
ReLU Fields: The Little Non-linearity That Could

ANIMESH KARNEWAR, University College London, UK

TOBIAS RITSCHEL, University College London, UK

OLIVER WANG, Adobe Research, USA

NILOY J. MITRA, Adobe Research, USA and University College London, UK

occupancy modelingscene reconstruction

time (min)

PS
N

R

ReLU Field
MLP

Fig. 1. We present a method to represent complex signals such as images or 3D scenes, both volumetric (left) and surface (right), on regularly sampled grid

vertices. Our method is able to match the expressiveness of coordinate-based MLPs while retaining reconstruction and rendering speed of voxel grids, without
requiring any neural networks or sparse data structures. As a result it converges significantly faster (inset plot).

In many recent works, multi-layer perceptions (MLPs) have been shown

to be suitable for modeling complex spatially-varying functions including

images and 3D scenes. Although the MLPs are able to represent complex

scenes with unprecedented quality and memory footprint, this expressive

power of the MLPs, however, comes at the cost of long training and inference

times. On the other hand, bilinear/trilinear interpolation on regular grid-

based representations can give fast training and inference times, but cannot

match the quality of MLPs without requiring significant additional memory.

Hence, in this work, we investigate what is the smallest change to grid-based
representations that allows for retaining the high fidelity result of MLPs

while enabling fast reconstruction and rendering times. We introduce a

surprisingly simple change that achieves this task – simply allowing a fixed
non-linearity (ReLU) on interpolated grid values. When combined with coarse-

to-fine optimization, we show that such an approach becomes competitive

with the state-of-the-art. We report results on radiance fields, and occupancy

fields, and compare against multiple existing alternatives. Code and data for

the paper are available at https://geometry.cs.ucl.ac.uk/projects/2022/relu_

fields.

Authors’ addresses: Animesh Karnewar, University College London, UK; Tobias Ritschel,

t.ritschel@ucl.ac.uk, University College London, UK; Oliver Wang, owang@adobe.com,

Adobe Research, USA; Niloy J. Mitra, n.mitra@cs.ucl.ac.uk, Adobe Research, USA ,

University College London, UK.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0730-0301/2022/7-ART13 $15.00

https://doi.org/10.1145/3528233.3530707

Additional Key Words and Phrases: neural representations, regular data

structures, volume rendering, spatial representations

ACM Reference Format:
Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy J. Mitra. 2022.

ReLU Fields: The Little Non-linearity That Could. ACM Trans. Graph. 41, 4,
Article 13 (July 2022), 8 pages. https://doi.org/10.1145/3528233.3530707

1 Introduction

Coordinate-based Multi-layer Perceptrons (MLPs) have been shown

to be capable of representing complex signals with high fidelity and a

lowmemory footprint. Exemplar applications include NeRF [Milden-

hall et al. 2020], which encodes lighting-baked volumetric radiance-

density field into a single MLP using posed images; LIFF [Chen et al.

2020], which encodes 2D image signal into a single MLP using multi-

resolution pixel data. Alternatively, a 3D shape can be encoded as

an occupancy field [Chen and Zhang 2019; Mescheder et al. 2019], a

signed distance field [Park et al. 2019], or directly as a mesh in the

form of a surface map [Morreale et al. 2021].

A significant drawback of such approaches is that MLPs are both

slow to train and slow to evaluate, especially for applications that

require multiple evaluations per signal-sample (e.g., multiple per-

pixel evaluations during volume tracing in NeRFs). On the other

hand, traditional data structures like 𝑛-dimensional grids are fast

to optimize and evaluate, but require a significant amount of mem-

ory to represent high frequency content (see Figure 4). As a result,

there has been an explosion of interest in hybrid representations

that combine fast-to-evaluate data structures with coordinate-based

MLPs, e.g., by encoding latent features in regular [Sun et al. 2021]

and adaptive [Aliev et al. 2020; Liu et al. 2020; Martel et al. 2021;

ACM Trans. Graph., Vol. 41, No. 4, Article 13. Publication date: July 2022.

https://geometry.cs.ucl.ac.uk/projects/2022/relu_fields
https://geometry.cs.ucl.ac.uk/projects/2022/relu_fields
https://doi.org/10.1145/3528233.3530707
https://doi.org/10.1145/3528233.3530707

13:2 • Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy J. Mitra

Müller et al. 2022] grids and decoding linearly interpolated “neural"

features with a small MLP.

