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Abstract. While learning models of intuitive physics is an active area of
research, current approaches fall short of natural intelligences in one im-
portant regard: they require external supervision, such as explicit access
to physical states, at training and sometimes even at test time. Some
approaches sidestep these requirements by building models on top of
handcrafted physical simulators. In both cases, however, methods can-
not learn automatically new physical environments and their laws as
humans do. In this work, we successfully demonstrate, for the first time,
learning unsupervised predictors of physical states, such as the position
of objects in an environment, directly from raw visual observations and
without relying on simulators. We do so in two steps: (i) we learn to
track dynamically-salient objects in videos using causality and equivari-
ance, two non-generative unsupervised learning principles that do not
require manual or external supervision. (ii) we demonstrate that the ex-
tracted positions are sufficient to successfully train visual motion predic-
tors that can take the underlying environment into account. We validate
our predictors on synthetic datasets; then, we introduce a new dataset,
Roll4Real, consisting of real objects rolling on complex terrains (pool
table, elliptical bowl, and random height-field). We show that it is pos-
sible to learn reliable object trajectory extrapolators from raw videos
alone, without any external supervision and with no more prior knowl-
edge than the choice of a convolutional neural network architecture.

Keywords: Unsupervised learning · Motion · Convolution Networks.

1 Introduction

A striking property of natural intelligences is their ability to perform accurate
and rapid predictions of physical phenomena using only noisy sensory inputs.
Even more remarkable is the fact that such predictors are learned without explicit
supervision; rather, natural intelligences induce their internal representation of
physics automatically from experience.
? Authors contributed equally
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Several authors have recently looked into the problem of learning physical
predictors using deep neural networks in order to partially mimic this function-
ality. Early attempts predicted trajectories in hand-crafted spaces of physical
parameters, such as positions and velocities, assuming that the ground-truth
values of such parameters are fully observable during training. Others have con-
sidered performing predictions from visual observations, but used full supervision
for training. Furthermore, while several papers [7,3] make use of simulators as a
way to generate the required supervisory signals, limited work has been done in
transferring such models to real data.

In this paper, we also investigate learning physical predictors using deep
neural network. However, we do so in a fully unsupervised manner, learning
from observations of unlabelled video sequences. In contrast to approaches such
as the recent de-animation method of [39], we do not require synthetic data, nor
do we rely on any handcrafted physical simulator for prediction. Our models
are built directly from real data and learn intuitive physics models that empir-
ically outperform more principled, but more brittle, models based on physical
parameters [31].

Importantly, our goal is not to merely predict future frames in a video, a
problem addressed before by several authors [19]. While we also predict future
dynamics from a video stream, our goal is not to estimate appearance changes,
but physical quantities such as object positions and velocities. So, where fu-
ture frame prediction generates an image, our goal is to extract meaningful and
actionable physical parameters from the data.

As a working example, we consider video footage of balls rolling on various
surfaces, such as pool tables, bowls and random height-fields. Balls interact with
the underlying environment (e.g., roll around obstacles) and among themselves
(e.g., collide with each other). For rigorous assessment, in addition to consid-
ering several synthetic datasets, we also contribute a new public dataset,
Roll4Real, containing a large number of such sequences captured in real-life.
Methodologically, we make two contributions. First, inspired by [23], we show
that an object detector can be learned in an unsupervised manner by tun-
ing a convolutional detector to extract tracks that are maximally characteristic
of the natural, causal ordering of the frames in a video. Second, we use these
trajectories to learn visual predictors that automatically learn an internal
representation of physics and can extrapolate the trajectory of the balls more
reliably than even supervised approaches such as Interaction Networks (IN) [3]
that use direct measurements of physical parameters.

