with our method.

Sceneflow estimation. Scene flow is the dense or semi-dense 3D motion field of a

dynamic scene that moves completely or partially with respect to a camera. There are

numerous potential applications such as autonomous navigation [22], visual odome-

try [23], etc. Such techniques perform robust motion estimation of the surrounding

objects with a continuous input stream which provides sufficient local information

for corresponding search and field estimation, and hence are not applicable in our

sparse observation setting.

Prior knowledge. Relying on additional information, for example to recover the

3D structure of a scene while performing motion segmentation has been shown

to improve performance. For example, in the case of articulated bodies, Fayad et

al. [24] optimize a single cost function to jointly solve the problem of segmentation

and 3D reconstruction using an input set of point tracks. The approach has been

extended to handle non-rigid objects [25]. These methods, however, require multiple

frames from a video to obtain a good initialization and are not applicable in our

setting.

Correspondence. The central challenge to the problem is to establish point corre-

spondences between image pairs with large changes of viewpoint introducing severe

distortions to object texture. The most common approach is to use the SIFT feature

extractor [26]. However, the detected correspondences are very unreliable under

large scene changes. [27] extend the concept of SIFT to create an affine invariant

descriptor (see Figure 3.12 for comparison).

However, none of the above methods are designed for only using a single pair of

input images. In Chapter 3, we directly work on a pair of images with large camera

motions and object displacements, which makes correspondence detection on the

image level difficult. We show that by simultaneously optimizing both the object
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structure (i.e., 3D point locations) and object motion, we can detect scene changes

and establish good point-level correspondences.

2.2 Image and Shape Analysis, Texture Manipula-

tion
In Chapter 4 we study how to efficiently transfer texture information from 2D images

to 3D shapes. This evolves the correct understanding of texture that is undistorted

from shading, normal direction from underlying geometry and view from the camera.

Image decomposition. Extracting shape, illumination, and reflectance from shading

is a long standing problem in computer graphics and vision. We refer to [28] for a

state-of-the-art result on this topic. However, when applying these methods to object

images, the results are far below the quality needed in graphics applications, due

to the complexity in how different factors that affect the image formation process

are interweaved. In Chapter 4, we position single point light sources over a sphere

around retrieved geometry and render shading samples from an estimated view. These

rendered shading samples form the basis of image shading layer. We subsequently

apply an optimization based interpolation to recover the coefficient of each shading

sample, which successfully decompose the input images without requiring strong

assumption on pre-defined priors.

Joint image-shape analysis. Our work is also motivated by a recent line of efforts

on joint analysis of image and shape collections, which aim at aggregating and propa-

gating the complementary information contained in images and shapes. Most of these

prior efforts have focused on transferring shape attributes to images. Representative

works in this domain include shape-driven object detection [29], shape-driven object

pose estimation [30–32], symmetry detection [33], depth reconstruction [34, 35],

data-driven image-based modeling [36], and image-driven shape segmentation [37].

In contrast, transferring image attributes to shapes has received far less attention. In

particular, existing works only focus on transferring global-scale attributes such as

part segmentations [37] and material [38]. In Chapter 4, we focus on transferring

texture attributes, which exhibit rich information at both fine and coarse scales.
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Novel view prediction. Another relevant research topic is predicting the appearance

of an object from novel views. In [39], Su et al. propose a probabilistic framework

for inferring feature representations of unseen views. Such a framework, however,

is unsuitable for the synthesis of fine and subtle texture elements. Recently, there

have been efforts to predict novel views using convolutional neural networks [40,41].

However, due to the characteristics of convolutional filters, these methods tend to

smooth out local textural details. In contrast, we apply synthesis to generate texture

details.

Texture synthesis. In contrast to texture mapping, texture synthesis focuses on prop-

agating texture elements across the surface to generate realistic visual appearance.

This domain has been studied extensively, and we refer to [42] for a survey. Instead

of designing new texture synthesis techniques, in this paper we focus on how to

adopt existing texture synthesis techniques, i.e., by computing the texture element to

be synthesized on each part.

2.3 Material and Illumination Estimation
In Chapter 5, our goal is to perform an advanced intrinsic image decomposition

(as a factorization into materials and illumination) using an image collection with

application in photo-realistic image manipulation.

Materials and illumination estimation from images. The classic intrinsic image

decomposition problem [43] is highly ambiguous as many shapes, illuminations, and

reflectances can explain one observation made. When geometry and material for

the objects in an image are known, finding the illumination is a problem linear in

a set of basis images [44]. Reflectance maps [45] can also be used to map surface

orientation to appearance, allowing for a limited range of applications, such as novel

views [46]. In absence of such information, alternatives regularize the problem using

statistics of each component such as texture [47], or exploit user annotations on

Internet images [48] to develop a CRF-based decomposition approach, The latter

method is widely considered to be the state-of-the-art for uncontrolled observations.

Haberet al. [49] used observations of a single known geometry observed in a
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small set of images to estimate a linear combination of basis BRDFs and pixel-basis

lighting. Aittalaet al. [50] capture texture-like materials by fitting SVBRDF using

texture statistics to regularize a non-linear optimization on single image capture.

An alternate recent trend is to use machine learning to solve inverse rendering

problems. Deep learning of convolutional neural networks CNNs (cf., [51]) has been

used to decompose Lambertian shading [52, 53], albedo in combination with other

factors [54], intrinsics from rendered data [55], decompose images into rendering

layers [56], or multiple materials under the same illumination [57].

A complementary but related problem is shape-from-shading, where again many

shapes can explain a given image [45]. Alternately, illumination estimation has made

use of shadows on diffuse receivers with known geometry [58–60]. Another option

is to assume access to outdoor illumination following a parametric sky model [61].

Approaches to jointly solve for shape, reflectance and illumination in a single image

or multiple materials under the same illumination using optimization with priors

were suggested [62, 63]. Our method, being applicable to direct observation of

specular materials under uncontrolled illumination, is more general and works on a

large variety of materials in many illuminations.

Image-based rendering (see monograph [64]) can be used to re-create view-

dependent appearance when a sufficiently dense set of images is provided. It then

can produce novel views but fails to transfer to novel shapes or novel illuminations.

Image and shape collections. Visual computing has made increasing use of data,

particularly image and/or shape collections with the aim to exploit cross observations.

Starting from illumination [65] and its statistics [66], measurements of BRDFs [67],

we have seen models of shape [68], appearance [69], object pose estimate [70],

object texture [71], object attributes [30] made possible by discovering correlation

across observations in image and/or 3D model collections. In the context of shape

analysis, mutual constraints of instances found across images or 3D scenes in the

collection have been used to propose room layouts [72], material assignments [73],

or scene color and texture assignments [74]. Instead, we directly estimate materials

and illumination, rather than solving an assignment problem.
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Photo-realistic image manipulation. While the rendering equation [75] explains

image formation to the largest part with advanced signal processing perspective

for the forward theory of light transport [76], practical solutions are still lacking

for the inverse problem, i.e., estimating object materials and illumination directly

from (uncontrolled) photographs. Instead, specialized user interfaces can assist this

process [77], or multiple images of the same (static) scene can be used to improve

relighting and material estimation [49]. Several manipulations of images are possible,

even without knowing the decomposition into shape, illumination and material due

to perceptual effects [78].

In terms of state-of-the-art image manipulations, 3-Sweep [79] propose a gen-

eralized cylinder-based interactive tool to efficiently generate part-level models of

man-made objects along with inter-part relations, and use them to enable a diverse

variety of non-trivial object-level interactions; Kholgadeet al. [80] align stock 3D

models with input images to estimate illumination and appearance, and use them

for impressive object-level image manipulations; while Karschet al. [81] estimates a

comprehensive 3D scene model from a single, low dynamic range photograph and

uses the information to insert virtual objects into the scene.

2.4 Garment Modeling

In Chapter 6, we focus on the problem of garment modeling from either 2D fashion

drawing or parameter configuration.

Garment modeling. Traditional garment design is a complex process. Starting with

initial 2D sketches of the desired garment, the designer creates the necessary flat

sewing patterns which are then stitched together into a garment. Physical draping

or physics-based simulation is used to infer the final shape of the garment. While

there exist many professional tools (e.g., Optitex [82], Marvelous Designer [83]) to

assist designers with the process, there has been a significant effort in the research

community to propose alternative computational tools.

Many of the previous works have specifically focused on bridging the gap across

two different design spaces. For example, [84] focus on automatically parsing 2D
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garment patterns to 3D, while other methods have focused on modeling 3D garments

via input sketches. Several sketch-based interfaces [85–87] have been proposed

where silhouette and fold edges in an input sketch are analyzed to create a 3D

garment. However, they assume the input sketch is provided with respect to a given

3D mannequin and use the body shape of the mannequin to lift the sketch to 3D. The

recent approach of [88] provides a more general tool for modeling 3D developable

surfaces with designed folds but require multi-view sketch input (e.g., frontal, side,

and optionally top). The freeform surface modeling tool, BendSketch [89], is

capable of modeling plausible 3D garments from user sketches but has no notion of

the corresponding 2D sewing patterns. Recently, [90] present a modeling system

where the user can sketch different types of strokes on an existing 3D draped garment

to denote different types of desired folds. The system then extends and optimizes the

2D garment patterns such that the draped garment exhibits the desired folds. While

this system provides impressive results, it assumes an initial 3D draped garment to be

provided. In contrast, our system automatically infers the parameters of the garment

and the body from an input sketch and maps them to the final 3D draped shape of the

garment. We achieve this goal by proposing a deep learning based solution which

draws inspiration from recent methods that use deep learning to infer 3D shapes

from 2D sketches [91] or to interactively control shape variability [92]. Once the

garment parameters are predicted by our method from a single sketch, the method

of [90] or the rule-free method of [93] can be used to refine cuts on the resulting 2D

garment patterns.

In another line of work, researchers have proposed to use other types of input

such as images or RGBD scans to model garments. Given an input image, [94]

first estimate the 3D body shape in a semi-automatic fashion and then lift extracted

silhouette edges of the garments to 3D. [95] use an image of a garment on top of a

mannequin as input and detect silhouette edges and landmark points to create a 3D

garment. [96] model garments from RGBD data as a combination of 3D template

components based on a set of rules. Given a database of garment templates, [2]

propose a relatively complex pipeline to determine the parameters of these garments
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to match an input image. More recently, [97] present a deep learning based method

which predicts the deformation of a garment from a reference 3D garment given

an input image. While the proposed approaches provide plausible garments, they

often fail to capture the details, i.e., the exact fold patterns observed in the input. In

contrast, our goal is to be able to reconstruct such folds to enable realistic design and

editing of garments.

Garment editing and retargeting. In addition to modeling garments from scratch,

several methods have been proposed for editing the shape and appearance of

them. [98] propose an interactive editing system that enables bi-directional edit-

ing between 2D garment patterns and 3D draped forms. [99] explore apparel resizing

with flexible shape control, [100] investigate stylizing tight-fitting garments. [101]

present a method to map 3D edits to a garment to plausible 2D garment patterns.

In contrast, we support a multi-modal design and editing paradigm, specifically

focusing on modeling the desired folds and silhouettes of a garment.

Retargeting the style of an existing garment to body shapes with different

proportions is a specific form of editing that has attracted special attention. [102]

formulate a constrained optimization framework to transfer garments across different

3D characters. Other approaches use data-driven methods [103, 104] to replace the

expensive physical cloth simulation process and present retargeting examples. In

our work, we perform garment retargeting via a novel optimization procedure that

directly operates at the joint embedding of different garment design spaces and can

be used to transfer across 100s of shape variations while ensuring that desired fold

characteristics are preserved.

Garment capture. While garment modeling approaches aim to generate realistic

garments, capture methods focus on faithfully reconstructing the garment observed

in the input data. They accomplish this task often by utilizing more complex capture

setups. [105] present one of the earlier approaches where the geometry of a garment

is reconstructed from a stereo image pair. Several follow up works have instead used

a multi-view capture setup to reconstruct garments with color-coded patterns [106,

107]. [108] have eliminated the need for a color-coded pattern and presented a multi-
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view markerless motion capture system for garments. Their follow-up work [109]

aims to add details due to wrinkles and folds to the coarse meshes captured from

the multi-view video input. [110] solve a similar problem of augmenting coarse 3D

garment geometry with wrinkles using a data-driven approach. In a separate line

of work, given a 2D pattern and 3D contour curve, [111] interpolates the curve in a

procedural manner to generate folded paper geometry. The more recent approach

of [112] analyzes a set of 3D scans to learn a deformation model for human bodies

and garments where garments are represented as the residual with respect to the body

shape. Finally, the ClothCap [113] system takes a 3D scan sequence as input and

captures both the body and the garment shape assuming weak priors about where a

specific type of garment is expected to be with respect to the body. All these methods

perform a faithful reconstruction of the garments including the fold and wrinkle

geometry but rely on multi-view input or alternate 3D information. In contrast,

our method performs a similar prediction using a single sketched image as input

and allows for subsequent multi-modal refining in the garment domain and/or the

mannequin body shape.



Chapter 3

Dynamic SfM: Detecting Scene

Changes from Image Pairs

Detecting changes in scenes is important in many scene understanding tasks. In this

chapter, we pursue this goal simply from a pair of image recordings. Specifically, our

goal is to infer what the objects are, how they are structured, and how they moved

between the images. The problem is challenging as large changes make point-level

correspondence establishment difficult, which in turn breaks the assumptions of stan-

dard Structure-from-Motion (SfM). We propose a novel algorithm for dynamic SfM

wherein we first generate a pool of potential corresponding points by hypothesizing

over possible movements, and then use a continuous optimization formulation to

obtain a low complexity solution that best explains the scene recordings, i.e., the

input image pairs. We test the algorithm on a variety of examples to recover the

multiple object structures and their changes.

The work presented in this chapter was developed and written in a collaboration

with multiple parties, and published as [3].

3.1 Introduction
We live in a dynamic world where objects regularly move or are moved around.

Understanding such a world naturally amounts to detecting what changes and what

does not. This constitutes a fundamental goal in scene analysis and understanding. In

the context of time-coherent acquisition, e.g., using a video feed, advanced methods
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exist to reliably track objects to detect changes. However, limited options exist for

uncontrolled settings with sparse measurements.

(a) From an input im-
age pair, we detect
the scene changes.

(b) Objects rendered in color.

(c) Objects rendered by depth. For visualization, we color code
the estimated depth with values increasing from blue to red.

Figure 3.1: Using the input image pair (a), our algorithm automatically performs change
detection between the two images and calculates the motion of each rigidly
moving part (b) while simultaneously estimating their 3D structure to enhance
performance (c). Note that due to two-view ambiguity, we have no information
about the absolute depth of each object. Instead, we show the depth maps for
each object separately.

In this paper, we investigate the problem of detecting scene changes from

only a pair of input images. By change, we focus on what objects moved (i.e.,

segmentation), how the objects are structured (i.e., their 3D shape), and how the

objects moved (i.e., motion parameters). To make our framework compatible with

uncontrolled capturing setup, we allow the images to be captured by different devices

from different point of views. To compensate this ego-motion, our solution is to fix

the camera position and treat the background of the scene to be a moving object.

We assume throughout the paper, that all objects as well as the background are

moving rigidly during the change. When the scene is static, a seemingly natural

option is to use structure from motion (SfM) to reconstruct the 3D scene from the

input images. However, such an approach fails in a dynamic scenario as it simply

ignores moving objects which lead to the point-to-point correspondence search fails.

This is particularly so in situations as in our setting, where the input images are

assumed to capture large scene changes. For example, in Figure 3.2, only (part of)
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the background is recovered and the changes are completely missed. Due to the

large scene changes and sparse observations, representing the 3D scene by non-

rigid deformation is intractable, therefore non-rigid extension for Structure from

Motion [114] is not a feasible solution here as well. Other alternative methods such

as motion segmentation also falls short for different reasons (see Section 2.1).

We propose a solution based on two main steps: First, starting from a superset

of candidate correspondences (i.e., including false positive matches) between the

input image pairs, solving the above problems amounts to correctly grouping the

correspondences based on the (unknown) motion models. To this end, we propose a

continuous grouping formulation to simultaneously solve for segmentation, object

structure, and object motion. Second, it is possible to generate a superset of candidate

correspondences by pre-warping one of the input images to simulate the effect of

possible homographies relating (near) planar surfaces in the two images. We realize

this pre-boosting step to capture the correspondence pairs that are easily missed

by direct analysis of the input image pairs. Herein we specifically make use of

the structure of the scene to solve the dynamic SfM problem. Finally, in the dense

reconstruction step, we improve the coarse correspondence obtained at the end of the

grouping optimization to create the final output. Figure 3.1 shows a typical output of

our method.

Figure 3.2: Result of directly running Structure-from-motion on images of a dynamic scene
(using [115]). Note, how the algorithm misses moving objects due to its static
scene assumption.
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We evaluate the proposed algorithm on a range of test inputs of varying com-

plexity. We also perform quantitative analysis on simulated test scenes with access

to groundtruth and evaluate the effects of different parameter settings.

3.2 Overview

Our goal is to detect changes in indoor scenes from a pair of image recordings. This

requires answering the following: (i) what are the moving parts, i.e., obtain point

clouds for the moving parts of the scene; (ii) how did they move, i.e., estimate the

movement for the respective objects between frames; and (iii) what are the camera

parameters for the two (uncalibrated) input images.

There are two main problems: (i) direct structure-from-motion (SfM) compu-

tation on the input image pairs fails as the scene is not static (see Figure 3.2); and

(ii) obtaining good quality point correspondences is challenging in presence of large

scene changes as in our setting.

To address the first problem, we observe that if sufficient number of good

correspondence pairs are available, then the problem reduces to grouping the cor-

respondences according to the (unknown) moving parts. Specifically, if we have

the correspondence pairs correctly grouped, we can simply perform SfM for each

individual group under the additional constraint that each image has a common

calibration. Hence, we formulate continuous energy minimization to group the

created dense feature point matches into different rigid motion trajectories, estimate

the 3D object positions and identify outlier samples (see Section 3.3.1). Note that

the continuous formulation allows to take advantage of the additional information

contributed by the scene structure.

To address the second problem, we integrate correspondence boosting and

camera model hypothesis generation with the multi-hypothesis grouping. Essentially,

we increase the set of potential correspondence pairs and only later recover the

subset of correct correspondences. First, we initialize our algorithm with a sparse

set of high-quality feature correspondences using any feature descriptor (SIFT in

our case). Then, in a critical step, we boost the set of available correspondences
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by hypothesizing part motions (or equivalently camera motions) as described in

Section 3.3.2.

Finally, in Section 3.3.3 we describe how we employ a patch-based correspon-

dence post-boosting strategy using the optimized motion grouping to generate an

even denser point cloud, that can be used as input to other applications.

(a) (b) (c) (d)

(e)

Figure 3.3: Algorithm Pipeline. From two images (a) of a dynamic scene with multiple
objects undergoing rigid motions. We first generate a set of candidate correspon-
dence pairs using our pre-boosting strategy indicated by green dots in (b). In
this example, 1046 correspondence pairs were generated, instead of only 554
using SIFT directly. Next, we use continuous optimization to simultaneously
recover the motion of each rigid part (c) along with their coarse 3D structure
(colors show assignment to the different motion groups). Finally, we use the
grouping result to obtain a denser set of correspondence pairs (d). Here, 5281
correspondence pairs are generated from 832 inlier correspondence pairs ob-
tained from pre-boosting. We show the structure of each object (e) color coded
by estimated depth, distances increasing from blue to red.

3.3 Algorithm
In this section, we first formulate the dynamic SfM as a grouping problem, wherein

we categorize candidate correspondence pairs into different motion groups while

identifying outlier correspondences (false positive feature matches). We then describe

how to initialize the grouping optimization, that is, how to create a sufficiently rich

set of correspondence pairs from two images containing significant scene changes.
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Finally, we describe how the grouped correspondences can be used to obtain dense

structures (i.e., point clouds) for the different moving objects in the scene. Figure 3.3

shows an overview of our method.

