

Unsupervised Intuitive Physics from Visual Observations

Sebastien Ehrhardt¹, Aron Monszpart^{2,3}, Niloy Mitra² and Andrea Vedaldi¹ ¹University of Oxford ²University College London ³Niantic

Objective

Goal: Learn unsupervised predictors of physical states **directly from raw** observations and without relying on a simulator in two steps: (i) Unsupervised learning of dynamically-salient objects from videos. (ii) Train a predictor using the tracker's detection as supervisory signal. We validate our method on synthetic data and **real data** of scenarios of balls rolling on various surfaces.

ROLL4REAL: Our New Benchmark Dataset

- 1118 videos containing balls rolling on complex terrains.
- Dataset split into three types of terrain:
- **POOLR**: Flat pool table; 151 videos (1 ball)
- **BOWLR**: Paper mâché Ellipsoidal Bowl; 216 videos (1 ball) • HEIGHTR: Paper mâché heightfield; 543 videos (1 b.), 208 (2 b.)
- 8 different types of balls used across all scenarios.
- Annotations of objects positions are provided for every test set.

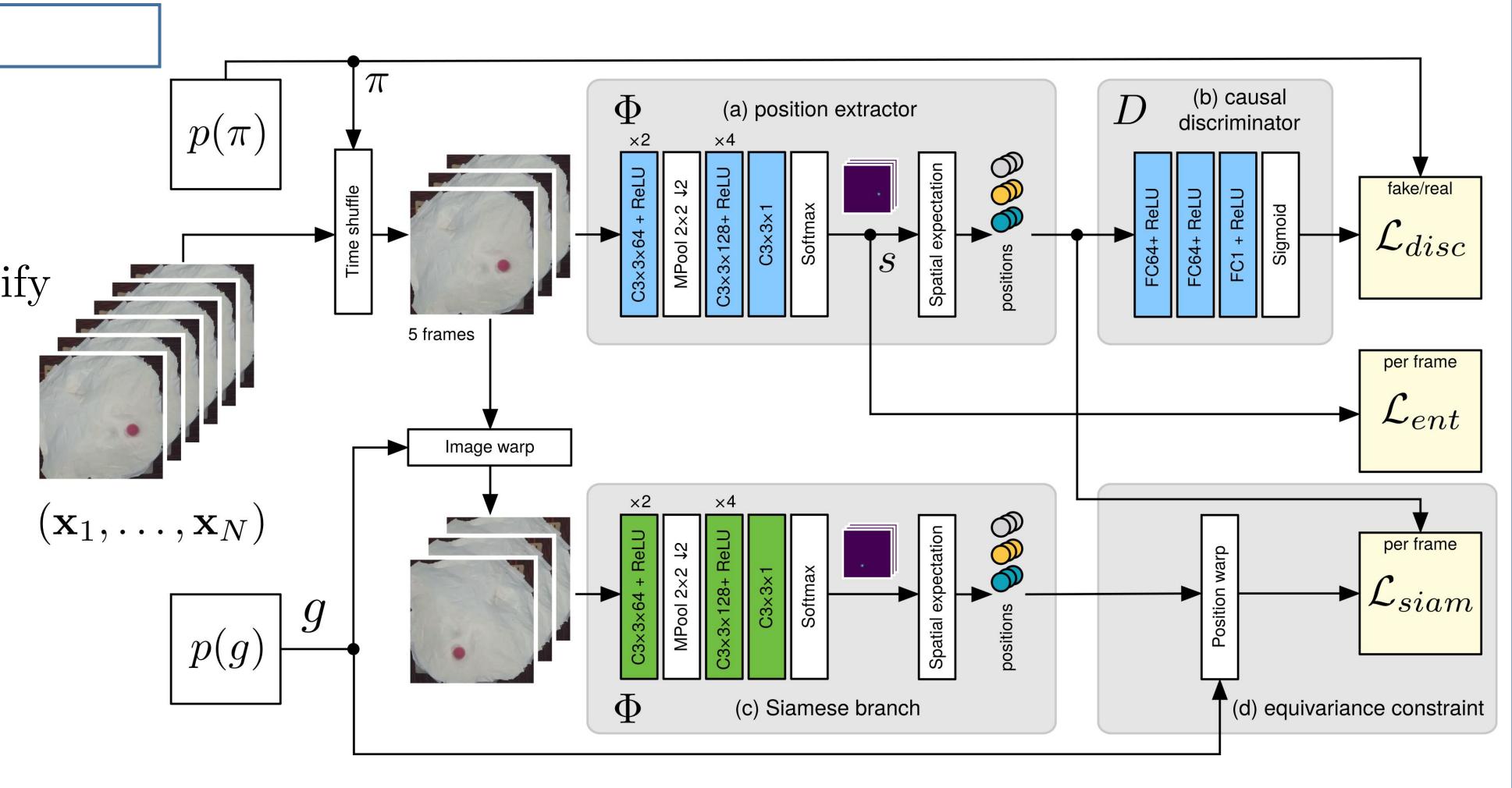
Unsupervised Detection and Tracking of Dynamic Objects

