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Abstract

The 2010s saw the democratization of digital fabrication technologies. Although

this phenomenon made fabrication more accessible, physical assemblies displaying

a complex behavior are still difficult to design. While many methods support the

creation of complex shapes and assemblies, managing a complex behavior is often

assumed to be a tedious aspect of the design process. As a result, the complex parts

of the behavior are either deemed negligible (when possible) or managed directly

by the software, without offering much fine-grained user control.

This thesis argues that efficient methods can support designers seeking complex

behaviors by increasing their level of control over these behaviors. To demonstrate

this, I study two types of artistic devices that are particularly challenging to design:

drawing machines, and chain reaction contraptions. These artifacts’ complex behav-

ior can change dramatically even as their components are moved by a small amount.

The first case study aims to facilitate the exploration and progressive refinement of

complex patterns generated by drawing machines under drawing-level user-defined

constraints. The approach was evaluated with a user study, and several machines

drawing the expected pattern were fabricated. In the second case study, I propose an

algorithm to optimize the layout of complex chain reaction contraptions described

by a causal graph of events in order to make them robust to uncertainty. Several

machines optimized with this method were successfully assembled and run.

This thesis makes the following contributions: (1) support complex behavior

specifications; (2) enable users to easily explore design variations that respect these

specifications; and (3) optimize the layout of a physical assembly to maximize the

probability of real-life success.



Impact statement

This thesis makes two contributions in the field of computational design. Both

aim to support the creation of physical assemblies that present an intentionally

complex behavior. This focus on user-controlled behavior complexity is largely

unexplored and opens promising new research directions, both in computer graphics

and human-computer interaction.

The first contribution is a novel method providing a form of guided exploration

inside the space of motion patterns produced by a mechanical assembly. This work

continues previous efforts in the field to make mechanical design accessible to novice

users. It could be integrated into computer-aided design software to provide new

intuitive modes of interaction. Examples of applications that would benefit from

this approach include toys, assembly line tools and other machines that perform a

repetitive complex motion.

The second contribution is a novel method to increase the robustness of physical

assemblies whose behavior can be formulated as a causal graph of events. Design and

fabrication errors are a significant source of frustration, as well as wasted time and

material. Integrating ways to accommodate errors into design tools can significantly

help users (both novice and expert) reduce the number of product iterations. This is

particularly relevant to situations where the context of use of an assembly is highly

variable, for instance when repairing or augmenting existing artifacts (which can be

critical when resources are scarce, e.g., because of environmental concerns or during

humanitarian crises), or when designing for children or people with disabilities.
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Chapter 1

Introduction

1.1 Problem

The 2010s saw the democratization of digital fabrication technologies. Computer-

controlled devices such as 3D printers and laser cutters significantly simplified pre-

vious fabrication workflows, opening new possibilities for both novice and expert

users. Designing fabricable and functional objects, however, remains a challenging

task. Computational design aims to address this problem by augmenting the design

capabilities of end users with computational assistance. To this end, researchers have

identified various roadblocks and sources of frustration in existing design workflows,

and have proposed new methods to help users achieve a target appearance or func-

tionality. For instance, researchers have tackled problems involving a high number

of assembly components (e.g., in puzzles [132]) and a high level of coupling (e.g.,

in mechanical assemblies [26]), as well as behaviors with a complex dependency on

shape and material distribution (e.g., spinning [4] and sound [13]).

Though many such methods offer considerable control over the geometry of

the product, physical behavior specifications are usually more limited. Design in-

terfaces that offer some form of behavior control often only support simple inputs,

such as motion paths [26] or sparse target assembly poses [93]. This is because

managing a complex physical behavior is often assumed to be a tedious task. As a

result, complex physical phenomena are either deemed negligible (when possible)

or directly managed by the software, without offering much fine-grained control to
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the user. Although some systems provide more interactive forms of control, such

as guided exploration [105], behavior constraints are nowhere near as common as

their geometric counterpart. For instance, in computer-aided design (CAD) soft-

ware, although the features of a shape representation can be constrained in various

ways (e.g., contact and orthogonality), no existing method allows users to similarly

constrain the features of a simulated behavior representation. Additionally, very few

systems improve physical control by accommodating unpredictable factors such as

fabrication errors [137], and none of them supports complex physical behaviors.

In this thesis, I argue that efficient methods can support designers seeking

complex behaviors by increasing their level of control over these behaviors. To

support this claim, I present two case studies in which individuals aim to design

complex machines for artistic or entertainment purposes: drawing machines and

chain reaction contraptions. I chose to investigate these specific design problems

for three reasons. First, they are prime examples of intentional behavior complexity.

Although their outcomes differ (static drawing in one case; audiovisual performance

in the other), both rely on the complex behavior of a machine to captivate the

audience, and both are difficult to control because small changes in the initial

conditions can result in large and hard-to-predict behavior variations.1 Second,

solving these design problems is relevant because drawing machines and chain

reaction contraptions are popular among various communities of makers, video

creators, educators, and artists. For example, at the time of writing, the digital

model sharing platform Thingiverse2 contains dozens of drawing machines and

Spirographs; the most popular chain reaction builders on the video sharing platform

YouTube3 (i.e., Hevesh5, Joseph’s Machines and DoodleChaos) each total hundreds

of millions of views; at least three chain reaction contraption student contests take

place every year in the USA;4 and contemporary artists (such as Olafur Eliasson [72],

Arthur Ganson [10] and James Nolan Gandy [128]) are still creating pieces involving

1Which is why I informally describe these machines as being “chaotic” from a user perspective.
2https://www.thingiverse.com/
3https://www.youtube.com/
4The Rube Goldberg Machine Contest (Purdue University), the Friday After Thanksgiving Chain

Reaction (MIT Museum), and the Chain Reaction Contraption Contest (Carnegie Science Center).

https://www.thingiverse.com/
https://www.youtube.com/


1.2. Definitions 15

either type of machine. Lastly, although aiming for complexity at the expense of

efficiency seemingly runs counter to the philosophy of engineering, the inventiveness

of these devices can still be a source of inspiration for more practical tools. For

instance, traditional Japanese automata known as karakuri puppets have inspired

the practice of karakuri kaizen in assembly lines, a form of low cost automation

in which workers are assisted by chain reaction devices without any reliance on

electrical power [139]. These contraptions are robust to power cuts and reduce the

energy and environmental cost of factories [64].

To summarize, this thesis describes efficient computational design methods to

help users create physical assemblies displaying an intentionally complex physical

behavior, by providing a better level of control over this behavior, with a focus on

machines designed with an artistic intent.

1.2 Definitions
In this section, I define and clarify the terms used throughout the thesis. The order

matters: except for the last two, each definition builds upon the previous ones.

Physical assembly. A physical assembly is a real-world artifact composed of parts

arranged in a specific configuration to achieve a purpose. The parts may be inter-

connected with various types of joints, or simply in contact or close proximity.

Virtual assembly. A virtual assembly is a representation of a physical assembly

used in CAD software. A virtual assembly abstracts and approximates its physical

counterpart in various ways. For instance, the geometry may be discretized as a 3D

mesh. Additionally, the virtual assembly may include components that already exist

in the world and have been measured or 3D scanned to build the virtual model.

Physical variables. Physical variables fluctuate in the (simulated) physical world.

Examples include location, velocity, force, temperature and pressure.

Constructive variables. Constructive variables fluctuate in the design environment.

Examples include length, angle, relative position and orientation, as well as nominal

values of physical variables. Constructive variables that can be directly controlled

are also called “design parameters” (see Control).
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Behavior. The behavior of a design characterizes how input variables are mapped

to output variables. Behavior can be physical or constructive.

Physical behavior refers to the relation between physical variables. For instance, it

describes how an input rotation is converted into the motion path of an end-effector in

a mechanical assembly. This behavior is governed by the laws of physics (including

causality) and, in the case of electro-mechanical devices, by the software controlling

the actuators. It can be simulated in a virtual environment, up to a certain accuracy.

It is then called “simulated behavior”.

Constructive behavior refers to the relation between constructive variables. For in-

stance, it describes how changing a dimension of a part requires changing its position

in order to avoid interpenetration with another part. This behavior is governed by

the parametrization of the model, as well as the objectives and constraints enforced

by the system.

Critically, both types of behavior are interdependent: physical behavior depends on

design parameters, while constructive behavior may involve constraints and objec-

tives based on physical considerations. However, while physical and constructive

variables may be viewed as part of the same high-dimensional space [50], they do

not usually change at the same time.

Further, not all aspects of the behavior are equally important to the end user. Just like

they may care about the outer appearance of an object but not its internal structure,

they may also care about the motion of an end-effector but not of some intermediate

part. Any aspect that is important to the user is called a “behavior of interest”.

Control. Control is the ability to purposefully set, change or constrain variables or

behaviors. Purpose matters: exposing variables that users do not understand does

not yield control. Control can be physical or constructive.

Physical control is the ability to obtain the desired physical assembly or behavior.

It depends on several factors. First, different fabrication methods require different

practical skills and physical abilities. Computer numerical control (CNC) machines

have been successful notably because their requirements are relatively low. Second,

physical control depends on the sensitivity of the artifact’s physical behavior to
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approximations and external perturbations. For instance, measurement errors may

prevent design augmentations to correctly fit a target object. Similarly, physically-

based simulations are often deemed accurate enough to ensure physical control

of the behavior of interest, but the case study in Chapter 4 shows that additional

computational assistance may be needed. On the other hand, mechanical assemblies

and robots are typically expected to offer a high degree of physical behavior control.

Constructive control is the ability to obtain the desired virtual assembly or simulated

behavior in the design environment. The level of constructive control, as perceived

by the end user, notably depends on the ability of the system to match their skill and

needs. For instance, automated systems may expose partial or simplified constructive

controls to help novice users, but make advanced users feel constrained.

Complexity. Complexity describes the time or effort required to achieve the desired

result as a function of the number of variables and their interactions. Complexity

can be physical or constructive.5

Physical complexity is measured in time or effort spent fabricating and operating the

artifact. It is a function of the artifact’s probability of successfully achieving target

specifications, which depends on the degree of physical control.

Constructive complexity is measured in time or effort spent by the end user designing

the artifact. It is a function of the representation and parametrization of the artifact

and its simulated behavior, as well as the designer’s technical skills and cognitive

abilities (including working memory). While many shape modeling tools support

the creation of intricate shapes and structures, most computational design methods

assume that complex behavior specifications are a source of frustration or a limitation

(especially for novice users). Based on this assumption, a common strategy to reduce

constructive complexity is to hide part of the artifact and behavior from the end user,

thus exposing fewer design parameters, while automatically managing the other

constructive variables.

Computational design. Computational design refers to the use of computation to

support or carry out design tasks. Compared to CAD paradigms, design parameters

5A related distinction has been made between “functional” and “structural” complexity in the
literature [15].
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can be directly controlled by an algorithm to achieve the best performance under

constraints. In particular, a computational design method is said to be “fabrication-

aware” when fabricability objectives or constraints are taken into account. The

works presented in this thesis are instances of computational design.

Computational fabrication. Computational fabrication refers to the use of compu-

tation to support or carry out the fabrication process. This kind of approach typically

involves digital fabrication technologies such as 3D printers and laser cutters. The

current literature remains ambiguous about the exact difference between “com-

putational fabrication” and “fabrication-aware computational design”. A possible

distinction could be that computational fabrication methods focus more on taking

advantage (or working around the limitations) of a specific fabrication technology.

1.3 Contributions
This thesis presents two case studies in which computational assistance improves

designers’ level of control over the intentionally complex physical behavior of a

physical assembly. I conducted this research with the help and advice of the co-

authors indicated in the references below.6 In the first study, the space of feasible

drawing machine designs is so constrained that it is difficult to predict what physical

behavior can be achieved. I present a novel method for interactive guided exploration

directly in behavior space. In the second study, errors and approximations have a

significant impact on the behavior of chain reaction contraptions. I present a novel

algorithm to increase the robustness of the design, and therefore improve physical

behavior control. The main contributions can be summarized as follows.

(C1) Representation: support new types of complex physical behavior specifica-

tions.

(C2) Exploration: introduce a new method enabling users to easily explore design

variations that respect their physical behavior specifications.

6In this thesis, the first person “I” refers to my own claims, as well as my personal work in terms
of analysis and presentation. The collective “we/our” either refers to the work I have conducted with
other people, or holds the impersonal role commonly found in academic writing.
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(C3) Optimization: propose a new method to minimize the chance of real-life

deviation from physical behavior specifications.

These technical contributions and much of the text in this thesis were published in

three peer-reviewed articles:

• Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra.

SPIROU: constrained exploration for mechanical motion design. In Proceed-

ings of the 1st Annual ACM Symposium on Computational Fabrication, SCF

’17, pages 7:1–7:11, New York, NY, USA, 2017. ACM [111]

• Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra.

Exploratory design of mechanical devices with motion constraints. Computers

& Graphics, 74:244–256, 2018 [112]

• Robin Roussel, Marie-Paule Cani, Jean-Claude Léon, and Niloy J. Mitra.

Designing chain reaction contraptions from causal graphs. ACM Transactions

on Graphics, 38(4):43:1–43:13, 2019 [113]

1.4 Organization
The remainder of this thesis is divided into 4 chapters.

Chapter 2 analyzes related works through the lens of interactions and methods

giving users various levels of control over assemblies and their complex behavior.

In Chapter 3, the goal is to enable users to easily explore and fine-tune the

variety of patterns produced by drawing machines. I describe a novel drawing-centric

method that provides an enhanced representation (C1) enabling the user to select

feature points (such as intersection points) and prescribe geometric specifications on

them (such as: staying at the same position). These visual preferences, along with

the feasibility constraints of the mechanism, are combined to let users interactively

explore a range of desirable valid patterns (C2). Additionally, several examples have

been fabricated to validate the method. This work has been presented at SCF 2017

and published as the first and second papers mentioned above [111, 112].
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Chapter 4 describes the second case study: generalizing from continuous mo-

tion to a wider range of behaviors, I present a method to ease the design of large-scale

chain reaction contraptions. While the physical behavior considered in the previous

case study was a single trajectory (albeit complex) performed by a mechanical as-

sembly, here a disconnected collection of objects roll, topple, hit or fall into each

other. This behavior is described by a causal graph of events (C1) that specifies the

order in which events are expected to happen, including complex synchronizations

between parallel branches. The contraption layout is optimized to maximize robust-

ness (C3) to the various sources of uncertainty introduced in the process (including

modeling approximations and human assembly errors). Several complex examples

have been realized (and successfully run) to validate the method. This work has

been presented at SIGGRAPH 2019 and published as the last paper mentioned

above [113].

In Chapter 5, I summarize the case studies and discuss three main directions

for future work.



Chapter 2

Related work

In this thesis, I investigate computational design methods that increase user control

over the complex behavior of assemblies. To provide context, I analyze three types

of computational assistance that aim to reduce constructive complexity: design as-

sisted by behavior previsualization (Section 2.2), guided design space exploration

(Section 2.3), and inverse design in the specific case of moving assemblies (Sec-

tion 2.4). Each type offers various modes of interaction and levels of constructive

control over the assembly, its simulated behavior, or both. While some of these

methods also aim to increase physical control to some extent, I describe the main

advances in this direction in a section dedicated to the relatively new problem of

accommodating uncertainty in computational design and fabrication (Section 2.5).

Sections 2.2–2.5 show how each type of approach addresses specific sources

of complexity (physical or constructive, at assembly or behavior level), but may be

limited by other sources. This analysis, which contextualizes the general problem

stated in Section 1.1, is prefaced with a description of the classification methods used

and insights found in previous surveys (Section 2.1). Moreover, although the case

studies in this thesis investigate different aspects of the general problem statement,

each study adds its own specific challenges and contributions. Since comparisons

are easier with a full context, I discuss in detail the papers most relevant to each

study in a dedicated in-chapter section titled “Closely related works” (respectively

Sections 3.2 and 4.2).
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2.1 Previous surveys

The survey presented in this chapter analyzes works through the lens of user in-

teraction and control. By contrast, previous surveys in computational design have

analyzed the literature in terms of applications and methods. While early reports

have focused on specific topics such as material appearance [57] and topology opti-

mization [32], the increasing breadth of research directions has allowed later surveys

to adopt a wider scope.

Medeiros e Sá et al. [91] proposed an analysis of functional fabrication tech-

nologies, which they define as the design and manufacture of physical objects with

functionalities exploiting the capabilities of digital fabrication technologies. Works

are clustered according to the intended physical behavior of the objects: articula-

tion, elastic deformation, structural stability, balance, aerodynamics, appearance and

acoustics. Among other insights, the survey aptly observes the tension between two

concurrent research goals: (i) letting users explore the design space freely without

restricting them to prescribed shapes, and (ii) letting the system control the design

parameters to ensure a prescribed functionality.

Bermano et al. [8] later took a similar but more general perspective: fabrication-

aware design. While strongly motivated by the challenges of digital fabrication, this

topic is broader in scope and includes alternative manufacturing contexts such as

rod structures, wire sheets and architectural structures. The authors first note that

the capabilities of digital fabrication technologies exceed what human designers are

able to understand and specify exhaustively, a challenge that calls for new design

tools supporting partial specifications. Their classification is based on two axes:

(i) goal of the fabrication process or artifact usage, and (ii) shape and attribute

representations used by each method. The first axis divides works into several types

of objectives: appearance, deformation and motion, high-level objectives, domain-

specific objectives and process-specific objectives. One limitation of this grouping

is that some of the categories, such as “high-level” and “domain-specific” objectives,

are not precisely defined and difficult to distinguish from the other categories. This

does not, however, invalidate the general insight of the survey: different tasks usually
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require different geometric and physical representations.

Bickel et al. [14] adopted a different angle: stylized fabrication methods. This

term refers to design and manufacturing methods used to create an abstract or stylized

representation of a digital shape. The survey classifies techniques according to the

different phenomena that are abstracted, modified or considered when generating a

stylized physical object: shapes, materials, lighting and shadow, decompositions,

and “printing the unprintable”. Among other observations, it is noted that finding

the trade-off between automation and artistic control is particularly important in this

setting. Moreover, as many of these designs involve a complex manual assembly

sequence, the presented works can significantly benefit from intuitive assembly

instructions and error accommodation techniques.

Some other surveys, while not directly dedicated to computational design and

fabrication, are still relevant because they explore the notion of functionality of

a given artifact, which has a significant importance in design. One of the first

ideas explored in this regard is that the structure of an object (i.e., the arrangement

and relations of its parts) correlates strongly with its functionality, and therefore

that analyzing and preserving structure automatically may in turn help analyze and

preserve functionality. This relationship is notably mentioned in an in-depth analysis

of structure-aware shape processing by Mitra et al. [96]. Functionality inferred from

geometry and structure is also used in data-driven analysis and processing of shape

collections, as shown in a survey by Xu et al. [152]. Lastly, Hu et al. focus entirely

on functionality representations for shape analysis [56], going further than previous

surveys by considering interactions besides geometry.1

1While the survey proposes its own definition of functionality, it is worth noting that several
frameworks have already been proposed in design science literature to analyze how function relates
to specific attributes [53], such as behavior and structure [46]. Among other differences, the design
science view of behavior considers responses to stimuli independently from a specific source, whereas
Hu et al. only consider interactions between entities. This is not surprising since in shape analysis,
dynamic data is captured from real life or simulations, in which shapes are already fully formed and
interacting with each other. On the other hand, in design, the abstract behavior can be considered
separately from the function (which involves a context of use). This suggests that the applicability of
shape analysis frameworks to computational design may depend on their ability to infer a behavior
model that is independent from context.
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2.2 Design assisted by behavior previsualization

Traditional 3D design interfaces provide constructive control over the entire structure

and shape parameters of the artifact. At this level of control, computational assistance

typically consists in providing intuitive shape modeling tools, simulation feedback,

or a combination of both. Shape modeling is a rich area of research that is outside the

scope of this thesis, although some of the contributions mentioned here do belong

to this domain [89, 115]. Simulations allow designers to analyze and understand

how components interact and how their parameters influence the physical behavior

of the artifact. It is a staple of CAD software: to cite a few commercial examples,

SolidWorks, Autodesk Inventor and Solid Edge all provide motion and structural

analysis modules. It is common, however, for this type of software to require a high

degree of user expertise, and to run simulations below interactive speeds, which

limits the number of design iterations. Researchers have investigated solutions to

both problems: (i) integrating simulation visualization in intuitive shape modeling

interfaces, and (ii) finding ways to visualize simulated behaviors at interactive speed

without sacrificing too much accuracy.

Shape modeling with simulation feedback. In shape modeling methods, the main

source of constructive complexity is assumed to be the geometry and structure of

the artifact. Masry and Lipson [89] proposed a sketch-based interface where 3D

objects are reconstructed from a 2D input, before applying finite element analysis

to visualize deformation under a given load. Saul et al. [115] also used sketches,

to design chairs that can be fabricated from laser-cut sheet materials. The system

allows users to test the design by showing human models of various sizes sitting in

the chair to check its ergonomics, and running a fast rigid-body simulation to check

its balance. Schulz et al. [116] took a data-driven shape modeling approach where

users pick components from a preexisting collection. While these components are

automatically aligned and connected to each other, the user can still freely change

their shape parameters to personalize the designs. Simulation is used to highlight

any unstable part of the assembly. Garg et al. [44] described an interface to design

reconfigurable assemblies which looks similar to traditional animation software



2.2. Design assisted by behavior previsualization 25

(featuring a timeline, keyframes, etc.). These familiar controls are augmented with

a useful collision detection indicated both in the timeline and on the 3D model.

Ion et al. [58] took advantage of additive manufacturing to invent a new type of

machine: metamaterial mechanisms. These cell-based structures are printed as a

single entity and are able to reproduce the behavior of more complex mechanical

assemblies such as pliers, door latches and switches. An intuitive interface allows

the user to fill a 3D grid with the different types of cells, and visualize the object’s

behavior simulated by a finite element solver. Lastly, Oh et al. [101] implemented a

CAD system for exploratory design and fabrication of mechanical papercraft. As in

the method by Schulz et al. [116], novice users choose mechanisms from a dataset

and customize the various parts. The difference lies in the fact that their system

simulates mechanical motion. Interestingly, while a number of inverse motion design

systems have been published before this paper [157, 26] (described in Section 2.4),

the authors emphasize the importance of avoiding too much automation to allow

experimental open-ended design and let users understand mechanical interactions.

Visualizing simulated behavior. Compared to the issue of shape complexity tackled

in the previous paragraph, here the artifact’s physical behavior is difficult to either

simulate or visualize all at once, and needs to be displayed quickly in an intuitive

manner. Although not technically part of a design interface, the method by Mitra

et al. [97] to create “how things works” visualizations of mechanical assemblies is

particularly useful to help users understand how parts move and relate to each other.