3.3.1 Multi-body structure and motion

At the core of our method is an energy-based continuous optimization that recovers

both the 3D structure and motion of each rigid part in a dynamic scene. We seek to

extract a low complexity explanation of the scene in terms of objects and their motion,

that best explains the observations, i.e., the input pair of images. We observe that

the problem amounts to robustly grouping a set of candidate correspondences into

motion groups. Later, in Section 3.3.2, we describe how to initially extract such a set

of candidate correspondences, possibly containing a significant amount of outliers.

We pose the grouping problem as minimizing the reprojection error, outlier penalty,

group complexity penalty, and non-smoothness by labeling the correspondences into

different groups, while simultaneously estimating their 3D positions.

Let there be M∗ possible moving objects, and M > M∗ motion model candidates

captured by the corresponding camera motions Li with i ∈ 1 : M for each image.

The goal is to assign each correspondence pair to one of these (unknown) motions,

Table 3.1: List of symbols

M Number of motion candidates
Li, i ∈ 1 : M Motion model candidate, holds one set of cam-

era parameters for each image
N Number of feature correspondences

dk, k ∈ 1 : N 3D position implied by a correspondence k
αk

i Element in label vector representing assign-
ment likelihood of dk to motion model Li

‖ · ‖Li Operation representing the sum of reprojection
errors for motion Li in both images

δk Likelihood of dk being an inlier match
SN j

k Neighborhood of corresp. k in image j
| · | Set cardinality
β Sparsity coefficient

θp,q Consistency weight for corresp. p↔ q
ω1 Complexity penalty weight
ω2 Outlier penalty weight
ω3 Consistency penalty weight
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or mark it as an outlier. We encode this grouping as an N×M label matrix, with

row vectors αk for each correspondence. For each inlier correspondence, we also

maintain the respective (unknown) 3D position as dk.

For each correspondence, we use selection variables αk
i , the i-th (i ∈ 1 : M)

component of αk, to capture the likelihood of a correspondence belonging to motion

described by the motion model Li. Note that αk
i ∈ [0,1] and each correspondences

can at most be assigned to one model, as captured by

M

∑
i=1

α
k
i ≤ 1 ∀k. (3.1)

We parametrize the target energy via motion models {Li}, 3D points {dk}, and

label vectors {αk}. Specifically, the energy estimate consists of four terms:

E({Li},{dk},{αk}) :=

Edata +Ecomplexity +Eoutlier +Econsistency. (3.2)

Note that the formulation takes full advantage of (unknown) structure in the motion

segmentation problem by estimating a 3D position for each correspondence. This

is in contrast to representing correspondence only as a pair of 2D feature point

positions in two images and subsequently measuring geometric error using for

example squared Sampson’s distance [116].

The data term Edata captures the sum of reprojection errors in the two images,

weighted by the assignment likelihood α . Specifically,

Edata({Li},{dk},{αk}) =
N

∑
k=1

M

∑
i=1

α
k
i ‖ dk ‖Li, (3.3)

where ‖ · ‖Li in Equation 3.3 is the sum of reprojection errors of 3D point dk to the

two input images under camera motion Li. We use a perspective camera model in our

implementation and the reprojection error is calculated as sum of squared distances

similarly to [116].

The complexity term Ecomplexity penalizes having too many separate groups to
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describe the motions. In other words, this term exists in pursuit of the sparsity of

label vectors αk with respect to model k. Specifically,

Ecomplexity(α) = ω1 ·
M

∑
i=1

(
N

∑
k=1

α
k
i

)β

(3.4)

where, β is an exponent close to zero. (Alternately, one can use a reweighted L1

formulation here.) The term weight ω1 can be considered as a threshold of minimum

number of correspondences in a group, since points in any group having less than

d(ω1/ω2)
1/β e correspondences will be identified as outliers.

For any correspondence {dk}, if it is too costly to fit using every model candi-

date, we consider it as an outlier by allowing αk to tend to zero for all i. However,

to avoid the trivial assignment of marking all the correspondences as outliers, we

introduce the outlier term:

Eoutlier(α) = ω2 ·

(
N

∑
k=1

δk(1−
M

∑
i=1

α
k
i )

)
. (3.5)

Here, δk is a pre-calculated coefficient for each correspondence to indicate how much

we want to penalize the k-th correspondence if it is an outlier. A simple case is to set

δk = 1 for all k. However, as illustrated in Figure 3.4, for the two-view situation, the

reprojection error is not fully reliable. Unfortunately, sometimes an outlier might

have very low reprojection error w.r.t a particular motion model solely by chance.

In order to address this issue, we use δk to account for the possibility of the

k-th correspondence being an outlier. A simple criteria is how much the two groups

of neighbors of the feature points in two images overlap. Specifically, we set

δk = max(1− 0.2 · |SN1
k ∩ SN2

k |,0), where SN1,2
k is the set of 10 nearest neighbors

of the correspondence k in the two images, measured in image space and | · | here

denotes the cardinality of the intersection set. The weight ω1 can also be considered

as an outlier threshold as correspondences with reprojection error larger than ω1 will

finally be labeled as outliers when the optimization converges.

The consistency term Econsistency regularizes false positive matches caused by
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Figure 3.4: There are two types of 2-view ambiguities preventing us from estimating the
relative depth of each moving object from only two viewpoints. For example,
the bunny can be quite small and have quite large displacement (Motion 1) or
can be very large with a relatively small displacement (Motion 2). For some
particular cases, a correspondence could fit well into several different motion
models, as for example the top of the tower. The correspondences in the images
marked by blue dots fit Motion 1 well, although they actually belong to Motion
3.

two-view ambiguity (the tower case in Figure 3.4). Specifically,

Econsistency(α) = ω3 · ∑
(p,q)∈DN

θp,q ‖ α
p−α

q ‖. (3.6)

We use Delaunay triangulation in our implementation to create the neighborhood

DN of each data point. The prior weight θp,q captures that correspondence p and

correspondence q should belong to the same group. We use the inverse of the average

squared distance between two feature points p, q on the two images to estimate

θp,q =
(
(distimg1(p,q)2 +distimg2(p,q)2)

)−1.
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We minimize E({Li},{dk},{αk}) with the constraints that the label vector is

valid αk
i ∈ [0,1] and Equation 3.1 to solve the dynamic SfM problem.

Generating motion model candidates. In order to initialize the above optimization,

we need a good initial set of motion model candidates. Since the camera intrinsic

parameters is unknown to us, we choose fundamental matrix instead of essential

matrix to represent our motion model. Note that having a good set of correspondences

allows direct generation of motion models by using the 8-points algorithm for

evaluating the fundamental camera matrix (cf. [20]). Since the original set of input

correspondences has both inliers and outliers, we use RANSAC [117] to create a

superset of motion candidates, with some of them being correct. This is sufficient

for the grouping optimization described above to extract the suitable motion models.

Domain problem. Generally, candidate models can be generated by running

RANSAC until each rigid part is covered. Unfortunately, as shown in [20], the

theoretical estimate of necessary iterations is always too large to be practical (in

their example, 3 objects with 20/24/56 inliers can only achieve 0.92 confidence, even

when sampling 106 times). In practice, for some lucky situations, a small number of

samples may also be sufficient.

However, in real world scenarios RANSAC still falls short due to problems

caused by large differences (i) in the size and (ii) feature richness of image regions

that move rigidly together. This will lead to differences in the magnitudes of number

of correspondences generated from different image regions. A static background or

a colorful information poster will generate proportionally more feature points than

the rest of the image parts. They will act as a domain to smaller regions, hence we

refer to this as the domain problem. Given such proportional differences, RANSAC

faces difficulties finding the smaller, rigidly moving regions in the images.

In this paper, we use a reweighted RANSAC strategy to get reliable motion

models even from a very small fraction of good candidates. Specifically, we lower

the weight of data points that have been considered as inliers by multiplying by a

weight decrement factor, in order to boost the selection probability of points from

other parts of the scene (see Algorithm 1 for detail). This is particularly effective in
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our case, when dealing with multiple moving objects. For example, in Figure 3.3, we

obtained three rigid parts with 40, 82 and 710 (domain part) inlier correspondences

and 114 outliers. Our optimization converges to the correct solution after that only

5-10 candidates have been generated by our reweighted RANSAC algorithm. The

behavior was similar in the other examples presented in this paper.

Algorithm 1 reweighted RANSAC
1: // Initialization
2: Weight decrement factor µ = 0.2
3: Weight wk = 1,k ∈ 1 : N
4: Average sample times T = 1.5. each point is expected to contribute as inlier on

average T times
5: // Reweighted RANSAC
6: while ∑

N
k=1 wk > µT · N do

7: nBest = 0;
8: for i = 1 : nIterations do
9: Randomly sample 8 points p1...8

10: tmpF = Compute fundamental matrix from p1...8
11: tmpIniliers = index of inliers under fundmental matrix tmpF
12: S = ∑tmpIniliers wk
13: if S > nBest then
14: f Best = tmpF
15: nBest = S
16: inliers = tmpIniliers
17: end if
18: end for
19: winliers = µ ·winliers
20: Output fundmental matrix f Best.
21: end while

Generating initial point locations. After generating a finite set of motion candi-

dates, we estimate the initial 3D positions {dinitial
k } by triangulating each correspon-

dence using the camera model that gives the smallest reprojection error. We then

initialize the assignments αk
i proportional to the inverse of the re-projection error of

{dinitial
k } to all camera models Li as

α
k
i = ‖ dinitial

k ‖Li
/

M

∑
p=1
‖ dinitial

k ‖Lp .
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Optimization. We use MATLAB’s interior-point solver for the optimization using

the following parameter settings in our experiments: ω1 = 1000, ω2 = 500 (means

outlier threshold adds up to
√

500 pixels), ω3 = 500, and β = 0.4. As discussed in

Equation 3.2, we optimize for the variables {Li},{dk},{αk}. Once the optimization

converged, we round αk
i to 1 if it is greater than 0.9 and to 0 otherwise. This assigns

each correspondence to a single camera model as we experimentally found αk
i ' 0.99

at convergence, indicating that dk was linked to Li.

3.3.2 Correspondence pre-boosting

The main difficulty in matching feature points between images, where the camera

view points are far apart is that the orientation of the surfaces we are interested in

vary a lot relative to the cameras. The change of viewpoint results in distortion of

texture, and feature descriptors generated from the same image locations will change

significantly as a consequence (as shown in Figure 3.6). Simply extracting feature

points from two images and matching them based on the distance metric will only

Figure 3.5: This figure shows the first five candidate models generated by reweighted
RANSAC. Sampled sets of 8 points are shown as larger squares with black
borders. Smaller squares with the same colour show inliers under the corre-
sponding generated camera model.
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Figure 3.6: We directly extract SIFT feature points and run feature matching [26, 118] on
a pair of images of a chair. Red dots are generated feature points and green
dots are matched correspondences. The close-up views show the difference in
the observed texture of the same patch on a surface perpendicular to the image
plane. We conclude, that the failure of feature matching is mainly caused by
texture distortion. A set of yellow dots are marked manually to visualise the
same pattern. This motivates us to have a pre-boosting step to recover such
correspondences from distortion.

reveal correspondences between image parts, where the perspective did not change a

lot, in most of the cases surfaces parallel to the image plane.

The first step of our pipeline is to as much as possible boost the number

correspondences obtained from areas, where the surface texture underwent significant

change in distortion due to the change of camera viewpoint. These areas are initially

very sparsely covered by high confidence matches. We keep one image fixed, and

‘rotate’ the other image in 3D, as shown in Figure 3.7. Note that this step implicitly

guesses a potential motion or alternately a homography between corresponding (near)

planar parts in the scene. The intuition being that if the guess is correct, then the

corresponding moving parts are likely to pick up correct correspondence pairs. We

extract feature points in each rotated image and perform correspondence matching

w.r.t. the fixed image. Rotating the image in 3D simply allows us to change the

image plane normal. We approximately create S rotated image copies by sampling a
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half-sphere uniformly with the parametrization described as:

ui = arcsin
(

1− 2i−1
2S

)
vi = ui

√
2πS

ni = [cos(ui)cos(vi); cos(ui)sin(vi); sin(ui)]

(3.7)

where, i = 1,2, . . . ,S. Warping an image by spatial rotations allows us to compensate

for the difference in texture caused by the change of viewpoint. It allows us to match

more feature points and results in a more complete coverage of the scene as shown in

Figure 3.8. Simultaneously, more mismatches are also generated when performing

pre-boosting. However, this can be handled well by our grouping optimization using

the mismatch-aware outlier penalty. The idea of our pre-boosting method is similar

to [27], but ours performs better due to a more uniform sampling of warping rotations.

Note that this warping can also provide us with information about the structure of the

Figure 3.7: Image 1 is warped by rotating the normal of the image plane according to the
parametric Equation 3.7.
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scene. However, we carefully avoid to explicitly rely on this heuristic when sampling

homographies, because our continuous optimization recovers the same knowledge

with much higher reliability.

Implementation details. We use VLFeat’s implementation of SIFT extraction and

matching [118] in our experiments. We set the parameters ”peak threshold” = 6

and ”edge threshold” = 10. As uniqueness threshold during matching, we use a

quite strong value of 0.45 to allow us to select correspondences with significant

confidence and reliability. Setting S = 30 was enough during our experiments. We

used a density threshold d = 30 pixel in order to prevent the generation of too many

repetitive correspondences during matching over the warped images. This guarantees,

that the minimum distance between any two matched features in the original image

exceeds d pixels.

Figure 3.8: Top figure shows the feature point correspondences (cyan lines) matched be-
tween the two original images. Bottom figure shows, that after pre-boosting,
the number correspondences is significantly increased, especially in areas with
upward pointing surface normals. Note that a substantial amount mismatches
(outliers) are generated as well, which we robustly handle in our optimization.
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3.3.3 Correspondence post-boosting

Finally, we generate a denser 3D point cloud from the structure and motion recov-

ered by the continuous optimization to utilize the recovered information in a more

efficient manner. We designed our patch-based method to take advantage of the

warping strategy described along with pre-boosting (Section 3.3.2), which gives us a

competitive edge compared to general dense reconstruction.

Patch-based boosting. Our goal is to use our optimized, high-quality correspon-

dences to generate a denser output point cloud using a local smoothness prior. Many

methods employ the spatial regularity assumption (e.g., [119]) to locally propagate

information around recovered feature point matches. We propose a hierarchical

feature matching algorithm. In patch-based boosting, we perform a second round

of feature point matching on each pair of patches, each connected by an optimized

output correspondence. These matches were missed in the initial correspondence

search, because they had several possible matches in the global scene, and were

labeled as insignificant. We take advantage of our pre-boosting step by looking up

between features in all warped versions of the corresponding patch.

Correspondences are stored in a FIFO-queue and we propagate them using a

breadth-first strategy. Specifically, each time a correspondence is picked from the

front of the queue, we extract a square patch with 80× 80 pixels from one input

image. We then find the corresponding patch in each of the warped images, and

perform SIFT feature point extraction similarly to the pre-boosting step, using the

same parameters. These feature points are then matched locally between the warped

patches and the resulting correspondences are appended to the end of the queue. Each

newly generated correspondence is assigned to the same motion model and group

of correspondences as its parent. Similar to [119] we also applied a match density

threshold set to d = 6 in our case, to control the blooming of correspondences, see

Figure 3.3d.
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3.4 Application

3.4.1 Dense reconstruction

The output of our pipeline is a motion model and 3D point cloud for each rigidly

moving part of the dynamic scene. This can naturally be achieved using any dense

stereo reconstruction method, i.e., CMVS/PMVS [119], CMPMVS [120], MVE

[121] and SURE [122]. We apply Furukawa’s PMVS algorithm (implemented

in [115]), which takes a 3D point cloud of a rigid object and two 2D views of it as

input. For each motion group segmented by our algorithm, we use the relative camera

positions and densely matched features associated with this motion to initialize

PMVS. The advantage of our result (Figure 3.9) over running structure from motion

directly on each, manually segmented rigid part is that our pre- and post-boosting

steps efficiently increases the covered area in the images, from which 3D structure

can be recognized in our two view setting.

Figure 3.9: Classic dense reconstruction (left) and dense reconstruction based on our post-
boosting step (middle) using the chair scene from Figure 3.6. Our pre- and post-
boosting methods (right, rendered with green dots) enables the reconstruction of
larger areas of the input images.

3.4.2 Motion interpolation

We calculate a motion in our method for each rigidly moving part of the dynamic

scene, interpretable as the motion of the part from the first image to the second. As

an application of this motion information, we can interpolate the dynamic scene

between the input two images to generate a possible set of trajectories for the rigidly

moving parts. We perform the interpolation as described in [123], see Figure 3.10.
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Figure 3.10: Motion interpolation with our dense reconstruction from only a pair of input
images (overlaid on first/last columns).

3.4.3 Working with multi-view

Our two-view based pipeline can be naturally extended to multi-view cases. Assume

that we have Π images as input and Dk is 3D points for the k-th trajectory. The energy

is formulated in the same way as in Equation 3.2, with the natural modification of

some of the terms. Specifically, ‖ · ‖Li in the data term is the sum of reprojection

error w.r.t. all Π images, the outlier prior δk in the outlier penalty term will be based

on all image pairs as well as neighborhood DN and inlier likelihood θp,q in the

consistency term.

3.5 Results

3.5.1 Performance

We tested our algorithm on several input cases and evaluated our performance with

respect to the correctness of our motion grouping output.
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As shown in Figure 3.11, our algorithm generates accurate grouping results

and overperforms comparable state-of-art methods, i.e., PEARL. Our motion inter-

polation (Figure 3.10) allows us to qualitatively inspect the high quality structure

generated by our method. The runtime of our optimization depends on the number

of correspondences and motions. For the presented scenes, our algorithm takes 30

minutes to converge on average (1 hour in worst case).

3.5.2 Evaluation

Ground truth. We performed experiments to evaluate our labeling performance on

real data, and correctness of structure on a synthetic scene. To create the ground truth

labeling, we first manually select correct correspondences within the same motion

and label them into the same motion groups. We then estimate the groundtruth

transformation for each motion with the selected correct correspondences. With

groundtruth transformation, we can perform a raw grouping of correspondences

and an annotation of outliers. We evaluate our output point cloud structure later in

this section by comparing our reconstruction results to a synthetic scene, where the

ground truth structure is known.

Pre-boosting. As shown in Figure 3.8, our pre-boosting method increases the num-

ber of correspondences between the image pair from 554 to 1046, with an outlier

(mismatch) ratio 10.9% (114/1046). We define the outlier ratio as the ratio of the

number of mismatch correspondences with respect to the number of all correspon-

dences. Our measurements showed, that after pre-boosting we on average over our

test scenes arrive to an outlier ratio of 10%, which, as later shown, can be handled

well by the initialization of our optimization. In comparison, Figure 3.12 shows the

result of ASIFT [27] and we compare favorably in terms of consistency of the match

orientations.

Initialization. Our pre-boosting effectively generates a lot more correspondences,

however, with a moderate ratio of outliers. This is directly related to the reweighted

RANSAC strategy we apply to calculate camera poses for initialization. In Fig-

ure 3.13, we show that our initialization is insensitive to the outlier ratio of the input

correspondences given a single, universal parameter (weight decrement factor = 0.2
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(a) GT, 3, 467 (b) Ours, 97.4% (c) PEARL, 88.2%

(d) GT, 3, 861 (e) Ours, 97.4% (f) PEARL, 80.7%

(g) GT, 3, 1046 (h) Ours, 98.5% (i) PEARL, 93.4%

(j) GT, 3, 1867 (k) Ours, 99.6% (l) PEARL, 89.1%

(m) GT, 2, 2283 (n) Ours, 99.0% (o) PEARL, 86.7%

(p) GT, 2, 497 (q) Ours, 98.0% (r) PEARL, 95.8%

Figure 3.11: Algorithm performance. Groundtruth with number of motions and number
of correspondences (inlier and outlier), our result and PEARL’s result with
labeling correctness. Note that the PEARL was provided with our robust
initialization.
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during our experiments). For evaluation, we manually delete outliers or add random

correspondences to the output of the pre-boosting step to simulate the change in

outlier ratio. We successfully show, that our initialization is able to generate high-

quality camera model candidates with very limited redundancy at different levels of

outlier ratios, both with and without the domain problem.

Figure 3.12: ASIFT result on input presented in Figure 3.8.