In this paper, we revisit regular grid-based models and look for

the minimum change needed to make such grids perform on par

with “neural” representations. As the key takeaway message, we

find that simply using a Rectified Linear Unit (ReLU) non-linearity

on top of interpolated grid values, without any additional learned

parameters, optimized in a progressive manner already does a sur-

prisingly good job, with minimal added complexity. For example,

in Figure 1 we show results in the context of representing volumes

(left) and surfaces (right) and on regularly sampled grid vertices

for reconstruction, respectively. As additional benefits, these grid

based 3D-models are amenable to generative modeling, and to local

manipulation.

In summary, we present the following contributions: (i) we pro-

pose aminimal extension to grid-based signal representations, which

we refer to as ReLU Fields; (ii) we show that this representation

is simple, does not require any neural networks, is directly differ-
entiable (and hence easy to optimize), and is fast to optimize and
evaluate (i.e. render); and (iii) we empirically validate our claims

by showing applications where ReLU Fields plug in naturally: first,

image-based 3D scene reconstruction; and second, implicit modeling

of 3D geometries.

2 Related Work

Discrete sample based representations Computer vision and graph-

ics have long experimented with different representations for work-

ing with visual data. While working with, images are ubiquitously

represented as 2D grids of pixels, while due to the memory require-

ments; 3D models are often represented (and stored) in a sparse

format, e.g., as meshes, or as point clouds. In the context of images,

since as early as the sixties [Billingsley 1966], different ideas have

been proposed to make pixels more expressive. One popular option

is to store a fixed number (e.g., one) of zero-crossing for explicit

edge boundary information [Bala et al. 2003; Laine and Karras 2010;

Ramanarayanan et al. 2004; Tumblin and Choudhury 2004], by us-

ing curves [Parilov and Zorin 2008], or augmenting pixels/voxels

with more than one color [Agus et al. 2010; Pavić and Kobbelt 2010].

Another idea is to deform the underlying pixel grid by explicitly

storing discontinuity information along general curves [Tarini and

Cignoni 2005]. Loviscach [2005] optimized MIP maps, such that the

thresholded values match a reference. Similar ideas were also being

explored for textures and shadow maps [Sen 2004; Sen et al. 2003],

addressing specific challenges in sampling. ReLU Field grid implic-

itly stores discontinuity information by varying grid values such

that when interpolated and passed through a ReLU it represents a

zero crossing per grid cell.

In the 2D domain, the regular pixel grid format of images has

proven to be amenable to machine learning algorithms because

CNNs are able to naturally input and output regularly sampled

2D signals as pixel grids. As a result, these architectures can be

easily extended to 3D to operate on voxel grids, and therefore can

be trained for many learning-based tasks, e.g., using differentiable

volume rendering as supervision [Henzler et al. 2019; Nguyen-Phuoc

et al. 2019; Sitzmann et al. 2019; Tulsiani et al. 2017]. However,

Fig. 2. Representing an image with a standard pixel grid bi-linearly interpo-

lated to a larger size (Grid) versus a ReLU Field of the same size (ReLUField).
The grid-size of the variants, ReLUField and Grid, is 64x smaller; while of,

ReLUFieldL and GridL, is 32x smaller than the source image-resolution

along each dimension. Note that the ‘L’ variants have a bigger grid-size and
hence less smaller than the GT raster image. Simply adding a ReLU allows

for significantly more sharpness and detail to be expressed. Hence, we can

say that the humble ReLU is truly the little non-linearity that could.

such methods are inefficient with respect to memory and are hence

typically restricted to low spatial resolution.

Learned neural representations Recently, coordinate-based MLPs

representing continuous signals have been shown to be able to dra-

matically increase the representation quality of 3D objects [Groueix

et al. 2018; Morreale et al. 2021] or reconstruction quality of 3D

scenes [Mescheder et al. 2019; Mildenhall et al. 2020]. However,

such methods incur a high computational cost, as the MLP has to be

evaluated, often multiple times, for each output signal location (e.g.,

pixel) when performing differentiable volume rendering [Chan et al.

2021b; Mildenhall et al. 2020; Niemeyer and Geiger 2021; Schwarz

et al. 2020]. In addition, this representation is not well suited for

post-training manipulations as the weights of the MLP have a global

effect on the structure of the scene. To fix the slow execution, some-

times grid-like representations are fit post-hoc to a trained Neural

Radiance Fields (NeRF) model [Garbin et al. 2021; Hedman et al.