Note that our goal, similar to other papers in this area, is not to come up
with the best possible method for physical prediction. A handcrafted solution
heavily engineered to use supervision, off-the-shelf trackers, and/or physical sim-
ulators may do better in raw predictive performance (although the task is in fact
not simple, particularly as our terrains are complex and somewhat deformable).
Rather, we focus on developing machines that can learn such physical predictors
from raw input.
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Empirically, we show that vision-based models more gracefully handle obser-
vation noise compared to approaches such as [7,3] that are learned using physical
ground-truth parameters extracted from simulated scenarios. We also show that
the Visual Interaction Network (VIN) of [22], which also propose a vision-based
physical predictor, fails to account for the interaction of the objects and their
environment, whereas more distributed tensor based approach succeeds.

The rest of the paper is organized as follows. We discuss related work in sec-
tion 2. We then present the technical details of our approach in section 3. Next,
we introduce the new Roll4Real data in section 4 and use the latter as well
as several existing synthetic datasets to evaluate the approach in section 5. We
summarise our findings in section 6.

2 Related Work

Existing work in learning physics can be organised according to several axes.
Nature of the Representation of Physics: A natural way to represent
physics is to manually encode every object parameters and physical properties
(mass, velocity, positions, etc.). From the earliest approaches [4] this has been
widely used to represent physics and propagate it [3,7,26,32]. Some focusing
on representing a small subset of physical parameters such as positions and
velocities [37,38]. However, other approaches try to learn an implicit represen-
tation of physics, inspired by the success of implicit representation of dynamics
[29,28,8,5]. Implicit physics are usually represented as activations in a deep neu-
ral network [10,36,20].
Hand-crafted vs Learned Dynamics: Some approaches [37], including
simulation-based ones [4,40], use physics by explicitly integrating parameters
such as velocities. While this generally require extensive knowledge of the envi-
ronment and object properties, other methods [3,7,26,32,10], integrate param-
eters of the scenarios through recurrent learnable predictors to make physical
long term predictions.
Physical vs Visual Observations: Many approaches [3,7] assume direct ac-
cess to physical quantities such as positions and velocities for prediction. If this
first approach enable to make very accurate predictions it is however unlikely
that such accuracy can be reached in the real-world. Others [4,20,21,40,36,13,33,17]
take as input one or several frames of a scene to deduce physical properties (in-
tuitive or explicit) or predict the next state of a system.
Qualitative vs Quantitative Predictions: While most of the papers dis-
cussed above consider quantitative predictions such as extrapolating trajectory,
others have considered qualitative predictions focusing on intuitive physics, such
as the stability of stacks of objects [4,20,21], the likelihood of a scenario [30] or
the forces acting behind a scene [40]. Other papers are in between, and learn
plausible if not accurate physical predictions [35,18,24], often for 3D computer
graphics.
Nature of the Supervision: Most approaches are passive and supervised, as
they are passive observer of physical scenarios and use ground truth information
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about key physical parameters (positions, velocities, stability) during training.
While this approaches require an expensive annotation of data, some work tried
to learn from unsupervised data either through active manipulation [2,9] or using
the laws of physics [33].
Scenarios: Two favorite scenarios in such experiments are bouncing balls, in-
cluding billard-like environment [14], and block towers [20]. As a variant, [36]
consider balls subject to gravitational pulls, ignoring harder-to-model collisions.
Most papers make use of simulated data, with limited validation on real data.
A different approach [25] is to predict qualitative object forces and trajecto-
ries in fully-unconstrained natural images. The approach of [2] considers instead
learning from active poking using a real-life robot. In most cases experiments
are done on synthetic data. However, approaches such as [37,38,21] also used
real data; [38] also contributed a dataset of videos of short physical experiments
called Phys-101.

We relate to such previous work in that we also make physical predictions
of the trajectory of ball-like objects. However, we differ in two significant ways.
First, our approach, while using only passive observations, is fully unsupervised,
and yet competitive if not more accurate than supervised counterparts. In par-
ticular, while [33,40] also do not use image labels, they use a-priori knowledge
of physics for training (a fully-fledged simulator and renderer in the case of [40]).
Second, we systematically test on several real-life scenarios, both in training and
testing, using our new Roll4Real dataset. Compared to datasets such as Phys-
101, ours allows testing long-term ball-rolling prediction in complex scenarios.