Correspondence grouping. The validation of our optimization consists of two as-

pects: correctness of group labeling and reconstruction quality. Group labeling is

more essential as we can apply any structure from motion method consecutively to

our output segmented correspondences. We first show the results with and without

the adaptive outlier weight. Since we only use two input views, there might be some

outliers (mismatches), that reproject well in the two images and therefore cannot

be penalized by our data term. In these cases, our algorithm relies on the mismatch

penalty whilst producing the reliable outputs. We then investigate the effect of

our complexity and consistency terms. Our consistency term is most effective in

resolving problems caused by two-view ambiguity as described in Section 3.3.1. We

demonstrate the utility of the different energy terms in Figure 3.14. Omitting the

consistency term results in neighboring points getting mislabeled, and prevents us

from benefiting from redundancy residing in local context. Similarly, if the quality

of correspondences in the local neighborhoods is not taken into account when identi-

fying outliers (Figure 3.14c), camera estimates become less accurate due to a higher

rate of false-positive matches being used or more reliable contributions being culled.
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Point cloud structure. One of the main reasons, why we generate structure simul-

taneously with the motion segmentation is, that point clouds with correct structure

will further enhance the segmentation of correspondences to consistent motions. To

evaluate our reconstruction quality, we ran our algorithm on a synthetic scene (Fig-

ure 3.15). We measured reconstruction quality with respect to average depth error

and groundtruth depth for each point. Our output point cloud (after post-boosting)

has 5% depth difference ( average depth error
average groundtruth depth ) on average over the four objects. This

allows us to enhance the motion segmentation and enables the further application of

our outputs.

(a) No outlier correspondence.

(b) With originial outliers generated by our pre-boosting.

(c) Add 20% outliers

(d) No outlier correspondence.

(e) With originial outliers generated by our pre-boosting.

(f) Add 20% outliers

Figure 3.13: Initialization with different outlier ratios in different types of scenes (with and
without domain problem).
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(a) no complexity term, 4 groups are
generated.

(b) uniform outlier penalty without con-
sistency, correctness 97.4%

(c) uniform outlier penalty, correctness
ratio 98.8%

(d) no consistency term, correctness ra-
tio 98.3%

Figure 3.14: Evaluation of our different energy terms. Note that the correctness ratio
achieved using our full formulation is 99.6%, as shown in Figure 3.11.

3.5.3 Comparison

We compared our method to the state of the art method PEARL [20]. In Figure 3.16,

we ran PEARL based on our pre-boosting result but with PEARL’s initialization and

based on direct SIFT matching results. In Figure 3.11, we show the performance

of an improved PEARL version, that is based on our initialization. This example

shows well, that although PEARL performs well on a manually annotated benchmark

dataset, it actually falls short in real world cases, where the ratio of outliers is not

strictly zero and/or the domain problem complicates the inference. Our method, on

the other hand can be applied in real life scenarios, since it can cope with the above

problems arising.

3.5.4 Evaluation on Hopkins155

To better evaluate the labeling efficiency, we ran our algorithm on a scene from

1R2RC in the Hopkins155 dataset [19]. We test our method using the first and the
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last frames of the sequence as the input image pair. For fair comparison with other

methods, we designed the experiment to evaluate labeling correctness only, i.e., we

used the feature point locations and correspondences provided by the dataset as input.

Note that the omitted pre-boosting and post-boosting steps represent a significant

part of our contribution, rendering our method more general then the algorithms

attempting to solve the Hopkins155 dataset. Figure 3.17 shows how our method

performs with a correctness ratio of 98.7%. Note, that the input of Hopkins155

dataset is manually annotated. Hence, it does not suffer from outliers or sensor noise,

which contradicts our data assumptions. Further, in this specific example, the relative

viewpoint of the rotating box (marked by green dot) changes very little between the

first and the last frames, which does not provide our method with enough information

to perform the structure estimation.

Figure 3.15: Depth map to show our output structure. Upper-left: synthetic scene; upper
right: depth ground truth, from blue (close) to red (far); lower row: depth
map for each object we detect after post-boosting. Due to two-view ambiguity,
we actually have no information about the relative depth between objects.
Therefore, we only show the depth map individually for each object.
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Figure 3.16: Comparison with PEARL. Left: running PEARL after extracting and match
SIFT features directly. Right: running PEARL based on our pre-boosting
strategy. Dark dots indicate outliers. There are three parts in the scene with
1482/83/101 inlier correspondences and 201 (10.7%) outliers. In this case, we
show that PEARL fails in a real world scenario when outliers and the domain
problem exists.

Figure 3.17: Results based on scene 1R2RC from the Hopkins155 dataset. Input was the
first and last frames of the video sequence. Left: our result with a correctness
ration of 98.7%. Right: PEARL’s result with a correctness ration of 99.5%.
Note, that the input correspondences here are perfectly free of noise, i.e. no
outlier correspondences are present, which is not a realistic real-life scenario.

3.6 Limitations
Our method has two main limitations. First, as our algorithm is based on feature

points extracted directly from the images, objects with less texture cannot be rec-

ognized well. Therefore those objects will be ignored. Second, as we estimate the

structure from a pair of images, it is necessary, that the relative pose of an object in

the two images is sufficiently different to ensure the robustness of the 3D reconstruc-

tion, otherwise there is simply not enough information in the raw input. Empirically,

we have established, that the relative view angle w.r.t. the objects should change

more than 10 degrees, as confirmed by [119].
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Figure 3.18: Typical failure scenarios. Left: low number of initial correspondences due
to lack of texture usually causes our algorithm to miss some of the important
structures in the scene. Middle and right (car10 in Hopkins155): although the
bus is moved, the change of perspective of the bus is barely noticeable leading
to less robust structure estimation.



Chapter 4

Automated Texture Transfer from

Images to Model Collections

Large 3D model repositories of common objects are now ubiquitous and are increas-

ingly being used in computer graphics and computer vision for both analysis and

synthesis tasks. However, images of objects in the real world have a richness of

appearance that these repositories do not capture, largely because most existing 3D

models are untextured. In this work we develop an automated pipeline capable of

transporting texture information from images of real objects to 3D models of similar

objects. This is a challenging problem, as an object’s texture as seen in a photograph

is distorted by many factors, including pose, geometry, and illumination. These

geometric and photometric distortions must be undone in order to transfer the pure

underlying texture to a new object — the 3D model. Instead of using problematic

dense correspondences, we factorize the problem into the reconstruction of a set

of base textures (materials) and an illumination model for the object in the image.

By exploiting the geometry of the similar 3D model, we reconstruct certain reliable

texture regions and correct for the illumination, from which a full texture map can

be recovered and applied to the model. Our method allows for large-scale automated

production of richly textured 3D models directly from image data, providing plau-

sible virtual objects for 3D scene design or photo editing applications, as well as a

wealth of data for training machine learning algorithms for various inference tasks in

graphics and vision.
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input image image-to-shape texture transfer shape-to-shape texture transfer edited original image

Figure 4.1: Starting from an input image and a 3D model collection, we propose a scalable
method free from human intervention for image-to-shape and shape-to-shape
texture transfer. The method also allows novel object insertion to the original
image (right). The method exploits approximate geometry priors to factorize
both geometric and illumination effects. Corresponding original 3D models are
shown in blue.

The work presented in this chapter was developed and written in a collaboration

with multiple parties, and published as [4].

4.1 Introduction
Synthesizing realistic 3D objects and scenes remains a central goal of computer

graphics. With the growing availability of 2D image and 3D model collections,

such as ImageNet [124] and ShapeNet [125], significant efforts have been made in

recent years to jointly harness the complementary nature of the two collection types.

Images capture detailed appearance information and provide object context in real

world scenes, but lack depth and information about occluded areas. On the other

hand, 3D models have rich full-object geometry, but often lack realistic textures

needed for high-quality renderings. While significant progress has been made in

transferring information across the two collections for pose estimation [29, 30],

depth estimation [34], and image-driven shape segmentation [126, 127], the task of

marrying 2D image textures with 3D geometry has remained elusive.

In this paper we study how to efficiently transfer texture information from 2D

images to 3D shapes. Our focus is the simplest version of the problem: given a

single 2D image of an object and a part-level segmented 3D model of a similar

but not necessarily identical object, how can we transfer texture information from

the image to the model? The eventual goal is to generate a fully textured model

whose appearance agrees with the image in the matching view. Given the abundant
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(a) (c)(b)

Figure 4.2: The retrieved part-level segmented model (a) for Figure 4.1, the extracted base
texture patches (b), and the recovered orientation field shown as crossfield on
the 3D model.

(a) (b) (c) (d) (e) (f)

(1)

(2) (3)

Figure 4.3: Pipeline overview. Our system takes an input image (a). A geometrically similar
shape is then retrieved (b1). According to the estimated geometry we find large
patches on the image (b2) and detect their correspondences (b3). The geometry
also helps to factor out shading (c) and reflectance (d), so that base textures
(e) are extracted with little distortion and homogeneous lighting. Final texture
transfer can be applied to the retrieved model (f).

availability of image data, this immediately enables the generation of large quantities

of high-quality 3D models with realistic textures, in a human intervention free setting.

Synthesized models can then directly be used in computer graphics content creation

applications such as object insertion in images, or be used to provide extensive

training data as required by various machine learning-based algorithms for 2D or 3D

inference tasks (e.g., classification, depth estimation, shape segmentation, etc.).

This problem may seem relatively straightforward, as there are now good tools

for aligning images with similar 3D models. The obvious approach would be to

try to establish dense correspondences between image and model pairs. However,

the imaged real object and the approximating 3D model often exhibit significant

difference in shape, both in terms of geometry and topology, making such correspon-

dences difficult to obtain or even define. Furthermore, the input image provides only

partial texture information for the 3D model, as occluded areas are not visible.

At a more fundamental level many challenges remain. Firstly, even in visible
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areas the image texture is distorted by the interaction between the unknown real

3D object geometry and its projection into 2D image space. Furthermore, beyond

geometry, complex lighting and shading effects in the image formation process also

make it non-trivial to transfer the pure underlying texture from the image to the 3D

model – explicit analysis is required to factor out such lighting effects. In other

words, we have to decouple the texture distortions arising from object geometry and

perspective projection from those due to illumination effects, and correct for both.

Our key observation is that images of many man-made objects, even those

with complex textures, can be described by appropriately factorized low complexity

models, separating texture and illumination information. Specifically, the appearance

of an imaged object can be explained in terms of a small number of base texture

patches and their orientation in different parts of the object, as well as an illumination

model for the object. Both the base textures and the lights are unknown and have

to be simultaneously estimated. We demonstrate how to solve the above difficult

inverse problem with the help of a 3D model, which only needs to be approximately

similar to the imaged object. This (proxy) 3D model provides enough of a geometry

base to allow us to decouple geometric distortions from illumination effects, and

recover both at the same time, so that their effects on the pure underlying texture

can be removed. More specifically, in the analysis stage, we detect flat regions from

3D proxy model and use that to extract texture patch candidates from input image.

We use flat area because the accuracy of normal direction is less sensitive to the

misalignment for flat regions. The 3D proxy model also regularize the solution of

shading decomposition, therefore shading (including shadow) can be removed from

texture patches. Once the pure texture patch is extracted, a large texture image will

be synthesized in 2D using standard texture synthesis approaches. The retrieved pure

base texture can then be used to transfer appearance to other similar 3D models. In

Figure 4.1 for example, given an image I, base texture and illumination are extracted

(shown in Figure 4.2) with geometric guidance from a roughly similar model M1. The

extracted texture is then used to realistically texture model M1, which in turn helps

transfer texture to other models such as M2,M3, etc. Finally, we can synthetically
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add 3D models to the original input image (a teddy in this example).

We evaluate our method on three different image-model datasets, namely chairs,

tables, and cushions. A user study indicates that users found it difficult to consistently

distinguish between the synthesized and real images. In another test, we use the

synthesized images to boost training data for machine learning algorithms. In

particular, we train deep neural networks for depth estimation and texture-guided

image retrieval. For both tasks we observe significant performance improvement by

using the enriched shape dataset with more diversified textures. As an application,

we show the suitability of our method for novel view synthesis and object insertion.

In summary, we formulate and solve the problem of object texture transport

from images to 3D models by factorizing out geometric and perspective distortions

from illumination effects and compensating for both. We extensively evaluate the

performance of the method and demonstrate the utility of the results for different

computer graphics and computer vision tasks.

4.2 Overview

In this paper we focus on clean textured object images, such as product images on

the web that are now widely available. We also use publicly available 3D model

repositories, such as ShapeNet [125]. More formally, our method makes three key

assumptions: (i) a clean image of the textured object is available with the background

removed, (ii) the texture pattern on the object is homogeneous within object parts

and each texture pattern can be built from a texture element of a size that is small

when compared to the full part size, and (iii) a similar 3D model is available that is

segmented into parts. Given such a product image of a textured object and a similar

untextured segmented 3D model, our basic objective is to transfer the underlying

textures visible in the image to the corresponding parts of the model. We also aim

to further propagate such texture information to many other related models in the

same class. Since textured object images are very common on the web, this enables

a novel automated pipeline that can vastly enrich the set of available textured 3D

models.
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Our algorithm deeply exploits the geometry of the 3D model in both correcting

illumination artifacts (e.g., shading) on the object and in rectifying the underlying

texture information that may have been distorted by the imaging process. We aim to

recover the underlying ideal texture directly, undoing the geometric and photometric

distortions mentioned above. In this fashion we avoid the need to establish dense

image-model correspondences, a difficult task which is not very well defined in our

setting since the 3D models and the imaged object are only approximately similar.

As a byproduct, our algorithm also builds an illumination model for the object in the

image, which can be utilized for image editing tasks.

In our approach (see Figure 4.3) we seek reliable texture patches in the image

which can be geometrically ‘unwrapped’ and photometrically corrected so as to

recover the true underlying texture for the corresponding object part. After aligning

the 3D model to the object image, we rely on the proxy geometry provided by the 3D

model for the texture patch unwrapping. We extract multiple texture patches from

the image and attempt to align them based on their periodic structure by detecting

corresponding points on the wnwrapped image plane. This allows us both to select

the most reliable patches that best describe the base textures elements to be used, as

well as to make decisions about material groups (which texture is to be painted on

which shape part). We synthesize a texture image for each material group using the

largest extracted reliable texture patches and also estimate the texture orientation

(indicated by cross-fields) in each object part.

For the illumination correction we again use the 3D model. We sample point

light sources over a sphere around the model and generate many grayscale shading

images of the model from which we approximate the lighting configuration used in

the image (approximated by a discrete distribution over the sampled points). This

step extracts the intrinsic image and undoes illumination effects. As the 3D proxy

model is not exact, this step is an approximation. However, the extracted illumination

is sufficiently correct as preparation for our subsequent texture extraction step. Note

that since our goal is to extract a set of base textures, we can only focus on the near

planar regions and ignore the regions near boundaries.
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For the final texture transfer step, we use a global texture synthesis step in

the uv texture domain, after some local hole filling. We prefer a global method

to avoid spreading artifacts that may still be present in the extracted texture patch.

Furthermore, we need to respect the orientation of the texture relative to the object

part geometry, as recovered from the image. This is crucial not only for the initial

texture transfer to the proxy model, but also for transferring the texture to other 3D

models.

The rest of the paper is organized as follows: Section 4.3 describes the core

method for extracting appearance (texture and illumination) from image I; transfer-

ring this information from image I to shape S; Section 4.4 describes how to transfer

texture information from shape S to other similar models, Section 4.5 presents

evaluation results and finally Section 4.6 discusses applications.

4.3 Image to Shape Texture Transfer
The input to the image to shape texture transfer stage is (i) a given image I with

clear background, (ii) a similar 3D object S with part-level segmentation, and (iii) an

estimated camera pose V of I with respect to the coordinate system associated with

S. In this paper, we use the method described in [36] to retrieve a similar shape S

from a shape collection and to estimate the camera pose V (Figure 4.4). This task

can also be accomplished by other methods, for example [31]. The remainder of this

section describes the details.

4.3.1 Geometry-guided Patch Extraction

We assume that the imaged object in I has a low complexity appearance model,

i.e., the object is covered with a repeating texture pattern and imaged under an

(unknown) illumination setting. The key challenge is to factor out the projection

and illumination artifacts in order to extract a set of simple base textures and an

illumination model. We use the geometry information available in the form of shape

S to guide both these tasks. First, we detect repeating elements in the input image

and then use them to group parts of the input shape S to guide subsequent image

decomposition.
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The repeating elements consist of patches of the input image each of which has

a salient regular texture pattern. Extracting such regular texture patterns directly is

Figure 4.4: Shape retrieval and alignment. Here we show 5 closest results of original and
blurred image (to reduce texture effects). We use the closest shape (second
column) for further estimation. For each image, we use the estimated view
corresponding to the model in the second column.
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difficult because the texture may be distorted by the geometry of the captured shape.

To address this issue, we use the geometry provided by S to unwrap each texture

pattern into a common image plane. As the object in the input image and the shape S

are similar, we found that it is sufficient to simply overlay the input image object

and the rendered image for depth and normal transfer as explained in the following.

Patch initialization. To identify the patches, we uniformly sample a 50×50 grid of

points on the input image (Figure 4.5(f)). From each grid point, we start a region

growing step to find the largest square flat region on S centred at that point. The

criteria for “flat region” is that within such a region, the normal difference and

gradient of depth is less than a certain threshold. In this way we grow a patch around

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

(o) (p) (q) (r)

Figure 4.5: (a): Input image I; (b) retrieved shape S; (c) overlaid I and S for illustration;
(d) depth map corresponding to #b; (e) normal map corresponding to #b; (f) uni-
form grid sampling; (g)-(j): 4 examples of cropped patch from I; (k)-(n) patches
directly cropped from I corresponding to highlighted area in (g)-(j); (o)-(r) un-
wrapped patches into a common image plane to remove perspective distortions.
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each grid point, extending it from pixel i to pixel j when

∠i, j(Ni,N j)≤ η

maxi(∇Di)≤ ξ

 , (4.1)

where Ni and N j denote normals on the mesh S corresponding to pixels i and j,

∇Di denotes difference in depths on points of S around i, and η and ξ are threshold

margins (η = 5◦ and ξ = 3%). We keep all patches that cover more than 400 pixels.

We denote these initial patches as {P1,P2, . . .}, which are allowed to overlap each

other.

Patch rectification. The appearance of the initial patches may be distorted due to the

geometry of the imaged object. Hence, next we use the proxy geometry in the form of

S to correct the patches. Specifically, to recover from the distortion of {P1,P2, . . .},

we unwrap them into a common image plane. We denote the unwrapped patches as

{P1,P2, . . .}. Unwrapping from PitoPi is straightforward since Pi is on an almost flat

region by construction. While this can be done by a local parameterization approach,

we found a much simpler option to be sufficient as explained next.

For a patch Pi , let the four corners in clockwise direction be {q1,q2,q3,q4}.

Correspondingly, let the unknown four corners of the unwrapped patch Pi be

{q1,q2,q3,q4}. We simply flatten the patch into a plane by ‘unfolding’ it to a

flat configuration while best keeping orginal lengths/areas. We fix q1 to the origin on

a 2D plane, set edge q1q2 to be the X-axis, then unfold4q1q2q4 into4q1q2q4, and

finally4q2q3q4 into4q2q3q4. We keep the scale ratios of the form ‖qiq j‖/‖qiq j‖

for triangle edges to be fixed for different patches. Since the original patch is flat,

this step rarely leads to any foldover. Thus, we obtain rectified texture from different

areas of the shape as shown in Figure 4.5.

Patch correspondences. We now establish correspondences across the rectified

initial patches to extract a global repeating structure. Moreover, the extracted cor-

respondence across the different patches indicates whether they capture the same

texture pattern (or are outliers) and will later help us to group parts based on material

(i.e., texture) assignment and to estimate the illumination environment.
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(a) 
(b) 
(c) 
(d)

(e)

(f) (g)

Figure 4.6: Patch registration between a pair of unwrapped patches. (a) unwrapped patch;
(b) SIFT feature points; (c) Canny edges; (d) distance field of Canny edges;
(e-g) examples of registration with red dot denoting corresponding feature point.