2021; Reiser et al. 2021; Yu et al. 2021b], however such methods are

unable to reconstruct scenes from scratch.

As a result, there has been an interest in hybrid methods that store

learned features in spatial data structures, and accompany this with

ACM Trans. Graph., Vol. 41, No. 4, Article 13. Publication date: July 2022.

ReLU Fields: The Little Non-linearity That Could • 13:3

an MLP, often much smaller, for decoding the interpolated neural

feature signal at continuous locations. Examples of such methods

store learned features on regular grids [Nguyen-Phuoc et al. 2020;

Sitzmann et al. 2019], sparse voxels [Liu et al. 2020; Martel et al.

2021], point clouds [Aliev et al. 2020], local crops of 3D grids [Jiang

et al. 2020], or on intersecting axis-aligned planes (triplane) [Chan

et al. 2021a].

Concurrent work Investigating representations suitable for effi-

ciently representing complex signals is an active area of research.

In this section, we discuss three concurrent works: DVGo [Sun et al.

2021], Plenoxels [Yu et al. 2021a] and NGP [Müller et al. 2022].

Reporting a finding similar to ours, DVGo proposes the use of a

“post-activated" (i.e., after interpolation) density grid for modelling

high-frequency geometries. They model the view-dependent ap-

pearance through a learned feature grid which is decoded using an

MLP. They in-fact show comprehensive experimental evaluation,

on multiple datasets comparing to multiple baselines, for the task

of image-based 3D scene reconstruction.

Plenoxels proposes the use of sparse grid structure for modeling

the scene with ReLU activation and, similar to our experiments, also

uses spherical harmonic coefficients [Yu et al. 2021b] for modeling

view-dependent appearance.

NGP [Müller et al. 2022] proposes a hierarchical voxel-hashing

scheme to store learned features and using a small MLP decoder for

converting them into geometry and appearance. Their reconstruction-

times are about significantly lower than the others because of their

impressively engineered GPU (low-level cuda) implementation.

We believe that our work differs from these concurrent efforts in

that, our motivation is to investigate theminimal change to existing
voxel grids that can boost the per-capita signal modelling capacity

of the grids when the signals contain sharp c1-discontinuities. And

hence as such, we are not focused only on 3D scene reconstruc-

tion, and similar to NGP, also consider other applications where

grids are the de-facto representation, where ReLU Fields might help.

Our method is orthogonal to, and fully compatible with, the sparse

data structures proposed in Plenoxels and NGP, and we expect

the improvements gained by such approaches to be directly appli-

cable to our work. The power and complexity of other methods,

however, comes at the cost of not being able to load the resulting

assets into legacy 3D modelling or volume visualization software

(backward-compatibility), which is possible for our results, as long

as the software can load signed data and apply transfer functions.

3 Method

It’s Just a Little ReLU

We look for a representation of𝑛-valued signals on an𝑚-dimensional

coordinate domain R𝑚 . For simplicity, we explain the method for

𝑚 = 3. Our representation is strikingly simple. We consider a reg-

ular (𝑚 = 3)-dimensional (𝑟 × 𝑟 × 𝑟)-grid 𝐺 composed of 𝑟 voxels

along each side. Each voxel has a certain size defined by its diagonal

norm in the (𝑚 = 3)-dimensional space and holds an 𝑛-dimensional

vector at each of its (2
𝑚=3 = 8) vertices. Importantly, even though

they have matching number of dimensions, these values do not

have a direct physical interpretation (e.g., color, density, or occu-

pancy), which always have some explicitly-defined range, e.g., [0, 1]

0

1
ReLU �eld

Linear

Ground truth

a) b)

Fig. 3. Representing a ground-truth function (blue) in a 1D (a) and 2D

(b) grid cell using the linear basis (yellow) and a ReLU Fields (pink). The
reference has a c1-discontinuity inside the domain that a linear basis can-

not capture. A ReLU Field will pick two values 𝑦1 and 𝑦2, such that their

interpolation, after clamping will match the sharp c1-discontinuity in the

ground-truth (blue) function.

or [0, +∞). Rather, we store unbounded values on the grid; and thus

for technical correctness, we call these grids “feature”-grids instead

of signal-grids. The features at grid vertices are then interpolated

using (𝑚 = 3)-linear interpolation, and followed by a single non-
linearity: the ReLU, i.e., function ReLU(𝑥) = max(0, 𝑥) which maps

negative input values to 0 and all other values to themselves. Note

that this approach does not have any MLP or other neural-network

that interprets the features, instead they are simply clipped before

rendering. Intuitively, during optimization, these feature-values at

the vertices can go up or down such that the ReLU clipping plane

best aligns with the c1-discontinuities within the ground-truth sig-

nal. Figure 3 illustrates this concept.