Moreover, this motion analysis is performed automatically on the 3D model without

the need, common in CAD software, to tediously set up all motion constraints. In the

specific context of kinetic art, Furuta et al. [42] proposed intuitive ways to visualize

the behavior of interacting rigid bodies to help design mobile sculptures and chain

reaction contraptions. As this work is particularly close to our own, I provide a more

thorough analysis and comparison in Section 4.2. Another increasingly common way

to obtain interactive behavior visualization is to generate experimental data offline,

i.e., before the interactive session, to build a model of the behavior as a function of the

various design parameters. These experiments can be manual [144, 86, 98, 20, 41],
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or rely on accurate simulations [126, 119, 118, 142], which allows to generate larger

amounts of data in parallel. Two main directions have been explored to build the

behavior model: locally interpolating between sample points in design space stored

in efficient data structures (such a spatial trees), or globally regressing the behavior

function over the design space (e.g., using neural networks). Schulz et al. [119]

implemented the former type of method to interactively visualize various physical

phenomena (stress, deformation, heat distribution) within a CAD interface. The

latter type of method was used in a series of works centered on the design of free-

form aerodynamic objects, starting with Umetani et al. [144] on paper planes, and

followed by Martin et al. [86] on kites, Nakamura et al. [98] on bamboo-copters

and Fukusato et al. [41] on boomerangs. While these works aimed to display the

motion of flying objects interactively, Umetani and Bickel [142] parametrized 3D

shapes as PolyCubes to learn and display specific aerodynamic properties, such as

the surface pressure field, velocity stream lines and drag coefficient. Importantly, the

speed gained by evaluating a (usually smooth) behavior function instead of running

a simulation is often exploited not only for interactive visualization, but also to

provide additional forms of assistance, such as guided design exploration [126,

118] (described in Section 2.3) or even design optimization [144, 98, 119, 20, 41]

(described in Section 2.4). Both case studies presented in this thesis rely on the

smooth approximation of a behavior function.

With the assistance of behavior previsualization, direct constructive control

over the geometry gives users a more intimate understanding of why a given design

works, instead of asking them to trust a solution coming out of a black box. This

comprehension can make users more adaptable when faced with unexpected factors

that jeopardize the functionality of the object (e.g., fabrication defaults), rather than

having to redesign the object. However, this point assumes that the simulation is

accurate enough to account for the various sources of physical complexity. In Chap-

ter 4, I present a method that improves physical control over assemblies undergoing

complex sequences of events. Additionally, more automated systems shine when

user understanding is unnecessary or not even possible. When direct constructive
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control becomes too tedious (e.g., because of fabricability constraints, or unpre-

dictable behavior), more computational guidance needs to be provided to keep the

design experience productive.

2.3 Guided design space exploration
The need for guided design methods arises when two conditions are met: (i) some

aspect of the artifact is deemed too complex for users to control or predict entirely

(structure, physical behavior, fabricability constraints, or any relation between them),

and (ii) the value of a specific design is difficult to quantify, and better left to the

judgment of the end user.2 Regarding the latter condition, the textbook example in

computer graphics is the assessment of aesthetic qualities [136, 153, 35, 34, 105];

alternatively, it could be unclear what users value the most about a design [118]

(e.g., mass, durability, stability etc.). Guided exploration methods allow users to

explore the subset of designs that respect constraints. Therefore, whenever they

make a change, they do not have to wonder whether this new configuration is

feasible. In other words, they trade a small amount of constructive control for

a significant reduction of constructive complexity. Depending on the nature of

the interaction, guided exploration methods fall into three categories: (i) discrete

suggestions, (ii) subspace-based and (iii) model-based exploration.

Discrete suggestions. Such interfaces are typically the least intrusive as they still

offer traditional shape modeling tools, while providing alternative solutions or sug-

gesting edits to help achieve the desired behavior. Umetani et al. [143] proposed

a furniture modeling system that automatically suggests alternative designs when

dysfunctional configurations are detected, in order to ensure the stability and dura-

bility of the assemblies. Thomaszewski et al. [138] also let users browse alternative

designs, but for a different task: converting animated characters into fabricable link-

ages by replacing motor joints with rods. Lastly, rather than suggesting different

2Compared to inverse design, the problems tackled in this section lack a single, well-defined
optimization objective. However, this does not mean that the process involves no optimization at
all: while the question “what is the best design?” may be impossible to answer in the general case,
the question “what is the design closest to the current one that respects all the constraints?” is often
answered repeatedly during an exploration session [153, 35, 34, 70, 105]. This is also the case in
Chapter 3.
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designs, Schulz et al. [117] highlighted the deformation directions on a selected

part that would best improve the performance of a robot for the desired ground

locomotion task.

Subspace-based exploration. Subspace-based exploration takes a more active role

in changing the way users control a design. This type of method addresses two

sources of constructive complexity: (i) an excessive number of design parame-

ters [126, 118, 156], and (ii) the impossibility for users to predict what specific

design is achievable under the various feasibility constraints [153, 35, 105]. In this

type of approach, each specific design is considered as a point in a high-dimensional

space (called “design space” or “shape space”). The problem consists in building

a low-dimensional design subspace that is easy to explore while respecting various

functionality and fabricability constraints. In the context of architectural design,

several works have focused on the rationalization of freeform surfaces (understood

as the discretization of these surfaces into flat polygons that can be fabricated and

assembled). Specifically, these methods allow users to explore the shape space of

meshes that already respect rationalization constraints, without needing to enforce

them a posteriori. Yang et al. [153] showed how to explore a local approximation

of the subspace respecting such non-linear constraints. The subspace is shown as

a clickable 2D heat map. The more the current design is modified, the larger the

distance gets from the initial point in this subspace, and the more constraints tend to

be violated; therefore, this type of method usually features a reprojection step, where

an optimization is used to find the closest design lying on the constraint-preserving

manifold in shape space. Deng et al. [35] observed that such constraint-based defor-

mation methods often lacked local control (“local” on the mesh, not in shape space),

and presented a method to build a local subspace approximation that minimizes

mesh deformations far from the region of interest. This algorithm, as well as an-

other by Deng et al. [34], also allows model-based exploration, as described below.

Besides these geometric approaches, researchers have investigated ways to expose

subspaces enforcing physically based constraints. Shugrina et al. [126] proposed a

general framework where the design space is sampled, and computationally expen-
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sive validity tests are performed offline, so that the subspace of valid designs can

be approximated by a spatial tree structure. At interaction time, predefined sliders

are exposed to the user, featuring dynamically updated validity ranges which are

computed from the tree. This particular interaction inspired the dynamic bounds

featured in our own work (Chapter 3). Schulz et al. [118] tackled a different problem:

exploring the Pareto optimal front of a design space in the case of multiple opti-

mization objectives. The advantage is that design variations can be directly explored

in the low-dimensional space defined by these performance metrics, instead of the

potentially high-dimensional design space. Zhu et al. [156] later proposed a similar

type of interaction to explore the space of foldable carton patterns according to three

high-level properties: material efficiency, ease of folding and stability.

Model-based exploration . Such systems let users modify the 3D model directly,

and immediately propagate changes to the rest of the model to maintain constraints.

They address similar sources of complexity as subspace-based methods, with the

difference that feasible design changes are easier for users to predict. As a result,

some works prefer to use the word “editing” rather than “exploration”, although it

may remain difficult to predict exactly how the requested deformation is going to

affect the entire design. This type of interaction is also called “handle-based” when

the user initiates the deformation by directly moving vertices on the mesh. The

method by Deng et al. [35], described earlier, allows subspace-based exploration

given a handle-based deformation, but also features a global optimization to apply

this deformation while respecting constraints and minimizing non-local changes.

Later, Deng et al. [34] proposed a constrained optimization framework that is fast

enough to be continuously run along the deformation path obtained by moving

the handle, effectively making the design travel on the constraint-preserving shape

space manifold. Interestingly, an alternative form of subspace-based exploration

is provided, not by changing the shape space parameters, but by changing the

respective weights of the soft constraints (as well as by adding or removing such

constraints). Koo et al. [70] proposed another constrained optimization framework to

map functional specifications (e.g., “cover”, “fit inside”) to a specific design, in order
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to model “works-like” prototypes of furniture. Here again, the optimization is fast

enough to change a parameter and witness the other parameters change in real time.

Pérez et al. [105] introduced a comprehensive design system to create Kirchhoff-

Plateau surfaces. Their interface features both subspace-based and handle-based

exploration. At a conceptual level, the aesthetic qualities of such surfaces and the

highly constrained space of valid designs make their problem very close to our work

on drawing machines; therefore, I describe and compare it more in more detail in

Section 3.2. Lastly, in the context of assemblies performing a desired motion, some

works allowed users to deform a part while automatically adapting the others to

enforce the target behavior, such as Umetani et al. [144] with paper planes, Zhang et

al. [155] with mechanisms retargeted to custom shapes, and Geilinger et al. [45] as

well as Ha et al. [50] for various robotic tasks. More rarely, some systems let users

change the geometry of both parts and motion paths, such as Bächer et al. [3] with

planar linkages.

Guided exploration is useful to give users constructive control even when the

design space is heavily constrained. However, in most existing works this user

control remains primarily at the level of the geometry rather than the simulated

behavior (as opposed to some inverse design methods presented next). In Chapter 3,

I present a guided exploration method that is completely behavior-centric, and allows

users to define constraints directly on the simulated behavior representation.

2.4 Inverse motion design

Finding the right assembly configuration to perform a desired physical behavior

is an example of inverse problem: given the result, the goal is to determine the

cause. The main source of constructive complexity here is the relationship between

design parameters and simulated behavior. While inverse design problems have

been investigated in many contexts (e.g., sound [13] or elasticity [87]), a significant

number of works have focused on artifacts that produce or undergo a specific motion.

Since it is also the case for the case studies of this thesis, in this section I restrict

the scope to inverse motion design. Compared to the previous sections, here users
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are allowed to specify part of the assembly, part of the motion, or both. However,

the workflow is more unidirectional in the sense that the system provides a single

result directly from the user’s input. This type of approach significantly reduces

the constructive complexity for novice users. However, even within this context,

various levels of constructive control may be deemed desirable for users. There are

four main categories of motion specification: (i) motion paths, (ii) motion poses,

(iii) motion routines and (iv) predefined motion.

Specifying motion paths. At this level of control, users typically provide an external

assembly, as well as a number of simple motion paths tracing out the trajectory of

some end-effectors in this assembly. The goal of the design algorithm is to choose

the right underlying mechanical elements and optimize their shape parameters in

order to produce the target motion. Research in this area has mainly focused on the

kinematics of mechanical assemblies. Zhu et al. [157] introduced one of the first

mechanical toy modeling frameworks, in which the user defines the rotation and

translation of some character parts. The algorithm fills an underlying box with the

mechanical elements required to drive this motion, connects them together, and runs

an optimization to find the best design parameter values. Coros et al. [26] proposed

an improved method that notably accepts more complex end-effector motion curves

drawn by the user. Since some aspects of this approach influenced our own work on

drawing machines, I describe and compare it in more detail in Section 3. Ceylan et

al. [19] followed on these works with a system that accepts a different kind of input:

motion capture sequences. While the number of motion paths to follow is higher

than in previous methods (one for each bone of the captured model), each individual

path is approximated to become planar, cyclic, and realizable by a small combination

of gears, pulleys, and four-bar linkages. The resulting assembly produces a motion

that is more a stylized interpretation than an exact reproduction. In a similar vein,

Jeong et al. [61] created a augmented reality environment that tracks the motion

of hand-held characters drawings, finds the best matching mechanism, and projects

it back on a board for editing via a tangible interface. In the specific case of

drawing machines, Takashi and Okuno [135] proposed a method which, compared
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to previous works, does not require the input curve to be continuous and closed. On

the other hand, their cam-based assembly only produces a coarse approximation of

the input. While this work is close to ours in terms of application, we implemented

a form of guided design exploration rather than inverse design. Meanwhile, some

contributions added flexibility to the mechanical assemblies: Megaro et al. [95]

proposed a framework to design compliant mechanisms; Song et al. [130] focused

on wind-up toys; Ion et al. [59] followed up on their metamaterial mechanisms

contribution [58] by introducing a computational design tool that finds the cell

configuration reproducing an input motion path. Overall, while such methods allow

the user to specify the motion of parts somewhat precisely, they have entire control

over the underlying mechanical assembly. Moreover, these motion paths are usually

simple enough to be drawn by hand in one go. One possible limiting factor is the

necessity to devise the right curve metric as motion paths get increasingly complex,

which may significantly impact the optimization landscape.

Specifying motion poses or configurations. In some other works, the motion is

specified more sparsely than trajectories: with one or more target assembly con-

figurations. For instance, some authors have proposed solutions to the problem of

automatic linkage synthesis given target poses. Megaro et al. [93] proposed an inter-

face allowing users to sketch planar assembly parts in two extremal configurations.

Their system then generates a linkage moving the parts back and forth between these

two poses. Later, Nishida et al. [99] tackled the harder problem of automatically

creating a linkage for 2.5D multi-body objects transitioning between more than two

poses. While these examples still focused on kinematics, other researchers have con-

sidered mechanisms involving a range of dynamic effects. Here, besides generating

the assembly, the complexity may lie in simulating or controlling the physical behav-

ior of interest. Such assemblies may be actuated by the tension in a cable network,

such as the animated plush toys designed by Bern et al. [9], the kinematic chains

and trees of Megaro et al. [92] and the kinematic wire characters of Xu et al. [151].

While Li et al. [79] also worked on cable-driven mechanisms, they considered the

problem of an end-effector applying a specific force and displacement at a number
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of points, rather than reaching a target pose. In the context of elastic materials and

springs, Ma et al. [83] proposed a tool to design soft pneumatic objects able to reach

several target deformed shapes. Chen et al. [20] described a simulation scheme that

is fast and accurate enough to optimize the geometry of a jumping mechanism so

that it reaches a target configuration by flying over an obstacle. Meanwhile, Bharaj

et al. [12] and Takahashi et al. [134] focused on spring mechanisms with several

stable configurations. Overall, few of these dynamic systems support non-trivial

user interactions: Bern et al. [9] proposed an interactive posing system supported

by their fast simulation, while Takahashi et al. [134] included a form of guided

exploration. Lastly, works with the least amount of user control allow specifying

one pose, and some characteristics of a second pose. For instance, Yuan et al. [154],

in their work on transformable characters, let users define the initial configuration

of a skeleton, and the outer boundary of its final configuration. Another example is

the original problem of ballistic shadow art explored by Chen et al. [23]: given an

initial configuration of rigid bodies and light source in 3D space, and a 2D shape,

the goal is to find the initial velocities of the bodies such that, at some point in time,

their combined shadows outline the desired shape. This method was only validated

in simulation, and did not lead to any fabricated prototype, notably because the

sources of error and unpredictability were deemed to strong too reliably reproduce

this behavior in real life.

Specifying motion routines or global characteristics. Another way to specify the

motion of an artifact is to describe its behavior at a higher level. This can mean

defining global constraints (e.g., wheels having a similar velocity [155]), weighing

specific characteristics of the motion (e.g., smoothness and effort [11]), or composing

pre-defined motion sequences [117]. Almost all the examples in this paragraph

focus on a single goal: locomotion. Indeed, this is a highly complex task that can be

realized in a wide variety of ways but is generally deemed too difficult for the user to

control precisely. In the context of passive mechanical assemblies, Bharaj et al. [11]

proposed an interface allowing users to design walking automata by selecting leg

mechanisms from a database, placing them on a body, and tweaking the weight
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of various objectives such as walking a long distance of walking more smoothly.

Later, Zhang et al. [155] demonstrated how to retarget a mechanical template to a

user-specified shape. Their interface supports global motion constraints but is much

more focused on mechanism and shape editing. As mentioned earlier, they notably

allow model-based guided editing. Meanwhile, other researchers have investigated

problems in robotics. Megaro et al. [94] described an interactive design system to

create robotic creatures that walk. Their core contribution addresses the problem

of controller design, i.e., computing time-varying motor values for each actuator

in order to achieve a specific gait. The user can interactively adjust the gait type,

footstep pattern and morphology of the robot. Schulz et al. [117] proposed a

detailed interface allowing users to explore how both geometry and motion affect

the performance of a robot with a ground locomotion task. While the user is let

free to select various gait sequences and customize the geometry, the system can

also optimize the geometry to achieve a specific gait direction. Lastly, Geilinger

et al. [45] used a drag-and-drop interface similar to the one by Bharaj et al. [11],

but for robots with an arbitrary arrangements of legs and wheels. Their system can

optimize the geometry to reach a specific speed or travel through sparse targets, and

also include a model-based guided editing tool.

Predefined motion. This section would not be complete without works aiming to

achieve a type of motion that is completely built into the problem, and cannot be

controlled by the designer. Such works have little in common except that the only

input is the geometry of the object(s). Bächer et al. [4] showed how to turn arbitrary

3D shapes into spinnable objects by adapting the internal mass distribution. Li et

al. [78] tackled a problem in the domain of reconfigurable objects: making pieces of

furniture foldable by segmenting the shape into units linked by pivot joints, so that

the resulting configuration is as flat as possible. Lastly, Xu et al. [150] proposed a

method to turn a pair of 2D shapes into meshing gears. While the target motion is

relatively simple (rotation of each part), the key behavior that is sought here is the

optimal transmission function between the two gears.

Compared to guided exploration, inverse design methods reduce constructive
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complexity by running a constrained optimization on the design. While many

of these works give users significant constructive control in terms of simulated

behavior specifications, these inputs are often kept relatively simple. However, for

more complex inputs, it may be difficult for users to predict what is feasible or not. In

Chapter 3 I show how a more interactive guided exploration approach allows users

to progressively design intentionally complex motion paths. Moreover, although

in inverse design simulations are tightly integrated within the design loop, existing

systems still typically neglect the influence of physical errors and approximations.

In Chapter 4 I present a method to achieve a chain reaction of events that is robust

to such uncertainties.

2.5 Accommodating uncertainty

One of the most appealing applications of digital fabrication technologies is per-

sonal fabrication, i.e., the ability to create customized objects by accommodating

variations between users. Very few design systems, however, are meant to accom-

modate unintended or unpredictable variations of the design or its context of use.

As described in Chapter 4, all steps of a design-and-fabrication workflow are sus-

ceptible to uncertainties: physical measurement errors, modeling and simulation

approximations, fabrication errors, etc. These sources of physical complexity can

lead to many design-and-fabrication iterations which are frustrating for the end user.

The most direct way to deal with uncertainty is to attempt to reduce it. Since

“uncertainty” can refer to sources as diverse as approximations, errors and random

variation, there is value in finding a common measure: this is the problem of un-

certainty quantification [90]. A related issue is to determine which input variables

are most responsible for the variation of a model’s response (in order to focus the

uncertainty reduction efforts on these): this is sensitivity analysis [54]. While uncer-

tainty can then be reduced by investing resources into more accurate measurements,

models and fabrication, another approach is to computationally determine which

values of the unknown inputs result in a model’s response that best matches exper-

imental results, a technique known as calibration [66]. Nevertheless, both of these



2.5. Accommodating uncertainty 36

uncertainty reduction approaches require a level of physical control and technical

skills that might not be available to all users. It is then important to increase the

robustness of a design to uncertainties.

In the context of engineering, robust parameter design is a methodology intro-

duced by Taguchi [110] to improve the quality of products and processes. Taguchi

proposed to distinguish “control factors” (which in Chapter 4 correspond to the

nominal values of layout parameters) from hard-to-control “noise factors” (corre-

sponding to actual layout parameter values, dimensions, physical properties, non-

physical simulation parameters, etc.). Then, the optimal combination of values of

the control factors is chosen so that the target response is robust to the variation of

the noise factors. To find this combination, physical experiments are run to measure

the influence of each control factor on the correlation between noise factor variation

and output variation. This approach assumes that noise factors can be easily con-

trolled in an experimental setting. In the context of Chapter 4, however, most noise

factors cannot be physically changed (because the objects are assumed to already

exist, and because some factors are non-physical). Even if such experiments were

simulated, Taguchi’s method scales poorly to high numbers of control and noise

factors. While our method primarily increases the robustness of the outcome to de-

viations from nominal values of the layout parameters, we assume that doing so also

makes the outcome more robust to the uncertainty of other variables (notably the

objects’ dimensions). Moreover, the proposed extension to complex causal chains

(Section 4.6) helps the method scale to a large number of layout parameters by

conducting a preliminary sensitivity analysis for each critical event in the chain.

Closer to end users, some works in human-computer interaction involve both

hardware and software to allow design changes a posteriori. Teibrich et al. [137]

built a system composed of a 3D printer, a 3D scanner, a mill and a user interface to

patch an already printed object by removing parts and adding new ones. Given the

original and modified 3D models, their algorithm automatically computes how to

patch the 3D print. Compared to typical 3D printing workflows, where new designs

are fabricated from scratch every time, this approach significantly reduces the waste
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generated across design iterations. Groeger et al. [48] proposed a method to embed

heating elements in parts of a design so that the 3D printed object can transition

on demand from a solid into a deformable state and back. Both approaches allow

not only fixing design errors, but also efficiently repurposing existing 3D prints.

Another type of approach consists in modifying the design to increase its robustness

against errors. Kim et al. [67] focused on characterizing measurement errors. They

conducted two studies to understand how users make erroneous measurements, even

when given precise instructions. Moreover, they proposed strategies to accommodate

such errors by making designs more robust, which is very similar in spirit to our

work on chain reaction contraptions. I compare this contribution to our own in

Section 4.2. While all of these works present interesting ways to accommodate

errors, and thus reduce physical complexity, they remain primarily focused on static

objects. In Chapter 4, I present the first method to accommodate errors in assemblies

displaying long (and codependent) motion sequences.



Chapter 3

Designing complex mechanical

motion with guided exploration

3.1 Introduction
Toy of the Year in 1967, the Spirograph is an easy-to-use family of interlocking

gears allowing to draw a great variety of intricate curves (see Figures 3.1 and 3.2).

It is probably the most popular example of drawing machine1 among the many types

invented over the last few centuries (see Figure 3.3). With the recent democratization

of personal fabrication tools, a wider range of artists and makers can now create

their own drawing machines. The simplicity of the mechanical parts involved makes

them relatively easy to fabricate, opening the door to new fascinating patterns.

Designing such machines, however, is particularly challenging. Many of these

mechanical devices transform an input rotation into a more complex cyclic output

by combining oscillations of different periods and amplitudes. To produce a closed

end-effector curve, the radii of mating gears (or equivalently, the number of teeth)

need to have rational ratios. It is easy to enforce this constraint by restricting radii

to positive integers; the size of the pattern can still be controlled by a global scaling

factor. The downside is that the design space becomes much more complex to

explore: as the period is governed by modular arithmetic between radii, the visual

output can radically change from one value to the next (see Figure 3.2). In other

1See for instance the various academic works inspired by Spirograph patterns over the last few
decades [36, 51, 81, 39].
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Figure 3.1: Model of a basic Spirograph. In this version, the moving gear rolls inside the
fixed one (the teeth are not represented for simplicity). There are three design
parameters: rF is the radius of the fixed gear, rR the radius of the rolling gear,
and d is the distance from the center of the rolling gear to the pen hole. The
geometric constraints and equations of motion are detailed in Section A.2.1.

words, the design parameters become less predictive. Furthermore, the number

of design parameters obviously increases with the number of parts. While this

greatly enriches the space of possible curves, manually refining a design becomes

difficult with as little as three continuous parameters. Indeed, nonlinearities make

the influence of each control hard to grasp, and each one possibly influences the

bounds of the others, making the space harder to explore.

In this chapter, we propose a guided exploration method to design complex

mechanical trajectories by interacting directly with the output pattern. In contrast

to previous works [3], we focus on: (i) highly structured curves, which would be

tedious to edit point by point, and (ii) allowing the continuous exploration of local

design variations, rather than recomputing a new solution after each curve edit. With

model-based exploration, modifications made in one place of the pattern may result

in unexpected changes somewhere else. Our method, on the other hand, allows users

to define visual preferences and explore the resulting constrained subspace.