We start by registering a pair of unwrapped patches Pi and Pj. We first compute

SIFT features [26]) on Pi and Pj (we denote the patch with fewer SIFT feature points

as Pj). Let the m-th feature point of patch Pi be denoted f i
m. For each such feature

point, we have the location (x,y), an orientation r, and a 128-dimensional descriptor

d. When registering PjtoPi, we simply pick a matching pair of feature points ( f i
k1
, f j

k2
)

and perform a rigid transformation on Pj, where the difference between the feature

locations gives the translation and the difference between the feature orientations

gives the rotation.

Since the patches can overlap, the SIFT features in ( f i
k1
, f j

k2
) are not helpful for

alignment in regions of overlap. Hence, in order to robustly register the two patches,

we select the 20 best matches for each f j
k and among these 20×| f j| matches, we

pick the one with minimum registration energy Er( f i
k1
, f j

k2
). This energy gives low

values when: (i) the Canny edge of two patches agree, and (ii) the overlap region of
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the two patches are large. Specifically,

Er( f i
k1
, f j

k2
) = ‖G(Pi)−G(Tk1k2(Pj)‖2

+ λ ∗A(M(Pi,Tk1k2(Pj)),

where Tk1k2(·) is the transformation guided from f j
k2

to f i
k1

, M(·, ·) is the mask of the

union of two patches, A(.) denotes the area of the overlapping region, and G(·) is a

distance field of the extracted Canny edge (using OpenCV implementation). In our

tests, we set λ =−0.1 and the distance field is generated by performing a Gaussian

blur over Canny edge with kernel size of 15. Figure 4.6 shows some examples.

After two patches are registered with minimum registration energy, we select a

6×6 pixel square around the matched feature points on both Pi and Tk1k2(Pj) denoted

as STi and STj. We then determine whether the registration is successful based on the

similarity between STi and STj. Since, at this stage, there might be an illumination

effect, we simply account for that using a shading intensity ratio k and the similarity

between STi and STj is defined by min
k
(‖STi− k · STj‖2). Finally, if the similarity

value is under a certain threshold, we mark the patch Pi and Pj to be sharing the same

texture after a rigid transformation Tk1k2 . Otherwise, they are marked to be different.

4.3.2 Material-Guided Patch Grouping

Directly performing part level texture transfer is difficult for two reasons: (i) parts

can be totally occluded in image I and (ii) even for the partially visible parts, the

texture information extracted from image I could be limited thus preventing high

quality texture synthesis. However, for most of the real-world examples, many parts

share the same texture (or plain color), thus providing redundancy. We exploit this

redundancy to solve the above problems by grouping the original shape parts, with

parts within the same group being assigned the same texture. We assume the models

to have symmetric parts to be grouped.

We group the parts based on texture correspondence, thus producing material-

based groups.Specifically, we test all patch pairs (Pi,Pj) if they are from different

groups and merge the two groups if Pi and Pj are registered successfully (as described
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before). After all patch pairs are examined, some parts can still remain untouched

with no associated texture patch. We heuristically complete the material grouping as:

(i) for thin parts with no associated textures, we treat them as plain color and use the

average pixel value projected on those parts after SIFT flow [128] is applied on the

image I (see Figure 4.7); and (ii) for larger parts, we link them into the group with

the largest texture patch generated. For example, if a part at the back of the chair

is completely occluded, we assign it to the largest texture group, which typically is

the one associated with the seat cover. Next, we will synthesize one texture image

for each material group based on the notion of a trustable region from the largest

associated texture patch.

4.3.3 Image Decomposition

The patch correspondences can also guide the extraction of illumination from input

image I. In order to perform intrinsic image decomposition, we decompose the

captured photograph I into reflectance Ir and shading Is, since the render equation

tells us I = Ir · Is for each channel of each pixel. In our setting, this implies that

for corresponding patches, the Ir component at the corresponding feature points

should be the same because they share the same texture location. In other words,

when the (unknown) groundtruth shading of this image is factored out from I, Ir for

(a) (b) (c) (d)

Figure 4.7: For the image/shape pair on Figure 4.5: (a) geometry-based grouping;
(b) material-based grouping; (c) calculated SIFT flow from silhouette of image
I to silhouette of shape S rendered from the estimated view; (d) apply SIFTflow
to image I.
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Figure 4.8: Shading samples using retrieved 3D model geometry. Only a selection of
samples are shown.

corresponding locations should be the same. Thus we arrive at,

Is := argmin
Is∗

∑
(i, j)∈Π

‖Ir∗(li)− Ir∗(l j)‖, (4.2)

where Ir∗ = I/Is∗ , Π denotes corresponding pairs with matched feature at location li

and l j on the image I, and ‖ ·‖ denotes 2-norm of the RGB channels. Note that Is has

RGB channels since we found environmental illumination often to be not pure white.

In the raw form, Equation 4.2 is underconstrained. As such, we further regular-

ize Is∗ with shading priors. We again use the proxy geometry to drastically restrict

the degrees of freedom. Specifically, we use the shading image of shape S to approx-
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 4.9: (a) Corresponded point pairs; (b) interpolated shading; (c) interpolation coeffi-

cients for the different shading samples; (d) shading factorized from the input
image I. (e)-(h) shows the selected shading samples.

imate Is∗ . Exploiting the additive nature of illumination, we can decompose Is∗ into

separate parts I1
s∗+ I2

s∗+ . . .. To this end, we sample single point light sources on a

sphere around S and render grayscale shading images {Is1, Is2, . . .} and approximate

(a) (b) (c) (d)

Figure 4.10: Some examples of artifacts captured by the largest texture patch and the trust-
worthy region after patch alignment.
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Is∗ by interpolating the sample shading images over the RGB channel. Specifically,

we place 100 individual point lights at locations (cos(u)cos(v),cos(u)sin(v),sin(u))

where u = arcsin(1− 2k−1
100 ), v = u

√
100π , and k = 1, . . . ,100. For each point light,

we render a grayscale shading image as shown in Figure 4.8. We ignore all fully

black shading images as they do not contribute to the decomposition. Note that

in this step, we preprocess the shading images to recover the effect of gamma cor-

rection. Therefore, via linear interpolation we have Is∗ = ∑
k=1,..,100

(cr,g,b
k · Isk). Thus,

illumination optimization amounts to,

argmin
{ct

k}
∑

(i, j)∈Π

‖Ir∗(li)− Ir∗(l j)‖, (4.3)

where Ir∗ = I/ ∑
k=1,..,100

(cr,g,b
k · Isk) and the coefficient vector regularized as

∑
k=1,..,100

ct
k = 1, t = {r,g,b}.

Instead of providing an intrinsic decomposition with fine detail, Ir∗ only results

in reliable reflectance in large flat areas as shown in Figure 4.9. This is because

shape S is not exactly the same as the object captured in image I, especially around

the boundaries and image-model mismatch regions.

The above decomposition, however, is still suitable for our goal. First, we mainly

care about the texture on the large areas where patch texture could be generated.

Second, we do not have to rely on other prior information as in state-of-the-art

intrinsic decomposition methods [28, 129] (see comparison in Section 4.5). Finally,

the recovered coefficients can easily be converted to recreate the illumination by

placing light sources with extracted coefficient as intensity for each channel.

4.3.4 Texture Transfer

Once we factor out the effect of illumination, we focus on reflectance Ir. We regener-

ate the unwrapped texture patches {P1,P2, . . .} based on Ir. As we assume per-part

texture to be homogeneous, the largest patch usually captures all necessary texture

information. However, it can locally suffer from artifacts (see Figure 4.10) due to

image-shape inconsistency, unexpected patterns, high distortion around boundaries,

etc. Hence, directly using the largest patch easily results in unwanted artifacts.
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Figure 4.11: (a) Extracted trustable region; (b) hole filling by [130]; (c) texture synthesis
by [131]; (d) directly repeating texture causes visible artifacts.

In this step, we extract useful texture information from {P1,P2, . . .} so that we

can synthesize high-quality textures for each material group. To this end, we adopt a

simple but effective method: we introduce the notion of trustable region from the

largest texture patch of each material group. The criteria for being a trustable region

is whether the location texture appears more than once on image Ir. Specifically,

for each material group, we perform pairwise patch registration between each patch

and the largest patch. After registration, we examine all the corresponding 20×20

pixel patches on STi, j. We mark a region as trustable on STi if the sum of pixel value

differences on the 20×20 pixel patch is less than 10%.

Texture synthesis. In this step, we generate a texture image for each material group

based on the trustable region extracted from the last step. First, we perform hole

(a) (b) (c)

Figure 4.12: (a) Estimated orientation visualized on image I; (b) orientation frame projected
on to uv plane; (c) uv-layout after rescaling and rotation.
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filling using [130] to regularize the boundary of the trustable region. Then, we simply

use [131] to synthesis a large size texture image. Note that we should preserve the

scale of the texture as it is on image I when transferring to shape S. That means we

cannot arbitrarily rescale the uv layout when parameterizing each part of S. In order

to ensure good quality, we synthesize a large texture image to cover the uv layout

instead of directly spatially repeating small texture examples. In our experiment, we

found 2048×2048 as a reasonable size with acceptable synthesis time.

We apply the method in [132] (using Blender’s built-in version called Smart

UV Project) on each part of S for uv parameterization. By default, uv coordinates

are scaled to [0,1]. Hence, we rescale the uv coordinates to ensure the number of

pixels in texture space covered by the parameterization of the mesh is the same as

the number of pixels in image I covered by the mesh when it is projected back to the

image plane.

We can now transfer orientation of the uv layout to S by following image I.

This is straightforward since the correspondence between a patch and the largest

patch specifies a common orientation frame. We project the orientations (up and

right vector) of all patches onto uv space and pick a dominant up-direction using

RANSAC. Specifically, for all the orientations {r1,r2, . . .}, we set 20◦ as threshold

and pick the orientation with the most number of inliers. We set the dominant up-

direction as the mean orientation of these inliers. We align the dominant up-direction

to the up-direction of the texture image. We flip the right direction on uv layout, if

necessary based on texture registration score. See Figure 4.12 for clarification.

4.4 Shape→ Shape Texture Transfer

In the previous section, we described how to transfer texture from an object in image

I to a similar shape S. We now describe how to further diffuse the texture information

to other similar 3D models M in the model collection. Note that we assume the

model collection to be coaligned [133]. The main observation is that although the

imaged object in I is too different from M to reliably generate base texture elements,

it still provides valuable information as to how to orient the (extracted) base textures
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from I to M. Intuitively, S acts as a bridge to transfer orientation information from

image I to the target shape M, while the base textures are obtained based on the I-S

analysis. Thus, the main task is to simply map orientation of uv layout.

Similar to part-level parameterization of S, we first parameterize each part of

shape M. Given a part and its uv layout, for each face, we project the up direction in

3D space at the face center onto the surface and map the projected direction onto 2D

uv space. If a face is nearly perpendicular to the up direction, we use the forward

direction instead. After that, we use weighted RANSAC to compute the dominant

up-direction based on the projected orientations, weighted by face area. This will

give us a dominant up-direction for the corresponding parts S∗ and M∗ from S and M.

By aligning the up-direction from M∗ to S∗, we naturally get the texture orientation.

This completes the texture transfer from the image I to the retrieved shape M.

4.5 Evaluation
In this section, we discuss comparison results with baseline methods, state-of-the-art

alternatives, and also report evaluation results assessing the importance of each stage

of the pipeline. Code and data is available online1.

Datasets. We tested our pipeline with 70 ‘chair’ images download by searching with

keywords chair, fabric chair, wood chair, etc.. As shape collection, we used dataset

for ‘chairs’ from the ShapeNet database. We used a sample of 1000 of them for our

tests as they already provide enough geometry variance for this task. We also tested

with two other classes, ‘cushion’ and ‘table.’

4.5.1 Result gallery

We show a sample of texture transfer results for 42 images in Figure 4.15 (please

zoom to see the results). For each image, we retrieve the closest shape and transfer

texture from the image to shape as shown in the diagonal entry. After that, we

perform shape-to-shape texture transfer from the closest shape to the other 41 shapes.

The images are rendered from a novel view. Images rendered with estimated view

are in the supplementary material. For the cushions and tables datasets, we show

1http://geometry.cs.ucl.ac.uk/projects/2016/texture_transfer/

http://geometry.cs.ucl.ac.uk/projects/2016/texture_transfer/
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Figure 4.13: Image-to-shape and shape-to-shape texture transfer results for ‘cushion’ and
‘table’ classes.

results with 5 images for each category in Figure 4.13. We evaluate generality of our

approach on different categories (cap, mug, vase, aeroplane) of objects in Figure 4.14.

In this case we select 5 models from ShapeNet for each category.

4.5.2 Comparison with baseline methods

Baseline #1: SIFTflow-based projection. One simple baseline method for transfer-

ring texture from image to shape is to compute a dense correspondence between

the image and a retrieved 3D model and then simply transfer texture information

from the image to the projected model. As shown in Figure 4.7, we use SIFTflow

technique to build such a dense correspondence between the silhouette of the image

and the silhouette of the shape rendered from the estimated view. After applying

SIFTflow, we project the pixels directly onto shape using the estimated dense corre-

spondence. Note the original image is not corrected for shading effect. Figure 4.16

shows some example results.

Baseline #2: Shapenet textures. Another baseline is simply to take the texture

information (when present) from the ShapeNet database. Please note that the quality

of texture from ShapeNet is very variable. For example, in the chair category, about

50% of the shapes have meaningless textures, i.e., simple color assignment. On the

other hand, a handful of the models (about 5−10%) come with high-quality texture,
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Figure 4.14: Texture transfer results for other categories. First row: input image. Second
row: retrieved shape and extracted texture patch. Last row: re-rendered image
with our texture transfer output and estimated illumination. Please note that the
proxy shapes differ from the input images, such as the brim of the cap, handle
of the mug, top of the vase, and aeroplane wings. Since our ‘flat patch’ is
defined based on a threshold of normal difference, we can still extract a small
but useful patch from a non-planar object such as the vase.

probably hand-curated by some professional.

User study. We conducted a user study on Amazon Mechanical Turk (AMT) to

compare the results of our human intervention free method against the two baseline

methods and also real images (product photographs). We tested on 4 datasets: (i) 70

real images; (ii) transfer texture of each such real images to the closest (retrieved)

shape using our approach and rendered from the estimated view under estimated

illumination; (iii) SIFTflow-based projection from the real images to the closest

(retrieved) shape and rendered using our estimated illumination in a slightly rotated

view from our estimation; and (iv) for each retrieved closest shape, we apply the

associated texture from ShapeNet and render from the estimated view with our

estimated illumination. Examples of the dataset are shown in Figure 4.16.

The user study was designed as follows: we combined all the 70×4 images

and randomly selected 3000 pairs from these images. For each pair, we ask 3
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Figure 4.15: Appearance transfer on ‘chair’ dataset. Image-to-shape (diagonal entries) and
shape-to-shape appearance transfer results. This is a high resolution figure,
please zoom in to view details. The results (3D textured models along with re-
covered illumination setting) are also available for download as supplementary
material.

different users to select the object they judged to be more realistic or plausible. (They

were forced to choose one of the two images.) We analyzed the result using the

Bradley-Terry model [134] to robustly predict the probability of each image winning

against each other image. Figure 4.17 shows that the real images had the highest

plausibility, only slightly better than our automatically synthesized texture transfer

results. Results from the two baseline methods were easily identified as unrealistic.
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Figure 4.16: Baseline examples. First row: input image (left), after applying SIFT-
flow (right); second row: our results; third row: SIFTflow + projection;
fourth row: ShapeNet textures.
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Figure 4.17: Probability of rating each image winning against each other image as computed
based on the Bradley-Terry model [134]. Note that our results are consistently
rated as realistic by the users.
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Figure 4.18: Comparison against random texture orientations: (top) input images, (mid-
dle) our appearance transfer results, (bottom) texture mapping with randomly
oriented textures (base texture extracted using our method).

4.5.3 Effect of texture orientation

In Figure 4.18, we compare our results against a naive approach of assigning random

orientation to the texture patches. In both case, we use the base textures extracted

by our method. Random orientations easily break realism as in real-world texture

patterns (e.g., fabric, wood grains) are carefully laid out with respect to the part

features of the objects.
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4.5.4 Effect of patch alignment

In Figure 4.20, we show the effect of our patch alignment step on a representative

chair example with irregular texture. We formulate our patch alignment step based

on the assumption of repetitive texture pattern but not necessary to have regular

texton structure.

4.5.5 Evaluation of illumination estimation

Comparison with intrinsic decomposition methods. The goal of our illumination

estimation step is essentially different from classical intrinsic decomposition. During

illumination estimation, we make use of geometric information in the form of the

retrieved model, which strongly regularizes the solution. Remove shading effect

from the image, in turn results in the selection of large flat regions from which

trustable regions are extracted.

We compare our illumination estimation result with state-of-the-art intrinsic

decomposition algorithms (see Figure 4.19): IIW [129] and SIRFS [28]. Because

both approaches use smoothness and parsimony priors, fine texture details can easily

be removed during shading. For illumination estimation, the difference between our

Figure 4.19: (a) Input image, (b) IIW [129] result, (c) SIRFS [28] result, (d) our result.
For each result, the upper row shows reflectance while the lower row shows
shading. The boxes show the zoom-in of the same region from reflectance and
shading layer of different decomposition methods.
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(a) (b) (c) (d) (e)

Figure 4.20: Irregular texture transfer. (a) input image, (b) retrieved shape, (c) frame
orientation, (d) trustable region and hole filling result, (e) appearance transfer
result.

method and SIRFS is twofold: (i) most 3D object cannot be formulated as a con-

tinuous depth map, therefore SIRFS cannot provide a reliable geometry estimation,

which leads to an approximate illumination even when the combination of reflectance

and shading agree with the input image; and (ii) for optimization efficiency, SIRFS

has to rely on a simple rendering engine that only consider normal of geometry. In

contrast, we can handle effects due to self-shadowing, ambient occlusion, etc. Since

our shading samples are rendered offline (for basis computation), we can easily

handle complex shading effects.

We also tested the robustness of our illumination estimation approach by chang-

ing the number of shading samples and the number of correspondences used. Fig-

ure 4.21 shows our result with 36 correspondences from image down-sampled to 18

and 9 correspondences. The number of shading samples is reduced from 50 to 25.

We use the extracted illumination to remove shading from input image to

improve the brightness consistency between different parts. Therefore, after illumina-

tion correction, we obtain larger trustable regions, which in turn results in improved

transfer as shown in Figure 4.22.

4.5.6 Effect of proxy shape

In Figure 4.23 we show the robustness of image-to-shape texture transfer under

different choices of proxy shapes. Since we only rely on rough geometry provided

by the retrieved shape, our transfer result is robust to the choice of the closest shape

the initial 2D-3D correspondence.
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Figure 4.21: Effect of number of shading samples. (Top) Correspondences used, (mid-
dle) estimated shading with 50 shading samples, (bottom) estimated shading
with 25 shading samples.

4.5.7 Comparison with TILT

We show the advantage of using geometry proxy during prespective correcting by

comparing with state-of-the-art texture rectification methods. We used TILT [1],

which makes use of low rank prior, to rectify a user-cropped texture patch. As shown

in Figure 4.24, low rank assumption is not sufficient to remove ambiguity, while our

geometry-based rectification leads to a more intuitive result.
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(a)

(d)

(b1)

(e2)

(b2)
(c)

(e1)

(f)
Figure 4.22: Effect of illumination correction. (a) input image and retrieved shape, (b1) ex-

tracted trustworthy region with patch alignment on patches cut from input
image, (b2) hole filling results, (c) texture synthesis results. (d)estimated shad-
ing and illumination correction, (e1,e2) extracted trustworthy region and hole
filling result, (f) final texture synthesis result.

4.6 Application

4.6.1 Image editing

We use the estimated illumination to realistically insert novel objects into the input

image. Again, geometry from the retrieved shape S helps to estimate shadowing

effects. We use our method to estimate view angle for S, texture patterns, and

illumination. We render a shading image IS
∗ with the to be inserted 3D object but set

the object to be invisible. Let IS be the shading image of retrieved object. We then

obtain the shading effect of the additional object as C = IS
∗/IS. Next, we apply the

shading effect C on input image as I′ = I ∗C. We render H in the scene with S set to
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Figure 4.23: (a) Input image, (b1,b2) image-to-shape transfer texture for two closest shapes,
(c) directly transferring texture to another shape, (d1,d2) indirectly transferring
texture via the closest shape using shape-to-shape transfer.