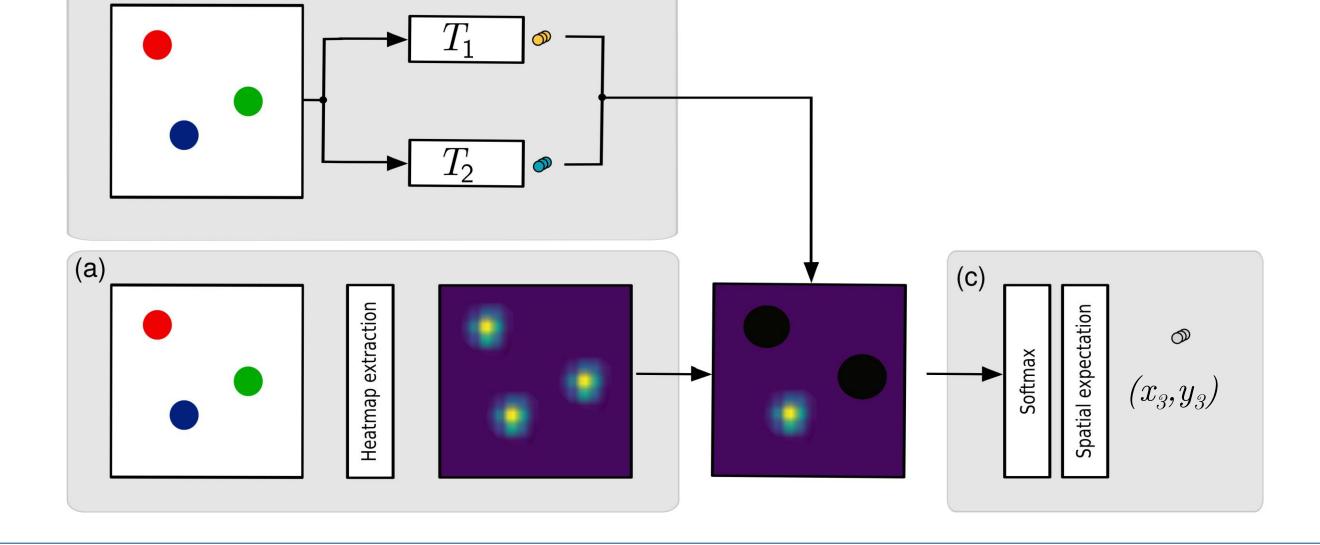
SINGLE OBJECT DETECTION

Key ideas:

(b)

- **1.Causality** (\mathcal{L}_{disc}) : Inspired by [1]. The discriminator D ensures that extracted positions are plausible trajectories and identify temporal reshuffling.
- **2.Equivariance** (\mathcal{L}_{siam}) : Detection should be equivariant w.r.t random rotation g, i.e. $\mathbf{\Phi}(g\mathbf{x}_{\mathbf{T}}) = g \, \mathbf{\Phi}(\mathbf{x}_{\mathbf{T}}).$
- **3.Low entropy** (\mathcal{L}_{ent}) : Makes sure that detection is spatially localized and locks properly onto one single object.