Our exploration workflow consists in a coarse-to-fine definition of visual pref-

erences that progressively refine the choice of curves (see Figure 3.4). First, as an

entry point into the design space, the user draws a coarse sketch that defines the

global properties (e.g., order of rotational symmetry) and appearance of the desired

pattern. After selecting an initial curve among suggestions proposed by the system,
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Figure 3.2: Spirograph patterns. The set of finite curves produced by the Spirograph
model in Figure 3.1 can be explored by sampling the reduced parameters d

rR
(continuous) and rR

rF
(discrete) inside an open unit square (excluding the degen-

erate case d
rR
= 0, which forms a perfect circle, and ignoring the global scale

parameter). See the curve equations and constraints in Section A.2.1. The val-
ues of rR

rF
must be rational to produce finite curves, and here correspond to the

Farey sequence F7 without the first and last terms (see footnote 3 in Section 3.4).
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(a) (b)

(c) (d)

Figure 3.3: Examples of drawing machines. (a) Spirograph, (b) Harmonograph, (c) Hoot-
Nanny (aka Magic Designer), (d) Jean Tinguely’s Cyclograveur [17]. A his-
torical archive is available at DrawingMachines.org [43]. Modern commercial
examples include Joe Freedman’s Cycloid Drawing Machine [127] and Bruce
Shapiro’s Sisyphus [131].

changes can be made via sliders within a domain that respects the feasibility con-

straints of the corresponding mechanism. When one slider is moved, the bounds

of the others are automatically updated. As a key interaction, the user can define

visual preferences directly on the drawing. These take the form of special points on

the curve that can be constrained according to their geometric properties. The user

can then explore local variations closest to these specifications via new handles that

are automatically generated. Once the user is satisfied, the shape of the mechanical

parts is automatically generated and exported for laser cutting fabrication.

Technically, we enable the above key interaction with a novel dynamic

reparametrization method that locally samples the high dimensional configuration

space of a given mechanism, measures the closeness of each sample point to the
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(a) Retrieval by coarse sketching

(b) Constrained exploration

Machine type and
discrete parameters
are fixed.

Figure 3.4: Overview of our design workflow. (a) The user first selects a mechanically
feasible drawing by providing a rough sketch, and is then able to (b) interactively
explore local alternatives by defining visual constraints directly on the pattern
(here, the cusp position). The resulting machine is automatically exported to
laser cutter profiles for fabrication.

user-defined preferences, approximates the closest subspace, and exposes new design

parameters to navigate this subspace.

We evaluated the effectiveness of our design tool on several test scenarios,

conducted a user study, and fabricated several physical prototypes able to draw

patterns created by users. Overall, we found that dynamic reparametrization allowed

users to reliably make meaningful fine scale adjustments to their pattern designs.

3.2 Closely related works
Drawing machines have a long history in mathematics [103, 140, 148], art [17, 25,

102] and crafts [18, 29]. Before computers, tools such as Suardi’s geometric pen



3.2. Closely related works 43

(early 19th century) [1] were used to accurately draw a variety of curves. Simulat-

ing drawing machines is now relatively easy with a computer-controlled two-axis

machine or a robotic arm (using inverse kinematics [60]). Such modern machines,

however, can be expensive or require expertise to fabricate and operate (compared

to laser cut or 3D printed machines). Their versatility comes at the cost of speed,

compactness and power efficiency, especially when the target application requires

the same complex motion to be repeated at a high frequency.2 Therefore, being able

to determine the design parameters of a relatively simple mechanism that realizes

a target end-effector trajectory is valuable. One of the most fundamental results

in this regard is Kempe’s universality theorem [65], which states that for any ar-

bitrary algebraic plane curve, a linkage can be constructed that draws the curve.

The constructive method proposed by Kempe, however, produces mechanisms with

so many links that they are impossible to fabricate in practice (see Figure 3.5).

There have been many endeavors since then; for instance, Liu et al. [82] recently

proposed a method to reproduce trigonometric plane curves with either Scotch yoke

mechanisms or serial chains. Works in this field, however, usually aim to reproduce

pre-existing curves for evaluation purposes, rather than to propose a design interface.

More broadly, the aesthetic features and qualities of drawings made with

machines have been studied from a variety of lenses: analytical [63], empiri-

cal [123, 124, 133], and philosophical [100]. Although such studies differ from

our work in terms of goal and methodology (describing and characterizing the space

of feasible curves rather than proposing a tool to explore it), they highlight the im-

portance of exploring the space of possible drawings (rather than seeking the best

drawing according to some metric). For instance, O’Dowd argues: “Drawing, being

located in the arts, fundamentally inverts a task-focused convention. Drawing is not

a task to be solved but a space to be explored.” [100]

In the context of computational design research, Coros et al. [26] made an

2An example of such application is the Risley prism scanner [77]. Similar to a pen moved by
a pair of gears, an electromagnetic beam is steered by two wedge prisms (called a Risley prism
pair) that rotate relative to each other. The motion pattern of the beam going through this pair is a
trochoid [85], i.e., exactly the sort of curve that can be drawn with a Spirograph [51]. The space
covering properties of such a curve can be used for accurate scanning and target tracking [24, 77].
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(a) (b)

(c) (d)

Figure 3.5: Example of Kempe linkage. Four snapshots of a simulated Kempe linkage
whose end effector (red vertex) draws a trifolium curve. While such a curve can
be drawn with a simple Spirograph (see Figure 3.2), Kempe’s general method
leads to a structure composed of dozens of links. This specific linkage was
constructed using Kobel’s implementation [69].

influential contribution in the form of a sketch-based interface allowing users to

customize the motion of mechanical characters. The process of matching an input

end-effector motion to an assembly configuration is twofold. First, a library of

parametrized mechanisms is sparsely sampled and simulated offline to obtain a rep-

resentative database of motion curves. At the beginning of a design session, the user

is asked to compare curves from the database. This allows building a feature-based

curve distance function that reflects the user’s visual perception. Then, when the

user sketches the desired motion of a part, the database is queried using this distance

function to find the best matching mechanism, along with a set of initial parameter

values. In a second time, assuming that the retrieved curve already matches the

input sketch reasonably well, a gradient descent optimization is performed on a

point-based curve distance function to find the best continuous parameter values.

Once this optimization has been performed for each motion sketch given by the user,
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individual mechanisms are connected together with gear trains in a semi-automated

fashion, and a support structure is automatically added to finalize the design.

This work was an important source of inspiration for our own method. We

query a database of sampled parametrized mechanisms with an input sketch in a

similar fashion. However, our approach differs in several ways. First, we auto-

complete the sketch by symmetrizing the strokes and connecting them with a fitting

spline. Second, we effectively reduce the search space by performing a Fourier

analysis on the input curve, and computing design parameter values from the Fourier

coefficients. Third, we do not require a initial curve distance calibration, and instead

use a symmetrized Procrustes distance that we found sufficient for our needs. Besides

this curve matching step, the remainder of our workflow achieves a different type

of interaction (as described in Chapter 2): guided exploration rather than inverse

design. This is mainly due to the fact that the design space of our drawing machines,

although aesthetically diverse (see e.g. Figure 3.15), is so constrained that it is hard

for a novice user to know a priori whether a specific motion curve is achievable.

For this reason, our design problem also shares interesting similarities with

the problem of designing Kirchhoff-Plateau surfaces (KPS) tackled by Pérez et

al. [105]. KPS are defined by the authors as networks of thin elastic rods embedded

in pre-stretched membranes. The competing tensions of the membranes and rods

create, at equilibrium, a 3D shape composed of minimal-surface patches. Because

of this complex physical phenomenon, the space of feasible designs is extremely

constrained and hard to predict. In other words, as in our work, one cannot expect

that any given shape can be precisely approximated by a reasonably simple KPS (or

machine drawing in our case). This problem justifies a similar computer-assisted

design paradigm. The authors propose a mix of guided exploration and inverse

design tools; for brevity, we will focus on the former because it is the closest to our

approach. The user first draws an initial rod network that is simulated to previsualize

the resulting KPS. A 2D constraint-preserving design space can then be explored

to discover feasible shape variations. This space is obtained by computing the

dominant modes of the sensitivity matrix, which is the Jacobian of the deformed
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(equilibrium) configuration variables with regard to the design parameters. The

user can impose additional constraints on the deformed configuration, which are

incorporated by multiplying the sensitivity matrix by a projection matrix derived

from the constraint functions.

The essential difference with our own constrained exploration problem lies

in what the constraints are applied to. Pérez et al.’s formulation, as other works

before [153, 35, 34], defines constraints on vertices of the discretized shape, and

assumes that the topology is fixed. In our case, however, constraints are defined on

Points of Interests (specifically curvature maxima and intersection points), which

can appear or disappear, and merge or split, as the user changes the design. In other

words, the problem of finding correspondences between constrained points from

one configuration to the next, which is trivial in these works, requires a tracking

algorithm which may not always return a solution in ours. Consequently, constraint

functions are not defined over the entire design space, and thus not differentiable

everywhere, which makes constraint Jacobian based approaches difficult. However,

we found the Weighted Principal Component Analysis to be a reliable approach in

our scenario, as it is more robust against disappearing Points of Interest (at the cost

of a higher number of sample points per subspace computation).

3.3 Overview and definitions

Mechanical drawing machines are typically made of gears and bars arranged so

that an end-effector can trace out intricate 2D patterns. Such a device physically

realizes an algebraic expression connecting the machine part parameters to the

output drawing. This tight coupling between the parameters and the resultant pattern

variations makes the designers’ task of exploring the design space very challenging.

Specifically, while on one hand modifying a single parameter may cause several

simultaneous changes (e.g., twisting and scaling), on the other hand a single desired

change often requires synchronous manipulation of multiple parameters. Our goal is

to decorrelate these variations. Rather than trying to find the best possible separation

(which tends to be subjective or context-dependent), our goal is to allow users to
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define their own visual constraints or invariants in the drawing space, so that other

variations can be explored independently.

There are two main technical challenges to tackle: first, mechanisms are often

described by a relatively high number of parameters (3-8 in our examples), both

continuous and discrete, and whose valid domain is implicitly defined by a set of

non-linear constraints; second, mapping invariants in the drawing to a corresponding

parameter subspace cannot be done analytically in the general case, as the relation

between parameter changes and drawing changes is very complex.

We address these challenges with a two-step workflow (see Figure 3.4). The

first step, described in Section 3.4, consists in selecting an appropriate machine

by defining global pattern characteristics and providing a coarse sketch. This step

notably allows to assign and fix all discrete parameters. During the second step,

described in Section 3.5, local continuous variations can be explored while dynami-

cally specifying visual invariants. Our key contribution is twofold: identify a set of

recurring geometric regularities involving relevant feature points that can be tracked

as the drawing changes (Section 3.5.1), and a novel local approximation method that

allows to explore the subspace where such regularities appear (Section 3.5.2).

We evaluate our method in several ways (see Section 3.6). First, we demonstrate

a number of cases where our invariants allow meaningful changes in the drawing

(Section 3.6.2). Second, we validated the feasibility of our drawing machines by

fabricating several prototypes (Section 3.6.3). Lastly, we conducted a user study to

assess the ability of invariant-based parameterization to efficiently help navigating

the configuration space (Section 3.6.4).

Let us now define the notation used in the rest of the chapter. Each type of

machine is described by:

• A set of design parameters x = (xd, xc) (the concatenation of discrete and

continuous parameters), evolving in a design space D implicitly bounded by

a system of algebraic constraints C(x) (typically nonlinear).

• A simulator that works out the trajectory γ(x, t), t ∈ [0,T] (where T is the

period) traced by the end point. It also provides a time series of the positions
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Figure 3.6: Pattern retrieval results. Starting from an automatically symmetrized user
sketch (left), we retrieve the best matching patterns in the database—lower
value indicates a better candidate.

and orientations of each machine part for visual inspection.

• A representation (or schema) S of the mechanism geometry at different levels

of detail (coarse for visual checking, detailed for export and fabrication).

In this chapter, “configuration space” or “parameter space” refers to D, while “curve

space” or “drawing space” denotes the Euclidean 2D space of the trajectory.

3.4 Pattern retrieval
The first step of the design workflow is an inverse problem: finding the parameter

combination solution of

min
x∈D′

d(γ(x), γ̂) (3.1)

where γ̂ is a spline fitted to the user’s sketch (Section 3.4.1), D′ is a subspace of D

computed from the features of γ̂ (Section 3.4.2), and d is a measure of dissimilarity

between curves (Section 3.4.3). Since the patterns produced by drawing machines
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are most often abstract, intricate, and generally tedious to sketch precisely, the result

may only coarsely match the user’s intent. Our goal in this step is to find a value for

the discrete parameters (i.e. the radii), so that the remaining continuous space can

be explored.

Once γ̂ and D′ are computed, a set of Nb best matching candidates {γi} is

retrieved via brute force comparison of γ̂ to drawings sampled in D′. Redundant

drawings are avoided (to some extent) by making sure that the radii are coprimes

(i.e., they do not share a divisor other that 1). This is enforced by sampling values

from the Farey sequence3 (without the first term), which can be computed with linear

complexity in the number of terms [114]. Continuous parameters, on the other hand,

are naively sampled (within feasible bounds) using grid search. The Nb best matches

are presented to the user, who can thus choose the best x (see Figure 3.6).

3.4.1 Sketching and spline fitting

The user first draws a rough sketch. Construction lines can be used to pre-set the

order of rotational symmetry: the pen strokes are then automatically symmetrized

(see Figure 3.7).

Our input is therefore a sequence of Ns disconnected, noisy strokes (represented

as polylines) that we want to turn into a smooth closed spline. Obviously, if Ns = 1

we can fit the spline directly. Otherwise, our goal is to obtain the shortest closed path

that runs through all strokes. This amounts to a variant of the traveling salesman

problem (TSP), where part of the path is already fixed. We start with the integer

program formulation of Dantzig et al. [30], and make the following modification.

Let the 2Ns ends of each stroke be the vertices V of a complete undirected graph.

The set of edges E in this graph corresponds to the connections between each end.

In order to force the connection between two ends of the same stroke, we define the

3 The Farey sequence Fn for any positive integer n is the ascending series of irreducible fractions
between 0 and 1 whose denominators do not exceed n. Thus the rational number a/b belongs to Fn

if 0 ≤ a ≤ b ≤ n and (a, b) = 1 [52].
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Figure 3.7: Examples of splines fitted to input sketches. Each sketch required only 1–4
strokes that were automatically symmetrized.

coefficient of each edge as

ci j =


−k if i and j belong to the same stroke,

di j otherwise,
(3.2)

where di j is the Euclidean distance between the vertices i and j, and k is a positive

constant. For k high enough, it is always more advantageous for the solver to connect

the two ends of a given stroke together, while still having the freedom of choosing

the connection order. We use the Gurobi solver [49] for this optimization, which

relies on a linear-programming based branch-and-bound algorithm. We obtain an

ordering of the strokes as well as the points within these strokes (given by the order

of the ends). Lastly, we concatenate the strokes and fit a closed cubic B-spline γ̂

with a user-defined smoothing factor.

We note that while the TSP is NP-hard, in practice the number of strokes tends

to be small; therefore, in all of our examples, the processing time of the entire step

was around 0.01s.
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3.4.2 Reducing the search space

To prevent the grid search from becoming prohibitively expensive, we prune the

search space with a number of empirically determined rules. First of all, the degree

or rotational symmetry, if there is such a symmetry, is always equal to the reduced

radius r1 of the leading gear G1 (“reduced” meaning that all radii have been divided

to become coprimes). Second, the frequency spectrum of the pattern is a useful

source of information regarding the other radii. Indeed, each pattern is a result of

the combination of periodic movements produced by the gears. Our strategy starts

by computing the discrete Fourier transform (DFT) of a target curve to discover the

dominant frequencies, before translating them in terms of gear radii.

First, we sample N f equally spaced spline parameter values in [0, 1] and com-

pute the corresponding points along the target spline γ̂. Since the data points are 2D,

we can write them as complex numbers zn ∈ C, which yields the following relatively

simple formula for the components of the DFT Z = F {z}:

Zk =

Nf −1∑
n=0

zn e
− 2πi

Nf
kn ∀k ∈ [0 . . N f − 1], (3.3)

where [l . .m] denotes an integer range from l to m. The DFT is, by definition, a

sampling of the discrete-time Fourier transform (DTFT), which is itself a continuous

function of frequency. Each value Zk of the DFT corresponds to a frequency fk

given by

fk =
fs

N f
k ∀k ∈

[
−

N f

2
. .

N f

2
− 1

]
, (3.4)

where fs is the signal sampling frequency. The different interval for k compared

to Equation 3.3 is not a problem since Z is periodic over this range. Moreover, by

construction, our input curve spans exactly one period T . Therefore, fs = N f /T

and Equation 3.4 becomes

fk =
k
T

∀k ∈
[
−

N f

2
. .

N f

2
− 1

]
. (3.5)

Our goal is to find the equation of motion closest to the input curve; therefore, T is
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Figure 3.8: Fourier analysis of a Hoot-Nanny drawing. The radii are (4, 3, 2), and the
highest peaks of Fourier spectrum happen at frequencies (−3, 1, 3). One can
easily check the validity of Equation 3.6.

a priori unknown. As we will see, however, we do not need to find its actual value.

The middle graph in Figure 3.8 illustrates the ( fk, |Zk |) mapping, also called

frequency spectrum, for a given curve (where we arbitrarily set T = 1). As we
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can see, for such a clean curve only a few frequencies dominate, symmetrically

distributed around the fundamental frequency f 1. Two of the simplest machines

(Spirograph and Cycloid Drawing Machine) present a second dominant frequency

f 2, while the Hoot-Nanny even displays a third dominant frequency f 3 (both f 2

and f 3 being accompanied by their harmonics). We postulate that the number of

such frequencies increases by one for each new pair of mating gears in the system

(unless they cancel each other out). In practice, however, f 3 may be a multiple of

f 2, in which case it is indistinguishable from f 2’s harmonics; this is a case where

our analysis would only partially reduce the search space.

To compute the radii of the NG gears from the frequencies f i, we have experi-

mentally found that the radius of gear Gi satisfied

ri =
lcm(n1, . . . , nNG )

ni

with ni =


T | f i | if i = 1,

T | f i − f 1 | ∀i ∈ [2 . . NG],

(3.6)

where lcm() is the least common multiple, and ni is the number of rotations of Gi

over one period. From the frequency formula (Equation 3.5), it is clear that T

cancels out; therefore, we can set T = 1 from the start, yielding integer frequencies.

Equation 3.6 can be verified in the case of the epitrochoid (i.e., the curve

produced by a Spirograph with one gear rolling outside the other [51]), whose

Cartesian equation of motion is


x(t)

y(t)

 = rR(q + 1)

cos(t)

sin(t)

 − d

cos ((q + 1) t)

sin ((q + 1) t)

 t ∈ [0,T] (3.7)

with q = rF
rR

, where rF and rR respectively denote the radii of the fixed and rolling

gears, and d is the distance from the pen hole to the center of the gear. Since

Equation 3.7 can be read as a Fourier series, and q + 1 > 1 for all radii, we find

f 1 =
1

2π
and f 2 =

q + 1
2π
. (3.8)
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Taking the ratio,

f 1

f 2
=

1
q + 1

⇐⇒ q =
f 2 − f 1

f 1

⇐⇒ rF f 1 = rR( f 2 − f 1).

(3.9)

Since rF and rR are supposed coprimes,

rF f 1 = rR( f 2 − f 1) = lcm( f 1, f 2 − f 1), (3.10)

which is indeed a specific case of Equation 3.6. The proof for other machines

involves much more complex equations of motion, but we can intuitively understand

why it still works: different linkages only affect the amplitude of the oscillations, and

not their frequencies; the latter only depend on the radii of mating gears. Thus, for

instance, the Hoot-Nanny frequency spectrum can be seen as a sum of epitrochoids.

The challenge, then, is to determine the f i from the spectrum of γ̂. First,

we can safely set the f0 peak (constant component) to 0, effectively centering the

curve. Second, while f 1 is the highest peak for the (Elliptic) Spirograph, this is not

necessarily true for other machines (see Figure 3.8). The spectrum, however, always

tends to be symmetric; therefore, we perform an autocorrelation of the Fourier peaks

(i.e., a discrete convolution of the peaks with themselves) to make the fundamental

detection more robust. If the machine has only two gears, f 2 is simply the next

maximal peak. The case of the Hoot-Nanny is more complex, as we saw that its

frequency spectrum appears to be the sum of its two gear matings spectra considered

separately. This has two consequences. First, f 2 and f 3 can only be distinguished if

they are coprimes (which happens when the corresponding radii are also coprimes);

otherwise their harmonics overlap. While all three radii are constrained to share

no common divisor, any pair of them taken separately still can, which is why f 2

and f 3 are not necessarily coprimes. Second, their order in the spectrum remains

ambiguous no matter what: the next highest peak after f 1 can correspond to r2 or

r3, while the Hoot-Nanny curves are sensitive to the order of r2 and r3.

From a practical point of view however, the goal of this step is only to reduce
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Figure 3.9: Comparison of curve distances. For a given input spline (top row), we show
the best matching curve respectively obtained with the distance field metric
(middle) and the Procrustes distance (bottom).

the search space, not to completely determine the radii. If the order of r2 and r3

is uncertain, we test both combinations; if the amplitude of a peak is too low, we

leave the corresponding radius undetermined and sample it along the continuous

parameters during grid search. Any pruning of the search space is good to take,

since the complexity is combinatorial in the number of parameters. Using a sampling

density of 4 values per dimension for all machines in our dataset, our experiments

showed that curve retrieval was faster by an order of magnitude when at least one

parameter value was fixed.

3.4.3 Curve dissimilarity measure

Let us consider two curves γA and γB discretized as polylines {pA
i } and {pB

i } with

NA and NB vertices respectively. In the first published version of our method [111],

curves were compared by normalizing and aligning them, then computing their
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respective distance fields FA and FB defined as

∀p ∈ R2 F∗(p) = inf
1≤i≤N∗

‖p − p∗i ‖, (3.11)

and finally computing the symmetric distance

dF(γA, γB) = max

{
1

NA

NA∑
i=1

FB(pA
i ),

1
NB

NB∑
i=1

FA(pB
i )

}
. (3.12)

In words, each side of the max tells us, on average, how close a point from one curve

is to the other curve. Intuitively, dF quantifies how curves differ in terms of the

“density” of strokes in a region of space. From a practical point of view, this metric

accepts a wide range of inputs, as each curve could be a collection of polylines, or

even a binary image obtained from a picture. On the other hand, this metric is not

as precise as e.g. Procrustes analysis [37] or the discrete Fréchet distance [38], two

classic curve dissimilarity measures. The former requires NA = NB, but inherently

normalizes and registers the curves and has linear complexity in NA and NB, while

the latter has (sub-)quadratic complexity. Having the same number of vertices is

not difficult in our updated method, since we can resample γ̂ to match the size of γ.

Therefore, we adopt a symmetrized Procrustes distance as our new measure:

dP(γA, γB) = min

{
N∑

i=1
‖pA

i − pB
i ‖

2,

N∑
i=1
‖pA

i − pB
N−i+1‖

2

}
, (3.13)

where N = NA = NB. Here, one curve is compared to the other with its vertices

taken in increasing, then decreasing order. This is because the regular Procrustes

distance depends on the order of the sampling, and we do not know if γ̂ and γ are

drawn in the same direction.

Three comparisons between the distance field metric and the Procrustes distance

are given Figure 3.9. Both metrics were used to explore the same dataset of candidate

curves and retrieve the best matching one. We observe that although the distance

field metric is able to capture the general aspect of the curve, it is insensitive to

other aspects such as the arc length because of its image based nature. Thus, for



3.5. Constrained exploration 57

Table 3.1: Sampling and computation times for different curve distances. Data is shown
for the three examples in Figure 3.9. There were 12248 samples before pruning.

Drawing # samples Sampling time (s) Time per sample (s)

Distance field Procrustes distance

Loops 376 0.85 0.0100 0.0006
Trefoil 360 1.04 0.0154 0.0007
Whirl 600 0.94 0.0225 0.0008

Average 0.0159 0.0007

example, the trefoil knot in the middle is evaluated as similar despite looping twice.