(a) (c)

(b)

(d)

Figure 4.24: Comparison with TILT [1]: (a) a red rectangle is selected by the user on the
input image and rotated to the green one using TILT for texture rectification;
(b) shows the texture patch in green rectangle; for comparison, (c) is the
texture patch extracted using our approach; (d) applys result of TILT texture
rectification, rendered with our orientation and illumination.

be invisible. Hence, S only contributes shading effect on H due to ambient effect

and shadow. Finally, we copy H to I′. Figure 4.25 shows a few examples. Note that

unlike state-of-the-art object insertion methods [38, 135], the above workflow only

requires the user to specify the position of the inserted object on S, while the rest of
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the steps are automatic.

Figure 4.25: Image editing.

4.6.2 Novel view synthesis

Our texture synthesis pipeline enables us to infer the appearance of invisible parts of

an object. In Figure 4.15, we present our texture transfer results rendered from novel

views different from the estimated viewpoint of the image.

4.6.3 Boosting 3D model repositories

Since our system is scalable, it allows fully automated texture transfer from real

product images to models in large-scale collections such as ShapeNet. Such model

repositories are important for training machine-learning algorithms. Su et al. [31]

uses millions of rendered images to train deep neural networks for computer vision

tasks and obtains state-of-the-art results on real-world test data. We demonstrate that

such 3D shape repositories enriched by our method can provide valuable boost to

learning tasks, compared with the original textures. We conduct experiments on two

tasks: single image depth estimation and texture-guided image retrieval.
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(i) Single-image depth estimation. Obtaining large-amount of training data with

groundtruth is not easy for training depth estimators. We train a deep neural network

using our textured synthetic data. Our network takes a single image with foreground

mask as input and predicts the relative depth of every pixel. This depth is in a

canonical frame with fixed range, i.e., we make the assumption that objects have

diameter 1 and the camera is placed at a fixed distance 3 to the center of the object.

Similar to [136], we use a network with an encoding stage (a stack of convolutional

layers) and a decoding stage (a stack of deconvolutional layers). For more details of

the network please refer to the supplementary material.

We use synthetic data rendered from 3D models to train the network, since

groundtruth depth information are obtained for free in the rendering process. Specif-

ically, our training set is rendered from 51 3D chair models sampled from the

ShapeNet, with 3 different settings of textures. As baselines, in the first setting, we

render 3D shapes with no textures, and in the second setting we render them with

original textures from artists. As for our own textured rendering, we transfer textures

from 51 images to each 3D model. This produces 51×51 shape-texture combina-

tions. For each texture setting, we render 80K images. The rendering parameters are

set according to [31].

We train 3 different neural networks for the 3 texture settings from scratch and

compare their performance in Figure 4.26. We evaluate on a test dataset containing

6000 images with depth information, rendered from 100 ShapeNet chair models

at random viewpoints. The evaluation protocol is pixel-wise mean square depth

error. We observe that the system trained with our textures is significantly better

than the one trained without textures. Surprisingly, it is even better than the original

textures by human artists. We hypothesize that this is because our texture transfer

system allows more than one set of textures for each 3D model, resulting in improved

diversity of training data, a desired property to prevent overfitting in estimating the

deep learning model parameters.

(ii) Texture-guided image retrieval. We also train an image retrieval system focus-

ing on texture similarity but agnostic to other nuisances. We choose to train a siamese
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neural network for this task. A siamese network takes a pair of images as input and

embeds them in a common space such that the distance in this embedding space

reflects their dissimilarity for some desired property, such as texture or geometry.

More details of our siamese network can be found in supplementary material. To

train this network, we need both positive pairs that are objects with similar textures

as well as negative pairs that are objects with dissimilar textures. Obtaining such

pairs from real-world images is not easy. Again, we generate synthetic training data

by rendering textured 3D models. Similar to the depth estimation experiment, we

transfer textures from each of 51 2D images to each of 51 3D chair models. This

allows us to sample pairs of rendered images and use them as positive pair if their

textures are transferred from the same image. In total we sample 8 million such pairs,

with 10% being positive. We compare with three baselines. For the first baseline, we

train the same siamese network using rendered 3D models with textures from human

artist (ShapeNet textures). Since each texture only presents on a single 3D models in

this setting, a pair is positive only if the two images are rendered from the same 3D

model. For the second baseline, we train a network by renderings without textures.

Lastly, we also include distance from HoG image features as a baseline.

We evaluate all the methods by an image retrieval experiment using the Eu-

clidean distance in the embedding space (or feature space for HoG features). Since

real-world benchmark test dataset is hard to obtain, we create a synthetic test set

similar to how we generate the training set. Specifically, we transfer textures from
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Figure 4.26: CNN-based single image depth estimation (chairs). Texture-guided image
retrieval (chairs).
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Figure 4.27: Examples of texture-guided image retrieval.

30 images to 30 shapes. The evaluation protocol is the top K retrieval accuracy for

each image in the test set, i.e., how many images from the top K retrieval results

have the same texture as the query. Figure 4.26 shows that our method comfortably

outperforms all the baselines.

This system generalizes well to real images, though trained on synthetic images.

We downloaded 757 real chair images using the Bing search engine and conducted a

simple texture-guided retrieval experiment. We qualitatively compare the retrieval

results using the embedding of siamese network from our textured data and HoG

features in Figure 4.27. Results show that the system trained by our textured data is

able to focus on texture variation while being agnostic to changes such as viewpoint,

geometry, and lighting condition. More results can be found in supplementary

material.
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4.7 Limitations
The main limitation of our approach is that we assume the object to have homoge-

neous part-level textures. While this assumption allows us to reliably extract base

texture from raw input images, it limits handling images where this assumption is

violated (e.g., hand-painted irregular patterns on a wooden chair). Note that with

limited information included in the generated patches, texture synthesis can produce

unwanted artifacts in the synthesized textures by repeating partial structures.

(a)

(b)

(c)

(d)

(e)

(f)

(i)

(j)

Figure 4.28: Limitations: (i) with sphere-like geometry as in (a,b), even when we synthesize
texture (c) from a limited flat region, we may still get large texture distortions
(d,e, cropped region); (ii) if the texture element is large compared to the size
of the containing object part (f), our patch-based approach may fail to capture
enough texture information, leading to problematic texture synthesis and visual
artifacts.

A second limitation is that we need to unwrap textures in images according to

the estimated shape normals. This approach works quite well when the surfaces are

relatively flat. Although our algorithm is designed for piecewise planar shapes, it is
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applicable to nonplanar shapes (i.e., Fig 4.14) as long as there are locally flat regions

presenting sufficient texture information. However, for highly folded surfaces such as

folds and pleats on dresses and curtains, our current method will fail. One interesting

future direction will be to perform texture analysis and synthesis directly on the

proxy geometries to relax this restriction.



Chapter 5

Joint Material and Illumination

Estimation from Photo Sets in the

Wild

Faithful manipulation of shape, material, and illumination in 2D Internet images

would greatly benefit from a reliable factorization of appearance into material (i.e.

diffuse and specular) and illumination (i.e. environment maps). On the one hand,

current methods that produce very high fidelity results, typically require controlled

settings, expensive devices, or significant manual effort. To the other hand, methods

that are automatic and work on ‘in the wild’ Internet images, often extract only

low-frequency lighting or diffuse materials. In this work, we propose to make use

of a set of photographs in order to jointly estimate the non-diffuse materials and

sharp lighting in an uncontrolled setting. Although spatially varying bidirectional

reflectance distribution function (SVBRDF) [50] is proven to be the state-of-the-art

model for high realistic surface capturing and rendering, here we assume non-

spatially varying model to reduce the complexity since our observations are sparse

at instance level. Our key observation is that seeing multiple instances of the same

material under different illumination (i.e., environment), and different materials

under the same illumination provide valuable constraints that can be exploited to

yield a high-quality solution (i.e., specular materials and environment illumination)

for all the observed materials and environments. Similar constraints also arise when
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Figure 5.1: Joint Estimation: Input and output
We factor a set of images (left) showing objects with different materials (red, yellow,
black, white plastic, rendered with Uffizi envmap [137]) under different illumina-
tion into per-image illumination and per-object material (top right) that allows for
novel-x applications such as changing view, illumination, material, or mixed illu-
mination/material (red chair in the left-bottom imaged environment) (bottom right).

observing multiple materials in a single environment, or a single material across

multiple environments. Technically, we enable this by a novel scalable formulation

using parametric mixture models that allows for simultaneous estimation of all

materials and illumination directly from a set of (uncontrolled) Internet images. The

core of this approach is an optimization procedure that uses two neural networks that

are trained on synthetic images to predict good gradients in parametric space given

observation of reflected light. We evaluate our method on a range of synthetic and

real examples to generate high-quality estimates, qualitatively compare our results

against state-of-the-art alternatives via a user study, and demonstrate photo-consistent

image manipulation that is otherwise very challenging to achieve.

ProjecƟve
texturing

SIRFS Ours

Figure 5.2: Comparison to alternatives (projective texturing, average RGB of intrinsic im-
ages [138]). We see that only a proper separation into specular materials and
natural illumination can predict appearance in novel views. Other approaches
miss the highlight, even in the original view (average of intrinsic), or does
not move under view changes (projective texturing). Please refer to the ac-
companying video to judge the importance of moving highlights under view
changes.
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5.1 Introduction

Estimating realistic material (i.e., reflectance) and illumination along with object

geometry remains a holy grail of shape analysis. While significant advances have

been made in the recent years in predicting object geometry and pose from ‘in the

wild’ Internet images, estimation of plausible material and illumination has remained

elusive in uncontrolled settings and at a large scale.

Successful material and illumination estimation, however, will enable unprece-

dented quality of AR and VR applications like allowing realistic ‘transfer’ of objects

across multiple photographs, or inserting high-quality replicas of virtual objects into

Internet images. For example, in Figure 5.1, imagine transferring the red chair from

one image to another. Currently, this task is challenging as we neither have access to

the (red) chair’s material, nor the illumination in the target scene.

The naive solution of simply copying and pasting a 2D cutout is unsatisfac-

tory as it easily leads to low fidelity results (e.g., unrealistic highlights), and more

importantly, does not allow for pose adjustments (see Figure 5.2) or relighting.

In this paper, we investigate the problem of material and illumination estimation

directly from ‘in the wild’ Internet images. The key challenge is that material

and illumination are never observed independently, but only as the result of the

convolving reflection operation with (estimated) normal direction and view direction

(assuming access to rough geometry and pose estimates). Thus, in absence of

further assumptions, we cannot uniquely recover material or illumination from

single observations (i.e., images). Instead we reply on linked observations. We

observe that often Internet images record the same objects in different environments

(i.e., illuminations), or multiple objects in the same environments. Such linked

observations among all the materials and illuminations forms a (sparse) observation

matrix providing critical constraints among the observed materials and illumination

parameters (for example Figure 5.3). We demonstrate that such a special structure

can be utilized to robustly and accurately estimate all the material and illumination

parameters through a global optimization.

We choose a formulation based on the basic rendering equation in combination
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Figure 5.3: An example of the observation matrix from a set of linked photographs.

with available per-pixel geometry estimation. However, there are multiple challenges:

(i) access to only approximate proxy geometry for the scene objects with rough pose

estimates leads to inaccurate normal estimates; (ii) partial observations due to view

bias (e.g., chair backs are photographed less often) and sparsely observed normal

directions (e.g., flat regions in man-made objects); (iii) working with the rendering

equation when updating material and illumination parameters in an inverse problem

setup is inefficient in a standard physically-based rendering pipeline; and finally,

(iv) access to limited data due to sparsely observed joint material-illumination pairs.

In order to overcome the above challenges, we propose a novel formulation

using parametric mixture models. We propose to approximate the reflection operator

and its derivative with respect to material and illumination in terms of Isotropic

Spherical Gaussians (see [139]) that can be efficiently utilized to jointly optimize

for the materials and illumination at a large scale (i.e., involving multiple materials

and illuminations). The main advantage of using Isotropic Spherical Gaussian

representation is its capacity to capture high-frequency signal which is common in

HDR illumination such as light source (light bulb or sun), while other linear basis

based representations, i.e. Spherical Harmonic basis [28] cannot handle it well. This

optimization is driven by two neural networks that were trained on a large set of

materials and illuminations to predict the gradient the optimization will follow. For
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example, in Figure 5.1, we observe 4 different colored (i.e., material) chairs under

8 different illuminations (only 6 images shown in the teaser figure) with linked

observations. Only using these limited observations, our algorithm extracts high-

quality material and illumination estimates, which can then be used for non-trivial

image manipulation.

We extensively evaluate our method on both synthetic and real data, both

quantitatively and qualitatively (using a user study). We demonstrate that increasing

the amount of linked material-illumination observations improves the quality of

both the material and illumination estimates. This, in turn, enables novel image

manipulations previously considered to be very challenging. In summary, our main

contributions are: (i) proposing the problem of coupled material and illumination

estimation from a set of Internet images; (ii) formulating an efficient and scalable

algorithm that allows high-quality material and illumination estimation from a set

of images; (iii) using a neural network to approximate the complicated gradient of

reflected light with respect to material and illumination parameters; and (iv) utilizing

the estimations to enable realistic photo-realistic image manipulations.

5.2 Overview

Starting from a set of linked photographs (i.e., multiple objects observed in different

shared environments), our goal is to retrieve object geometry with pose predictions

and estimate per-object materials and per-environment illuminations. The estimated

information can then be used to faithfully re-synthesize original appearance and

more importantly, obtain plausible view-dependent appearance. Figure 5.2 shows

baseline comparisons to alternative approaches to assign materials to photographed

objects. We observe that even if the geometry and light is known (we give all the

approaches access to our estimated environment maps, if required), the highlights

would either be missing (using intrinsic image [138] for estimating average albedo),

or not move faithfully (e.g., with projective texturing) under view changes.

As input, we require a set of photographs of shared objects with their respective

masks (see Figure 5.4). In particular, we assume the materials segmentation to be
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consistent across images. As output, our algorithm produces a parametric mixture

model (PMM) representation of illumination (that can be converted into a common

environment map image) for each photograph and the reflectance parameters for

every segmented material. We proceed in three steps.

First, we estimate object geometry and pose, and convert all the input images

into an unstructured reflectance map for each occurrence of one material in one

illumination in Section 5.3.1. Since we work with very few images collected from

the wild, our challenge is that this information is very sparse, incomplete, and often

contradict each other.

Second, we solve for illumination for each image and reflectance model param-

eters for each material in Section 5.3.4. This requires combining a very large number

of degrees of freedom, as fine directional lighting details as well as accurate material

parameters to be estimated. The challenge is that a direct optimization can easily

involve many variables non-linearly coupled and lead to a cost function that is highly

expensive even to evaluate as it involves solving the forward rendering equation,

e.g., [63]. For example, representing images and illumination in the pixel basis leads

to an order of 104-105 variables (e.g., 128× 256×number-of-environment-maps).

At the same time, evaluating the cost function for every observation pixel would

amount to gathering illumination by iterating all pixels in the environment map, i.e.,

an inner loop over all 128×256 environment map pixels inside an outer loop across

all the 640×480×number-of-images-in-the-collection observations. This quickly

becomes computationally intractable.

Instead, we introduce a solution based on parametric mixture-model (PMM)

representation of illumination to inverse rendering, which has been successfully

applied to forward rendering [139–143]. Our core contribution is to take PMM

a step further by introducing the parametric mixture reflection operator and an

approximation of its gradient, allowing to solve the optimization in a scalable fashion

involving many materials and environments. The gradient approximation uses a

neural network to map from observed reflected light, light and material parameters

to changes of light and material parameters. It is trained on a set of synthetic images
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rendered from many illuminations and many materials.

Third, the estimated material and illumination information can directly be

used in standard renderers. The challenge in such applications is to capture view-

dependent effects such as moving highlights. In Section 5.4.3, we show applications

to manipulating images, changing the illumination and/or material and/or view, trans-

ferring materials to objects in other images, or inserting objects into new illumination

(see also supplementary materials).

5.3 Algorithm

We now explain our approach in details.

5.3.1 Acquiring Geometry and Reflectance Maps

We start from a set of images with the relevant materials segmented consistently

across the image collection. Designer websites (e.g., Houzz) and product catalogs

(e.g., Ikea) regularly provide such links. Here we assume that the links are explicitly

available as input. First, we establish a mapping between illumination material-pairs

and observed appearance.

Figure 5.4: RGB, normal, and instance segmentation of a typical input image.

Per-pixel labels. For the input images, we used per-pixel orientation (screen-space

normals) (Figure 5.4) obtained using render-for-CNN [144] trained on the ShapeNet

to retrieve object geometry and pose estimates. We found this to provide better quality

normal predictions than those obtained via per-pixel depth [145] and normal [146]

estimation.
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Reflectance maps. The rendering equation [75] states that

Lo(x,n,ωo) = Le(x,ωo)︸ ︷︷ ︸
Emit

+
∫

Ω

fr(x,ωi,ωo)︸ ︷︷ ︸
BRDF

Li(x,ωi)︸ ︷︷ ︸
Incom.

< n,ωi >
+︸ ︷︷ ︸

Geometry

dωi, (5.1)

where x is the position, n the surface normal at location x, ωo the observer direction,

Lo is the observed radiance, Le is light emission, Li is the incoming illumination, and

fr the bi-directional reflectance distribution function (BRDF) [147].

We assume a simplified image formation model that allows for using a slightly

generalized variant of reflectance maps [45]: (i) distant illumination, (ii) convex

objects, i.e., no shadows or inter-reflections, (iii) spatially invariant BRDFs, and

(iv) no emission. Note that we do not assume a distant viewer as typical reflectance

map does. This simplifies Eq. 5.1 to

Lo(ωo,n) =
∫

Ω

fr(ωi,ωo)Li(ωi)< n,ωi >
+ dωi. (5.2)

A classic reflectance map is parameterized either by normal n or by the observer

direction ωo. Instead of making such a split, we take a less structured approach

tailored to our problem: an unstructured reflectance map (URM) denoted by O that

uses a list that holds in each entry a tuple of (i) normal on, (ii) half-angle vector h,

(iii) observed radiance oL (cf. Figure 5.5), and (iv) indices om and oi of the material

and illumination, respectively. We denote h as the half-angle vector for front (−z) and

observer direction, h := (< 2n,oω > ·n−oω +(0,0,−1))/2. This parametrization

will provide a more convenient way to index information. An example visualization

of the URM by projecting the n as well as the h coordinate using latitude-longitude

is seen in Figure 5.5.

To acquire the URM from an image with given per-pixel position and orientation,

we apply inverse gamma correction such that oL is in physically linear units. Note,

that although we do not know the absolute scale inside each photo, we do not need it

for most applications. Further, we do not differentiate between objects and consider

only their materials (i.e., an object with two material parts are essentially treated as

two materials).
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Figure 5.5: Schema and actual Unstructured Reflectance Maps of the chairs in the first
column of Figure 5.1. Each point is an observed color for a specific surface
orientation n and half-angle vector h.

Figure 5.6: The three main ideas to enable large-scale optimization: (a) approximating
illumination as parametric mixture models and the BRDF as a sum of a diffuse
and a specular component; (b, c) expressing reflection as a sum of diffuse and
specular reflections of individual lobes; and (d) approximating derivative of
diffuse and specular reflection of ISGs using corresponding neural nets.

5.3.2 Representation

Illumination. We use Parametric Mixture Models (PMMs) to represent illumination.

PMMs have been used for pre-computed light transport [140, 141, 148], BTF com-

pression [142], interactive rendering [149], importance sampling [143], or even in

caustic design [150]. A PMM encoded as

g(ω|Θ) :=
np

∑
l=1

p(ω|Θl)≈ L(ω) (5.3)

is a sum of np lobe functions p(ω|Θl) that depend on a parameter vector Θl to

approximate, in our setting, the incoming or outgoing light function L(ω). All
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parameter vectors Θl of one PMM are combined in a parameter matrix Θ. In

our case, the domain of g is the sphere Ω parameterized using latitude-longitude

representation ω = (θ ,φ) ∈ [0,2π)× [0,π).