3 Method

Our goal is to construct a machine that can, given only raw videos and no
supervision, learn physical parameters such as the position of the objects in the
videos as well as proxies to physical laws that allow to predict the evolution
of such parameters over time. For this, predicting appearance changes is not
sufficient; instead, we decompose the problem in two steps. The first one is a
method to discover and learn to extract object positions using as cue the fact that
they should have a non-trivial causal dynamics (section 3.1). This tracker scales
well to large datasets and is able to detect different type of objects without any
further specification. Then, we use the resulting object trajectories to learn visual
predictors that can extrapolate the object positions through time, embodying a
proxy to the laws of mechanics (section 3.2).

3.1 Unsupervised Detection and Tracking of Dynamic Objects

Single-object Detection. Let xt ∈ RH×W×3 be a RGB video frame and
assume we are given video sequences X = (x1, . . . ,xN ), initially containing a
single object moving in an environment, such as a rolling ball. Our goal is to
learn a detector function Φ(xt) = ut ∈ R2 that extracts the 2D position ut of the
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Fig. 1. Overview of our unsupervised object tracker Each training point con-
sists of a sequence of five video frames. Top: the sequence is randomly permuted with
probability 50%. The position extractor (a) computes a probability map s for the
object location, whose entropy is penalised by Lent. The reconstructed trajectory is
then fed to a causal/non-causal discriminator network (b) that determines whether
the sequence is causal or not, encouraged by Ldisc. The bottom Siamese branch (c)
of the architecture takes a randomly warped version of the video and is expected by
Lsiam to extract correspondingly-warped positions in (d). Blue and green blocks con-
tain learnable weights and green blocks are siamese shared ones. At test time only Φ
is retained.

moving object at any given time (Fig. 1). The challenge is to do so without access
to any label for supervision or any a-priori information about object shape.

We start by implementing Φ(xt) as a shallow Convolutional Neural Net-
work (CNN) that extracts a scalar score fv ∈ R for each image pixel v ∈ Ω =
{1, . . . ,H} × {1, . . . ,W}, resulting in a heat map. This is then normalised to a
probability distribution using the softmax operator sv = efv/

∑
z∈Ω e

fz and the
location u of the object is obtained as the expected value u =

∑
v vsv [13].

We learn Φ by combining two learning principles. The first one is causal-
ity. Applied to a video sequence, the detector produces a trajectory Φ(X ) =
(Φ(x1), . . . , Φ(xN )). We expect that, when the detector locks properly on the
rolling object, the trajectory is physically plausible (e.g., causal/smooth); at the
same time, if the frames are shuffled by a random permutation π, the resulting
trajectory should not be plausible anymore. We incorporate this constraint by
learning a discriminator network D(Φ(xπ1

), . . . , Φ(xπ5
)) that, for a subsequence,

can distinguish between the natural ordering of the frames and a random shuffle
(top row of Fig. 1). The permutation π is sampled with 50% probability as a
consecutive sequence of 5 frames (πi+1 = πi+1, i = 1, . . . , 4) and with 50% uni-
formly at random. The discriminator is a 3 layers multi-layer perceptron followed
by a sigmoid and the loss

Ldisc(D,π) =
{
− logD, πi+1 = πi + 1, i = 1, . . . , 4,

− log(1−D), otherwise.
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The second learning principle is equivariance (cf., [34,27]). This principle
suggests that, if a transformation g is applied to a frame xt (e.g., a ±π/2 ro-
tation), then the output of the detector should change accordingly: Φ(gxt) =
gΦ(xt). This is implemented as a Siamese branch (bottom row in Fig. 1) ex-
tracting 2D positions Φ(gX ) = (Φ(gx1), . . . , Φ(gxN )) from the rotated frames
and comparing them to the rotated 2D positions extracted from the original
frames using the L2 loss: Lsiam = 1

N

∑
t ‖g−1Φ(gxt)− Φ(xt)‖2.

Finally, in order to encourage the softmax operator to produce peaky distri-
butions, we minimise the entropy of the resulting distribution Lent = −

∑
v∈Ω sv log(sv).