Furthermore, our timing measurements (see Table 3.1) show that the Procrustes

distance between curves at a resolution of 1024 points is more than 20 times faster

than the distance field metric between curves rasterized at a resolution of 512 pixels.

3.5 Constrained exploration
Once the the discrete parameters of the machine are fixed, the user can focus on fine

tuning the continuous parameters. We note that an intuitive system should allow the

user to edit different features of the drawing as independently as needed. This is not

always possible: the smaller the number of degrees of freedom, the harder it is to

prevent several changes from happening at the same time. For instance, a drawing

machine with a single continuous parameter would not benefit from our system.

Conversely, as the number of parameters increases, so does the extent to which

modifications can be decorrelated. However, the exact combination of parameters

that allows a constrained change is generally complex to determine, as it requires to

either solve a system of non-linear equations, or to resort to manual trial-and-error.

Hence, our goal is to efficiently identify, abstract, and expose the space of valid

machine configurations subject to the specified constraints.

We allow the user to specify visual preferences as geometric properties that

should stay fixed when a change is made. Note that this is different from handle-

based deformation as the user indicates what shouldn’t change during editing, rather

than a specific target change. Then, our system computes a new parameter space

that incorporates the previous machine-specific and global constraints with the new
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Figure 3.10: Example of Points of Interest in a drawing.

shape invariant(s). The resulting space can be explored via sliders, whose bounds are

dynamically updated after each modification. The user can subsequently add more

invariants, which further constrain the solution space until no remaining degree of

freedom is left.

We first introduce the shape invariants that are supported and how they are

dynamically computed and tracked (Section 3.5.1). Then, we propose a local

reparametrization method that enables the user to intuitively explore the resulting

invariant space in the form of desirable pattern variations (Section 3.5.2).

3.5.1 Pattern invariants

The curves generated by drawing machines are often highly structured and can be

described at several levels of detail. If we attempt to decompose such a shape,

the smallest discernible element is the point. Among all curve points, some have

particular properties that make them stand out, such as intersection points and
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Figure 3.11: Types of Points of Interest (PoI) and associated invariants supported by
our system.

curvature maxima (see Figure 3.10). We call them Points of Interest (PoI). Such

points have generic attributes, such as Euclidean coordinates in curve space, and one

(or two) associated time (or arclength) values. They also display properties which

are specific to their type, such as the angle made by curve tangents at an intersection

point, or the value of the curvature at the maximum (see Figure 3.11).

Next, we define Relations of Interest (RoI), as relations that hold either between

a PoI and an external object (e.g., a PoI lying on a geometric primitive), or between

a group of PoIs (e.g., the distance between two PoIs). Any relation that can be

expressed as an algebraic equation involving one or more features of one or more

PoIs can be implemented in the system. While higher-level entities could also be

considered, such as edges between PoIs, cells formed by edges, or even envelopes

formed by sequences of PoIs, we currently only support PoIs and RoIs, as they are

easier to compute and track in the parameter space. We note that the computation

of the invariant subspace is agnostic of the nature of the features defined by the user.

Selection and computation. During the interactive session, the PoIs closest to the

mouse pointer are highlighted. Selecting one (or two) of them opens a menu allowing

the user to choose a feature to freeze. For generality, we compute the PoIs on a
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discretized curve output by the simulation, instead of solving for them analytically.

Curvature maxima are straightforward to obtain, as discrete curvature on polyline

vertices is easy to compute. Finding the self-intersections of a polygon, however, is

more involved, as the naive algorithm (testing every pair of segments) has quadratic

complexity in the number of sides. This problem has been extensively studied

and several methods (essentially sweep-line based) have been proposed [31]. We

use an implementation of the Bentley-Ottmann algorithm [7], whose complexity is

O((n + k) log(n)) with n line segments and k crossings.

Tracking. Key to our approach, PoIs must be tracked as continuous parameter

values change: in other words, when considering two patterns relatively close in the

parameter space, we need to establish correspondences across the PoIs allowing us

to quantify how much a specific PoI property has changed between two curves, and

therefore, to build an invariant space.

Given two drawings γ and γ′ and a reference PoI π̂ on γ, a naive criterion for

such correspondence is to superimpose both drawings and take the closest PoI π′

on γ′. In some configurations however, several PoIs can overlap each other, leading

to ambiguities. This search can be made more robust by considering proximity in

terms of the arc length (see Figure 3.12):

π̂′ B arg min
π ′i

Λ(π̂) − Λ(π′i ) , (3.14)

where Λ(π) gives the arc length (or pair of arc lengths) of π and i indexes the PoIs

on γ′. This is especially useful for drawing machines where the tracer needs to

make a full turn before coming close again to the same area. Moreover, it should be

noted that the matching PoI does not always exist: some intersections or curvature

maxima are only present in a limited range of parameter values. Therefore, we define

a distance thresholdσPoI between the reference PoI and its match, and discard curves

for which this limit is exceeded. This threshold can also be used to make the search

more efficient: indeed, candidate PoIs in other curves need only be computed in the

circle of radius σPoI centered at the reference PoI.



3.5. Constrained exploration 61

Figure 3.12: Using unambiguous features to discriminate between Points of Interest.
Although the red intersection point is close to the others, we can still differen-
tiate it using the pair of arc lengths values at the crossing.

3.5.2 Exploring the invariant space

Once the desired pattern invariants have been selected by the user, the challenge is to

explore the resulting constrained parameter space. In the general case, the invariant

space is difficult to determine analytically. Therefore, we opt for a sample-based

local linear approximation (see Figure 3.13 for an illustration).

In terms of interaction, our algorithm aims to expose new sliders that allow

interactive exploration. Since our approximation is only linear, regular re-projections

and re-approximations of the invariant subspace are required. We perform them each

time a slider is released after a move, which is preferable to continuous updates for

two reasons: it ensures interactivity and allows reversible changes, i.e., give the user

the ability to come back continuously to a previous design while keeping the button

pressed. We now describe our approach for subspace approximation.

We consider an n-dimensional continuous parameter space implicitly bounded

by several machine-intrinsic constraints, containing a point x0 associated with the

initial drawing γ0. For simplicity, we assume a single user-defined invariant ex-

pressed by

dF
j

(
F(π̂0), F(π̂ j)

)
= 0 (3.15)

where j indexes the drawing γ j associated to a neighboring point x j , F is the
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(a) (b) (c)

Figure 3.13: Illustrating the invariant space with two continuous parameters. (a) The
drawing is controlled by a set of sliders (top) corresponding to the coordinates
of a single point in the design space (bottom). (b) The user identifies a PoI
directly on the curve and specifies its desired invariant (here: position). Our
system then locally samples the parameter space, evaluates an invariance score
on them (shown as the dots’ color), and performs a linear regression given these
scores (purple line). It then exposes a new parametrization (and corresponding
slider) allowing the exploration of this subspace. (c) When the user changes
the position of the new slider, the corresponding point moves in the subspace
approximation, showing a new constraint-respecting curve (in blue).

feature of interest (real- or vector-valued), and dF
j is the Euclidean distance in the

corresponding feature space.

First, we sample neighboring points x j within the feasible continuous parameter

domain, taking them on a grid whose resolution is adapted dimension-wise to the

length of the feasible range. We instantiate the associated drawings γ j , and track the

corresponding PoI π̂ j . We define the invariance score as

Sj B exp(−dF
j ). (3.16)

We will use these scores as weights for the regression of the solution space.

Before that, we filter the samples to keep only a fraction of the highest weights. We
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assume, given the locality of the neighborhood, that the resulting domain is convex

and not disjoint.

Then, to perform the regression, we apply a Weighted Principal Component

Analysis (WPCA) to our data centered on the starting point. The algorithm is

based on a method by Delchambre [33] that uses a direct decomposition of the

weighted covariance matrix to compute principal vectors, followed by a weighted

least squares optimization to compute principal components. Since the weights

are our invariance scores, this algorithm provides a basis of vectors ordered by

decreasing contribution to the invariant space. A local basis can therefore be taken

as the first m Principal Components, where m is the dimensionality of the invariant

subspace. It is important to note that m cannot simply be deduced from the number

of algebraic constraints, which are not necessarily independent. In other words,

some constraints may be redundant, either between themselves or with the intrinsic

constraints of the mechanism.

In order to determine the dimensionality of the resultant space, we first make

sure that it is not reduced to a singleton by checking the number of samples with a

sufficiently high invariance score (superior to σinv = 0.9). If less than two points are

found, we consider that the system is over-constrained and invite the user to remove

one invariant. The WPCA gives us the proportion of variance explained by each

Principal Component. Defining v1
rel as the highest relative variance in the set, we

keep all components whose proportion is superior to σvar = 0.1v1
rel. Each axis of

the resulting subspace is mapped to a slider shown to the user. If no component

is filtered out, we consider that all the invariants were redundant with the intrinsic

constraints, and hence keep the original parameterization.

Next, we compute the bounds of the resultant solution space. Since the approx-

imation is local, we do not need to allow too wide an amplitude around the starting

position. Since each Principal Component is normalized, we put coarse bounds at

−2 and 2. Even then, the intrinsic constraints may impose tighter bounds along some

dimensions, which depend on the value of the other parameters; therefore, they need

to be re-computed every time a slider is moved. We formulate this as a sequence
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(a)

(b)

(c)
(a) (b) (c)

Figure 3.14: Ensuring temporal consistency. Left: constraint-preserving 2D surface in
a 3D parameter space, with three successive positions (i.e., designs) on this
surface. Right: for each position, we show the additional points sampled
around it that sufficiently respect the constraint, and the corresponding first
two PCA axes. As illustrated, the Principal Components may flip during a
slider move from (a) to (b), or rotate when the user explores a near position
(c). To remain as consistent as possible with the original principal directions,
we flip or rotate (within the subspace of interest) the axes of the new linear
approximation.

of non-linear constrained optimization problems: for each parameter, with the other

parameters held fixed, we successively find its minimal and maximal values. Please

note that this optimization only uses the intrinsic constraints of the system, which

do not require a simulation or the evaluation of PoIs (see Appendix A for details).

Further, since we assumed that the local neighborhood was convex and connected,

we expect a single range of possible values within the coarse bounds.

We are now ready to present the user with a set of sliders that can be moved

while respecting the invariants. Once a slider is released, we update our model

accordingly. First, we project the current position back onto the solution space, by

finding the point closest to this position that maximizes the invariance score. Then,

we re-compute a local approximation of the solution space, following the procedure

that has just been described.

In addition, we make the system more intuitive to use by ensuring that the sliders

have a temporally consistent visual effect on the drawing. Indeed, re-approximating

the invariant subspace may typically result in the Principal Components flipping or

rotating (see Figure 3.14). Flipping can be easily resolved by comparing the old

and new principal directions pairwise—since their order is preserved—and flipping
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them back if necessary. Rotation of principal directions, which typically happens

when the spread is symmetrical (Figure 3.14c), can be avoided by projecting the

previous local basis onto the new one, and normalizing the resulting vectors. This

ensures a consistent behavior of the sliders throughout the exploration.

3.6 Case study results
We evaluated our method in three ways: first, we collected non-trivial examples

of constrained exploration enabled by our method (Section 3.6.2); second, we en-

sured that it produces mechanically functional machines by fabricating prototypes

(Section 3.6.3); third, we conducted a user study to assess the intuitiveness of

our reparametrization compared to the base parametrization of our most complex

drawing machine (Section 3.6.4).

3.6.1 Implementation

Our framework was implemented in Python 3.5. For each type of drawing machine

(described next), we manually wrote a parametric model including equations of

motion, period length computation and physical validity constraints. Most com-

putations, including optimization, are done with NumPy and SciPy, while WPCA

provides the Weighted Principal Component Analysis algorithm. The graphical

interface of each module was implemented using Matplotlib. Code, demonstration

videos and additional details (including package versions) are available online.4

Our database of mechanisms contains four parametric models whose specifics

are given in Appendix A. Table 3.2 summarizes the main characteristics of these

machines. While the Spirograph, the Cycloid Drawing Machine and the Hoot-Nanny

are motivated by existing drawing machines, the elliptic Spirograph was designed

by the authors to experiment with non-circular gears.

3.6.2 Constrained exploration results

We demonstrate examples of curve invariants for each row in Figure 3.15. Let us

discuss each of these experiments.

4https://geometry.cs.ucl.ac.uk/projects/2018/drawing-machines/

https://geometry.cs.ucl.ac.uk/projects/2018/drawing-machines/
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Figure 3.15: Examples of constrained variations obtained with our system. (Original
curves in yellow, modified in blue.) Our generated sliders allow significant
visual changes to the curves, while respecting the visual constraints (one per
row, two at the bottom).
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Table 3.2: Drawing machines implemented in our system.

Name Number of exposed parameters
(discrete + continuous)

Spirograph (S) 2 + 1
Elliptic Spirograph (ES) 2 + 2
Cycloid Drawing Machine (CDM) 2 + 4
Hoot-Nanny (HN) 3 + 5

• Fixed point. The user fixed the location of the selected PoI. On the left (CDM),

the interior boundary was pulled in, while keeping the external arc fixed. On

the right (HN), the cusp point is fixed, while increasing the symmetric lobes.

• Fixed curvature. The user fixed the curvature at the selected PoI. In the left

example (ES), the center was pulled in, while maintaining the PoI’s curvature.

In the right example (CDM), the central part was reduced and rotated, while

maintaining the PoI’s curvature.

• Fixed intersection angle. The user fixed the angle between tangents at the

selected intersection point. In the left example (ES), the center was pulled

in while preserving tangency between the curve segments (i.e., zero angle).

In the right example (CDM), the loop size was changed, while keeping the

inter-curve intersection angle (and symmetry).

• Moving along radial line. The user restricted the movement of the PoI along

a radial line. On the left (CDM), the center was closed in while keeping the

global orientation. On the right (HN), the central part was pulled in and the

curvature at the cusp was changed, while keeping the original orientation.

• Fixed distance between 2 PoIs. The user fixed the distance between 2 selected

PoIs. In the left example (ES), the external boundary size was maintained,

while pulling the petals closer together. In the right example (ES), the size of

the petals was held fixed, while pulling them apart.

• Multiple specifications. In these examples, multiple constraints were specified

on selected PoIs. On the left (CDM), the asymmetry was changed while

keeping the global orientation and curvature of petals. On the right (HN),

the petals were made more ornamental while preserving their curvature and
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(a)

(b)

(c)

Figure 3.16: Examples of fabricated prototypes. (a) Elliptic Spirograph with two curves
drawn using a different elliptic gear; (b) and (c) Instances of the Hoot-Nanny.
Scans of the drawn patterns on the right.

restricting movement along radial line.

While the examples above were kept voluntarily simple to emphasize the effect

of a given constraint, the videos available online (see link in Section 3.6.1) show

more complex examples.5 Each video also compares the slider changes made in the

chosen design space to the corresponding changes in terms of base parameters.

5In particular, the video session12.mp4 shows an example of constrained exploration with an
asymmetric curve.
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(a) Involute (b) Sinusoidal (c) Cycloidal

Figure 3.17: Different possible gear profiles. Profile (a), though more complex to generate,
maximizes torque transmission.

3.6.3 Precise modeling and fabrication
We fabricated two types of machines (see Figure 3.16):

• the elliptic Spirograph, an easy to fabricate two-parts mechanism that we used

to validate the first invariants;

• the Hoot-Nanny, which demonstrates our ability to manage devices with a

wider range of parts and connectors.

Our general principle during the fabrication process was to laser-cut the

precision-critical, horizontal parts, and to 3D-print the remaining custom connec-

tors, which notably ensure the transmission of movement and support the different

layers of flat components. While the vector files given to the laser cutter are automat-

ically generated by a script, the 3D-printed components were designed by hand using

CAD software, requiring to adjust tolerances to help the machine run smoothly.

One challenge encountered during fabrication was the design of gear pro-

files. Such profiles are usually not represented in CAD software, as they would

unnecessarily make the geometric model more complex; moreover, these pieces are

traditionally manufactured with normalized shaper cutters. Laser cutters, on the

other hand, require a precise geometric model as input. Therefore, we implemented

a procedural generation of involute gear profiles (which optimize the transmission

of torques, see Figure 3.17), for both circular and elliptical gears. The latter, which

is less common, was derived from a method by Bair [5].

Pictures of some of the fabricated examples are given Figure 3.4 and 3.16. A
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Figure 3.18: User study. Left: interface for a given subtask (target pattern in grey). Right:
summary sheet presented to the user in order to rate the results (each column
is respectively the target pattern, and results of subtask 1 and 2 in an arbitrary
order). Each pattern was generated with the Hoot-Nanny model.

video demonstration of their usage is available online (see link in Section 3.6.1).

3.6.4 User study
We conducted a user study with 8 participants to validate the efficiency of a form of

guided exploration based on physical behavior constraints. We chose to focus on an

important premise of our method—the fact that defining visual preferences can help

navigating the configuration space more easily—rather than trying to evaluate the

entire pipeline. This choice allowed to focus on the core contribution of constrained

exploration, and made user sessions reasonably short in time and easier to compare.

We defined the following protocol. Each user session was divided into four

pattern-editing tasks, where each pattern was generated by our most complex ma-

chine (the Hoot-Nanny). In each of these tasks, the candidate was asked to transform

an initial curve A into a target curve B, using sliders, in less than two minutes. The

set of target patterns was the same for all users, while initial patterns were randomly

generated for each new session. The editing operation had to be performed twice:

once with the basic machine parameters (subtask 1), and once with parameters
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corresponding to a predefined visual invariant (subtask 2). The interface was kept

minimal, has shown in Figure 3.18 left. In order to focus solely on the efficiency of

the parametrization, we designed both subtasks to be as close as possible interaction-

wise. First, the same number of sliders was exposed each time (despite our method

allowing to reduce this number), and the order in which the subtasks successively

appeared was randomized. Second, the predefined invariant was not shown to the

user. Lastly, we presented the re-projection and re-approximation process as a little

“helper” which could be called by pressing the spacebar, triggering a change in the

curve and in the behavior of the sliders. This “helper” had a negligible effect in the

base case: a dummy waiting time was triggered (inferior to the time required by the

true “helper”), and a tiny perturbation was added to the sliders. This managed to

make both versions completely indistinguishable for all users. At the end of the ses-

sion, candidates were presented with a table displaying their results (see Figure 3.18

right). For each task, they were asked to rate the similarity with the target pattern

between 0 and 5.

Results are given for two metrics (number of slider moves and perceived dissim-

ilarity) in Figure 3.19. On average, for two tasks out of four (T1 and T4), candidates

were able to reach a final result perceptually closer to the target curve with a smaller

number of slider interactions. For the two remaining tasks (T2 and T3), the differ-

ence between the base and invariant-space parametrizations is not statistically strong

enough to decide on a superior method. Additional metrics, namely the time spent

on the task and the Euclidean distance travelled in the parameter space, are provided

in Appendix B, Figure B.1. Overall, these results suggest that our parametrization

was more efficient for the specific type of pattern editing task tested in this study.

We note, however, that this study only partially validates the efficiency of our en-

tire method, as candidates were not allowed to choose their own invariants (which

would have required a longer familiarization time). Therefore, the intuitiveness of

the Points of Interests and associated invariants has not been assessed. Moreover,

reaching a specific target does not exactly correspond to the exploration scenario we

envisioned for this method; it is, however, easier to evaluate quantitatively.
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Average number of slider moves

Average perceived distance between final and target

Figure 3.19: User study results. Lower values mean better results. Black bars show the
standard error of the mean. “BAS” and “INV” respectively denote the base
and invariant-space parametrizations.

3.7 Summary of the case study
I have presented a framework allowing a pattern-centric exploration of fabricatable

drawing machines. Users can indirectly select a parametrized machine using high-

level scribbles, and then refine the retrieved drawing by specifying constraints on

dynamically computed feature points. The main idea of the method is to locally

sample the design space and regress to the subspace that best preserves user-specified

constraints on Points of Interest in the drawing. The subspace is linearly approxi-

mated using a weighted PCA, before exposing these parameters via sliders allowing

the user to explore the valid region. This mode of exploration was used on sev-

eral classical drawing machines to obtain intuitive pattern variations, and a few

prototypes were subsequently fabricated to demonstrate that the patterns remained

physically feasible.



3.7. Summary of the case study 73

I argue that the results presented above support two of the main contributions

claimed in Chapter 1: first, this method effectively allows a new type of design

specification formulated directly at the level of the complex physical behavior rep-

resentation of an assembly, in the form of geometric constraints applied to Points

of Interest in a machine-made drawing (C1). Second, design variations respect-

ing these constraints can easily be explored thanks to a fast approximation of the

invariant space that provides parameters to navigate this space with a slider-based

interface (C2).

The fabricated prototypes presented in this chapter were able to reproduce the

virtual drawings with sufficient accuracy. Physical drawings, however, are likely

to degrade as the number of gears and bars increases, due to the aggregation of

fabrication uncertainties. The next chapter explores this problem in depth in the

context of chain reaction contraptions, and introduces a new method to increase the

robustness of these assemblies to various sources of uncertainty.



Chapter 4

Designing chain reaction

contraptions from causal graphs

4.1 Introduction
Chain reaction contraptions1 achieve simple functions from intentionally complex

sequences of events (see Figure 4.1). Sitting at the intersection of entertainment, art

and engineering, they are featured in movies [55], exhibited as artworks [10] and

used for educational purposes in classrooms, science fairs and competitions [55, 68].

A particularly compelling aspect of these setups is the careful management of risk:

a chain of events is all the more captivating when it looks like it could fail at multiple

points. Contraption builders can spend days trying to assemble these sophisticated

structures in a reasonably predictable way,2 often relying on a rich community

knowledge including rules of thumb and specific procedures to try to minimize

risks of failure [107, 109]. Despite these efforts, the physical realization of such

chains of events remains a delicate art, involving a tedious and very time consuming

trial-and-error design process.

Authors of chain reactions face two main challenges. First, small variations

at one step may result in wider unintended deviations further down the line (aka

1Also known as “Rube Goldberg machines” in the USA, “Heath Robinson contraptions” in the
UK or “Pythagorean devices” in Japan [149].

2Among the most famous recorded examples of chain reaction contraptions, Honda’s advertise-
ment “Cog” required 606 takes over four days [76], while the music video for OK Go’s song “This
Too Shall Pass” required more than sixty takes over two days [141].
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Figure 4.1: Chain reaction contraptions. In a now-famous cartoon series, Rube Gold-
berg invented complicated gadgets performing simple tasks in convoluted ways
(top) [88]. Nowadays, people create physical Rube Goldberg machines in com-
petitions and for entertainment (bottom). These machines are fun and exciting as
they delicately balance apparent unpredictability and careful risk management.
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the butterfly effect). Limitations in our spatial cognitive abilities prevent us from

considering all possible outcomes of a sequence of physical events [120]. As a

consequence, long chains of events—even individually simple ones—can easily fail

due to a single unwanted side effect. For instance, dominoes arranged along tight,

highly curved paths can fall onto each other in an unexpected order. Moreover,

orchestrating complex sequences may require carefully synchronizing several sim-

pler sub-chains that run in parallel, or at least being able to robustly predict the

completion order of these sub-chains. In other words, a target causality between

events is often sought, such as a lid being removed from a cup so that a ball can fall

in it. This kind of effect is essential to make contraptions more visually engaging,

as they make potential failures points more obvious to the spectator.

Chain reaction contraptions are an example of real life designs where authoring

and assembly are several orders of magnitude longer than the final execution. Hence,

despite the efforts of many passionate practitioners, these machines are often limited

to linear chains and lack non-trivial causal dependencies involving the synchroniza-

tion of parallel branches. In this chapter, we investigate the use of computational

design to simplify and accelerate the realization of chain reaction contraptions,

notably by making designs robust to uncertainties introduced by measurements,

modeling and manual assembly.