As mode functions, we employ Isotropic Spherical Gaussians (ISGs) [140, 143,

148]. An ISG lobe has the form

p(ω|Θ) := w · exp(−σ(ω− z)2),

where w ∈ R+ is the weight of the lobe, σ is its variance and z the mean direction.

Consequently, a lobe is described by parameter vector Θ = (w,σ ,z). To work

with RGB values all weight components w in this paper are vector-valued, but the

variance parameter σ is scalar. For each image, we use an ISG PMMs with np = 32

components to represent unknown illuminations.

Material. We assume the material to be of the form

fr(ωi,ωo|ρ) = kd fd(ωi,ωo)︸ ︷︷ ︸
Diffuse

+ks fs(ωi,ωo|r)︸ ︷︷ ︸
Specular

, (5.4)

a parametric model that can be split into the weighted sum of a diffuse and a specular

component fd and fs with weights kd and ks, repectively. We choose Lambertian

as the diffuse model and GGX [151] that has a single roughness parameter r as the

specular model. The material parameters are therefore a tuple ρ = (kd,ks,r) ∈ R7

of RGB diffuse and specular reflectance and a scalar roughness parameter. We

denote the BRDF parameter vector of material j as ρ( j). Note that we do not need to

represent fr using a PMM, which would introduce unnecessary approximation error.

5.3.3 Reflection

Using standard notation [152] for light transport, we express reflection as an operator

R, mapping the function of incoming light Li to a function of reflected outgoing light
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Lo :

Lo(ωo) = R(Li|ρ)(ωo) =
∫

Ω

Li(ωi)︸ ︷︷ ︸
Illumination

fr(ωi,ωo|ρ)︸ ︷︷ ︸
BRDF

dωi. (5.5)

When using an ISG to represent the illumination, we suggest to use a parametric

reflection operator R(Θ|ρ) that maps from a single illumination ISG lobe Θ and a

material ρ to a reflected light. As we assume the BRDF to be a sum of a diffuse and

a specular part, we can similarly define D and S that are respectively the diffuse and

the specular-only reflection and R = D+S. So, finally we have

Lo(ωo) =
nl

∑
l=1

D(Θl|ρ)+S(Θl|ρ). (5.6)

Figure 5.7: Evaluation of the neural network. The first row shows GT renderings with a GT
envmap. The second row shows again GT rendering, but using the GMM fit to
the envmap. This is an upper bound on the NN quality, as it works on the GMM
representation. The third row shows the NN result. In the horizontal direction,
specular results of increasing roughness are followed by the diffuse result in the
rightmost column. The plots on the right below show the error distribution as a
function of different parameters.

5.3.4 Formulation

Our task is to find a set of illuminations and a set of materials that explain the

acquired observations (see the previous section). Next, we describe how to represent

reflectance and illumination as well as introduce the parametric reflectance operator,

its derivative with respect to material and illumination, and an approximation method

for efficient joint optimization for material and illumination given the observations

(see Figure 5.6).
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Cost function. Our main objective function quantifies how well a set of materials

and illuminations explain the input observation. It should be fast to evaluate and

allow for an effective computation of its gradient with respect to illuminations and

materials in order to be useful in an optimization. We formulate the objective as:

c(Θ,ρ|O) := ∑
o∈O

∥∥∥∥∥oL−
np

∑
l=1

R
(

Θ
(oi)
l |ρ

(om)
)
(oω)

∥∥∥∥∥
2

︸ ︷︷ ︸
Data

+λ p(Θ)︸ ︷︷ ︸
Prior

. (5.7)

The gradient of this function with respect to the illumination and material comprises

of evaluating R, which involves convolving an illumination lobe with the BRDF.

This is both costly to compute and we need to find its derivative. To this end, we will

employ a learning-based approach, as described next.

Neural network. The input to this neural network (NN) is the parameters of a single

illumination lobe, the material parameters, and the observation direction ω . We

call this approximation R̂. The output is an RGB value. We keep the NNs for the

diffuse and specular components to be separate and independently process the RGB

channels. The corresponding approximations using NNs are denoted as D̂ and Ŝ,

respectively. The network architecture is shown in Figure 5.8. The input to the

network is a 12-dimensional vector and differs between diffuse and specular NNs.

Both consume the parameters of a single illumination lobe (direction and variance).

However, the diffuse net consumes the normal while the specular net consumes

the half-angle. All layers are full convolutional with 288 units in each layer. The

networks are trained from 200k samples from renderings of spheres produced using

Blender. An evaluation of this architecture is found in Figure 5.7.

Prior. As reflectance is typically more chromatic than illumination is, our prior

penalizes the variance of the illumination lobe colors i.e., their RGB weights, as in

p(Θ) = V(q(Θ)) = E(q(Θ)2)−E(q(Θ))2, where q(Θ) = ∑Θ∈Θ∑
np
i=1 Θw,i. In other

words by, first computing the average color of all lobes q(Θ) and second the variance

V(q(Θ)) of those three channels.
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Figure 5.8: Our diffuse (orange) and specular (blue) neural network architecture, that con-
sumes either normal and a single illumination lobe, or half-angle (left) and a
lobe to produce a color (right).

Optimization. Armed with a fast method (see above) to evaluate the cost function,

we employ LBFGS [153] in combination with randomization. As the full vector O

does not fit into memory, we use a randomized subset that fits GPU memory in each

iteration and dynamically change the randomization set across iterations. We stop

our optimization when each observation on average has been sampled 5 times.

5.3.5 Rendering

For rendering, the result of the optimization is simply converted into an HDR

environment map image by evaluating the estimated PMM for each pixel. Such an

environment map along with estimated diffuse/specular parameters are then used

with standard offline and online rendering applications as shown in our results.

5.4 Results
In this section, we evaluate our approach on synthetic and real image collection data

(Section 5.4.1), compare to alternatives (Section 5.4.2) and give examples of potential

applications (Section 5.4.3). We use L-BFGS solver for all the experiments. The

complexity of our optimization in terms of the number of variables is (7m+6npn) and

hence is linear in terms of the number of input entries in the material×environment

observation matrix. For example, for a five-photo, five-material matrix dataset, it

costs about 30 minutes using a NVIDIA Titan X GPU. Pre-training the reflection
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Figure 5.9: Results on the INTERNET-LAPD dataset of four images of police cars with two
materials. The first row shows the input images. The second row the reflectance
maps. The observed ones are marked with black circles. In this example, all
are observed. When an RM is not observed, it is re-synthesized. The third row
shows our estimated illumination. Recall, that it is defined in camera space. The
fourth row contains a re-synthesis using our material and illumination. Please
note, that such a re-synthesis is not possible using a trivial factorization as all
images have to share a common material that sufficiently explains the images.
The last row shows a re-synthesis from a novel view, as well as a rendering of
the materials in a new (Uffizi) illumination.

Figure 5.10: Results on the INTERNET-DOCKSTA dataset of six images of IKEA furniture
with seven materials in the protocol of Figure 5.9.
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Figure 5.11: Results on INTERNET-EAMES dataset of six images of a celebrated Eames
chair with four materials in the protocol of Figure 5.9.

Figure 5.12: Here, we show the effect of Gauss-sphere coverage: Even for non-round objects
with flat areas that have a bad coverage of the Gauss sphere the reconstruction
(left) is similar to the reference (right).

operator R, both diffuse and specular components, takes about three hours on the

same specification.

5.4.1 Evaluation

5.4.1.1 Datasets

We evaluated our method using three types of data sets, each holding multiple

image collections acquired in different ways. The full resolution images and result

images/video are included in the supplementary material.

The first comprises of SYNTHETIC images rendered using Mitsuba [154] and a

collection of HDR environment maps. Note that here we have access to ground-truth

per-pixel normals and material labels. Here, we have rendered 3 objects in 3 different
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scenes with both spheres and real-world shapes that allow synthetic re-combination

in an arbitrary fashion. This allows us to evaluate the proposed approach under

different input variants, validating its scalability.

The second data set consists of real images collected from the INTERNET. We

have manually selected the images (using iconic object name-based Google search)

and masked the image content. This dataset has three sets of photographs: the LAPD

car (INTERNET-LAPD), the Docksta table (INTERNET-DOCKSTA), and the Eames

DSW chair (INTERNET-EAMES). For geometry, we estimated used coarse quality

meshes available from ShapeNet. Images are good for qualitative evaluation but do

not allow to quantify the error, especially in novel views.

The third dataset contains PHOTOS we have taken from designer objects we

choose under illumination conditions (in our labs and offices). We have 3D-scanned

these objects (using Kinect) to acquire their (rough) geometry. The photos are taken

in five different environments and 7 materials are considered.

5.4.1.2 Qualitative evaluation

Visual quality. We show results of our approach in Figures 5.9, 5.10, 5.11, and

5.18. We evaluate the main objective of our approach, i.e., estimating illumination

and reflectance from a photo collection. In each figure, we show the input images,

rendering of all objects’ materials from original view (with the background from input

images) and a novel view as well as visualizations of the material and illumination

alone. Input images are shown on the top with the outputs we produce on the

bottom (see supplementary for full images). Observed reflectance maps are shown

encircled in black. The objects are rendered from an identical novel view, which

is more challenging than rendering from the original view. The material is shown

by re-rendering it under a new illumination. The exposure between all images is

identical, indicating that the reflectance is directly in the right order of magnitude

and can transfer to new illuminations. While the illumination alone does not appear

natural, shadow and shading from it produce plausible images, even of unknown

materials or new objects. Recall that large parts of the objects are not seen in any of

the input images and hence large parts of the environment maps are only estimated
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from indirect observation. Recall that our method does not use any data-driven prior

to regularize the results.

The INTERNET-LAPD in Figure 5.9 shows a single object made from multiple

materials. Figure 5.10 shows many chairs in many photos with one common ‘linking’

object INTERNET-DOCKSTA: the chair with material M1, that is used to calibrate all

the other objects, which are only observed sometimes. Figure 5.11 shows multiple

Eames chairs from a set of photos INTERNET-EAMES. All show plausible highlights

and colors, albeit only observing a fraction of the combinations. Please see the

supplemental video for an animation of the highlights under changing view or object

rotations. Figure 5.18 shows photos taken for this work, with all objects in all

illumination conditions. Note, that both vases are made of multiple materials. The

geometry of all objects in this part (except the chairs) is very approximate and

acquired by a depth sensor. Still a good result quality is possible.

Prediction. Using the INTERNET-EAMES data sets, we are able to test the predictive

ability of our approach by leaving out one image form the collection and compare

it to the acquired ground truth. This is seen in Figure 5.13, where starting from the

first image, we predict the red chair in the second image and the yellow chair in the

third image.

Figure 5.13: Estimating materials and illumination using all chairs except the rendered one.
Left: reference image; Middle: the red chair is rendered; Right: the yellow
chair is rendered.

Progressive estimation. A key property of our approach is to consolidate informa-

tion from multiple images to disambiguate material and illumination. This charac-

teristic implies that adding more images to the photo set should reduce the error.

Figure 5.14 confirms the rise in performance as more images are added to the linked

set.
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Figure 5.14: Progression of quality from left to right. Every row shows, for a selected
material what the additional images can add to the quality in terms of re-
rendering, material, and illumination.

5.4.1.3 Quantitative evaluation

We evaluate the effect of certain aspects of our method on the end-result (Figure 5.15).

The error is quantified as DSSIM [155] structural image distance (smaller distance

indicates better match) between a reference image rendered with known illumi-

nation and material compared to another rendering using our estimated material

and illumination. Images were gamma-corrected and linearly tone-mapped before

comparison.

Figure 5.15: Effect of different input properties (horizontal) on the quality of our approach
in terms of the DSSIM error (vertical, less is better): matrix size, structure,
and alignment error.

Matrix size. In Figure 5.15a, we show the effect of increasing matrix size on the

error of predicting the entries for the SYNTHETIC data set. Here, the matrix O
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is complete, i.e., all material-illumination pairs are observed. We see, that with

increasing size, the estimation for all entries gets more correct while the task being

solved in some sense is also bigger (more different illuminations). Note that the

total error residue can go up, but the estimation gets more accurate (compared to the

ground truth).

When the matrix is reduced to a single row or column (Figure 5.15b) our

approach can still estimate illumination and material. For a 1× 5 matrix, which

estimates a single material form multiple illuminations, the approach does well; but

slightly degrades for a 5×1 setting, where multiple objects are seen under the same

illumination.

Label quality. We assume the input images to have per-pixel normal and material

labels. In Figure 5.15d, we study the effect of incorrect normal estimates by adding

a different label of uniform noise to the normal. We see that good normal fair better

with the error in the order of one percent, while larger errors produce an error that

saturates still at a low total value. Also, note that for the INTERNET and the PHOTOS

datasets, the geometry models are coarse and/or noisy. But in absence of ground

truth, we could not measure estimation error.

5.4.2 Comparison

We compare possible alternatives to our approach as shown in Figure 5.2 and sup-

plementary material. A simple approach could be using image-based rendering

based approaches [64], however, these approaches require either flat geometry or a

high-enough number of images to reproduce specular appearance, neither of which

is available in our input images that show a single image of one condition only. Ef-

fectively, IBR would amount to projective texturing in our setting, that is compared

to our approach in Figure 5.2a. An alternative could be to run a general intrinsic

image approach [138] on the input images and use the average pixel color of the

albedo kd image as the diffuse albedo. The specular could then be the color that

remains. While this would provide a specular value ks, it is not clear how to get a

glossiness value g (see Figure 5.2b).
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Figure 5.16: Various photo-realistic image manipulations (e.g., object insertion) made possi-
ble using our estimated material and environment parameters (see Section 5.4.3
for details).
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5.4.3 Application

A typical application of our approach is photo-realistic manipulation of objects

in Internet images as shown in Figure 5.16. Having estimated the material and

illumination parameters from all the images, we can insert virtual replica into the

image (Figure 5.16b, 5.16d), transfer reflectance estimated from other Internet images

to new scenes (Figure 5.16a and Figure 5.16c), or introduce new object with material

under the estimated illumination. Please note that the estimated environment maps

were used to render object shadows on (manually added) ground planes (Figure 5.16a,

5.16c, and 5.16d).

5.4.4 User Study

We have compared our approach to the similar approach (SIRFS) that extract intrinsic

images and lighting in a user study. When asking N = 250 subjects if one of five

animated turn-table re-renderings using our material information or the model of

SIRFS is preferred when showing both in a space-randomized 2AFC the mean

preference was 86.5% in our favor (std. error of the mean is 2.1%). The chart of the

user response, their mean, the exact sample counts and standard errors for individual

images are presented in Figure 5.17.

5.5 Limitations
Our approach has three main limitations: First, we use a distant light model, which

results in estimation errors in large rooms with interior lights. Second, although our

environment map estimates lead to photo-realistic back projections and predictions,

in absence of any data-driven regularization the illumination estimates themselves

may look unnatural. This is primarily due to the limited samplings we have in our

input measurements. Further, when objects are in close proximity, they may ‘show

up’ in environment map estimations. For example, in Figure 5.11, we see the chair’s

present red shading. This is because the incoming light for the white chair is distorted

by the reflection of the red chair as shown in P4 (please refer to the video in the

supplementary material).
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Figure 5.17: User study results. the vertical axis is the preference for ours, so more is better.
Kinks are standard error of the mean, where small means certainty about the
outcome.

Figure 5.18: Results on the PHOTOS of five images of furniture and objects with seven
materials in the protocol of Figure 5.9.
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Figure 5.19: Effect of increasing prior. The top three rows show a 3×3 input. The next row
shows illumination. Following the GT left, we increase the prior weight left to
right. We note that illumination chromaticity decreases with increasing weight
and that a good trade-off is likely at 0.1.



Chapter 6

Learning a Shared Shape Space for

Multimodal Garment Design

6.1 Introduction

Developing effective tools for designing both real and virtual garments is becoming

increasingly crucial. In today’s digital age, consumers are a single-click away from

online clothing stores, with an increasing appetite for new fashion styles. Similarly,

virtual garment design attracts increasing interest from the entertainment industry

since it is a significant component of creating realistic virtual humans for movies,

games, and VR/AR applications. Both of these trends are creating a demand for

fast, effective, and simple tools to design, edit, and adapt garments to various body

shapes.

Traditionally, designing real and virtual garments has been a complex, iterative,

and time-consuming process consisting of multiple steps. First, the designer sketches

the look and feel of a garment or alternatively drapes fabric on a physical dress form.

Then a professional pattern maker creates the 2D garment patterns referred to as

sewing patterns. A sample garment is made from the sewing patterns and tested by

draping on a real or simulating on a virtual mannequin. Often the garment parameters

need to be iteratively adjusted followed by redraping or resimulation until the desired

look is achieved. Finally, in order to ensure an operational outfit, the mannequin is

animated to see how the garment drapes across various body poses. Furthermore,
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Figure 6.1: Garment designers often practice with different modalaties including sketch,
parameter domain (e.g., parameters of 2D sewing patterns), and draped garments
in 3D.

the same style garment needs to be adapted for different body proportions through

a process called pattern grading. This essentially requires the complex process of

garment design to be repeated multiple times.

Garment design is a complex process mainly due to the fact that it operates

across three different spaces, namely 2D sketches for initial design, 2D sewing

patterns and material selection for parameterized modeling, and 3D garment shape

to model the interaction between garments and subject bodies producing on-body

garments (see Figure 6.1). Much of pattern making involves using various rule-

based specialized cuts and stitches (e.g., darts, pleats, yokes) to achieve desired

folds on the final draped garment. Note that a particularly challenging scenario

is designing free flowing garments where the characteristic patterns arise due to

the interaction between fabric hidden behind the creases and boundary conditions

induced by the underlying body shape. To aid with such challenging scenarios, an

ideal computational tool should allow the designer to freely navigate across the three

design spaces and effectively capture the interaction between them.

Designing such a unified treatment of the three spaces has remained elusive

due to several challenges. First, interpreting 2D garment sketches requires a good

understanding of what shapes and folds are possible in 3D. Although the problem

appears to be badly ill-conditioned, as humans, we regularly use our experience
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of typical garment folds and looks to ‘regularize’ the problem and interpret artist

sketches. Second, the relation between the 2D garment parameters and the final 3D

shape of the garment is highly non-linear depending not only on the shape of the

garment itself but also its material properties, the pose, and the shape of the 3D body

it is being draped on. This necessitates a computationally heavy cloth simulation

process to visualize patterns arising out of garment folds, creases, and ruffles. Finally,

modeling in 3D needs to ensure the physical plausibility of the garment by mapping

the 3D designs to (near-) developable 2D sewing patterns.

We present a data-driven approach that overcomes the above challenges by

learning a shared shape space that, for the first time, unifies 2D sketches; parameters

of 2D sewing patterns, garment materials, and 3D body shapes; and the final draped

3D garments. We achieve this by jointly training multiple encoder-decoder networks

that each specializes at linking pairs of representations (e.g., recovering garment and

body parameters from a sketch or recovering the draped garment shapes from the

parameters) while operating at a common embedding. To train these networks, we

create a large scale synthetic dataset. Specifically, we first define a set of parameter-

ized garment types (shirt, skirt, and kimono) and generate different garments

by sampling this representation. Then, we simulate each garment on a set of 3D body

shapes sampled from a deformable body model. Finally, for each of these simulated

examples, we generate 2D sketches using non-photorealistic rendering. Thus, each

examplar triplet in our dataset includes (i) a 2D sketch, (ii) garment and body param-

eters, and (iii) the resultant draped 3D shape of the garment. Subsequently, by jointly

training multiple encoder-decoder networks via a novel multimodal loss function, we

learn a common embedding that can be queried using any of the different modalities.

Note that our network assumes that the 2D pattern topology remains fixed and does

not allow transitioning across different pattern families. This remains a shortcoming

of the proposed method and an open challenge to explore in future research.

The learned shared shape space enables several applications by linking the

different design spaces. For example, starting from an input 2D sketch, we can

(i) automatically infer garment and body shape parameters; (ii) predict the resultant
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3D garment shapes from these parameters without going through an expensive cloth

simulation process; (iii) directly texture the final garments using the linked 2D

sewing pattern parameterization; (iv) sample from or interpolate in the latent space

to generate plausible garment variations; or (v) retarget 2D garment patterns to

new body shapes such that the resultant draped garments retain the original fold

characteristics. At any stage of the design and retargeting process, the garment and

body parameters inferred by our method can be provided to a cloth simulator to

generate the physically accurate shape of the garment on the 3D body. Figure 3.1

shows several examples.