The final loss is therefore L = λdLdisc + λeLent + λsLsiam. In our experiment,
λd = 1, λe = 0.01, and λs = 0.001.
Multi-object Tracking. We now extend the method from detection of single
objects to tracking of multiple objects. In order to do so, the network is fine-
tuned to videos containing two or more moving objects of different appearance.

Since the network produces only a single pair of coordinates, it can formally
estimate the location of a single object in the image. However, when multiple
objects are present, the unsupervised learning process could still converge to an
undesirable result, such as predicting the center of mass of several objects com-
bined, or randomly jumping between objects over time. The first is discouraged
by the entropy loss which prefers sharp heat map. The second is discouraged by
the causality loss, as discontinuous trajectories would not look plausibly ordered
and consistent.

In practice, our model learns to track consistently a single object selected
at random among the visible ones. Once this is done, in the next iteration,
a second object is detected by suppressing (setting to zero) a circular region
of radius r around the first object location in the activations fv immediately
preceding the softmax operator, and the process is repeated for further object
occurrences. Before the suppression we also add a positive bias to the activations
fv in order to consider the previously detected objects as zero probabilities in
the new heatmap. Note that we consider the number of objects as given since it
is in itself already a very challenging task that is under active research [12].

3.2 Trajectory Extrapolation Networks

We consider existing network modules for physical prediction. While these mod-
ules use external supervision in the original papers, here we apply them to the
output of the unsupervised tracker of 3.1, hence training such physical extraploa-
tors in a fully unsupervised manner for the first time.

We experiment in particular with PosNet , DispNet , and ProbNet from [11],
configuring them to take as input the first four frames of a sequence and to
produce as output the prediction of future object positions. These models learn
an implicit representation of physics, which is extrapolated automatically by a
recurrent propagation layer and used to extract estimates of the object posi-
tions. The difference between the models is that PosNet regresses positions from
state, while DispNet and ProbNet regress displacements from state. Further-
more, ProbNet produces a probability estimate over trajectories.
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Fig. 2. Multiple object unsupervised tracker (a) We first extract an object
heatmap with the method described in 3.1. (b) Then we mask the objects detected
by previously trained tracker (T1 and T2) on the heatmap by zeroing out the values
around a circular area around their center. (c) Finally we extract position from this
last heatmap with masked values.

We also consider the Visual Interaction Network (VIN) module and its vari-
ant Interaction Network from State (IFS) [36]. While VIN uses only visual inputs
for prediction just like the other networks, IFS works with an explicit state vec-
tor of physical parameters, which we set as the stacking of the 2D positions for
four past frames which starts with positions extracted from our tracker. Addi-
tionally, in the synthetic experiments (first part of Table 2), IFS uses velocity
and in BowlS experiments the ground-truth ellipsoid axes parameters are ap-
pended to the state to inform the model of the shape of the ground. IFS and
VIN are trained following [11]; in particular, this means that VIN uses the same
setting as the original paper (32× 32 pixels images).

We also note that while VIN and models from [11] have essentially the same
core concepts (they consist of a first feature extractor module to extract implicit
physical state, a recurrent propagation module to propagate the state, and an
extractor module to get desired physical parameters from the state) their main
difference resides in the structure of the propagated state. While VIN used a
vector state representation, each of PosNet , DispNet , and ProbNet use a tensor
representation.

All such models are trained by showing the network four initial frames of a
sequence and the output of the unsupervised tracker up to time Ttrain ∈ {15, 20}
frames. At test time, the networks, which are recurrent, are used to extrapolate
the trajectory up to an arbitrary time T , also starting from four video frames.
We test in particular T = Ttrain and T � Ttrain to assess the generalization
capabilities of the models learned by the network.

In addition, for some experiments on single object we also consider linear
and quadratic extrapolators as baselines. In both cases we fit a first (respectively
second) order polynomial to the 10 first positions given as input (hence with a
significant advantage compared to the networks which only observe four frames).
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Fig. 3. Physical setup In each of the three real-world scenarios (PoolR, BowlR,
HeightR), we show the experimental setup (left) and a sample data frame (right).