Developing a computational design tool for such machines is quite different

from design problems already tackled in computer graphics research. While the

creation of objects and assemblies from target motion has already been investi-

gated (see the survey by Bermano et al. [8]), artifacts were most often fabricated by

connecting 3D printed or laser cut parts. By contrast, we face two extra challenges:

first, chain reaction contraptions are fully assembled by hand, and each placement

error may jeopardize the whole execution. Second, only pre-existing and possibly

imperfect physical objects are used as components. The designed layout therefore

needs to account for their variability and approximately known features. While the

quantification and management of uncertainty is discussed in scientific and indus-

trial contexts [90, 110], the prevalence of intentional risk-taking in chain reaction
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Figure 4.2: System overview. Our system takes as input an initial scene layout associated
with a causal graph of expected events. It then combines simulation, search and
learning to build a success probability as a function of layout parameters, and
optimizes the layout for robustness against the uncertainty inherent to manual
assembly. The optimized layout is then exported as a guide sheet and used to
successfully assemble complex chain reactions in the physical world.

contraptions, as well as the usually limited resources available to those who build

them, makes them a challenging case study.

The key idea of this chapter is to build a simulation-based success probability for

the intended scenario, parametrized by the layout parameters of the assembly. The

input design is subsequently optimized under this estimated probability to improve

the robustness to perturbations of the machine layout. More precisely, we start with

(i) an initial set of primitive objects (e.g., ball, track) arranged in a coarse scene layout

provided by the user; (ii) a set of predefined events (e.g., “rolling on”, “falling”)

arranged in a causal graph specifying their expected event order as in Figure 4.2;

and (iii) a limit range for each layout parameter. Note that the initial layout does not

need to yield a successful run; instead, we expect to find such successful layouts in
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the provided design space. Efficiently computing a parametric probability of success

from such input requires solving two challenges: first, exploring the potentially high-

dimensional design space to find enough successful instances; and second, building

an estimator that is accurate near the relevant regions of the design space.

We combine efficient search and machine learning techniques to address both

issues. We tackle the first challenge using an adaptive sampling algorithm that pro-

gressively trades exploration of the design space for exploitation of the discovered

successful regions. We formulate the second challenge as a binary success/failure

classification task, where features are layout parameters and labels are derived from

simulations run under the supervision of the causal graph. The success probability

parametrized by the layout is therefore expressed as the probability of belonging

to the “success” class, as provided by the classifier; it is further refined with an

active learning technique. Simulations are run with a fast deterministic rigid body

engine [27], as we posit that a relatively coarse model is sufficient to approximate

the layout with the highest probability of success. Additionally, we use sensitivity

analysis to identify events holding a critical role in the sequence and map their

individual probability of success to the relevant design parameters; this allows our

method to scale to a high number of dimensions. Once the parametric success

probability estimator is built, we increase the robustness of the layout by identifying

and optimizing weak points where the design is likely to fail. Note that our opti-

mization takes place in a space with voids, i.e., containing physically impossible

configurations preventing any meaningful measure of success.

We evaluate our framework on contraption examples of increasing complexity,

both quantitatively (by computing an integral robustness metric and comparing the

output of our method against several baselines) and qualitatively (by building these

examples in real life). Our results show that we consistently generate robust designs

even in high dimensional configuration spaces. In summary, our contributions are

(i) a general methodology to optimize chain reaction contraptions; (ii) a general

simulation-based measure of robustness to layout uncertainty; (iii) a divide-and-

conquer method to efficiently compute this function for complex chains of events.
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4.2 Closely related works

Understanding causal relationships in the behavior of a complex artifact is key to

understanding its functionality. Causality models have been used more broadly

in a variety of applications, such as representing storyboards in narrative design:

pioneering work from Kalra and Barr [62] used directed graphs to analyze and model

time and events in computer animation. While our causal graph is inspired from

their event graph, our goal is to exploit it to create a real world contraption. Chains

of events were also studied for video games and computational narratology, e.g.,

with the goal of finding a consistent causal order among events [108]. In our setting,

however, the causal chain is fully specified by the user. In the context of mechanical

assemblies, researchers have investigated how representations can help analyze and

understand causal relations in mechanisms [97, 120], while more recently, functional

graphs have also been used for reconstruction [80]. By contrast, our work uses the

causal graph to build a measure of robustness that is subsequently used to optimize

the design. In the very specific context of dominoes, researchers have investigated

analytical approaches. For example, dynamic analysis of domino runs (speed of

propagation [145], magnification power [146], stable states, etc.) has been applied

to other fields with networks of chain reactions [2]. Our work differs mainly in that

our approach is not analytical, but empirical (based on simulations).

In the context of design interfaces, Furuta et al. [42] proposed a system to

support the creation of kinetic art pieces such as mobile sculptures and chain reaction

devices. A rigid body simulation runs continuously while the user adds objects to

the scene and adjusts design parameter values. Simulation results are visualized in

various ways. First, the loci of some vertices of the moving objects are displayed.

Second, a wireframe model of each moving object is added when the object abruptly

changes direction. Lastly, collision points are shown on static objects. If the

assembly is supposed to reach a static equilibrium instead, the visualization can be

switched to show motion arrows instead of trajectories, so that the user can work

on minimizing the length of each arrow. While this system is quite useful to design

chain reaction contraptions, it does not take uncertainties into account (which could
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be shown, for example, as motion cones [6]). Moreover, compared to our work, this

is only a visualization tool, and no automatic design improvements are performed.

To our knowledge, the only other system that performs automatic design mod-

ifications to accommodate uncertainties was proposed by Kim et al. [67] with the

specific goal of reducing the impact of measurement errors. An increasingly com-

mon application of personal fabrication, called augmented fabrication [84], consists

in 3D printing pieces that modify or improve the functionality of preexisting objects.

While systems have been proposed to help design such augmentations [21, 22], pre-

cisely measuring objects remains a challenge for novice users. Kim et al. conducted

two studies to characterize the sources and types and measurement errors. Inter-

estingly, they reported that participants still made errors even when given precise

instructions. The authors argued the need to accommodate errors besides trying to

minimize them, and proposed two modeling strategies to build more robust objects.

First, modular joints or clamps can be inserted at measurement-sensitive locations

to allow replacing only parts of the object, which reduces the printing time and ma-

terial waste. In the second strategy, flexible buffers can be added to accommodate

measurement errors in the order of millimeters. This approach efficiently increases

the robustness of 3D printed objects. The main difference in our work is that we

focus on robustifying an assembly of components to reliably obtain an input chain of

events. Moreover, our approach aims to increase robustness against a greater variety

of uncertainties.

4.3 Concepts and definitions
Let us introduce some key concepts with an illustrative example (see Figure 4.3).

Consider the case of a ball initially at rest on a tilted plank. The ball starts rolling

on this plank, gains momentum, leaves the plank, and hits the head of a row of

dominoes, which all gradually topple until the last one finally stops.

We have just described a scenario, the central component of our framework. A

scenario is a triplet S = {S,G,D} consisting of a scene S, a causal graph G and a

design space D.
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Figure 4.3: simple scenario. A ball rolls on a track and triggers the fall of a sequence
of dominoes. A succession of snapshots taken from the simulation (top) is
matched with the events of this scenario’s causal graph (bottom). (Ticks along
the timeline are uniformly spread for clearer visualization.)

Scene. A scene S is a collection of m 3D objects {oi}
m
i=1 laid out in space and

organized as a scene graph in which a child object’s transform (i.e., position and

orientation) is defined in the local frame of reference of its parent. This graph is

useful for objects whose initial position is more intuitively described relative to

others (e.g., a ball resting on a track). For the sake of convenience, we assume that

each scene is made of a small number of primitives (in this example, ball, track,

dominoes) arbitrarily repeated, combined, and constrained to form an initial setup.

Figure 4.4 shows all the primitives implemented in our system. Each object oi is

built by selecting a primitive and fixing a set of constructive variables Θi = {θ
j
i },

including both shape (e.g., length, width) and physical (e.g., mass) parameters.

Causal graph. A causal graph G organizes a collection of events expected to hap-

pen during the simulation. An event e = (ce, se) has a specific definition in our

framework: it is an entity characterized by a condition ce and a state se. The

event condition is a Boolean function of time and one or more objects ce(t, oi, . . .)
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Figure 4.4: Primitive types. The above primitive types are available to the user in our
implementation. The color hues correspond to the different types of behavior
in the physically-based simulation. Arrows indicate the motion type allowed by
the constraint. Please see Appendix C for details.

that evaluates one or more statements about the transform, velocity and/or ge-

ometric relationship of these objects at time t. The event state se(t) is one of

{asleep, awake, success, failure}. Let (tk)k≥0 be the sequence of simulation

times. Any event but the first starts with se(t0) = asleep, and is triggered awake

at some time te by the success of all of its predecessor(s). The condition ce(tk) is

only evaluated while se(tk−1) = awake. Since we cannot wait indefinitely for the

event to happen, we introduce a timeout duration tmax such that

se(tk) ←


success if ce(tk) = 1 and te ≤ tk < te + tmax,

failure if ce(tk) = 0 and tk ≥ te + tmax.

The timeout tmax is manually set to match the longest expected time between two

events (2s in our experiments). Figure 4.5 shows the events currently supported in

our system. We note that our formulation induces a discrepancy with the intuitive

definition of some events: the act of falling, for instance, is not instantaneous—it

lasts a certain amount of time. In our system, however, the switch success or
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o1 moves o1 hits o2 o1 topples o1 enters o2

o1 falls o1 rises o1 pivots o1 rolls on o2

Figure 4.5: Event types. The above events are supported in our implementation. Each
event’s condition ce(t) is a function of the spatial transform (and corresponding
time derivative) of the target object(s) at time t. Events may also have a
negated version (e.g., “o1 stops” being equivalent to “o1 does not move”). See
Appendix C for details.

failure is immediate; hence, in such cases, success merely means that the event

has started. In practice, we found this formulation expressive enough for our needs.

Events are tied together as nodes of the causal graph, which is a directed acyclic

graph with a single root node (i.e., only one starting event) and one or more terminal

branches. Using a graph rather than a single timeline allows to account for events

happening in parallel in more complex scenarios (see Figure 4.6). Each edge (ei, e j)

enforces a temporal ordering of the two events it connects. Hence, for instance, if

the ball was to fall on the last domino instead of the first, the causal graph would be

violated because the intermediate expected events have not happened. We note that

such a causal graph is not necessarily a tree: two branches may converge, signifying

that all parent events need to happen before the current one. The entire scenario

reaches its termination when either (i) the last event of each branch has been reached

(global success), or (ii) at least one event has timed out (global failure).

Design space. The design space D contains different realizations, or instances, of

a scenario S. In this work, we assume that all the primitives’ shape and physical

parameters {Θi} (defined above) are fixed in advance by measuring and modeling



4.3. Concepts and definitions 84

CAUSAL 
GRAPH

TIME 
LINE

(0)

(0)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

(1)

A B
C

F

D

G

E
H I J

A: FIRST DOMINO RUN TOPPLES
B: PLANK TOPPLES
C: PLANK HITS SECOND DOMINO RUN
D: SECOND DOMINO RUN TOPPLES
E: LEVER PIVOTS

F: PLANK HITS BALL
G: BALL ROLLS ON TRACK
H: BALL FALLS
I: BALL ENTERS GOBLET
J: BALL STOPS

Figure 4.6: branching scenario. A first domino run (top left of the view) topples and hits
a plank, which in turns triggers two parallel branches: on one side, a second
domino run topples and falls on a lever, which pivots; on the other, a ball rolls
on a track, passes below the now-raised lever, and falls into a goblet. As in
Figure 4.3, snapshots are matched with events from the causal graph. The two
arrows pointing towards event H mean that both E and G need to have happened
for H to happen; i.e., the ball can only fall if it started rolling and the lever was
raised before the ball reached it.

preexisting objects. We also assume that all the objects are initally at rest. The

design space D is composed of the remaining degrees of freedom, i.e., the layout

parameters (translation and rotation) of each object relative to its parent in the scene

graph. In other words, a scenario instance x ∈ D corresponds to a specific initial

configuration of the scene S. Therefore, in the general case, D = SE(3)m; in practice

however, some layout parameters can be frozen (e.g., if an object’s center always lies

in a given plane). This results in d parameters, each in a user-defined range [a, b].

We automatically normalize each parameter range so that D = [0, 1]d .

Using a deterministic physically-based simulator, we can further structure the

design space as follows (see Figure 4.7): first, some regions are forbidden a priori
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Figure 4.7: Design space. Simulated outcome of the simple scenario (see Figure 4.3) across
a slice of its design space D, divided into success (D+, green), failure (D−, blue)
and impossible (D�, grey) regions. Points (a-c) represent three different initial
configurations of the scene, only changing the Cartesian coordinates of the
center of the track X and Z (normalized as X̃ and Z̃ in D). For (a) and (c), the
ball hits the top left edge of the first domino, triggering the fall of the entire
domino run, while for (b) the ball misses the run entirely. Region D� is a clear
cutout of the track intersecting either the floor or the dominoes. Under the
relatively smooth central component of D+, we observe an extremely complex
pattern of successes and failures corresponding to the various ways in which
the events can unfold, mainly depending on how the ball hits the first domino.
This pattern could be an intrinsic property of the scenario, an artifact of the
simulation, or a combination of both.
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(i.e., before simulation) because they are not physically feasible: typically when two

distinct rigid bodies intersect each other at t0. They form the impossible region D�.

Second, the physically feasible space is divided between the success region D+ and

the failure region D−, which have no explicit representation in the general case, but

can be approximated by sampling scenario instances and simulating them under the

supervision of the causal graph. Thus, D = D� ∪ D+ ∪ D−, with some of these

regions potentially disconnected.3 It is important to note that this global partitioning

of the design space merely indicates rather than explains the validity and outcome of

a scenario instance.4 In other words, the physical space and time of the simulation

are condensed into a single datum. Thus, two points may be neighbors in D−, and

yet have failed for different reasons (e.g., dominoes not toppling, or toppling in the

wrong order). This may partly explain the complex pattern seen in Figure 4.7 as

a superposition, in the same space, of different causes of failure. Likewise, two

neighboring points in D+ may result in visibly different object behaviors, and yet,

still lead to a successful outcome. Both versions should be equally acceptable as

long as the causal graph is sufficiently detailed by the user. In this case, finding

a satisfactory layout could simply be a matter of randomly sampling the design

space until a successful instance is found. When uncertainty is taken into account,

however, a successful scenario instance may become less desirable than its neighbor.

Uncertainty and robustness. To partition the design space as shown in Figure 4.7,

points were sampled along a dense grid and labeled as impossible, global failure

or success according to the response of a computer model. The inputs of this

model are a combination of the objects’ design parameters (kept fixed during this

sampling) and the layout parameters. Model predictions of physical phenomena are

inherently uncertain. This uncertainty enters models in the form of approximations,

errors and unavoidable variability. For instance, in our scenario:

3Although, ultimately, we are only interested in approximating D+, keeping D� and D− distinct
is useful to separate soft from and hard constraints in the optimization step of our method (see
Section 4.7).

4The explanatory power of such a partioning can be improved by dividing a given scenario into
sub-scenarios, as is done in Section 4.6. This approach allows our algorithm to efficiently focus on
the most critical sources of failure.
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• objects are measured and weighed with an accuracy and precision that depend

on the user and the measuring tools available;

• likewise, in the physical realization of a given design space point, objects

would be laid out with an accuracy and precision that depend on the user and

how the layout is communicated to them;

• objects coming from a set (e.g., dominoes) are assumed to have the same

shape and weight;

• objects with a relatively simple convex shape (domino, ball) are idealized as

regular solids;

• objects with a non-convex shape (e.g., cup) are approximated as unions of of

convex shapes (for efficient simulation);

• some parameters of the model cannot be measured experimentally because

they are not physical quantities (e.g., the per-object friction coefficient in

Bullet Physics [27]), and are left to their default value;

• the model approximates physical phenomena (e.g., contact forces in Bullet

Physics are implicitly handled by resolving non-penetration constraints [27]);

• the simulation time is discretized (and the objects’ behavior may change

depending on the time step);

• the simulation, like any finite-precision floating point computation, is prone

to numerical errors;

• the model is deterministic, whereas the outcome of a physical run may change

even if the same conditions are repeated;

Analyzing and quantifying uncertainty is a fundamental problem accross many

scientific and engineering fields. Often it is sought to reduce the uncertainty sur-

rounding an output variable (or set of variables), whether this variable is measured,

minimized, maximized, or made to reach a target value. This can be achieved in two

main ways: (i) reducing the uncertainty in the input variables or the model itself, or

(ii) reducing the influence of the uncertain input variables on the output variable(s).

In this work, we focus on the latter approach, i.e., increasing the robustness of chain

reaction contraptions to the various sources of uncertainty mentioned above.
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Uncertainty and robustness can be described in different ways [90]. Two of the

most common representations are bounds (amounting to a worst-case analysis) and

probability distributions. The latter is more suited to deal with the highly non-linear

and near-chaotic behavior of chain reaction contraptions.5 In such a framework, the

uncertainty of a variable can be quantified by its variance, and the robustness of the

output increases when the contribution of the inputs’ variance to the variance of the

output is reduced. Our first key assumption regarding robustness is the following:

any change of a single input that results in a decrease of the variance of the output

involves a reduction of the contribution of the variance of several inputs to the

variance of the output. An example may be useful here. Let us consider an initial

configuration of our simple scenario such that the ball hits the top left edge of the first

domino in the simulation. In the corresponding physical experiment, it would not

take a large perturbation for the ball to miss the domino entirely. The variance of the

physical outcome depends significantly on the variance of the track’s position and

orientation, as well as the variance of the domino’s position and height. Changing

any layout parameter so that the ball collides slightly closer to the center of the

domino in the simulation will therefore reduce the variance of the physical outcome

by making it less sensitive to the variance of all these inputs.

When the output variable is binary, this reduction can also be expressed in terms

of probability. Let us define O as the random variable that takes a value of 1 if the

outcome of a physical run is successful, and 0 otherwise. O is a Bernoulli random

variable with probability p B Pr (O = 1), which is the probability of physical

success. It can be shown that the variance of O follows Var[O] = p(1 − p). This

variance is maximal for p = 0.5 and minimal for p = 0 or 1. As long as p ≥ 0.5, any

increase in p leads to a decrease in the variance. Therefore, p is a suitable candidate

5The bound representation, on the other hand, is typically more suitable in deterministic contexts,
and when the desirable region has a less complex structure than D+ in Figure 4.7. Nevertheless, it
can still give us a useful visual intuition of our objective. In robust optimization, the stability radius
model associates the robustness of a given point to the radius of the largest ball centered at this point
that is included in the region satisfying the requirements (i.e., D+ in our case). The most robust point
is therefore the one that lies inside D+ farthest from the boundary ∂D+, because it requires the largest
perturbation to leave that region. In our case, the boundary is uncertain, but there is still the intuitive
goal of moving “inwards” (in some fuzzy approximation of D+) to increase robustness.
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to measure robustness. We can then reformulate our problem as: finding the

combination of layout parameter values that maximizes the probability of physical

success. Formally, we wish to solve:

arg max
x∈D

Pr(O = 1 ; x). (4.1)

In this formulation, it is important to note that Pr(O = 1 ; x) is a probability mass

function (because O is discrete) parametrized by x. Here, x represents the set of

nominal values of the layout parameters, which serve as a reference to build the

corresponding physical contraption.6 This probability could be evaluated, for a

given x, by assembling and running the corresponding physical contraption several

times and computing the expectation of O. Such a method, however, would be

extremely time consuming, especially for longer chain reactions. We could also,

in principle, use a Monte Carlo method to approximate Pr(O = 1 ; x). In practice,

however, this would require assigning probability distributions to many uncertain

variables, of which some depend on the physical objects being used, some depend on

the contraption builder, and others have no physical meaning. Moreover, estimating

this probability over the entire design space would require a significant amount of

sampling, especially since the simulated success region D+ is likely to become small

as the contraptions get more complex and the number of dimensions increases.

With a second key assumption, we can rely on fewer simulations to approximate

the combination of layout parameter values that maximizes the robustness of the

output. Let us define Ô as the random variable that takes a value of 1 if the outcome

of a simulation is successful (i.e., global success), and 0 otherwise. Moreover, let

X be a random sample of points in the design space D, and y be the vector of values

of Ô for each point in X after simulation. We make the following key approximation:

arg max
x∈D

Pr(O = 1 ; x) ≈ arg max
x∈D

Pr
(
Ô = 1 | X, y ; x

)
. (4.2)

6The actual values of the layout parameters, on the other hand, are random variables, as are shape
dimensions and other physical properties. Although the probability of physical success is implicitly
conditioned on the value taken by these random variables, we omit them to keep the notation simple.
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It is important to note the conceptual shift happening here. On the left-hand side, the

value taken by O is a priori unknown because of the various sources of uncertainty

mentioned above. Meanwhile, the value taken by Ô for a specific x is only unknown

until the simulation is run. Instead of being simulated, however, it can be inferred

from the available simulation data. While in many applications, this inference is

used to save simulation costs, our method actually takes advantage of the resulting

uncertainty. Our key assumption is that we can use this probability of simulated

success7 to approximate the point x that maximizes the probability of physical

success.8 Note that we do not assume that the probabilities of physical and simulated

success are equal accross the design space; only that their maxima are close in D.

In the remainder of this chapter, we will only be concerned with the probability of

simulated success parametrized by the layout parameters. We shall henceforth refer

to it as parametric success probability.

4.4 Overview

4.4.1 User experience

Our method workflow is divided in three steps: scenario definition, probability

computation and optimization, and physical realization. Defining a scenario consists

in specifying the scene, causal graph, and design space.

The user describes the scene by selecting the primitives, setting their geometric

and physical parameters, organizing them as a scene graph (optional), and providing

an initial layout (not necessarily a successful one). Setting the fixed parameters

requires at least a few measurements (e.g., size and weight). The user then indicates

a causal graph by choosing events relative to one or several primitives from a

preexisting library, and connecting them by directed edges. Some events may also

depend on physical parameters that can be tweaked, such as the minimal velocity

required to consider an object to be moving. Lastly, the user specifies the design

7Which is a probability mass function conditioned on the data and parametrized by the nominal
layout parameters x.

8To borrow terminology from Kennedy and O’Hagan [66], we replace parameter uncertainty,
model inadequacy and residual variability by code uncertainty.
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space in terms of ranges of values for the six layout parameters (position and

orientation) of each primitive. Parameters with no range are locked to their initial

values. We note that specifying a scene hierarchy in the first step can simplify the

ranges and help avoid the exploration of large irrelevant portions of the design space;

just like accurate models however, a sophisticated hierarchy is not strictly necessary.

From this input, a parametric success probability is built, allowing to optimize the

contraption layout to find a solution robust to uncertainties. The solution is then

exported as a printed outline to guide the user during assembly (see Appendix D).

4.4.2 Algorithm overview

The core of our method is the efficient computation of a success probability

parametrized by the layout x. We approach this problem as a classification task,

where an estimator is trained on simulation data to predict the global success or

failure of a run given x. In Section 4.5, we propose algorithms to efficiently

find successful points in the design space, train the classifier and improve its accu-

racy via active learning. Section 4.6 then demonstrates how this method can scale

in high-dimensional design spaces using a divide-and-conquer method where the

global probability of success is decomposed into conditional probabilities of success

of individual events. Each of these components is restricted to the design parame-

ters that really influence the corresponding event, thus reducing the dimensionality

of their respective design subspace. Finally, in Section 4.7, we take the scenario

instance with the highest success probability and refine it using a probability-based

global energy that we minimize under physical validity constraints.