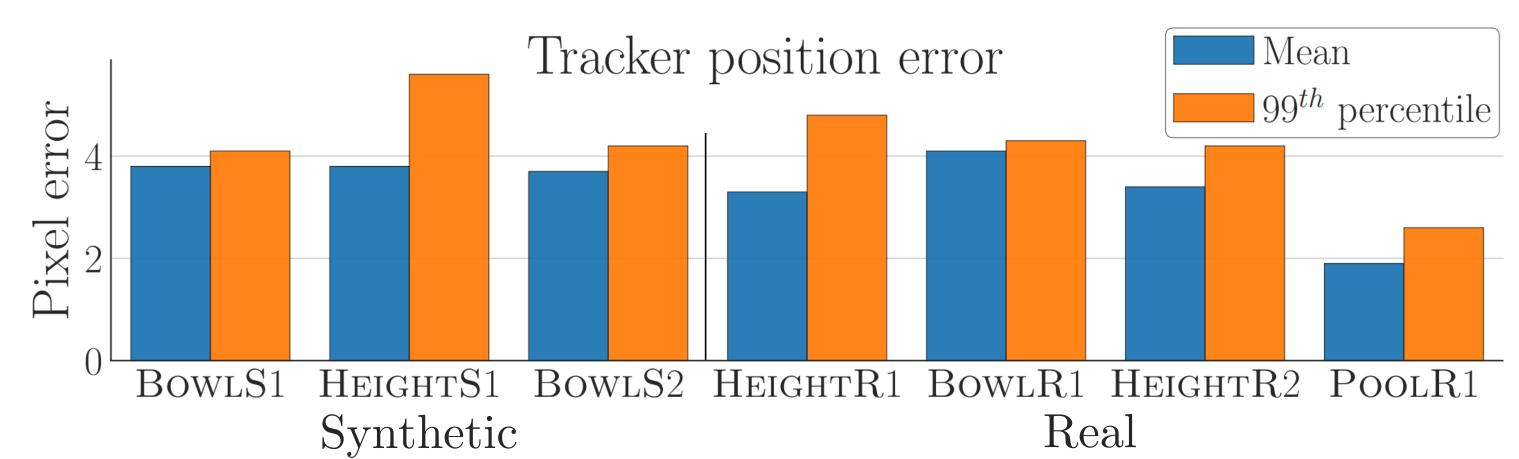
EXTENSION TO MULTIPLE OBJECTS

- Even when multiple objects are present, our tracker is always able to consistently track one object thanks to the entropy constraint.
- After learning the first objects, we **sequentially train** a new tracker where we mask previously detected objects on the extracted heatmaps.