4 Roll4Real: A New Benchmark Dataset

In the absence of a suitable real-world dataset to evaluate intuitive physics on
objects rolling on complex terrains, we created a new benchmark, Roll4Real
(R4R).
Dataset Content. R4R consists of 1118 short 256×256 videos containing one
or two balls rolling on three types of terrains (Fig. 3): a flat pool table (PoolR), a
large ellipsoidal ‘bowl’ (BowlR), and an irregular height-field (HeightR). More
specifically, there are 151 videos (avg. 99 frames/video) for the PoolR dataset
with one ball; 216 videos (522 frames/video) for the BowlR dataset with one
ball; 543 videos (356 frames/video) for the HeightR dataset with one ball; and
208 videos (206 frames/video) for the HeightR dataset with two balls. We rolled
a total of 7 differently colored balls for the HeightR and BowlR datasets,
varying from 3.5 cm to 7 cm in diameter. The height-field surface fits into a
70× 70× 28 cm3 bounding box, with 76 cm diameter. The bowl was created
using a 70 cm diameter ball, and is 60 cm high. Videos were randomly split into
train, validation, and test sets. Ground-truth annotations are provided for the
test split.
Dataset Collection. Both the bowl and height-field terrains were modeled
using paper mâché on scaffolds, using a large inflatable ball and a custom-made
wire-mesh frame, respectively. For the the PoolR dataset, balls were rolled
on the table, while for the other settings, balls were manually dropped from a
small height and allowed to roll on. The setup was imaged using a fixed camera
(Samsung Galaxy S8) from the top. The PoolR dataset was captured at 30fps
(due to low light), while all the others at 240fps in order to reduce motion
blur and later downsampled to 80fps. Videos were cropped to only focus on the
scenario of interest, i.e., ball(s) and terrain, and trimmed to retain the portion
of the video containing motion. We rolled a total of 7 different balls: a pink foam
ball (7 cm diameter), a fluorescent yellow tennis ball (6.8 cm), a blue and an
orange ping-pong ball (4 cm), a black squash ball wit two yellow dots (4 cm),
and a green and a brown cork ball (3.5 cm).

In order to create ground-truth tracks for the ball centers, we used a template-
based tracker using zero-normalized cross-correlation in the LAB color space,
and tracked each frame along with a smoothness term over time. The setup was
manually initiated by providing suitable template. The raw results were then
manually inspected, corrected, and saved as ground-truth. We found that due
to environment jitter (the ball rolling on the different terrains often created
vibration or deformation in the BowlR and HeightR datasets), differences in



Unsupervised Intuitive Physics from Visual Observations 9

lighting across some experiments and different ball colors, the template-based
tracker was not perfect and manual inspection was required.

It is worth noting that, while this process was enough to produce ground
truth annotations for the test set, the method does not scale due to the need for
manual verification and correction. While our aim here is to show the feasibility
of learning physics in an unsupervised manner, such problems show that our
deep tracker also has an applicative advantage compared to these traditional
handcrafted approaches.

5 Results and Discussion

Implementation Details For all networks trained on every dataset, weights
were initialised using Xavier initialization [15]. The learning rate was initially
set to 10−4 and was progressively decreased by a factor of 10 when no improve-
ments were found over K epochs (K = 100 for the synthetic datasets). Training
was stopped when the loss did not decrease for 2K consecutive epochs. Before
processing images, we resized all dataset images to 128× 128 pixels to fit in the
GPU memory. We used TensorFlow [1] on a single NVIDIA Titan X GPU for
all the experiments.