We qualitatively and quantitatively evaluate our approach against groundtruth

test data, and demonstrate our interactive garment sketching for various applica-

tions. We also provide comparisons with alternative methods and show favorable

performance (see Section 6.4). In summary, our main contributions are: (i) a method

that learns a joint embedding of different design spaces for a given garment type;

(ii) inferring garment and body parameters from single sketches; (iii) estimating the

3D draped configurations of the garments from the garment and body parameters

to enable an interactive editing workflow; and (iv) facilitating fold-aware pattern

grading across different body shapes via a novel garment retargeting optimization.

Code and data are available on our project webpage at

http://geometry.cs.ucl.ac.uk/projects/2018/garment_design.

6.2 Approach

6.2.1 Overview

Traditional garment design workflows involve interacting with one or more design

domains, namely: (a) the 2D design sketch S that can be used to indicate a de-

sired look and feel of a garment by specifying silhouette and fold lines; (b) the

parameter domain P that allows the designer to specify both pattern parameters

(i.e., size/material of sewing patterns) and body parameters (i.e., shape of the human

body); and (c) the 3D draped configuration M (i.e., the 3D mesh) that captures the

final garment shape on the target human body with a garment sized according to its

http://geometry.cs.ucl.ac.uk/projects/2018/garment_design
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Figure 6.2: Given an input sketch, our network infers both the 2D garment sewing patterns
(in blue) and the draped 3D garment mesh together with the underlying body
shape. Edits in the 2D sewing patterns (e.g., shorter sleeves, longer shirt as
shown in red) or the sketch (bottom row) are interactively mapped to updated 2D
and 3D parameters. The 3D draped garment inferred by our network naturally
comes with uv coordinates, and thus can be directly textured. The network
predictions can be passed to a cloth simulator to generate the final garment
geometry with fine details. Finally, the designed garment can be easily retargeted
to different body shapes while preserving the original style (i.e., fold patterns,
silhouette) of the design.

2D pattern parameters.

The above-mentioned domains have complementary advantages. For example,

sketches provide a natural option to indicate visual characteristics of the folds such

as density of folds, silhouette, etc.; parameters are effective to indicate direct changes

to garment edits and/or specify target body shapes; while, the draped shape helps

to generate previews under varying texture patterns, camera and/or illumination

settings. By providing the designer with the ability to indicate target specifications

via multiple modalities, we want to exploit the complementary advantages offered

by the different domains to enrich the design process.

The above spaces, however, have very different dimensions making it chal-

lenging to robustly transition from one domain to another, or accept inputs across

multiple modalities. In other words, a traditional data-driven method can easily

overfit to the example datasets and result in unrealistic results in case of new test

data. For example, a learned network to help transition from S→M easily leads

to over-fitting as seen on test sketch input in Figure 6.3 (see Section 6.4). More

importantly, such an approach does not give the designer access to the pattern and/or
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body parameters to edit.

Instead, we propose to learn a shared shape, i.e., latent, space by jointly learning

across the three domains using a novel cross-modal loss function (Section 6.2.3).

Our key observation is that the shared latent space regularizes the learning problem

by linking the different domains. From a usage point of view, the artist enters the

design space via a sketch, and then continue making further changes by directly

editing the inferred pattern and/or body parameters.

The designer can now create garments via a multimodal interface by seamlessly

indicating sketch behavior, garment or body parameters, or retexturing (see Fig-

ure 6.2). A garment, thus designed, can then be easily remapped to a range of other

body shapes, facilitating pattern grading. To ensure the original sketched folding

behaviors do not get lost in the new draped garments adapted for the different body

shapes, we present a novel retargeting method that formulates an optimization in the

shared latent space (Section 6.2.4). Before describing the methods in detail, we next

introduce the specific representation choices used in this work.

6.2.2 Parameter Space

In this work, we tested on three different garment types namely shirts, skirts,

and kimonos. We parameterize each garment type using a small number of key

dimensions (e.g., length and width of sleeve for shirt, length of the waistline for

skirt) and material properties, i.e., stretch, bend, and shear stiffness (Figure 6.4).

input sketch our result direct approach

Figure 6.3: While a network trained directly to infer the draped garment from an input sketch
overfits to training data, learning a joint (latent) shape space across different
modalities leads to better generalization.
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garment 
types

SMPL body shapes 2D sewing patterns material properties

Figure 6.4: Our dataset includes three types of garments (shirt, skirt, and kimono).
Each garment is parameterized by a small number of 2D sewing pattern dimen-
sions as well as material properties including stretch, bend, and shear stiffness
parameters. We sample different garment parameters and simulate on different
3D body shapes sampled from the parametric SMPL body model.

Specifically, the number of parameters for each garment types were: 4 for kimono,

9 for shirt, and 11 for skirt, respectively. We collect all the garment parameters

(including dimension parameters and material parameters) in a vector G. We adopt

the SMPL [156] model for the underlying 3D body representation. Given a specific

pose, SMPL provides a 10-dimensional vector B to describe the body shape variation.

Note that the pattern parameters are encoded relative to body size, i.e., vertical

parameters are related to body height and horizontal parameters are related to chest

circumference or arm length. We denote the combined body and garment parameter

space as, P = (G,B) ∈ P.

In order to generate a dataset of training examples for a given garment type,

we first randomly sample garment parameter instances from G to generate the 2D

patterns. With a target pose, we then sample one of the 2k female body shapes

in the FashionPose dataset [157] to generate samplings of P resulting in a total of
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8000 combinations. We then simulate combinations of garment samples over body

samples using the cloth simulator in FleX [158] (see Figure 6.7). This results in

draped garment meshes, which we refer to as the mesh M̃. Given a collection of such

meshes {M̃} corresponding to the same type of garment, we obtain a compressed

representation by performing Principal Component Analysis (PCA) and represent

each garment mesh using the first k (k = 200 in our tests) basis vectors, which we

denote as M. Finally, we render each M from a frontal viewpoint using Suggestive

Contours [159] to approximate the corresponding 2D sketch. We denote the rendered

sketch image as S̃ and apply the convolutional layers of DenseNet [160] to generate

a 2208-dimensional descriptor S. Thus, for each instance (parameter combination)

in our dataset, we have a 3-element set (P,M,S). Given this dataset, our goal is to

learn a joint shape space shared between the 3 modalities.

6.2.3 Shared Shape Space

Given the 3 different modalities (P,M,S) for each example, our goal is to learn a

common K-dimensional shared shape space (or a latent space), L, that will enable a

multimodal design interface (in our experiments, K = 100). We achieve this goal

by learning the following mapping functions: (i) sketch descriptor to latent space

(FS2L = S→ L), (ii) parameter space to latent space (FP2L = P→ L), (iii) latent

sketch
descriptor (S)input sketch (S)

body shape
parameters (B)

garment
parameters (G){kstretch, kbend, kshear}

draped garment (M)

fS2L

fP2L fL2P

fL2M

PCA 
coe�. (M)

~ ~

latent spaceDenseNet

Figure 6.5: We learn a shared latent shape space between (i) 2D sketches, (ii) garment
and body shape parameters, and (iii) draped garment shapes by jointly training
multiple encoder-decoder networks.
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space to parameter space (FL2P = L→ P), and (iv) latent space to the draped garment

shape (FL2M = L→M). We learn these mappings by jointly training four encoder-

decoder neural networks (i.e., sketch-to-parameter, sketch-to-3D garment shape,

parameter-to-3D garment shape, and parameter-to-parameter) that share a common

embedding space (see Figure 6.5). We describe the network architecture with more

details in section 6.3.

We define a loss function that jointly captures the intention of each of the

encoder-decoder networks. Specifically, we penalize (i) the error in estimating gar-

ment and body shape parameters from a sketch, (ii) the error in estimating the draped

garment shape from a sketch or a parameter sample, and (iii) the reconstruction error

of a parameter sample from itself in an auto-encoder fashion. Thus, the combined

loss function is defined as:

L (P,M,S) = ω1‖P− fL2P( fS2L(S))‖2 +ω2‖M− fL2M( fS2L(S))‖2

+ω3‖M− fL2M( fP2L(P))‖2 +ω4‖P− fL2P( fP2L(P))‖2,
(6.1)

where {ω1,ω2,ω3,ω4} denote the relative weighting of the individual errors. We set

these weights such that the average gradient of each loss is at the same scale (in our

experiments ω1 = ω2 = 40ω3 = 40ω4). Empirically the consistency terms (the last

three terms) make a significant difference on the quality of the network prediction

on test data.

6.2.4 Garment Retargeting

One of the most common tasks in real or virtual garment design is retargeting, i.e.,

adapting a particular garment style to various body shapes. Given a garment G

designed for a particular body shape B, the goal of the retargeting process is to

identify a new set of garment parameters G′ for a new body shape B′ such that the

look and feel of the draped garments on both body shapes are similar. Naively using

the same set of garment parameters on a new body shape does not preserve the

original style as shown in Figure 6.15. On the other hand, deforming the draped

garment in 3D to match the desired style does not ensure a mapping to a valid

configuration of sewing patterns. Instead, we propose a novel optimization process
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PCA coe�.

M’

M

G(M)

G

G(M’)

HOG descriptors

H

H’

||G(M)-G(M’)|| ||H-H’||Loss

G

Figure 6.6: We train a Siamese network G that learns an embedding of draped garment
shapes {M}. The distance between a pair of draped garments (M,M′) in this
learned embedding space is similar to the distance between the HOG features of
the corresponding sketches. Once trained, the loss function can be differentiated
and used for retargeting optimization.

that utilizes the shared shape space presented in the previous section.

As a key component of our optimization, we learn a style-aware distance

metric between draped garments. Specifically, given two sets of garment-body

instances (G,B) and (G′,B′), our goal is to learn a distance measure between their

corresponding draped garments (M,M′) that is similar to the distance between

the sketches of the draped garments, (S,S′). We achieve this goal by learning an

embedding of draped garments, G (M).

Given pairs of (M,S) and (M′,S′), we train a Siamese network such that

‖G (M)−G (M′)‖ is similar to the distance between (S,S′) (see Figure 6.6). We

measure the distance between two sketches as the distance between their HOG

features.

Given the learnt embedding G (M), we define an objective function for garment

retargeting. For a pair of (B,G) and a new body shape B′, we optimize the following
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energy function:

E (G′|G,B,B′) = ‖G (fL2M(fP2L(G,B)))−G (fL2M(fP2L(G′,B′)))‖. (6.2)

Since both G and the mappings fL2M, fP2L are learned via differentiable net-

works, we can efficiently compute the gradient of the objective function during the

optimization. In our experiments, we used an L-BFGS solver to optimize the above

energy.

6.3 Implementation Details
In the following, we provide details about the data generation process and the network

architecture.

Data generation. . When generating our training dataset, for a given garment type,

i.e., shirt, skirt, or kimono, we first sample a set of garment parameters

and generate an isotropic triangle mesh within the silhouette of sewing patterns

using centroidal Voronoi triangulation. We then simulate each sampled garment

Figure 6.7: To generate synthetic data, we first shrink the body of the mannequin in rest
pose into its skeleton and let the triangle mesh of the 2D sewing patterns drape
naturally over it. After the draping converges, we stitch the boundary and inflate
the skeleton back to its original shape. We further animate the mannequin into
the target body pose to generate our final simulation result.
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on varying body shapes. Note that we discarded any pairs of sampled clothes and

bodies whenever the draped garment was too tight or too loose after simulation.

The cloth simulator we use, i.e., FleX, is particle-based and is sensitive to the edge

lengths of the mesh being simulated. Thus, we fix the average edge length across

all samples of the garment, leading to meshes with varying topology and face count.

In order to ensure a consistent mesh topology to perform PCA on draped garments,

we use one of the simulated examples as a reference mesh topology and remesh the

remaining examples. Specifically, we locate the vertices of the reference template in

its associated triangle in a common sewing pattern space and compute its position

in every other simulated example via barycentric coordinates. In order to balance

efficiency and accuracy of simulations, we used a mesh template with about 27.5k

vertices for the kimono dataset, 12.3k vertices for the shirt dataset, and 5k for

the skirt dataset. Emperically, we found these resolutions to consistently produce

fine detail wrinkles during simulation. The simulation of 8000 samples for each

garment type took about 60 hours to generate with 2 Nvidia Titan X GPUs.

Once we have a set of simulated, i.e., draped, garments we generate the

corresponding sketches using Suggestive Contours [159] referred as NPR (non-

photorealistic rendering) in this paper. We only render the sketch from the frontal

view as this is the most common practice in fashion industry. We perform data

augmentation in the resulting sketches by removing small line segments, curve

smoothing, adding Gaussian blur, etc. All sketches are centered and cropped into

a 224× 224 square patch. We extract a 2208-dimensional feature vector for each

patch via DenseNet [160] (we use the DenseNet-161 architecture provided in the

TorchVision library [161] and use the output of the fourth dense block as our feature

vector). Note that while we used DenseNet to provide feature descriptor for the input

sketch, other descriptors such as VGG [162] or ResNet [163] can alternatively be

used in our setup.

Network architecture. . The encoder and decoder networks we train to learn a

shared shape space, i.e., latent space, are composed of linear blocks which are

linear layers followed by Rectifying Linear Unit (RELU) activations and batch



6.3. Implementation Details 124

normalization. Specifically, the encoder, FS2L, takes as input a 2208-dimensional

feature vector of a sketch and maps it to the K = 100 dimensional latent space with

10 linear blocks (the output dimension size is kept fixed in the first 6 blocks and

gradually decreased to 1000, 500, 200, and 100 in the remaining 4 blocks). The

encoder, FP2L, takes as input a p-dimensional parameter vector representing the

garment and the body shape (p = 22 for shirt, p = 17 for skirt, p = 24 for

kimono where 3 material parameters and 10 body shape parameters are consistent

across the different garment types) and maps it to the latent space with 6 linear blocks

(the output dimension size is kept fixed in the first block and increased to 100 in the

second block). The decoder, FL2M, takes as input the K = 100 dimensional latent

space vector and maps it to the 200-dimensional PCA basis that represent the draped

garment shape. This decoder consists of 6 linear blocks (the output size of the first

two blocks is 100 and the output size of the remaining blocks are 200). Finally, the

decoder, FL2P, takes as input the K = 100 dimensional latent space vector and maps

it to the parameters of the garment and the body shape. This decoder consists of 6

linear blocks, where the first 5 blocks keep the output dimension size fixed and the

last block changes the output size based on the garment type.

We jointly train the encoder-decoder architectures for 20k epochs with a learning

rate of 0.1 and batch size of 64. We use stochastic gradient descent for network

backpropagation. We used pyTorch for implementation and the proposed network

takes about 3 hours to train on each dataset with one Nvidia Titan X GPU.

Retargeting. . For retargeting garments across different body shapes, we train a

Siamese network that learns an embedding of the draped garments such that the

distance between two draped garments is similar to the distance between their

corresponding sketches. This Siamese network takes as input a 200-dimensional

PCA vector and maps it to an 100-dimensional embedding space with 6 linear blocks

(the output dimension size is kept fixed in the first 5 blocks and decreased to 100 for

the last block). We train this network for 20k epochs with a learning rate of 0.03 and

batch size of 64. We use stochastic gradient descent for network backpropagation.

We refer the reader to the supplementary material for a detailed network archi-
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input sketch our outputreference image input sketch our outputreference image

Figure 6.8: For each reference image, we ask users to draw the corresponding sketch that
we provide as input to our method. Our method generates draped garments that
closely resemble the reference images.

tecture configuration.

6.4 Evaluation
We evaluate our method qualitatively on real and synthetic data and quantitatively

on synthetic data. We split our synthetic dataset into training (95%) and testing

sets (5%) such that no garment and body parameters are shared across the splits.

For evaluations on the synthetic data, we use 200 samples from the test set for

each garment type. We note that given an input sketch, our method estimates the

corresponding garment and body shape parameters as well as the shape of the draped

garment. In a typical design workflow, once satisfied with the design, we expect the

designer to perform a cloth simulation using the estimated garment and body shape

parameters to obtain the final and accurate look of the garment. The draped garment

shape predicted by our network closely resembles the simulation result performed

by using the predictions of the garment and body parameters. Thus, we only provide
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input sketch texturedour output
NPR of the 

output
nearest

neighbor

Figure 6.9: For each sketch, we show our output with/without texture; NPR rendering of
our output and the nearest sketch retrieved from our database. As highlighted in
orange, our result plausibly captures the folds provided in the input sketch.

the final simulated results. Note that since we used a particle-based simulator, the

simulation output used a certain safety margin between objects even when surfaces

were supposed to be ‘touching’ each other. In our setup, this safety margin was

4mm with respect to an average body height of 1.8m. In practice, we observed

some minor interpenetrations which were removed via resimulation with estimated

parameters as shown in Figure 6.12. In Figure 6.9, for each input synthetic sketch,

we show the simulated results with the garment and body shape parameters predicted
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recovered uv
parameterization

consistent 
texturing

Figure 6.10: Our method generates consistent uv parameters across different instances of
the same garment type. In this example, the alignment between the texture
patterns can be best seen in the neck region.

by our method. Since our network can predict the corresponding 2D sewing pattern

parameters as well, we can easily generate uv coordinates for the draped garment

and texture it. To show that our network does not learn to memorize the training

examples, we also show the nearest neighbors retrieved from our training dataset

using the DenseNet features of sketches. As highlighted in the figure, while the NPR

renderings of our results closely resemble the input sketch, the nearest neighbors fail

to capture many folds present in the input sketch.

In Figure 6.8, we provide examples on real images to test the generality of

our approach. For 6 different reference images, we ask different users to draw the

corresponding sketch that is provided as input to our method. As shown in the figure,

our method is able to generate the draped garments that closely follow the reference

image and the input sketches.

We demonstrate the consistency of the uv parameters generated by our method

by texturing the same garment type with varying parameters draped on varying

body shapes (see Figure 6.10). Our method generates uv parameters that are free of

distortions compared to generic solutions.

Quantitative evaluations. . We quantitatively evaluate the performance of the dif-

ferent mappings learned by our network. Specifically, starting either with an input

sketch (or a set of garment and body shape parameters), we first map the input to

the latent space via fS2L (or fP2L). Then, we measure the error in the predicted

draped garment mesh (the output of fL2M) and the estimated garment and body shape

parameters (the output of fL2P). For the draped garment, we report the average L2

error both on the PCA coefficients and the vertex positions, similarly, for the body

shape, we report the average L2 error both on the SMPL shape parameters and the
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vertex positions. We normalize all the parameters and the garment and body shapes

to the range [0,1] and report the percentage errors. Table 6.1 provides results when a

sketch or a set of garment and body parameters are provided as input. In Figure 6.11,

we show the loss curve on test set during training.
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Figure 6.11: We show the combined loss (Equation 6.1) on test set during training for
different garment types.

Joint shape space evaluation. . In order to demonstrate the benefit of jointly training

a shared latent space across three modalities, we train an alternative single encoder-

decoder network composed of the mappings fS2L and fL2M. As shown in Figure 6.3,

this direct mapping overfits to the training data and is not able to generalize. In

contrast, jointly training for additional mappings regularizes the problem and leads

to better performance during test time.

Our learned shared latent space is compact and smooth, as shown in Figure6.13.

network output simulated network output simulated

Figure 6.12: Draped garment shape predicted by our network closely resembles the simula-
tion result using predicted garment/body parameters, and hence can be used to
optionally fix draped garment and body intersections.
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Figure 6.13: Given two kimono designs shown on the left and the right, we interpolate
between their corresponding descriptors in the shared latent space. For each
interpolation sample, we show the 3D draped garments inferred by our network
and the NPR rendering of the simulated mesh from the corresponding sewing
parameters. Our shared latent space is continuously resulting in smooth in-
between results.

When we linearly interpolate between two samples in the latent space, we obtain

intermediate results that change smoothly both in terms of 3D predict mesh and

garment sewing parameters.