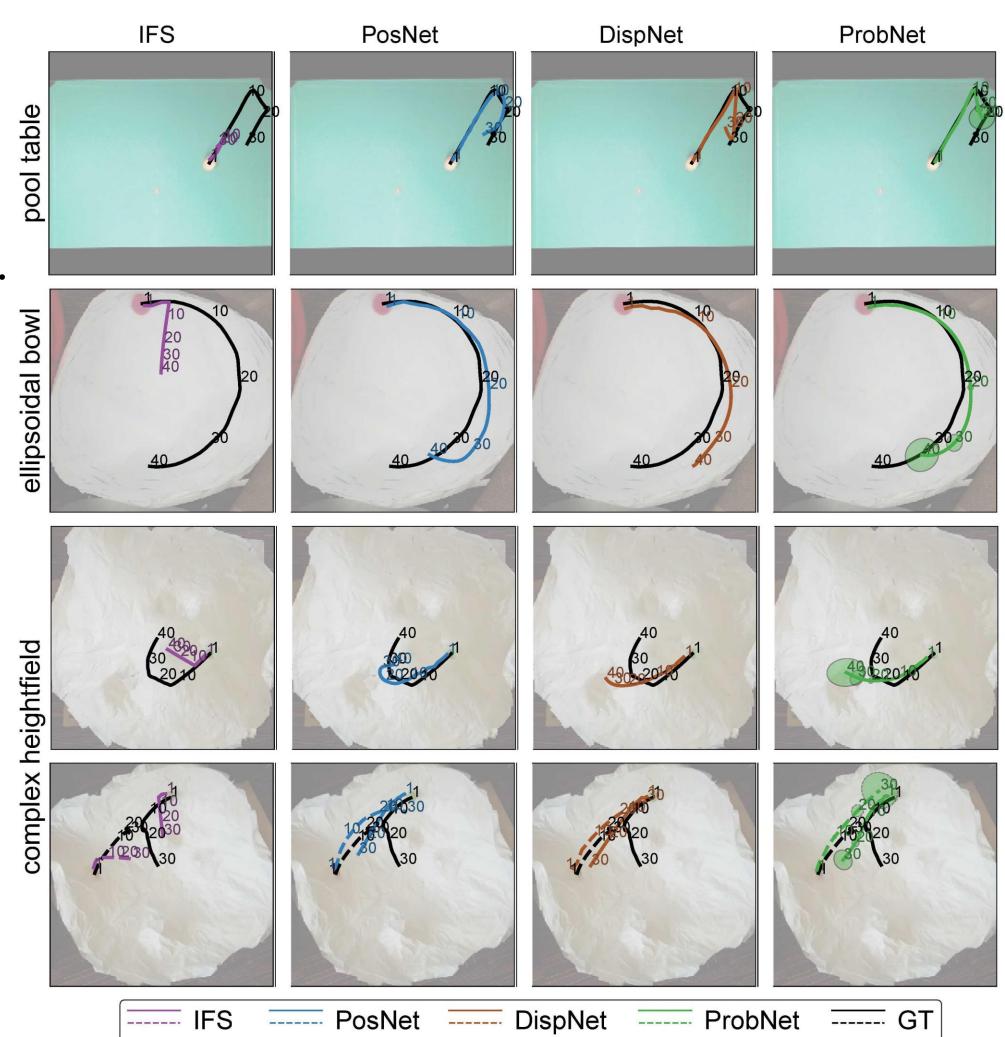
Evaluation of our Method

TRACKER ERROR ON DIFFERENT DATASET

WITH UNSUPERVISED DATA **EXTRAPOLATION**



- We use our tracker to train an extrapolator such as IFS [2] and {Pos, Disp, Prob}Net[3]
 - Models are trained to predict the next



• Our tracker performs well across synthetic and real datasets and different types of objects and terrains. • Variance of the error is low, tracking never fails.

ABLATION STUDY BOWLR (1b.) Ablation Study Mean 40 Pixel error $\mathcal{L}_{disc} + \mathcal{L}_{ent}$ $\mathcal{L}_{disc} + \mathcal{L}_{siam}$ $\mathcal{L}_{ent} + \mathcal{L}_{siam}$ All losses Const.

 $T = \{15, 20\}$ steps observing $T_0=4$ frames.

• Best results are obtained with *Net models which use tensor state representations.

References:

[1] Misra, I., et al.: Shuffle and learn: unsupervised learning using temporal order verification. ECCV (2016) [2] Battaglia, P., et al.: Interaction networks for learning about objects, relations and physics. In: Proc. NIPS (2016)

[3] Ehrhardt, S., et al.: Learning to Represent Mechanics via Long-term Extrapolation and Interpolation. arXiv preprint arXiv:1706.02179 (Jun 2017)