5.1 Unsupervised Tracker

We first evaluate our unsupervised object detector and tracker and compare
against currently state-of-the-art trackers. We report results in Table 1 against
the following trackers: 1. Optical Flow Lucas-Kanade (OFLK) from OpenCV[6]
library; 2a. Flownet2-simple, which computes pairwise flowfields using FlowNet2 [16]
and follows the velocity vectors; 2b. Flownet2-blob, where we after computing
the flowfields from FlowNet2 [16], update the positions as the center of the blobs
found in the flowfield. If no blob was detected, we updated the position accord-
ing to 2a; 3. LAB: a template tracker similar to section 4 without any manual
corrections. Note that these methods need manual initialization at the objects
positions (expect for LAB) or templating which needs more work with grow-
ing object count and/or variety. In addition to PoolR, BowlR, and HeightR
from Roll4Real, we also consider two synthetic datasets from [11] in Fig. 4:
BowlS for the ellipsoidal bowl with one or two balls and HeightS for the ran-
dom height-fields. Fig. 4-left reports the mean and 99th percentile pixel error of
the extracted object positions against ground-truth averaged over multiple runs
of our experiments. Even though the trackers perform well in practice, they
suffer from large variance. For example, OFLK went off-track 15% of the time on
the BowlR dataset, 10% for the HeightR, and 30% for PoolR. In contrast,
ours never loses track of the object. The 99th percentile reported in Fig. 4 shows
that the offset is almost constant generally due to the detection occurring on
the edge of the objects. Overall, our method learns to track objects robustly in
a diverse range of complex scenarios.
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combination of tracker losses on the BowlR dataset. ‘Const.’ indicates that we are
predicting a constant point at the center of the image for reference. For left and right,
position errors are reported in pixels. The number of balls in the datasets is appended
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Table 1. Tracker results across real datasets The reported numbers are the av-
erage (left) and the variance (right) of the pixel error. All numbers refer to 128×128
images.

PoolR BowlR HeightR HeightR 2B.

1. Optical Flow Lucas-Kanade 23.3 965 5.6 275 2.7 12.9 2.0 5.3
2a. FlowNet2-simple 41.4 767 30.4 715 16.6 206 - -
2b. FlowNet2-blob 3.9 12.1 2.2 4.8 4.6 28.7 - -
3. LAB w/o manual correction 0.3 0.1 16.4 247 8.3 104 21.7 102
4. Ours 1.9 0.2 4.1 0.5 3.3 0.5 3.4 1.2

Importantly, since our tracker does not use any manual annotations it scales
easily to larger synthetic datasets, multiple objects, and different object appear-
ances within the same dataset by just providing more example data.

We also conducted an ablation study on the BowlR dataset to measure the
impact of each loss term. Fig. 4-right shows that, while each loss contributes
to the final results, the best performance is obtained when all the terms are
combined.

5.2 Unsupervised Physics Extrapolation

Supervised vs Unsupervised (Single Ball Synthetic Datasets). We now
compare training predictors using either ground-truth object positions or the
output of the unsupervised tracker. All predictors observe only T0 = 4 frames
as input (either positions or video frames) except VIN which uses T0 = 6 and
the least squares baselines which use T0 = 10. All the networks were trained to
predict Ttrain positions. Table 3 reports the average errors at time Ttrain and
2Ttrain to measure the ability of predictors to generalise beyond the training
regime.

We see that the Net models (ProbNet , DispNet , PosNet) perform well using
ground-truth positions or the unsupervised tracker outputs (e.g. PosNet error for
BowlS/HeightS is 2.9/6.4 supervised vs 4.9/6.9 unsupervised), whereas IFS
does not handle the transition well (3.3/10.4 to 13.3/23.1) and Linear, Quadratic
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Fig. 5. Qualitative performance comparison for the various methods against
ground-truth trajectories Top-to-bottom: two balls colliding on an ellipsoidal bowl;
single ball colliding against the walls of a pool table; single ball rolling on an ellipsoidal
bow; single ball rolling on complex height-field; and two balls rolling on complex height-
field. The top row is on synthetic data, while the other rows are on real-data. The green
ellipsoids in the last column show the variance of the predictions estimated by ProbNet
at selected locations.

and VIN are not competitive. The latest result shows a clear advantage of tensor-
based state representations compared to vector based one. This suggests that
modelling objects positions is done better by a representation which is spatially
distributed. IFS also seems very sensitive to defects in the supplied annotations,
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Table 2. Long term predictions compared on synthetic datasets with model
trained with ground-truth from simulator All the models (except VIN, Linear,
and Quadratic) are given T0 = 4 frames as input and train to predict first Ttrain

positions. We report the average pixel error and perplexity for PosNet model at two
different times. Perplexity, shown in bracket, is defined as 2−E[log2(p(x))] where p is
the estimated posterior distribution. State shows either the carried forward state is a
physical quantity (Exp.), or an implicit vector or tensor (Imp.)