Comparison. . In Figure 6.14, we compare our approach with one example from

Figure 8 of [2]. Given the reference image in this example, we ask a user to provide

the corresponding sketch that is provided as input to out method. The estimate draped

garment shape by our method is of similar quality but is generated at interactive

rates once the network is trained by our skirt dataset in contrast to the instance-wise

computation-heavy approach of [2].

input sketchour outputreference image Yang et al. [2016]

Figure 6.14: We test our method on one of the examples provided in Figure 8 of [2]. We get
results that are similar quality at interactive rates once the network is trained
by our skirt dataset compared to their instance-wise computationally-heavy
approach.

Retargeting evaluation.. As shown in Figure 6.15, draping the same garment on

different body shapes do not preserve the style of the garment. Our retargeting

optimization, in contrast, identifies a new set of garment parameters that would
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preserve the style of the original garment on a body shape.

initial garment design (G) 
on body (B) 

same garment (G) on a 
di�erent body (B’)

retargetted garment (G’) 
on body (B’)

Figure 6.15: Given an initial garment design, draping the same garment on a different body
shape does not preserve the style of the design. In contrast, our retargeting
method optimizes for a new set of garment parameters that result in the same
look of the garment on a new body shape.

Our retargeting optimization uses a distance measure between draped garments

based on the Siamese network introduced in Section 6.2.4. We show a tSNE vi-

sualization [164] of the embedding learned by this network in Figure 6.16. For

each embedding, we provide the sketches corresponding to various random samples

showing that similar sketches get clustered.

Interactive user interface. . Based on the shared shape space we learn across differ-

ent design modalities, we implement an interactive user interface (see Figure 6.18).

In this interface, the user can interactively edit the input sketch, the garment or

the body shape parameters, or the uv coordinates and interactively visualize the

corresponding draped garment. We refer to the supplementary video which shows

each of these editing options.

User study.. Finally, we conduct a user study to evaluate how closely our results

resemble the input sketches. Specifically, given two input sketches (Si,S j), we show

the corresponding draped garment shapes (Mi,M j) predicted by our network and ask

the user to pair the sketches to the garments (e.g., Si should be paired with Mi). If

the network output successfully captures the folds in the input sketch, we expect

the accuracy of such pairings to be high. However, if Si and S j are similar to begin
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with, the pairing becomes ambiguous. We generate 400 pairing queries for each

garment type and ask 13 Amazon Mechanical Turk users to answer each query. We

plot the accuracy of the pairings vs. the similarity of the input sketches (in terms

of the L2 distance between DenseNet features) in Figure 6.19. Since we expect

the simulation result (performed using the parameters predicted by our network) to

capture more details, we repeat the same user study using the simulation result as the

draped garment shape. As shown in the plots, the users are accurate unless the input

sketches are very similar. The accuracy slightly increases when simulation results

are used validating that the generated draped garments perceptually capture the fold

characteristics in the input sketches.

6.5 Discussion and Limitations

The proposed joint network enables us to transfer between different domains in a

freestyle. However the user must ensure their editions stay in the feasible area, i.e.

1) the sketch needs to follow the style and scale in the training set and presented in

frontal view, and 2) the parameters provided by the user have to be in the same range

as during the training set generation (this can be restricted in the UI design).

Our method has certain limitations that

open up interesting future directions. For each

garment type, we have a pre-defined set of 2D

sewing parameters. Thus, we cannot represent

garment shapes that are not covered by this set

as in the inset example. Additionally, the choice

of garment simulator also limits the pattern complexity and material variance that

can be generated in the dataset. As a result, the network learns to produce pattern

and material variations only as observed in the data. As simulation frameworks get

more powerful, we expect that the practicability of our method for fashion design

and modeling will improve.

In this work, we learned shape spaces specialized to different garment types

(shirt, skirt, and kimono). However, the trained network are garment-specific
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and cannot be reusable for new garment types. A difficult research question is

how to unify these different garment-specific shape spaces via a common space.

This is challenging given the complex discrete and continuous changes necessary to

transition from one garment type to another. One possibility is to perform interactive

exploration where the user annotates additional cut/fold lines as recently demon-

strated in [90]. Note that the lack of discrete parameters also limited the design

complexity of our system and hence we cannot support operations such as insertion

of necklines, collars, or cuffs.
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Figure 6.16: The distance embedding we learn in Section 6.2.4 clusters similar style gar-
ments together.
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Figure 6.17: Given a reference garment style on the left, we retarget it to various body
shapes. For each example, we also provide the NPR renderings of the draped
garments.

Figure 6.18: Our user interface allows the user to edit the sketch, garment or body shape pa-
rameters, or the texture coordinates and visualizes the updated draped garment
in 3D at interactive rates enabling multimodal garment design.
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Figure 6.19: We asked users to pair two given sketches with two draped garment shapes
both in the form of the network output (in blue) and the simulation result (in
pink). We plot the accuracy of the pairings versus the similarity of the given
sketches. The users are accurate with pairings unless the input sketches are
very similar.



Chapter 7

Conclusion and Future Work

In this thesis, we developed methods for acquiring high-quality and plausible 3D

content (i.e. geometry, texture, material, and illumination) from a real 3D scenario

under several different settings.

In Chapter 3, we presented an algorithm for dynamic SfM to recover both part

structure and their motion for articulated objects starting from only a pair of input

images. The main gain is to detect scene changes from sparse uncontrolled measure-

ments. We proposed a solution that simultaneously recovers the 3D structures along

with respective part motion, and in the process achieves increased accuracy.

Several future avenues remain unexplored: First, we believe having additional

prior will further regularize the problem (e.g., using a partially known set of known

objects like chairs, tables, etc. in office environments). Second, it will be worthy to

make the algorithm faster to support near real-time performance. For example, the

RANSAC sampling and initialization can be performed in parallel, possibly using

GPU speedup. We would also like to test the multi-view setting with images coming

from multiple mobile phone inputs.

In Chapter 4, we formulated and provided a solution to the problem of unsu-

pervised appearance transfer from in-the-wild 2D images to 3D model collections.

The main insight of our approach is that knowledge of the geometry of a 3D model

similar to the imaged object allows us to separate and undo geometric and photomet-

ric texture distortions in the image. Our pipeline is simple and relies on discovering

a low complexity texture model in the form of a set of base texture patches and
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how they are oriented on the image object, and an illumination correction. We have

extensively evaluated our algorithm, have compared against baseline methods and

state-of-the-art alternatives, and have presented applications to several computer

graphics and vision tasks.

As for the future work, we find the idea of seamless transfer of information

between image and model collections to be attractive and deserving further investi-

gation. Marrying the two data forms can combine their complementary strengths,

allowing applications not otherwise possible. In the short term, we would like to

investigate better handling of narrow regions and edge effects, as well as transfer of

base textures directly between shapes for shape-to-shape transfer, avoiding distor-

tions due to unnecessary texture parameterization for each shape. More interestingly,

we would like to better understand the importance of texture and its relations to object

geometry, both for recognition/classification tasks and for object design. Texture

can carry important information about the object style [165] (e.g., fabric patterns

can help classify modern versus baroque chairs) or function [166] (e.g., wooden

grain can indicate hard surfaces, while leather can indicate soft cushioned surfaces).

Last but not least, we believe that the ability to generate realistic textured models

and illumination maps can be further exploited for various design tasks and for

generating on-demand training data for different learning applications.

In Chapter 5, we presented a novel optimization formulation for joint material

and illumination estimation from collections of Internet images when different ob-

jects are observed in varying illumination conditions sharing coupled material and/or

illumination observations. We demonstrated that such a linked material-illumination

observation structure can be effectively exploited in a scalable optimization setup

to recover robust estimates of material (both diffuse and specular) and effective

environment maps. The estimations can then be used for a variety of compelling and

photo-realistic image manipulation and object insertion tasks.

The proposed method opens up several interesting future directions to pursue. In

this work, we manually curated the photo sets to test our approach. While collecting

datasets with star structure for the observation matrix is not so difficult – one can
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search with single keywords, especially for iconic designs – gathering more data

linked with tighter connections (e.g., loops, full matrix, etc.) is more challenging.

One option would be to harvest user annotations and existing links (like in Houzz or

Pinterest websites) to collect such data. Such data sets can open up new material-

illumination estimation pipelines – this is particularly exciting as we can update

our estimates in an incremental way leading to simultaneous improvement of all

the associated estimates. Another interesting direction would be to improve the

environment map estimates – one option would be to additionally use data priors to

project the estimates environment maps to some data-driven manifold of environment

maps measurements. Finally, an interesting future direction is to use the material

and illumination estimates to improve geometry and pose estimates by refining

correspondences by (partially) factoring our shading and illumination effects.

In Chapter 6, we presented a data-driven learning framework for obtaining a

joint shape space linking 2D sketches, garment (2D sewing patterns and material

properties) and human body specifications, and 3D draped garment shapes in the

context of garment design. The learned shape space enables a novel multimodal

design paradigm that allows users to iteratively create complex draped garments

without requiring expensive physical simulations at design time. We also utilize

the learned space to formulate an optimization that allows designed garments to be

retargeted to a range of different human body shapes while preserving the original

design intent. We evaluated our method, both quantitatively and qualitatively, in

different usage scenarios and showed compelling results.

Currently, our method does not handle pose variation. We assume the garments

are designed for a body at a fixed target pose. In the future, we plan to expand the

shape space by also regressing across common body pose variations. In Figure 7.1,

we show preliminary results in this direction. We augment our dataset by considering

an additional degree of freedom for body pose that interpolates between different

arm configurations. Then, given the input sketches in the top row, we infer the draped

garments and body shape and pose parameters shown in the bottom row. These

results indicate that by augmenting the dataset, learning pose variations is possible.
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Figure 7.1: By augmenting our training dataset, we show preliminary results our method
inferring body pose.

The challenge, however, is how to decide which key poses to include to effectively

sample the configuration space. We would also like to explore the effectiveness

of the joint neural network learning in other design contexts involving multimodal

inputs in the future.

As we are in the middle of a fast-changing era of computer science, new

methodologies and new tools continue to emerge rapidly and reshape the landscape

of computer graphics research. In this thesis, we develop data-driven optimization

methods to reinvestigate classical problems, i.e., reconstruction of a dynamic scene.

We establish a fully automated pipeline with carefully designed building blocks to

extract texture and illumination from a 2D image. We train neural networks to fit the

mapping between different domains, and use neural networks as a part of the objec-

tive function in an optimization problem to make the formulation computationally

effective. For the pipeline and workflow proposed, rely on exisiting fundamental

building blocks such as image feature extraction, data dimension reduction, gradient

descent optimization, particle-based physical simulation, etc. The improvement for

these building blocks may propagate to our work and further improve our perfor-

mance, for example, a neural network-based method for better image correspondence,

or a more powerful solver for large-scale least square fitting so that the approach in

Chapter 5 can be performed on an Internet-scale dataset and more exciting problems

may be revealed. On the other hand, the methods proposed here may also serve

as tools in many research fields for data extraction or generation, such as a large
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object repository with realistic texture and illumination which may, in turn, improve

the accuracy of a neural network classifier. This mutual synergy encourages us to

continue to explore this direction.
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modeling and photo editing. In Proc. SIGGRAPH, 2001.

[78] Erum Arif Khan, Erik Reinhard, Roland W Fleming, and Heinrich H Bülthoff.

Image-based material editing. ACM Trans. Graph., 2006.

[79] Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or. 3sweep:

Extracting editable objects from a single photo. ACM Trans. Graph., 32(6),

2013.

[80] Natasha Kholgade, Tomas Simon, Alexei Efros, and Yaser Sheikh. 3D object

manipulation in a single photograph using stock 3d models. ACM Trans.

Graph. (Proc. SIGGRAPH), 33(4), 2014.

[81] K Karsch, K. Sunkavalli, S. Hadap, N. Carr, H. Jin, R. Fonte, M. Sittig, and

D. Forsyth. Automatic scene inference for 3d object compositing. ACM Trans.

Graph., 33(3), June 2014.

[82] Optitext fashion design software. https://optitex.com/, 2018. Ac-

cessed: 2018-03-30.

[83] Marvelous designer. https://www.marvelousdesigner.com, 2018.

Accessed: 2018-03-30.

[84] Floraine Berthouzoz, Akash Garg, Danny M. Kaufman, Eitan Grinspun,

and Maneesh Agrawala. Parsing sewing patterns into 3d garments. ACM

SIGGRAPH, 32(4):85:1–85:12, July 2013.

[85] Emmanuel Turquin, Marie-Paule Cani, and John F. Hughes. Sketching gar-

ments for virtual characters . In Eurographics Workshop on Sketch-Based

Interfaces and Modeling, pages 175–182, August 2004.

https://optitex.com/
https://www.marvelousdesigner.com


Bibliography 151

[86] Philippe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla Shef-

fer, and Marie-Paule Cani. Virtual Garments: A Fully Geometric Approach

for Clothing Design. CGF, 2006.

[87] C. Robson, R. Maharik, A. Sheffer, and N. Carr. Context-aware garment

modeling from sketches. Computers and Graphics (Proc. SMI 2011), pages

604–613, 2011.

[88] Amaury Jung, Stefanie Hahmann, Damien Rohmer, Antoine Begault, Lau-

rence Boissieux, and Marie-Paule Cani. Sketching folds: Developable sur-

faces from non-planar silhouettes. ACM TOG, 34(5):155:1–155:12, November

2015.

[89] Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang.

Bendsketch: Modeling freeform surfaces through 2d sketching. ACM TOG,

36(4):125:1–125:14, July 2017.

[90] Minchen Li, Alla Sheffer, Eitan Grinspun, and Nicholas Vining. Foldsketch:

Enriching garments with physically reproducible folds. ACM TOG, 37(4),

2018.

[91] Xiaoguang Han, Chang Gao, and Yizhou Yu. Deepsketch2face: a deep

learning based sketching system for 3d face and caricature modeling. ACM

Transactions on Graphics (TOG), 36(4):126, 2017.

[92] Nobuyuki Umetani. Exploring generative 3d shapes using autoencoder net-

works. In SIGGRAPH Asia 2017 Technical Briefs, page 24. ACM, 2017.

[93] Huamin Wang. Rule-free sewing pattern adjustment with precision and

efficiency. ACM Transactions on Graphics (TOG), 37(4):53, 2018.

[94] Bin Zhou, Xiaowu Chen, Qiang Fu, Kan Guo, and Ping Tan. Garment

modeling from a single image. CGF, 32(7), 2013.



Bibliography 152

[95] Moon-Hwan Jeong, Dong-Hoon Han, and Hyeong-Seok Ko. Garment capture

from a photograph. Comput. Animat. Virtual Worlds, 26(3-4):291–300, May

2015.

[96] Xiaowu Chen, Bin Zhou, Feixiang Lu, Lin Wang, Lang Bi, and Ping Tan.

Garment modeling with a depth camera. ACM SIGGRAPH Asia, 34(6):203:1–

203:12, October 2015.
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[143] Jiřı́ Vorba, Ondřej Karlı́k, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek.

On-line learning of parametric mixture models for light transport simulation.

ACM Trans. Graph. (Proc. SIGGRAPH), 33(4):101, 2014.

[144] Hao Su, Charles R. Qi, Yangyan Li, and Leonidas J. Guibas. Render for CNN:

Viewpoint estimation in images using cnns trained with rendered 3D model

views. In The IEEE International Conference on Computer Vision (ICCV),

December 2015.

[145] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic

labels with a common multi-scale convolutional architecture. In ICCV, 2015.

[146] X. Wang, David F. Fouhey, and A. Gupta. Designing deep networks for

surface normal estimation. In CVPR, 2015.

[147] Fred E Nicodemus. Directional reflectance and emissivity of an opaque

surface. Applied optics, 1965.

[148] Yu-Ting Tsai and Zen-Chung Shih. All-frequency precomputed radiance trans-

fer using spherical radial basis functions and clustered tensor approximation.

ACM Trans. Graph., 25(3):967–76, 2006.

[149] Yusuke Tokuyoshi. Virtual spherical gaussian lights for real-time glossy

indirect illumination. Comp. Graph. Forum, 34(7):89–98, 2015.

[150] Marios Papas, Wojciech Jarosz, Wenzel Jakob, Szymon Rusinkiewicz, Woj-

ciech Matusik, and Tim Weyrich. Goal-based caustics. Comp. Graph Forum

(Proc. Eurographics), 30(2):503–511, 2011.

[151] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance.

Microfacet models for refraction through rough surfaces. In Proc. EGSR,

pages 195–206, 2007.

[152] James Arvo, Kenneth Torrance, and Brian Smits. A framework for the analysis

of error in global illumination algorithms. In Proc. SIGGRAPH, pages 75–84,

1994.



Bibliography 158

[153] C. CZhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. L-BFGS-B,

FORTRAN routines for large scale bound constrained optimization. ACM

Transactions on Mathematical Software, 23(4):550—-60, 1997.

[154] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.

[155] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image

quality assessment: from error visibility to structural similarity. IEEE TIP,

13(4):600–612, 2004.

[156] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and

Michael J. Black. SMPL: A skinned multi-person linear model. ACM SIG-

GRAPH Asia, 34(6):248:1–248:16, October 2015.

[157] Christoph Lassner, Javier Romero, Martin Kiefel, Federica Bogo, Michael J.

Black, and Peter V. Gehler. Unite the people: Closing the loop between 3d

and 2d human representations. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), July 2017.

[158] NVIDIA flex. https://developer.nvidia.com/flex, 2018. Ac-

cessed: 2018-03-30.

[159] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony San-

tella. Suggestive contours for conveying shape. ACM Transactions on Graph-

ics (Proc. SIGGRAPH), 22(3):848–855, July 2003.

[160] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017.

[161] torchvision. https://pytorch.org/docs/master/

torchvision/, 2018. Accessed: 2018-03-30.

[162] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

https://developer.nvidia.com/flex
https://pytorch.org/docs/master/torchvision/
https://pytorch.org/docs/master/torchvision/


Bibliography 159

[163] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[164] L.J.P. van der Maaten and G.E. Hinton. Visualizing high-dimensional data

using t-sne. Journal of Machine Learning Research, 2008.

[165] Tianqiang Liu, Aaron Hertzmann, Wilmot Li, and Thomas Funkhouser. Style

compatibility for 3D furniture models. ACM SIGGRAPH, 34(4), 2015.

[166] Ruizhen Hu, Oliver van Kaick, Bojian Wu, Hui Huang, Ariel Shamir, and

Hao Zhang. Learning how objects function via co-analysis of interactions.

ACM SIGGRAPH, 35(4), 2016.


	Introduction
	Background and Literature Review
	Structure Reconstruction and Motion Understanding
	Image and Shape Analysis, Texture Manipulation
	Material and Illumination Estimation
	Garment Modeling

	Dynamic SfM: Detecting Scene Changes from Image Pairs
	Introduction
	Overview
	Algorithm
	Multi-body structure and motion
	Correspondence pre-boosting
	Correspondence post-boosting

	Application
	Dense reconstruction
	Motion interpolation
	Working with multi-view

	Results
	Performance
	Evaluation
	Comparison
	Evaluation on Hopkins155

	Limitations

	Automated Texture Transfer from Images to Model Collections
	Introduction
	Overview
	Image to Shape Texture Transfer
	Geometry-guided Patch Extraction
	Material-Guided Patch Grouping
	Image Decomposition
	Texture Transfer

	Shape  Shape Texture Transfer
	Evaluation
	Result gallery
	Comparison with baseline methods
	Effect of texture orientation
	Effect of patch alignment
	Evaluation of illumination estimation
	Effect of proxy shape
	Comparison with TILT

	Application
	Image editing
	Novel view synthesis
	Boosting 3D model repositories

	Limitations

	Joint Material and Illumination Estimation from Photo Sets in the Wild
	Introduction
	Overview
	Algorithm
	Acquiring Geometry and Reflectance Maps
	Representation
	Reflection
	Formulation
	Rendering

	Results
	Evaluation
	Comparison
	Application
	User Study

	Limitations

	Learning a Shared Shape Space for Multimodal Garment Design
	Introduction
	Approach
	Overview
	Parameter Space
	Shared Shape Space
	Garment Retargeting

	Implementation Details
	Evaluation
	Discussion and Limitations

	Conclusion and Future Work
	Bibliography