4.5 Computing the parametric success probability
We consider a scenario S where objects are laid out according to a vector of layout

parameters x ∈ D, with D = D� ∪ D+ ∪ D−. Our goal is to build an approximation

of the parametric success probability (PSP) defined as Pr
(
Ô = 1 | X, y ; x

)
, using

the data (X, y) provided by the simulator, and without resorting to densely sampling

the entire design space.

We build the PSP estimator indirectly by training a classifier to predict whether
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Figure 4.8: Building the PSP. Top: main steps of our global PSP approximation method.
Bottom: detail of the active learning loop: at iteration k, we use the current
dataset X (left) to train an SVM (middle; classification shown as background
colors). The new support vectors (black dots) are used to build a new distribu-
tion Dk (right; probability density shown in white) that encourages additional
sampling where the classifier is the most uncertain (i.e., near the boundary).

a point x ∈ D \ D� belongs to the class “Ô = 1”. Our estimator is a Support Vector

Machine (SVM) classifier whose decision function is calibrated after training to

obtain a probability parametrized by x. We chose SVMs not only for their robustness

to overfitting in high-dimensional spaces, but also because they mesh very well with

our active learning strategy, as described next (see Section 4.8 for a comparison with

baseline methods).

In this section, we consider a single PSP computed on the entire design space.

Our method, as shown in Figure 4.8-top, starts with an initial exploration of the

design space (Section 4.5.1) by adaptively sampling D and running simulations to

find a minimal number of successful instances. The main body of the algorithm

(Section 4.5.2) then follows an active learning strategy in two alternating steps: first,
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during classifier training, a non-linear kernel SVM is trained on the current dataset

to approximate ∂D+; second, during query synthesis, the decision function of the

SVM helps identify uncertain regions of the design space which are then probed

to augment the dataset. As a final step (Section 4.5.3), we apply a probability

calibration to map the final SVM score to a class probability for “Ô = 1”.

During the entire process, new candidate samples are filtered to discard the phys-

ically impossible ones (e.g., those where rigid bodies intersect). Physical validity

needs not be learned because it is enforced by constraints during layout optimization

(see Section 4.7). Valid scenario instances are simulated under supervision of the

causal graph, yielding a global success (Ô = 1) or failure (Ô = 0) label.

Algorithm 1 Exploration by adaptive sampling.
1: X← ∅
2: {n+i } ← ∅
3: D0 ← SobolSequence()
4: k ← 0
5: enough← false
6: while k ≤ ke and not enough do
7: Xk ← SamplePhysicallyValid(Dk, Ns

k
)

8: X← X ∪ Xk

9: // Simulate each sample point to get its number of successful events.
10: {n+i } ← {n

+
i } ∪ {GetNumSuccessEvents(x) ∀x ∈ Xk}

11: if |{i : n+i = n}| ≥ N+ then
12: enough← true // Because xi ∈ D+ ⇔ n+i = n.
13: else
14: I ← ArgNMax({n+i }, N

+)

15: w← {n+Ii /
∑

j∈I n+j ∀i ∈ [1 . . N+]}
16: Dk+1 ←

∑N+

i=1 wiN(xIi, diag(σ |b − a|))
17: k ← k + 1
18: end if
19: end while

4.5.1 Initial exploration by adaptive sampling
The goal of the exploration stage is to discover an initial number of successful

instances N+ (200 by default). Algorithm 1 details our adaptive sampling method.

We iteratively grow a list of physically valid sample points X =
⋃

k Xk , where Xk is

the list of N s
k points (10 by default) drawn from distributionDk at step k, until either

(i) the number of successful points |{x ∈ X : x ∈ D+}| reaches N+, or (ii) after ke
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iterations (500 by default, which was never reached in our experiments). The initial

sampling X0 is drawn from the quasi-random Sobol sequence [129] (with N s
0 = 500

by default). We use the causal graph G to orient the sampling towards the most

relevant regions of the design space: for each new sample point xi ∈ X, we simulate

the corresponding scenario instance and record the number of successful events n+i
(between 0 and n, where n is the total number of events); in other words, n+i is the

number of causal graph nodes whose state is success after simulation of a single

instance xi. Then, we select the top N+ values from {n+i }, and note I their indices.

We use them to build a mixture of Gaussians

Dk ∼

N+∑
i=1

wiN(xIi, diag(σ)), (4.3)

with a diagonal factor σ = 0.01 by default. There is one Gaussian per sample xi;

their weight wi reflects the relative success of xi with

wi =
n+Ii∑
j∈I n+j

.

This formulation focuses exploration around the current best partially successful

scenario instances, which effectively helps it reach regions containing full successes

even in high-dimensional design spaces. As in reinforcement learning, we can tune

the balance between exploration and exploitation: for instance, a higher σ favors

exploration, as points are sampled further from the current best. Moreover, as new

successful data points are found, only taking the top N+ points at each step means

that our method progressively favors exploitation of full successes over exploration

of partial successes. Lastly, we note that exploration can be made easier by providing

a more detailed causal graph, as it yields a finer-grained distinction between partially

successful instances.

4.5.2 Classifier training and query synthesis

The goal of this step is to obtain a classifier with sufficient accuracy (90% in our

experiments). We iteratively train an SVM and query new design space points until
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we reach either the target accuracy or the maximal number of iterations k l (5 by

default), as illustrated in Figure 4.8-bottom and detailed in Algorithm 2. The list of

samples is noted again X =
⋃

k Xk , where X0 is the set of sample points obtained

from the initialization step.

Algorithm 2 Classifier training and query synthesis.
1: y← ComputeLabels(X) // Simulate each sample point.
2: k ← 0
3: // Initial classifier training
4: fk, {x̂i}vi=1,U, acc← TrainEstimator(X, y)
5: while k ≤ k l and acc ≤ 0.9 do
6: // Query synthesis
7: w← {| fk(x̂i)| /

∑v
j=1 | fk(x̂j)| ∀i ∈ [1 . . v]}

8: Dk ←
∑v

i=1 wiN(x̂i, | fk(x̂i)|U)
9: Xk ← SamplePhysicallyValid(Dk, 10Ns)

10: I ← ArgNMin({| fk(xi)| ∀xi ∈ Xk}, Ns)

11: X′
k
← {xi ∈ Xk : i ∈ I}

12: X← X ∪ X′
k

13: y← y ∪ ComputeLabels(X′
k
) // Simulate each new sample point.

14: // Classifier training
15: fk, {x̂i}vi=1,U, acc← TrainEstimator(X, y)
16: k ← k + 1
17: end while

Classifier training. Following common machine learning practices, the dataset is

first standardized (i.e., transformed to zero mean and unit variance). The SVM

classifier has two hyperparameters: C, the regularization parameter, and γ, the

inverse radius of influence of each support vector. We automatically select their

optimal value from a logarithmic range using stratified 3-fold cross-validation. The

accuracy at step k is given by the cross-validation score.

Support Vector Classifiers provide a confidence score (or “decision function”)

f : Rd → R quantifying the distance of a point x to the boundary between classes

(represented by a set of v support vectors {x̂i}
v
i=1 ⊂ X). In the case of a kernel SVM,

the score takes the form

f (x) =
v∑

i=1
yiciK(x̂i, x) + b

where K is (in our case) the Radial Basis Function kernel, y ∈ {−1, 1}v is the vector
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assigning −1 for global failure and 1 for global success to each support vector,

c ∈ Rv is a vector of coefficients, and b ∈ R is a constant term.

Query synthesis. In active learning, a learner is able to improve its accuracy by

querying an “oracle” for data points that were not part of its original training

set [121]. The query, however, comes at a computational cost; the algorithm thus

needs to choose its queries wisely in order to improve its performance. In our case,

where the oracle is a simulator, any physically valid point in the design space can be

queried to obtain a success/failure label; this problem is called query synthesis.

A common strategy consists in reducing estimator uncertainty by querying regions

of which the learner is the least certain about. For an SVM, this region is easy to

find: it lies near the classification boundary, where the current decision function fk

is close to 0. Hence, after training the SVM at step k, we draw samples from the

mixture of Gaussians

Dk ∼

v∑
i=1

wiN(x̂i, | fk(x̂i)|U), (4.4)

where U is the inverse of the diagonal scaling matrix used for standardization. The

Gaussians are weighted by | fk | with:

wi =
| fk(x̂i)|∑
j | fk(x̂ j)|

,

thus giving sampling priority to the farthest support vectors (i.e., where the boundary

is most uncertain). The decision function fk allows to scale the Gaussians to sample

the appropriate neighborhood around each support x̂i. However, since samples are

taken in all directions around each x̂i, it is unlikely that many of such samples will

actually lie near the boundary. Therefore, we first sample (without simulating) 10N s

points using Dk , and only keep the N s ones having the smallest | fk(x)| value.

4.5.3 Probability calibration
While we do not strictly need to compute a probability when there is only one

classifier (as the SVM decision function can be maximized directly), the divide-and-

conquer method of Section 4.6 requires probabilities to be output by each classifier

so that they can be meaningfully combined or compared. The decision function f ,
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Figure 4.9: Visualization of the PSP. A slice of our learned PSP approximation in the
domain D \ D� of the simple scenario (Figure 4.3). The parameters X̃, Z̃ and
points (a-c) match those in Figure 4.7. The color range is discretized for clearer
visualization of the isolevels. We observe that the area of highest probability
matches the dense part of D+ in Figure 4.7 relatively well, while the complex
pattern below this dense part has a low success probability overall.

however, approximates a signed distance to a regularized boundary and not a proba-

bility. Nevertheless, the parametric success probability Pr
(
Ô = 1 | X, y ; x

)
can be

approximated by applying a continuous transformation to the decision function, fol-

lowing a method known as Platt scaling [106] that fits a logistic regression model to

the classifier’s scores. Specifically, a maximum likelihood optimization is performed

to calibrate the coefficients α, β ∈ R in

Pr
(
Ô = 1 | X, y ; x

)
=

1
1 + exp(α f (x) + β)

. (4.5)
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After this calibration, we can evaluate the PSP of a new scenario instance x by

computing Pr
(
Ô = 1 | X, y ; x

)
(see Figure 4.9).

4.6 Extension to complex causal chains
Chain reactions of reasonable visual complexity can easily depend on several dozens

of layout parameters. To help the PSP computation scale to such a high number of

dimensions, we propose a divide-and-conquer method where the global PSP for a

scenario S = {S,G,D} is broken down into a set of success probabilities of simpler

sub-scenarios Si = {S,Gi,Di}, where Gi is a subgraph of G, and Di is a subspace of

D with dimension di < d. This inequality is key to the scalability of our method, as

it reduces the combinatorial complexity of exploring D and approximating the PSP.

Before detailing our extended pipeline, let us demonstrate how to factorize

Pr
(
Ô = 1 | X, y ; x

)
. By definition, a scenario is successful if and only if each event

happens in the correct order; this is equivalent to each node of the causal graph

reaching success after its parent(s) did the same. Formally, if we associate to each

causal graph event ei the random variable Êi taking a value of 1 if the event’s final

state after simulation is success, and 0 otherwise, we are trying to decompose the

joint probability

Pr
(
Ô = 1 | X, y ; x

)
= Pr

(
{Êi = 1}ni=1 | X, y ; x

)
, (4.6)

where n is the number of events. To do so, let us consider the directed graphical

model G obtained by replacing each node ei in G by the corresponding Êi. By

construction of the causal graph, the success of the parents is equivalent to the

success of all ancestors; therefore the probabilistic event Êi = 1, for a given x, only

depends on the parents of Êi. In other words, G satisfies the local Markov property,

expressed as conditional independence:

∀Êi ∈ V(G) : Êi ⊥⊥
{
nd(Êi) \ pa(Êi)

}
| pa(Êi)

where V(G) is the set of vertices in G, and nd(Êi) and pa(Êi) are respectively the set
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of non-descendants and parents of Êi in G. It can be shown that for directed acyclic

graphs, this property is notably equivalent to the factorization of joint probabilities

on the graph nodes into conditional probabilities given the node’s parents [75]. In

particular, Equation 4.6 yields the PSP factorization:

Pr
(
Ô = 1 | X, y ; x

)
=

n∏
i=1

Pr
(
Êi = 1 | pa(Êi) = 1,X, y ; x

)
. (4.7)

We call the i-th factor of the above product the Êi-CPSP (where C stands for “Con-

ditional”). Of course, if we were to approximate each Êi-CPSP as we approximate

the global PSP, the complexity would be multiplied by n, rather than decreased.

To effectively reduce it, we observe that given pa(Êi) = 1, having Êi = 1 typically

depends on few layout parameters; in other words, the variance of each Êi-CPSP

mostly only occurs in a relatively low-dimensional subspace Di ⊂ D. Computing

this subspace mapping (see second block in Figure 4.10) is described next.

First, as a pre-processing step, we identify which Êi are quasi-deterministic, i.e.,

nearly always equal to 1 when their parents are. Given X the sample obtained after

initial exploration (Section 4.5.1), which contains a minimum number of globally

successful sample points, we compute the expectation of each Êi and assign Di = ∅

to each Êi having E
[
Êi
]
≥ 0.95. The corresponding Êi-CPSPs are set to 1. We

measure correlations between the remaining Êi and the design parameters using

mutual information [28], which is sensitive to linear and nonlinear relationships.

In our experiments, parameters were selected if their mutual information with Êi

was greater than 0.2. Then, to approximate the non-constant factors, we apply

the following method, illustrated as the stack of blocks of the extended pipeline

in Figure 4.10. For each Êi-CPSP, we consider the subgraph Gi containing only

ei and its ancestors. We run the training and query synthesis loop (Section 4.5.2)

using Gi, with two slight modifications: (i) to satisfy the conditional probability

in Equation 4.7, we only keep the sample points satisfying pa(Êi) = 1. We know

that such points exist in the initial set for each Êi, since some of the initial points

are globally successful over G. (ii) During query synthesis, we restrict sampling
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Figure 4.10: Extended PSP building pipeline. We propose an extended version of our
PSP building to scale with a high-dimensional design space.

to the corresponding Di by simply taking the indices of the parameters not in Di,

and setting their scale factor in U to 0: therefore, only the parameters in Di have

non-zero variance. Lastly, we calibrate each probability as in Section 4.5.3.

As a result of the above steps, the PSP approximation can be computed with a

significant complexity reduction as

Pr
(
Ô = 1 | X, y ; x

)
≈

n∏
i=1

ri(x), (4.8)

where

ri(x) = Pr
(
Êi = 1 | pa(Êi) = 1, φi(X), y ; φi(x)

)
and φi : D→ Di is the subspace mapping.

4.7 Layout optimization

Once the PSP has been computed, we take the sample point with the highest success

probability as our most robust current solution. Although this design is indeed

already quite robust, we further refine it by applying a nonlinear optimization. While

the factorization could allow us, in theory, to optimize each Êi-CPSP separately, in

general they are not separable because their subspaces Di overlap. Instead, we
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aggregate all components into a global energy to solve

min
x∈D
E(x) subject to C�(x) ≥ 0 (4.9)

with

E(x) = −Sα ◦ r(x), (4.10)

where ri(x) is the Êi-CPSP approximation given in Equation 4.8, and the function

Sα : Rn → R is the smooth minimum [74]:

Sα(z) =
∑

i zi exp(−αzi)∑
j exp(−αz j)

with α ∈ R+ controlling the importance of the smallest component of z. This choice

(rather than taking the product, as in Equation 4.8) comes from the observation that

a chain is only as strong as its weakest link. This entails that priority should be given

to maximizing the minimal Êi-CPSP value, rather than maximizing their product.

The constraint vector C� ensures that the design stays physically valid. It aggre-

gates (i) penetrations between distinct rigid bodies in the scene, and (ii) primitive-

specific constraints, such as ensuring that the layout of a rope-pulley is compatible

with the rope length. The former is easily obtained from the rigid body simulator, as

penetrations are needed to compute the reaction force between colliding shapes [27].

While we could have learned invalid configurations when computing the PSP, thus

integrating the constraint into the energy, we chose to explicitly enforce physical

validity during optimization for two reasons: first, validity would not have been

guaranteed since we only approximate the PSP, and second, impossibility and failure

are two distinct concepts. Indeed, the probability of success does not necessarily

decrease as a design x ∈ D+ is moved closer to D�: for example, putting two

successive dominoes in contact might robustly ensure that both topple.

As described earlier, the initial solution is the sample point with the highest

PSP value. Assuming that this guess is close enough to the global minimum, we use

Sequential Least-Squares Quadratic Programming [71] to find the optimal design.
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4.8 Case study results

4.8.1 Implementation

Our framework was implemented in Python 3.5. For each primitive type, we

implemented a parametric model for both visualization (using OpenSCAD) and

simulation (using Bullet Physics). Most computations, including optimization, are

done with NumPy and SciPy, while Scikit-learn is used for the SVM classifier and

the other machine learning tools. Our graphical interface (described next) uses the

Panda3D game engine. Code and additional details (including package versions)

are available online.9

Interface. Our graphical interface allows users to define the scene and causal graph

(see Figure 4.11). They can instantiate the primitives described in Section 4.3

and define the initial layout. We provide specific tools to help designing the most

complex primitives: for instance, domino runs can be generated by simply drawing

a path along which dominoes are automatically distributed. Simulation can be run

in real time, providing visual feedback during design. Once the scene is complete,

users define the causal graph by instantiating events, linking them to the objects in

the scene and drawing directed edges between them, and finally specifying necessary

parameters such as design space ranges. We note that the specific layout designed

in the GUI does not need to be a fully successful one: all that matters is that there

is a successful region somewhere in the design space. Additional configuration

parameters (such as event specific parameters and design space ranges) are currently

input through a text file, but could be integrated into the interface.

Export. The final optimized layout is automatically exported as PDF sheets to be

printed, to provide guidance during assembly. The outline is obtained by projecting

the convex hull of each object onto a vertical or horizontal plane, depending on the

user’s need. A pattern of grey lines is added to the background to help join the paper

sheets after printing. Guidance patterns for the examples presented in this chapter

are provided in Appendix D.

9https://geometry.cs.ucl.ac.uk/projects/2019/causal-graphs/

https://geometry.cs.ucl.ac.uk/projects/2019/causal-graphs/
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Figure 4.11: Graphical user interface. The top image shows our main 3D modeling
interface. The user can add primitives, specify their dimensions, and move
them in the scene. The contraption can be simulated at any time. The
bottom image shows our causal graph design interface. New events can be
added, linked to existing objects in the scene, and oriented edges can be drawn
between them.
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4.8.2 Qualitative evaluation

We designed, implemented, and physically realized a number of scenarios to validate

our pipeline. We present here a selection of four examples, focusing on those most

challenging due to complex movements and/or event synchronizations. Note that

simple domino runs following long low-curvature paths are easy to design (as

commonly seen in online videos) and hence were avoided in these experiments. The

four presented sequences are called ballRun, causalitySwitch, longChain, and

teapotAdventure, in increasing order of complexity. The first two resulted in a

successful real-life run after a single try; the others, due to their higher complexity,

required a more careful adjustment of the parts to the printed layout and succeeded

after 4–5 trials. We note that this number is much lower that the dozens of trials

usually shown in behind-the-scenes videos found online. In this section, we describe

each scenario at a high level, while further details are provided in Appendix C and

video clips are available online (see link in Section 4.8.1).

In ballRun, the goal is to get the ball to roll down the tracks and fall into the

cup. However, a wooden plank blocks the entrance of the cup. Synchronization is

needed along the causal graph to realize the following sequence: the ball hits the

first wooden block to get the lower support rotating, but the ball has to travel slowly

enough to allow the other wooden block to fall, thus opening the pathway to the

target cup (see Figure 4.12 but best seen in the video).

The causalitySwitch contains two longer chains running in parallel until a

domino “switch” (shown in Figure 4.14) allows only the fastest path to go through

by blocking the way of the other. One path is a wave-like chain of dominoes, while

the other involves a ball rolling on a track. This experiment demonstrates that we

can choose to optimize for either side to be the fastest by modifying the causal graph

accordingly. Figure 4.13 shows the causal graph along with the final and initial state

with the “ball” side successfully reaching the switch first. Both versions endings are

shown in Figure 4.15 and the online video (link in Section 4.8.1).

The longChain is a long linear sequence of events. Under the weight of the

box’s contents, a lever pivots to topple the domino run that, in turn, nudges the ball
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A : BALL ROLLS ON TOP TRACK
B : BALL HITS LEFT PLANK
C : BALL ROLLS ON BOTTOM TRACK

D : LEFT PLANK TOPPLES
E : LEVER PIVOTS
F : RIGHT PLANK FALLS

G : BALL ENTERS GOBLET
H : BALL STOPS

B
C

D E F
G HA

Figure 4.12: ballRun scenario. A ball rolls down a sequence of tracks into a goblet. To
clear the path, it needs to trigger the fall of the right plank by hitting the left
one, with the bottom lever pivoting before the ball reaches the goblet. Top:
initial state; bottom: final state. See online video (link in Section 4.8.1).
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A :  BRANCHING DOM. RUN TOPPLES

J :  RIGHT END OF SWITCH TOPPLES + LEFT END OF SWITCH DOES NOT MOVE

B : LEFT BRANCH DOM. HITS BALL
C :  BALL ROLLS ON TRACK
D :  BALL HITS STRAIGHT DOM. RUN
E :  STRAIGHT DOM. RUN TOPPLES

F :  RIGHT BRANCH DOM. HITS PLANK
G :  PLANK TOPPLES
H :  PLANK HITS WAVE DOM. RUN
I :  WAVE DOM. RUN TOPPLES

B C D E

F G H I
A J

Figure 4.13: causalitySwitch scenario. A branching domino run topples and triggers
two parallel branches. On one side (“ball run”), a ball rolls down a track and
topples a short straight domino run. On the “domino run” side, a plank falls
and topples a long, curved domino run. Whichever side is faster (in this figure:
the left one) triggers the ‘domino switch’, closing the path of the other side.
See online video (link in Section 4.8.1).
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Figure 4.14: Domino “switch”. The faster path closes the way of the slower path. E.g.,
when the left white domino falls, the left orange is pushed out of the path and
can’t fall anymore.

Figure 4.15: causalitySwitch endings. In the top figure, the layout has been optimized
so that the left side is faster (resulting in the left end still standing, as indicated
by the arrow); and vice versa in the bottom figure. We can notably see that the
track’s position and angle differ.
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A :  BOX LEVER PIVOTS
B : TOP-RIGHT LEVER PIVOTS
C :  BALL ROLLS ON TRACK
D :  BALL HITS BOUNCER
E : BALL HITS TOP-LEFT LEVER

F :  PLANK TOPPLES
G :  PLANK ENTERS BOTTOM GOBLET
H :  BOTTOM WEIGHT FALLS
I : COINS ENTER BOX

B C D E

FGHI

A

Figure 4.16: longChain scenario. A long chain of events that is triggered by the box’s
weight pivoting an initial lever. Dominoes topple and send a ball onto a
track to go hit a lever, which makes a plank topple through a narrow entrance
into a goblet. This triggers the fall of the bottom weight, and in turn, the
central goblet pivots to let coins fall into the box. See online video (link in
Section 4.8.1).
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B

G

C

H I

F

A M

E

L
J K

D

A : BALL 1 ROLLS ON START TRACK
B : BALL 1 HITS GATE LEVER
C : BALL 1 ROLLS ON RIGHT-TOP TRACK
D : BALL 1 ROLLS ON RIGHT LEVER TRACK
E : RIGHT LEVER TRACK PIVOTS
F : BALL 1 FALLS INSIDE TEAPOT

G : GATE FALLS
H : LEFT LEVER TRACK PIVOTS

J : BALL 2 ROLLS ON BRIDGE
I : BALL 2 ROLLS ON LEFT-BOTTOM TRACK

K : BALL 2 FALLS INSIDE TEAPOT
L : BRIDGE PIVOTS

M : BALL 1 MEETS BALL 2 (AND THEY LIVED HAPPILY EVER AFTER)

Figure 4.17: teapotAdventure scenario. See Figure 4.2 for initial layout. This figure
shows rendered versus assembled layouts for start and end frames of the
optimized layout. Ball 1 triggers the fall of the middle gate, releasing ball 2.
Ball 2 hits the gate and takes the left route, falling on a lever so that ball 1
can roll underneath. Ball 2 then makes the central weight fall, liberating the
bottom bridge. Both balls then meet in the teapot. See online video (link in
Section 4.8.1).
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onto the track. The ball rolls down the track, bounces on a small platform, and hits

a lever, resulting in the orange plank toppling. The plank tumbles and falls through

a narrow entrance into a goblet, moving a pivot that makes the bottom weight fall,

tugging on the central goblet from which coins fall into the box. Figure 4.16 shows

the causal graph along with initial and final states of the optimized layout, while the

full run is shown in the video.