BowlS- Ttrain= 20 HeightS- Ttrain= 20

T =Ttrain 2×Ttrain Ttrain 2×Ttrain

Method Input State With positions from simulator

Linear 2D pos. Exp. 61.9 20.1 21.3 61.9
Quadratic 2D pos. Exp. 11.7 93.1 26.7 126.0

IFS 2D pos. Exp. 3.3 8.9 10.4 27.6
VIN Visual Imp. 24.0 30.2 42.6 42.7

PosNet Visual Imp. 1.6 24.4 7.2 24.6
DispNet Visual Imp. 2.5 20.6 7.7 25.8
ProbNet Visual Imp. 2.9 (32.1) 21.8 (54.0) 6.4 (9.5 ) 22.5 (12.7)

Method Input State With positions from unsupervised tracker

IFS 2D pos. Exp. 13.3 23.6 23.1 38.3
VIN Visual Imp. 24.7 30.3 45.8 48.0

PosNet Visual Imp. 4.3 29.9 6.6 25.6
DispNet Visual Imp. 3.9 25.6 6.8 22.7
ProbNet Visual Imp. 4.9 (6.3) 27.0 (20.6) 6.9 (8.3 ) 23.3 (13.4)

Table 3. Long term predictions using one ball and real data The table has the
same format as Table 2. All models are trained using the unsupervised tracker, input
and state are the same as Table 2, and we report pixel error (perplexity) at T .

PoolR-Ttrain = 15 HeightR- Ttrain = 20 BowlR- Ttrain = 20

Method T =Ttrain 2×Ttrain Ttrain 2×Ttrain Ttrain 2×Ttrain

IFS 26.0 37.5 48.0 58.1 26.2 39.1
VIN 50.9 40.8 40.2 47.3 33.9 33.0

PosNet 4.6 21.4 5.6 29.0 5.6 23.0
DispNet 3.8 23.6 5.6 28.5 6.5 22.6
ProbNet 4.7(6.3) 16.3(11.3) 5.7(5.8) 30.0(22.5) 6.8(6.8) 23.5(13.8)

since its knowledge of the environment is very limited, error correction is very
challenging for it.

The main weakness of the Net models is that their performance degrades as
prediction extends beyond the training horizon 2Ttrain, whereas IFS generalizes
more. At least ProbNet explicitly indicates that the model is uncertain when
this occurs.
Synthetic vs Real (One Ball Datasets). On real datasets (Table 3), the
Net models uniformly outperform others at both Ttrain and 2Ttrain, with errors
comparable to the synthetic case. Note that the real datasets in Roll4Real are
particularly challenging due to the non-idealities of the surface (e.g. the BowlR
surface is slightly elastic and wobbles as the ball rolls).
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Table 4. Long term predictions using two balls on real and synthetic data
Table layout and measures are the same as Table 2. Models are trained with positions
from tracker, input and state are the same as Table 2, and we report pixel error
(perplexity) at T .

Method BowlS 2b.-Ttrain = 15 HeightR 2b.-Ttrain = 15

T =Ttrain 2×Ttrain Ttrain 2×Ttrain

IFS 18.4 30.0 15.6 26.6
VIN 41.3 45.8 45.9 39.8

PosNet 5.0 13.4 5.4 12.5
DispNet 5.5 24.7 6.2 15.4
ProbNet 5.6 (7.3) 20.6 (13.7) 6.8 (7.9) 16.9 (12.4)

One vs Multiple Balls (Real and Synthetic Datasets). Finally, we move
to cases where the balls are interacting with the environment and with each
others due to collisions. This is particularly challenging when no ground-truth
is used as multiple object tracking is much harder to achieve in an unsupervised
setting than tracking a single object.