The teapotAdventure is the most complex example shown in this chapter (see

Figures 4.2 and 4.17). As seen from the causal graph, success for this contraption

requires a very challenging synchronization between delicate event chains. In short,

there are two balls involved (one initially free, and one in a cage), that need to

escape the contraption and reach the teapot by opening each other’s path along

the way. Note that such a sequence is very difficult to manually author without

computational guidance as proposed in this chapter. On a lighter note, this kind of

scenario illustrates the narrative power of chain reaction contraptions, such as can

be seen, e.g., in the Japanese show PythagoraSwitch.

4.8.3 Quantitative evaluation

Local and global robustness. We compare the output of different methods with the

following measures of robustness. Let S be a scenario with design space D, and

X ⊂ D a set of points decomposed as X = X+ ∪ X− ∪ X� (respectively successes,

failures and impossible instances). The local robustness ρl : D × [0, 1] → [0, 1] is

defined as

ρl(x, ε) =


|Bε (x)∩X+ |

|Bε (x)∩{X+∪X−}| if x ∈ D \ D�,

0 otherwise,

where Bε (x) is the ball of radius ε centered at x ∈ D. In this formulation, ε

represents a uniform error on the layout parameters, while ρl is the success rate in

the neighborhood Bε (x). The global robustness ρg : D→ [0, 1] is then defined as

ρg(x) =
∫ 1

0
ρl(x, ε)dε .
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Table 4.1: Data for each scenario. The simulation budget was computed by running our
method T = 10 times and counting the average number of simulations performed.

Scenario Number of
parameters d

Max. simulation
time (s)

Simulation
budget B

causalitySwitch 4 4 614
ballRun 8 4 1120
longChain 11 5 1915
teapotAdventure 16 8 2420

In practice, the evaluation dataset X is computed from a relatively dense sample of the

design space (with 100K points for causalitySwitch, and 1M points for the three

others). Additional details on the computation of ρl are provided in Appendix C.

Comparison with baseline methods. We define three baseline methods to compare

against our technique:

(B1) Uniformly sample and simulate points in D until the first successful configu-

ration is found.

(B2) Uniformly sample and simulate points in D, compute the local robustness

x 7→ ρl(x, 0.1) for each, and take the best one.

(B3) Run a Bayesian Optimization with a Gaussian Process prior [122] (initialized

with uniform sampling) using x 7→ ρl(x, 0.1) as an objective function.

Each baseline is given the same “simulation budget” B computed from our own

method: we first run our method T times with a different random generator seed

each time (with T = 10 in our experiments), and compute B as the average number

of simulations carried out. Each baseline is then also run T times until B is reached

(or until a success is found for baseline B1). Table 4.1 provides the budget computed

for each scenario. The final local robustness curve is the average curve accross the

different trials.

Results in Figure 4.18 and Table 4.2 show that our method outperforms the

baselines for all four scenarios presented in Section 4.8.2. Interestingly, the Gaus-

sian Process optimization (B3) appears to perform worse than the simpler uniform

sampling (B2) in higher dimensions, which could be due to the presence of holes (i.e.,
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Table 4.2: Experiments statistics. Both global robustness and processing time are averages
of T = 10 random trials. The simulation step was 0.002s.

Scenario Global robustness ρg(x∗) Processing time (s)

B1 B2 B3 Ours B1 B2 B3 Ours

causalitySwitch 0.44 0.59 0.63 0.65 263 282 463 364
ballRun 0.34 0.35 0.40 0.48 59 52 786 153
longChain 0.09 0.13 0.13 0.16 1499 1597 1956 636
teapotAdventure 0.16 0.23 0.14 0.27 536 536 988 779

Error ε on the output layout parameters x∗
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Figure 4.18: Local robustness plots. Average local robustness ρl(x∗, ε) as a function of
the error ε on the layout parameters x∗ output by each method, for problems
of different dimension d. Each curve is surrounded by a standard error of
the mean interval (with T = 10 runs per method). Scenarios are respectively
causalitySwitch, ballRun, longChain and teapotAdventure.



4.9. Summary of the case study 113

Error ε on the output layout parameters x∗

Av
er

ag
e

lo
ca

lr
ob

us
tn

es
s
ρ

l(
x∗
,ε
) d = 11

d = 16

Figure 4.19: Full versus factorized PSP. We use the same metric as in Figure 4.18 to com-
pare two versions of our method for the longChain and teapotAdventure
scenarios. “Full” means that a single SVM was used over the entire design
space, while “Factorized” follows the method in Section 4.6.

components of D�) in the optimization landscape. Additionally, we demonstrate the

positive impact of PSP factorization in Figure 4.19.

4.9 Summary of the case study
I have presented a framework to help design chain reaction contraptions by opti-

mizing the components’ layout for a target sequence of events specified as a causal

graph. The method specifically focuses on robustifying the design against modeling

and manual assembly uncertainty. At the core of this approach is the computation

of a parametric success probability (PSP) that provides an approximate measure

of robustness to uncertainties. The PSP is efficiently built with a combination of

simulation-based search and machine learning techniques, before using it to obtain

a robust design layout. Quantitative results showed a significant improvement over

baseline methods across a wide range of dimensions, and the method was further val-

idated by physically realizing a set of complex chain reaction contraptions optimized

with this technique.

I argue that the results presented in this chapter support two of the main con-
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tributions presented in Chapter1: first, this method allows specifications formulated

directly at the level of the complex physical behavior representation of an assembly,

in the form of a causal graph of events (C1). Second, the probability of deviation

from physical behavior specifications is minimized by increasing the robustness of

the chain reaction to uncertainties (C3).

In the next chapter, I conclude this thesis by summarizing the findings of the

case studies and discussing avenues for future research.



Chapter 5

Conclusion

In this thesis, I have argued that efficient methods could support designers seek-

ing complex behaviors by improving their level of control over these behaviors. I

have proposed a user-centric conceptual framework involving the notions of be-

havior, control and complexity of a design, and have presented two case studies in

which complex assemblies are designed with an artistic purpose favoring a complex

outcome over a simple one. The first study focused on efficiently improving the

constructive control of the user over the complex behavior of a drawing machine,

while the second study investigated the problem of increasing the physical control

of the user over the complex behavior of a chain reaction contraption. The key

contributions of these studies are summarized next, before discussing avenues for

future research.

5.1 Summary
Recalling from Chapter 1, the work presented in this thesis makes the following

contributions:

(C1) Representation: support new types of complex physical behavior specifica-

tions.

(C2) Exploration: introduce a new method enabling users to easily explore design

variations that respect their physical behavior specifications.

(C3) Optimization: propose a new method to minimize the chance of real-life

deviation from physical behavior specifications.
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Chapter 3 focused on drawing machines: relatively simple mechanical assem-

blies producing intricate visual patterns that are hard to control. The goal of this

work was to enable users to easily explore and fine-tune machine-made drawings

constrained by their visual preferences. Our drawing-centric interface lets the user

search for patterns by only sketching parts, which are automatically symmetrized.

Then, it provides an interactive representation where feature points (e.g., intersec-

tion points) can be selected, and geometric constraints can be applied to them (e.g.,

staying at the same position) (C1). Our novel dynamic reparameterization method,

combined with a slider-based interface, enables the user to explore and fine-tune

realizations that respect these constraints (C2). We evaluated this method in two

main ways. On the qualitative side, we demonstrated a wide range of constrained

transformations, both in figures (for simple examples) and in videos (for complex

ones), allowing users to explore diverse variations of a drawing. Additionally, we

fabricated three machines to show that these variations stayed physically feasible.

On the quantitative side, we ran a small scale user study which, after analysis, sup-

ported the claim that users can modify drawings more efficiently with a given visual

constraint than without, even though the role of each slider is not explicitly known.

Chapter 4 considered the task of assembling chain reaction contraptions in a way

that is robust to uncertainties. The key events expected during a run of this machine

are described with the help of a causal graph (C1), while the exact motion of each

component is left unspecified. We proposed to use the degrees of freedom left by

such a partial specification to find an assembly layout robust to uncertainties (C3).

We showed that in the case of a binary success/failure outcome, this amounts to

increasing the probability of success parametrized by the layout variables. Assuming

that the most probably successful layout given all sources of uncertainty was similar

to the most probably successful layout given a simulated sample of the design space,

we converted the original probability estimation problem into a binary classification

task requiring no estimation of the real uncertainties at play. Our core technical

contributions consisted in efficient sampling and learning strategies to build the

parametric success probability estimator, notably taking advantage of the causal
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graph structure to scale to high-dimensional design spaces. We evaluated this

approach in two ways. Qualitatively, we fabricated four chain reaction contraptions

optimized with our learned success probability, which succeeded either immediately

or after four or five trials for the most complex ones (compared to the dozens of takes

usually reported in examples online). Quantitatively, we implemented a measure

of robustness based on a dense sampling of the design space, and compared the

layout given by our method against the result given by three baseline methods. We

showed that our approach consistently outperformed the others, and demonstrated

the efficiency of our strategy to scale to high numbers of layout variables.

Despite their different applications and goals, both problems present similarities

within the context of this thesis. First, the physical behavior of each assembly

can change in complex and unpredictable ways as design parameters are changed

even by a small amount (in which sense they are “near chaotic”). Second, in

both cases the purpose of these machines is primarily visual, which requires an

intuitive graphical representation at the center of the design specifications. Lastly,

the intentionally complex behavior of these machines calls for an approach based on

partial specifications and an efficient exploration of the design space, rather than an

exhaustive specification of the behavior of interest.

5.2 Future work
Developing efficient algorithms to ease the design and fabrication of assemblies

displaying an intentionally complex behavior is a promising research direction, with

many problems left to explore. To conclude this thesis, I will first discuss how the

methods summarized above can be extended to a wider range of applications, before

proposing three themes for future research.

The case studies presented in this thesis focused on machines with artistic appli-

cations. It is important to consider how the core contributions of these works could

be applied to other concrete problems. For instance, as mentioned in Section 3.2, the

complex trajectory patterns produced by drawing machines are also commonly used

with electromagnetic beams for 3D scanning [77]. In this context, the constrained
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Initial curve
New curve
Pt of interest

Figure 5.1: Extension to a mechanical character. A leg kicks a soccer ball.

exploration method could help explore different patterns respecting user-specified

constraints. Moreover, this method is not only useful for intricate curves: it remains

valid for general mechanisms with simpler continuous cyclic trajectories, as illus-

trated in Figure 5.1. I selected one of the elementary mechanisms from Coros et

al.’s paper [26] and added it to our system. Connecting a “leg” to the end-effector

(animated with inverse kinematics), one can imagine a situation where a user wishes

to have the foot kicking a ball at the maximum of curvature (therefore deciding to fix

its position) while exploring the various trajectories taken by the foot to reach this

position. Beyond toys, designing cyclic motions is also relevant in industrial settings

such as assembly lines, where the available constraints on a point of interest could

be extended to speed and force, with no change needed in the rest of the pipeline

except the choice of a physics engine allowing to compute these values.

Likewise, our method to improve the robustness of chain reaction contraptions

could be applied to more practical mechanisms involving sequences of events, such

as automatic dispensers1, pop-up tents and ejection seats, to name a few. Indeed,

1Surprisingly, the first automatic vending machine dates as far back as Greek antiquity. Hero of
Alexandria, in his book Mechanics and Optics, described a device able to automatically dispense
holy water after a coin was inserted [125]. The coin would fall onto a platform that tipped, opening
a valve letting the liquid flow. Then, the coin would fall off the tipped platform, closing the valve
again—thus completing the chain reaction.
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while we chose to limit our design space to layout parameters (as components were

assumed to be preexisting), nothing prevents the inclusion of other geometric and

physical parameters (although additional physical validity checks may have to be

performed). The causal graph, however, would need to support additional features

such as disjunctions (i.e., “if/else” paths), “or” preconditions (i.e., checking for an

event condition if any of its parent events happened) and duration-based events

(i.e., with a condition expected to be true for a given amount of time). This does

not fundamentally change the method in Section 4.5; as for the factorization in

Section 4.6, it only requires the graph to be directed and acyclic.

Beyond these extended applications, I propose three axes for future research.

5.2.1 Behavior specification and exploration

Chapter 3 addresses a problem for which, arguably, open-ended exploration might

be more suitable than direct queries because it is difficult for the user to imagine

which patterns are possible in the first place. These approaches, however, complete

rather than oppose each other. An interesting problem, in terms of interaction, would

be to investigate how these two modes of design might be alternated or combined in

a way that is most intuitive and efficient for users. Nevertheless, while many works

in computational design have explored problems in which the main interaction is

a direct user query (see Section 2.4), constrained exploration has received far less

attention, especially when designing physical behaviors. Some direct extensions to

our method would be to allow visual preferences in the form of soft (rather than hard)

constraints, and to allow the formulation of constraints on more complex elements of

the behavior representation: e.g., trajectory arcs and groups of arcs. As mentioned

above, beyond geometry, the potential applications would greatly expand with the

addition of physical constraints, such as speed and force.

Moreover, while our work relies on sliders to explore local behavior variations

under constraints in a continuous design space, many methods have been proposed

to organize and explore collections of shapes [152]. From an interaction standpoint,

one weakness of the slider-based approach is that the effect of each slider might be

difficult to understand or remember, especially above three sliders. This problem
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could be alleviated in various ways: for instance, previsualizing the effects with

arrows (similar to the work by Mitra et al. on illustrating how mechanical assemblies

work [97]), or using additional dimensionality reduction techniques (e.g., multidi-

mensional scaling) to navigate possible variations in a 2D map. Such data-driven

methods, however, tend to be applied in advance to vast preexisting collections,

rather than to a smaller set of behavior variations computed on the fly. Interactive

behavior exploration poses two additional challenges worth investigating: (i) how

to manage small design parameter changes leading to large behavior changes; and

(ii) how to ensure that the method is fast enough to stay interactive.

5.2.2 Computational models of physical causality

A key goal in computational design is to develop models able to automatically iden-

tify and exploit functional relationships between the different parts of an assembly.

Physical causality is central to such an understanding of functionality, as it links

spatial (e.g., the dimensions and layout of parts) and temporal variables (e.g., the

occurrence and duration of an event) logically or probabilistically (depending on

how causality is represented). Models of physical causality have many important

applications. For instance, while in Chapter 4 we assume that the design space

contains a continuous region of successful instances, such models could be used

to predict whether a success region exists, i.e., whether a user-defined behavior is

achievable at all. Feedback could then be provided to indicate failure points. A

better understanding of causal relationships could also help our system use simula-

tions more efficiently, by stopping runs early if failure is expected. In the same vein,

when building the CPSP factors, further analysis could allow restarting simulations

mid-run, i.e., from an event-specific initial state.

While our work takes advantage of situations where the physical behavior is

under-specified, an even more ambitous goal would be to automatically complete

assemblies when parts of the behavior are not specified at all. To give an example

inspired by our own work, a user could want to generate a variety of chain reaction

contraptions by providing only the beginning and end of the chain. To reduce the

large number of valid solutions, constraints could also be added manually (e.g., in
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the form of a partial causal graph, or motion sketches) or automatically (by inferring

the functionality of the artifact). While existing methods in computational design

for mechanical assemblies already allow the completion of kinematic chains with

a library of components [26, 130], generalizing these solutions to assemblies of

disconnected bodies is particularly challenging, as the possible component com-

binations are much higher and the resulting behaviors more diverse. This in turn

requires a significant amount of prediction and decision making on the part of the

algorithm. The applications, on the other hand, are also quite promising, from

helping novice users repair broken artifacts [73] or augment existing ones [84], to

supporting engineers and designers in creating new inventions.

Lastly, the ability to model physical causality may help differentiate impossible

behaviors by quantifying how impossible they are (i.e., quantifying the changes

required to make these behaviors possible). Such a metric could be useful to

explore regions of the design space in which the simulated behavior of an artifact is

undefined. For instance, some design parameters may be discrete, or the violation

of physical validity constraints may result in an unstable simulation that does not

reflect real-world physics. Transitioning through such undefined behaviors, however,

could be valuable both for exploration (e.g., when using the 2D map metaphor

mentioned in Section 5.2.1) and optimization (i.e., relaxing the problem to reach the

optimum faster). A promising line of research is to combine such physical causality

models with machine learning models able to hallucinate an approximation of these

intermediate behaviors.

5.2.3 Uncertainty and robustness

While the method presented in Chapter 4 efficiently increases the probability of

simulated success of a chain reaction contraption, the connection with the physical

robustness of the design relies on assumptions that are worth investigating. The

first hypothesis to test is whether increasing the robustness of the layout to the

uncertainty of a single controllable variable reliably increases its robustness to the

uncertainty of uncontrollable variables. The second hypothesis is the similarity

between layouts maximizing the probabilities of simulated and physical success.
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Going further, how correlated are these parametric probabilities across the design

space? An answer to this question would be particularly useful to give the user an

estimate of the probability of physical success of the final layout, and by extension,

an estimate of the number of attempts to expect before the contraption works. More-

over, quantifying the sensitivity of the physical probability to the variables involved

would help to guide and advise the user regarding which object measurements or

placements require more care than others. Additionally, as mentioned in Section 2.5,

our method could be extended to include a calibration step increasing the accuracy

of the simulator. At the other end of the pipeline, alternative ways of communicating

the final layout to the user could be experimented. For instance, Peng et al. [104]

very recently proposed a system using interactive projection mapping to guide users

building domino runs.

Given the research directions mentioned above, it is clear that computational

design has many exciting problems left to explore. This thesis, by proposing efficient

methods to help users create assemblies displaying an intentionally complex physical

behavior, makes a small step towards more intelligent and intuitive design tools.



Appendix A

Kinematics of drawing machines

A.1 Introduction
This appendix describes the parameterization and kinematic behavior of the drawing

machines supported by our system. For each machine, we present the following

elements.

• Design parameters. These parameters describe the layout and physical di-

mensions of the components of a machine. They can be continuous or discrete.

• Constraints on design parameters. These constraints translate high-level

feasibility requirements and symmetry reductions (see typology below) into

a set of (in)equalities.

• Kinematic equations. The pattern drawn by a machine is expressed as a

function of time and design parameters.

A.1.1 Time interval
Although the kinematic equations were obtained using a geometric approach, their

time-periodicity can be determined by applying modular arithmetic on a subset of

the design parameters. Let us first consider a pair of meshing gears, G1 and G2,

which both influence the drawing pen. We note their (equivalent) radii r1 and r2,

which we assume to be integers. The law of gearing gives:

r1
r2
=
ω2
ω1
=
T1
T2
, (A.1)
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where ωi and Ti are respectively the angular speed and period of gear Gi, related by

ωi = 2π/Ti.

The system has performed a full cycle when both gears have simultaneously

come back to their initial configuration, after a period:

T12 = n1T1 = n2T2, (A.2)

where n1 and n2 are the integer numbers of rotations experienced by each gear.

By definition, the minimal value that satisfies this relation is the Least Common

Multiple. Therefore:

T12 = lcm(T1,T2). (A.3)

If we add a new gear G3, which meshes with one of the existing gears and also

influences the drawing pen, all we need to do is compute the new period:

T123 = lcm(T12,T3), (A.4)

and so on for any additional gear.

A.1.2 Typology of constraints

For each machine, constraints on shape parameters reflect a number of functional

and practical features.

Finite pattern. The first requirement is that the drawing can be produced in a

reasonable amount of time, and a fortiori, a finite one. For each pair of gears,

combining Eq. A.1 and A.2 gives the necessary condition

r1
r2
=
T1
T2
=

n1
n2
∈ Q. (A.5)

In other words, if r1/r2 < Q, the gears will take an infinite amount of turns to come

back to their initial configuration.

We incorporate this rationality constraint in our parameterizations by taking

gear radii in N>0. This constraint can be extended to non-circular gears, as demon-
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Table A.1: Main notations used in this appendix.

Notation Meaning

r (resp. r) Free (resp. fixed) parameter
A Geometric point

#   »AB (resp. #»v ) Bound (resp. free) vector
‖.‖ Euclidean norm
R Reference frame
Rθ Rotation of angle θ centered at the origin

strated in Section A.2.2.

Compatible curvatures. Although, in classic mechanisms, non-circular gears often

come in pairs with conjugate profiles, interesting trajectories can be obtained when

rolling such a gear along a shape of different type. However, all not shapes can be

rolled along each other without interference. Let us consider the case of an ellipse

E1 rolling inside another ellipse E2. We can formulate the curvature compatibility

constraint as

κE1
min ≥ κ

E2
max .

This constraint ensures that at the point where the moving ellipse is the ‘straightest’,

or least curved, it can still fit wherever the fixed enclosing ellipse is the most curved.

While necessary, this constraint is not sufficient in more general cases, where ad hoc

conditions should be added to avoid collisions.

Symmetry and congruence reduction. For a single machine, the space of available

patterns can be very diverse but also highly redundant. This is typically caused by

symmetries in the mechanical layout, or parameter combinations giving patterns that

only differ by an affine transformation. Whenever this is possible, we put constraints

on the parameters to remove such redundancies.

Valid layout. This type of condition only considers the abstract geometric model. It

prevents components belonging to the same layer from overlapping. These are only

basic constraints though, as in practice, collision avoidance depends on the specific

physical implementation of the machine.
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Drawing bounds. The size of the canvas is bounded, and the pen should never leave

this drawing area.

Singularity avoidance. This problem has already been described in previous

works [3]. Singular configurations typically happen when two links become per-

fectly aligned, which should be avoided (be it in the simulation or in real life).

Practical dimensions. Lastly, although some parameters could grow indefinitely

without being limited by one of the previous constraints, we set some arbitrary

bounds to ensure that the machine keeps a reasonable size.

The constraints are not always easy to evaluate. For instance, in the general

case, the “drawing bounds” condition would require to produce the pattern in order

to estimate whether or not the bounds are satisfied. This poses a chicken-and-egg

problem, since we want to compute a pattern only if the constraints are satisfied. As

a consequence, every time this situation arose, we determined a sufficient condition

that only depends on the shape parameters.

A.1.3 Notations

See Table A.1 for the main notations. To improve the readability of equations, we

sometimes make the following simplifications:

• all vectors are expressed in a fixed reference frameR0 unless stated otherwise,

• all variable vectors and scalars of kinematic equations are time functions taken

defined over [0,T], where T is the period defined in Section A.1.1.