As shown in Table 4, the Net models still perform well. Due to memory
limitations, models were trained for a slightly shorter time span Ttrain; since the
corresponding predictions are shorter term, their errors are a little lower than
before. Overall, the results show that neither perfect ground-truth annotations
nor a very large dataset is required to train a reliable physical extrapolator. Still,
we noticed that collisions were difficult to predict in the HeightR dataset (see
the bottom row of Fig. 5), probably because such events are rare during training.
In contrast, this seems to be much better handled by the models in the synthetic
dataset (First row of Fig. 5).

5.3 Unsupervised Physics Interpolation

As in [11], we also study the interpolation problem considering their Interp-
Net configuration. We compare the latter to the extrapolation network DispNet
trained over a longer horizon Ttrain = {30, 40}. InterpNet has the same archi-
tecture has DispNet with the difference that, in addition to the first T0 frames
of the sequence, InterpNet additionally takes as input the last video frame as
well. The first extracted state is used to regress the first T0 positions as well as
the positions at time Ttrain, so that this state is explicitly encouraged to encode
information about the last position of the object as well. In Table 5 and Table 6
we see that InterpNet managed to reduce the error in most cases. However in
this case, compared to results in [11] InterpNet performs poorer on synthetic
dataset and estimation of the intermediate states seems to be more challenging.
Our interpretation is that the imperfect nature of the training data creates sev-
eral possible path that this model in unable to solve. Finally we also noticed
that the heightfield datasets seem to be very challenging as training for longer
horizons didn’t reduce the error as much as it does on the ‘bowl.’
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Table 5. Extrapolation vs interpolation: one ball datasets One ball datasets
synthetic and real. Models are trained with positions from tracker. Pixel error at dif-
ferent time T .

PoolR BowlS HeightS BowlR HeightR
Ttrain = 30 Ttrain = 40 Ttrain = 40 Ttrain = 40 Ttrain = 40

T 10 20 30 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

DispNet 3.1 5.6 10.1 3.8 4.0 4.2 4.2 5.2 8.2 13.2 19.1 4.1 5.0 5.5 6.9 4.3 6.6 9.4 12.7
InterpNet 4.5 5.6 3.1 3.8 4.2 4.0 3.8 4.5 6.4 6.5 4.2 6.3 6.5 4.8 3.7 4.0 5.0 4.8 4.3

Table 6. Extrapolation vs interpolation: two balls datasets Two balls datasets
synthetic and real. Models are trained with positions from tracker. Pixel error at dif-
ferent time T .

BowlS 2b HeightR 2b
Ttrain = 30 Ttrain = 30

T 10 20 30 10 20 30

DispNet 4.3 6.9 9.7 5.2 8.9 13.4
InterpNet 4.2 5.0 4.1 6.5 6.9 7.6

6 Conclusions

We presented a method that can learn to track physical objects such as balls
rolling on complex terrains using only raw video sequences and no supervision.
Combined with recent neural networks that can learn an implicit representation
of physics, such a system is able to extrapolate object trajectories over time while
accounting for object-environment and object-object interactions. To the best of
our knowledge, this is the first time that learning long-term physics extrapolation
without access to supervision or handcrafted simulators has been demonstrated.
Through an extensive benchmark we also demonstrated the superiority of tensor-
based state representation that were able to produce satisfactory results on real
data without the need of large datasets.

We also contributed a new dataset, Roll4Real, of real-life video sequences
for complex scenarios such as ball rollings on pool tables, bowls, and height-field,
showing that all such methods are applicable to the real world. This data will
be made publicly available.

In this work we used different colored objects to make them distinguishable,
which in practice is one of the main limitation of our work. We plan to address
this issue by using same colored objects and build a tracker that would be trained
to detect all objects at once removing the need for iterative training.

Finally, we also plan to train the tracker and the extrapolator end-to-end,
further improving tracking of multiple objects. We also aim at improving the
generalisation of the predictors beyond the training regime; we believe that the
key is to factor knowledge about the environment and the object dynamics to
allow the models to remember the first better over longer time spans.
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