A.2 Drawing machines

A.2.1 Basic Spirograph

The Spirograph is a 1965 drawing toy developed by Denys Fisher. Nowadays, the

Spirograph is a complete set composed of various toothed plastic shapes. In our

work, however, we focused on the “classic” version: a gear rolling without slipping

inside or outside a circular ring.
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Figure A.1: Dimensions of a basic Spirograph. (In the case where the moving gear rolls
inside the fixed one.)

Table A.2: Symbols for the Spirograph model.

Component Geometric center

Fixed gear GF
Rolling gear GR
Pen hole H

Parameter Meaning

rF Radius of the fixed gear’s primitive
rR Radius of the rolling gear’s primitive
d Distance between GR and H

Design parameters. Three parameters completely describe the figures drawn by a

classic Spirograph (factoring out rigid transformations). See Table A.2 for symbols

and Figure A.1 for a geometric representation.

Constraints. The following constraints are grouped under the categories outlined in

Section A.1.2.

• Finite pattern:

rF, rR ∈ N>0, (A.6)

rF < Br, (A.7)

where Br is an arbitrary integer constant.
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• Valid layout:

0 < rR < rF, (A.8)

|d | 6 rR. (A.9)

• Symmetry and congruence reduction:

gcd(rF, rR) = 1, (A.10)

d > 0. (A.11)

Kinematic equations. The basic Spirograph produces curves called trochoids (hy-

potrochoids if the gear rolls inside the ring, and epitrochoids if it rolls outside the

ring). The parametric equation of a trochoid in Cartesian coordinates is:

#»γ (t) B rR(q ∓ 1)

cos(t)

sin(t)

 + d

± cos ((q ∓ 1) t)

− sin ((q ∓ 1) t)

 t ∈ [0,T], (A.12)

where q = rF/rR, and the upper and lower operators respectively denote the hypo-

and epitrochoid cases.

A.2.2 Elliptic Spirograph

This slight variation of the base Spirograph does not correspond to a particular

commercial toy. We developed it as a simple extension that adds one continuous

parameter to the previous model. For this reason, we voluntarily constrained the

pen hole to lie on the major axis of the elliptic primitive. However, the geometric

analysis gets already more involved than in the basic case.

Design parameters. The elliptic Spirograph is described by four parameters defining

the layout and dimensions of two components. See Table A.3 for symbols and

Figure A.2 for a geometric representation.

Ellipses are usually described by their semi-minor and semi-major axes a and

b. However, the finite-curve constraint is more complex to write in terms of these
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Figure A.2: Dimension of the elliptic Spirograph model.

parameters. For non-circular gears, Equation A.5 can be generalized to

P1
P2
=
T1
T2
=

n1
n2
∈ Q (A.13)

where Pi is the perimeter of gear i. For an elliptic profile, it is given by

P = 4aE(e), (A.14)

where E is the well-known complete elliptic integral of the second kind:

E(k) =
∫ π

2

0

√
1 − k2 sin2 θdθ, (A.15)

and e =
√

1 − b2

a2 is the eccentricity of the ellipse.

Thus in practice, we consider the more convenient pair (req
R , e), where req

R , the

‘equivalent radius’, is the radius of a circle with the same perimeter. Therefore req
R

can follow the same condition as the other radii. The link between the two pairs of

parameters is given by:

2πreq
R = 4aE(e), (A.16)

b = a
√

1 − e2. (A.17)
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Constraints. The following constraints are grouped by the categories outlined in

Section A.1.2.

• Finite pattern:

rF, req
R ∈ N>0, (A.18)

rF < Br, (A.19)

where Br is an arbitrary integer constant.

• Compatible curvatures:

a <
√

brF. (A.20)

• Valid layout:

0 < req
R < rF, (A.21)

0 6 e < 1, (A.22)

|d | 6 a. (A.23)

• Symmetry and congruence reduction:

gcd(rF, r
eq
R ) = 1, (A.24)

d > 0. (A.25)

Kinematic equations. As a generalization of trochoids, when a point M is attached

to a moving curve Γm that rolls without slipping (RWS) along a fixed curve Γ f , both

being in the same plane P, M describes a curve Γr in P, called a roulette curve. In

The General Theory of Roulettes [148], Walker gives a general method to obtain the

parametric equation of roulette curves. We follow the ideas of his demonstration

but adapt the equations to our own formulation.



A.2. Drawing machines 131

Table A.3: Symbols for the elliptic Spirograph model. Parameter pairs marked by ∗ and
† can equivalently describe the elliptic primitive.

Component Geometric center

Fixed gear GF
Rolling gear GR
Pen hole H

Parameter Meaning

rF Radius of the fixed gear’s primitive
a Semi-major axis of the rolling gear’s primitive∗

b Semi-minor axis of the rolling gear’s primitive∗

req
R

Radius of the circle with the same perimeter†

as the rolling gear’s primitive
e Eccentricity of the rolling gear’s primitive†

d Distance between GR and H

We are looking for an expression of the roulette curve:

#»γ (t) B
#      »GFH(t) t ∈ [0,T]. (A.26)

We first introduce two reference frames:

• R0, a frame attached the fixed gear with GF as its origin,

• and RR, a moving frame attached to the rolling gear with GR as its origin.

We consider the primitive curves of each gear ΓF and ΓR, initially touching each

other at a contact point C0 with their tangents aligned. Each curve is described in

its own reference frame by a differentiable parametric function, namely #»γF and # »γR.

At every t, the contact point C travels on both curves, so that:

#      »GFC(t) = #»γF(t) = [ # »γR(t)]R0 , (A.27)

where [.]R0 denotes the reference frame. More specifically, for any point M attached

to RR: [
#       »GFM

]
R0
=

#         »GFGR(t) + RφFR(t)

( [
#       »GRM

]
RR
−

#         »GFGR(t)
)
, (A.28)
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where φFR(t) is the oriented angle between R0 and RR at t. Since the tangents to

each curve at C0 must always be aligned, the rotation should compensate for the

angular difference between the tangents in their own reference frame. Therefore:

φFR(t) = − (φF(t) − φR(t)) ∀t, (A.29)

where φF and φR are the tangential angles of #»γF and # »γR respectively.

Applying Equation A.28 to # »γR and using the coincidence relation Equation A.27

gives:
#»γF(t) =

#         »GFGR(t) + RφFR(t)

(
# »γR(t) −

#         »GFGR(t)
)

∀t. (A.30)

Then, we can evaluate Equation A.28 at point H, substract the above equation to get

rid of #         »GFGR, and finally use the curve definition Equation A.26 to write:

#»γ (t) B #»γF(t) + RφFR(t)

( [
#      »GRH

]
RR
− # »γR(t)

)
∀t . (A.31)

Equation A.31 allows us to compute the roulette once the specific gear profile

parameterizations γF and γR are known. It does not, however, tell us how the RWS

condition is enforced. Following this constraint, the contact point must travel on

both curves at the same speed, meaning that: •#»γF(t)
 =  •# »γR(t)

 ∀t. (A.32)

Integrating this equation translates into an equality of arc lengths for all t. Therefore

we introduce a common arc length function:

Λ :

[0,T] → [0,L]

t 7→ Λ(t) = ΛF(t) = ΛR(t)
(A.33)

where L is the total distance traveled during the drawing. Using the fundamental

theorem of calculus, it is easy to show that the arc length function is continuous

and strictly monotone, and therefore bijective. We use the reciprocal function to
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implement the RWS condition via a change of variables:

#»γ∗
′(s) B #»γ∗ ◦ Λ

−1(s) ∀s ∈ [0,L], (A.34)

where s is called the arc length parameter, and is the same for both curves.

Finally, the roulette curve in Equation A.31 becomes:

#»γ ′(s) B #»γF
′(s) + RφFR(s)

( [
#      »GRH

]
RR
− # »γR

′(s)
)

s ∈ [0,L]. (A.35)

The above developments are purely theoretical, and could be applied to gears

of various primitive shapes, as long as they have compatible curvatures and do

not collide during the drawing. Let us now demonstrate the case of the elliptic

Spirograph. The basic parameterizations are:

#»γF(t) B rF


cos(t)

sin(t)

 t ∈ [0,T], (A.36)

and

# »γR(t) B

a cos(t)

b sin(t)

 t ∈ [0,T]. (A.37)

Transforming Equations A.36 and A.37 into arc length parameterizations necessi-

tates to invert their respective arc length functions. While being easy for #»γF(t):

ΛF(t) B rF t ∀t ∈ [0,T],

Λ
−1
F (s) B s/rF ∀s ∈ [0,L],

it is more complicated for # »γR(t):

ΛR(t) B a
(
E
(
t +
π

2
, e
)
− E(e)

)
∀t ∈ [0,T], (A.38)

where this time E(φ, k) denotes the incomplete elliptic integral of the second kind,

function of an amplitude φ and an elliptic modulus k. Inverting E with respect
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to amplitude is theoretically possible; however, as noted in an article by Ghrist et

al. [47], while inverses of elliptic integrals of the first kind are well-known in the

literature (and called Jacobi elliptic functions), very little has been written on their

second kind counterparts.

In practice we could compute the inverse of E numerically; however, in this

case we opt for a more efficient method, which can be applied to other complicated

scenarios. The idea is to keep the original parameterization of the more complex

shape, and only invert the arc length function of the simpler one. Here for instance,

we keep the ellipse parameterization # »γR, and use a new circle parameterization

#»γF
′ B #»γF ◦ Λ

−1
F ◦ ΛR, (A.39)

which only requires to evaluate E directly. This “trick” allows us to enforce the

RWS condition efficiently.

A.2.3 Cycloid Drawing Machine

The Cycloid Drawing Machine is a relatively recent project by Joe Freedman [40],

with a virtual version by Jim Bumgardner [16] available online. Despite its name,

this machine can produce figures that are far more complex than cycloids, which

can be obtained from a simple Spirograph. It allows several configurations, among

which we only implemented the simplest one (single gear, fixed fulcrum).

Design parameters. Our configuration of the Cycloid Drawing Machine is described

by six parameters, controlling the layout and dimensions of six components. See

Table A.4 for symbols and Figure A.3 for a geometric representation.

Constraints. The following constraints are grouped by the categories outlined in

Section A.1.2.

• Finite pattern:

rT, rE ∈ N>0, (A.40)

rT, rE < Br, (A.41)
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where Br is an arbitrary integer constant.

• Valid layout:

0 < rT < dTF, (A.42)

0 < dFH < dFE − rE, (A.43)

0 6 rS < rE, (A.44)

with:

dFE B
 #     »FGE


=
(
d2

FH + (rT + rE)
2 − 2dFH(rT + rE) cos θTE

) 1
2

• Symmetry and congruence reduction:

gcd(rT, rE) = 1, (A.45)

0 6 θTE 6 π. (A.46)

• Drawing bounds:

max
t

 #      »GTH
 < rT, (A.47)

with

arg max
 #      »GTH

 = 
dTF

0

 + dFH


cos(θFE − α)

sin(θFE − α)

 , (A.48)

where α is the amplitude of the oscillation:

α B arctan
(

rS
dFE

)
, (A.49)

and θFE is the polar angle of #     »FGE:

θFE B π − arctan
(
(rT + rE) sin θTE

dTF − (rT + rE) cos θTE

)
(A.50)
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Figure A.3: Dimensions of the Cycloid Drawing Machine model.

Table A.4: Symbols for the Cycloid Drawing Machine model.

Component Geometric center

Turntable gear GT
External gear GE
Fulcrum (or pivot) F
Slider S
Pen-holder H

Parameter Meaning

rT Radius of the turntable gear’s primitive
rE Radius of the external gear’s primitive
dTF Distance between GT and F
θTE Polar angle of #         »GTGE
rS Distance between GE and S

dFH Distance between F and H

• Practical dimensions:

dTF 6 Bd, (A.51)

where Bd is an arbitrary constant.

Kinematic equations. The Cycloid Drawing Machine and the Hoot-Nanny both use

a turntable to increase the complexity of the drawing they produce. The equation of

the corresponding curve can be expressed in a general way.
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We first consider two frames, sharing the same origin GT:

• a fixed frame of reference R0,

• and a rotating frame of reference RT, attached to the turntable.

The polar angle from R0 to RT is equal to θT, the rotation angle of the turntable

gear. Since both frames have the same origin, the frame change equation is simpler

than for the elliptic Spirograph (cf. Equation A.28. For any point M attached to the

rotating frame, it comes:

[
#       »GTM]RT = R−θT[

#       »GTM]R0 . (A.52)

We can then define the drawing obtained from turntable-based machines as the

curve:
#»γ (t) B [

#      »GTH(t)]RT t ∈ [0,T]. (A.53)

Let us now express #»γ (t) as a function of the shape parameters. We have

#      »GTH = #     »GTF + #  »FH

=


dTF

0

 + dFH

# »FS # »FS
,

with:

# »FS = #     »FGT +
#         »GTGE +

#     »GES

=


−dTF

0

 + (rT + rE)


cos θTE

sin θTE

 + rS


cos θES

sin θES


where θES is the polar angle of #     »GES.

All that remains is to express the gear angles as functions of time. Integrating

the law of gearing (Equation A.1) and taking the constant to be 0 yields:

θES(t) = −
rT
rG
θT(t) ∀t. (A.54)
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Table A.5: Symbols for the Hoot-Nanny model.

Component Geometric center

Turntable gear GT
External gear i Gi

Pivot joint i Pi

Arm i Ai

Pen-holder H

Parameter Meaning

rT Radius of the turntable gear’s primitive
rGi Radius of external gear i ’s primitive

θ12 Angle �G1GTG2
rPi Distance between Pi and Gi

li Length of arm i

Finally, if the turntable gear is considered as the driving gear, θT can be simply taken

as:

θT(t) B t ∀t ∈ [0,T]. (A.55)

While a dedicated driving gear can be added for convenience, it does not influence

the aspect of the drawing and therefore is not considered in this model.

A.2.4 Hoot-Nanny

The Hoot-Nanny, also known as Magic Designer, is an older toy from the middle

of the 20th century, produced and commercialized at the time by Northern Signal

Company, Milwaukee. The “trick” of fixing the sheet of paper onto a turntable to

increase the complexity of the drawings may have inspired the design of the Cycloid

Drawing Machine described above. An online version by Abel Vincze [147] called

“HTML Spirograph” allows to draw an impressive range of beautiful patterns by

varying the color and transparency of the curve.

Design parameters. Our Hoot-Nanny is described by eight parameters, controlling

the layout and dimensions of eight components. See Table A.5 for symbols and

Figure A.4 for a geometric representation.
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Constraints. The following constraints are grouped by the categories outlined in

Section A.1.2.

• Finite pattern:

rT, rGi ∈ N>0, (A.56)

rT, rGi < Br, (A.57)

where Br is an arbitrary integer constant.

• Valid layout:

rPi < rGi, (A.58)

rG1 + rG2 <
 #        »G1G2

 , (A.59)

rGi + rPi < li < 2rT + rGi − rPi, (A.60)

with:  #        »G1G2

 = (
d2

TG1
+ d2

TG2
− 2dTG1 dTG2 cos θ12

) 1
2 (A.61)

where dTGi B rT + rGi .

• Symmetry and congruence reduction:

gcd(rT, rGi ) = 1, (A.62)

0 6 θ12 6 π. (A.63)

• Drawing bounds:

max
t

 #      »GTH
 < rT, (A.64)

for which a sufficient condition can be found by observing that a feasible

trajectory of the pen in the fixed reference frame (which is not the same

as the drawing curve) is always inscribed in a quadrilateral whose vertices

are reached when the triplets (G1, P1,H) and (G21, P2,H) become respectively
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Figure A.4: Dimensions of the Hoot-Nanny model.

aligned. For these points the distances between the gear centers and the pen are

extremal, with values dext
HGi
= rGi ± li, which makes indeed four combinations.

Therefore, all that we need to determine is the position of the four vertices,

and find the distance of the one that is farthest from the turntable center. The

position of a vertex is obtained by applying the law of cosines to the triangle

HG2G1:
#      »GTH = #         »GTG2 + dext

HG2
Rα

#        »G2G1 #        »G1G2

, (A.65)

where α is the angle �HG2G1, given by:

α = arccos
©«
−(dext

HG1
)2 +

 #        »G1G2

2
+ (dext

HG2
)2

2dext
HG2

 #        »G1G2

 ª®®¬ . (A.66)

We can then reformulate the sufficient condition as:

max
H∈V

 #      »GTH
 < rT (A.67)

whereV denotes the set of vertices.

• Singularity avoidance:

min
t

 #     »P1H × #      »P1P2

 > 0, (A.68)
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for which a sufficient condition is: #        »G1G2

 + rP1 + rP2 < l1 + l2, (A.69)

reflecting the fact that the arms need to be long enough to prevent alignment

when the pivots are farthest from each other.

Kinematic equations. As with the Cycloid Drawing Machine, we introduce the

rotation angle of each external gear: θ1 and θ2. Again, they can be simply related

by integrating the law of gearing (Equation A.1) and taking the constant to be 0:

θi(t) = −
rT
rGi

θT(t) ∀t. (A.70)

Let us now express the curve function (Equation A.53) via the gears’ angles.

First, the law of cosines applied to the triangle HP2P1 gives

#      »GTH = #        »GTP2 + l2Rα
#      »P2P1 #      »P2P1

, (A.71)

where α is the angle �HP2P1, given by:

α = arccos
©«
−l1

2
+

 #      »P2P1

2
+ l2

2

2l2
 #      »P2P1

 ª®®¬ . (A.72)

The remaining vectors are given by:

#        »GTP2 = (rT + rG2)


cos θ12

sin θ12

 + rP2


cos θ2

sin θ2

 (A.73)

and
#      »P2P1 = (rT + rG1) + rP1


cos θ1

sin θ1

 − #        »GTP2. (A.74)
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Additional user study results for

Chapter 3

Average distance travelled in the design space

Average time spent on the task (in seconds)

Figure B.1: Additional user study results. Lower values mean better results. Black bars
show the standard error of the mean. “BAS” and “INV” respectively denote
the base and invariant-space parameterizations.



Appendix C

Implementation details for Chapter 4

C.1 Primitives
This section describes in more detail the primitives implemented in our system.

Please refer to the code for a complete description.

C.1.1 Simple primitives

Simple primitives describe single solid objects. Each such object is instantiated

with design parameters describing its dimensions (e.g., width, length, height, etc.).

Additionally, arbitrary physical parameters can be provided (e.g., mass, friction,

restitution, etc.). Since simple primitives are constructed by combining rigid body

shapes from Bullet, please refer to the documentation [27] to find available param-

eters. Importantly, a simple primitive without mass will be static in the simulation

(and conversely, defining a mass makes it dynamic).

Most simple primitives are 3D: Ball, Box, OpenBox, Cylinder, Capsule,

Goblet, Track. There is a single 2D primitive, Plane, and a ‘0D’ primitive,

Empty, whose role is to serve as parent of other primitives in the scene graph

(similar to what exists in Blender).

C.1.2 Constraint primitives

Constraint primitives take one or two simple primitives and add a Bullet constraint.

Pivot, as the name suggests, adds a pivot constraint (one degree of freedom), while

Fastener glues objects together (0 degrees of freedom).
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C.1.3 Complex primitives
Complex primitives are created by combining any number of the above primitives.

For instance, Lever and Pulley respectively combine Box and Cylinder with

a Pivot. Meanwhile, DominoRun provides an easier interface to define Boxes

aligned along a path. TensionRope combines several Bullet constraints with input

primitives to emulate the behavior of a rope in tension (although the rope itself

has no physical presence in the world, i.e., it is not involved in collisions). Lastly,

RopePulley is an even more complex version combining input primitives with

constraints and a callback function approximating the effect of a rope-pulley system.

As with TensionRope, the rope is purely visual.

C.1.4 Primitives used in each scenario
The following simply provides the primitives involved in each of the scenarios pre-

sented in the evaluation. Please see the configuration files for a complete description.

• causalitySwitch: Ball, Box, DominoRun, Plane, Track

• ballRun: Ball, Box, Goblet, Lever, Track

• longChain: Ball, Box, Cylinder, DominoRun, Fastener, Goblet, Lever,

OpenBox, TensionRope, Track

• teapotAdventure: Ball, Box, Cylinder, Fastener, Goblet, Lever,

Pivot, RopePulley, Track

C.2 Events
As described in Chapter 4, the occurrence of events in the simulation is checked with

specific conditions based on rigid bodies’ spatial transforms and their derivatives.

Toppling simply requires one of the Euler angles to be greater than a threshold, and

NotMoving checks that the position has not changed since the beginning. Mean-

while, Falling, Pivoting, Rising and Stopping all compare a component of the

body’s linear or angular velocity with a given threshold. Contact and its opposite,

NoContact, use the simulator’s internal collision check. RollingOn combines
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Pivoting with Contact. Lastly, Inclusion uses the simulator’s internal ray

casting ability to check that one body is inside another.

C.3 Local robustness
In Chapter 4, we mention an evaluation dataset X ⊂ D created for each scenario S

with design space D, decomposed as X = X+ ∪ X− ∪ X� (respectively successes,

failures and impossible instances). The local robustness ρl : D × [0, 1] → [0, 1] is

then defined as

ρl(x, ε) =


|Bε (x)∩X+ |

|Bε (x)∩{X+∪X−}| if x ∈ D \ D�,

0 otherwise,

where Bε (x) is the ball of radius ε centered at x ∈ D.

In practice, the local robustness is computed differently depending on whether

it is used as an objective function x 7→ ρl(x, 0.1) for baseline methods (B2) and

(B3), or as a function of the error ε in Figures 15 and 16. In the former case,

for each function call, d2 physically valid points are uniformly sampled around x

and simulated on the fly (d being the number of layout parameters). Therefore,

the simulation budget B defined for the baselines directly translates to a maximum

number of function evaluations bB/d2c. In the latter case, as explained in Chapter 4,

the evaluation dataset X is obtained by physically checking and simulating points

for each scenario; specifically, 100K points for causalitySwitch, and 1M points

for ballRun, longChain and teapotAdventure. These points are drawn from

the quasi-random Sobol sequence [129]. However, as there is little chance to find

the solution x∗ of a method in the evaluation dataset X, the value of ρl(x∗, 0) is very

likely to be 0, since the ball B0(x∗) is very likely to be empty. To counter this,

we give a ‘thickness’ to the ball: i.e., we use a slightly modified local robustness

ε 7→ ρl(x∗, ε + η). Then, for each solution x∗, we sample and simulate 100 points in

the local neighborhood Bη(x∗) and temporarily add them to X. In our experiments,

we used a thickness η = 0.1lε , with lε the length of a plot step (lε = 1/30).
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Exported layouts of chain reaction

contraptions

Figure D.1: Exported layout for ballRun.
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LF

Figure D.2: Exported layout for causalitySwitch (faster ball run). Top and side views.

RF

Figure D.3: Exported layout for causalitySwitch (faster domino run). Top and side
views.



148

Figure D.4: Exported layout for longChain.
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Figure D.5: Exported layout for teapotAdventure.
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//w.wiki/WDd).

(b) “Harmonograph” by Matemateca IME-USP / Rodrigo Tetsuo Argenton. [CC

BY-SA 4.0], via Wikimedia (https://w.wiki/WDs).

(c) “Hoot-Nanny No. 1” by Northern Signal Company. [Public domain], via

DrawingMachines.org (https://drawingmachines.org/post.php?id=

164).

(d) “Jean Tinguely, cyclograveur” by Neural. [CC BY-NC-ND 2.0], via Flickr

(https://www.flickr.com/photos/48831443@N00/2390041200).

Figure 4.1 (p. 75):

• Top: “Professor Butts and the Self-Operating Napkin” by Rube Goldberg.

[Public domain], via Wikimedia (https://w.wiki/3gE).

• Bottom: “PSU Rube Goldberg 5” by Penn State. [CC BY-NC 2.0], via Flickr
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