As a didactic example, we fit an image into a 2D ReLU Field grid

similar to [Sitzmann et al. 2020], where grid values are stored as

floats in the (−∞, +∞) range. For any query position, we interpo-

late the grid values before passing through the ReLU function (see

Algorithm 1). Since the image-signal values are expected to be in

the [0, 1] range, we apply a hard-upper-clip on the interpolated

values just after applying the ReLU. We can see in Fig. 2 that ReLU

Field allows us to represent sharp edges at a higher fidelity than

bilinear interpolation (without the ReLU) at the same resolution

grid size. One limitation of this representation is that it can only

well represent signals that have sparse c1-discontinuities, such as

this flat-shaded images and as we show later, 3D volumetric density.

However, other types of signals, such as natural images, do not

Algorithm 1 Fetching a 2D ReLU field.

1: procedure ReluField2D(𝐺, x)
2: xg := Floor(x)
3: x

f
:= Frac(x)

4: 𝑦00 := Fetch(𝐺 , xg + (0,0))

5: 𝑦01 := Fetch(𝐺 , xg + (0,1))

6: 𝑦10 := Fetch(𝐺 , xg + (1,0))

7: 𝑦11 := Fetch(𝐺 , xg + (1,1))

8: y := BiLinear(𝑦00, 𝑦01, 𝑦10, 𝑦11, xf)
9: return relu(y)

10: end procedure

ACM Trans. Graph., Vol. 41, No. 4, Article 13. Publication date: July 2022.

13:4 • Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy J. Mitra

benefit from using a ReLU Fields representation (see supplementary

material).

4 Applications

We now demonstrate two different applications of ReLU Fields;

NeRF-like 3D scene-reconstruction (Sec. 4.1), and 3D object recon-

struction via occupancy fields (Sec. 4.2).

4.1 Radiance Fields

In this application, we discuss how ReLU Field can be used in place of

the coordinate-based MLP in NeRF [Mildenhall et al. 2020]. Input to

this approach are a set of images I = {𝐼1, . . . , 𝐼𝑛} and corresponding
camera poses C = {C1, . . . ,C𝑛}, where each camera pose consists

of C = {𝑅,𝑇 , 𝐻,𝑊 , 𝐹 }; 𝑅 is the rotation-matrix (𝑅 ∈ R3×3), 𝑇 is

the translation-vector (𝑇 ∈ R3), 𝐻 ,𝑊 are the scalars representing

the height and width respectively, and 𝐹 denotes the focal length.

We assume that the respective poses for the images are known

either through hardware calibration or by using structure-from-

motion [Schonberger and Frahm 2016].

We denote the rendering operation to convert the 3D scene repre-

sentation S and the camera pose C into an image as R(S,C). Thus,
given the input set of images I and their corresponding camera

poses C, the problem is to recover the underlying 3D scene repre-

sentation S such that when rendered from any C𝑖 ∈ C, S produces

rendered image 𝐼𝑖 as close as possible to the input image 𝐼𝑖 , and

produces spatio-temporally consistent 𝐼 𝑗 for poses C𝑗 ∉ C.
Scene representation We model the underlying 3D scene represen-

tation S, which is to be recovered, by a ReLU Field. The vertices of

the grid store, first, raw pre-relu density values in (−∞,∞) that
model geometry, and, second, the second-degree Spherical Harmon-

ics (SH) coefficients [Wizadwongsa et al. 2021; Yu et al. 2021b] that

model view-dependent appearance. The relu is only applied to

pre-relu density, not to appearance.

We directly optimize values at the vertices to minimize the pho-

tometric loss between the rendered images 𝐼 and the input images 𝐼 .

The optimized grid 𝐺∗
, corresponding to the recovered 3D scene S,

is obtained as:

𝐺∗ = argmin𝐺

𝑛∑︁
𝑖=1

∥𝐼𝑖 −

𝐼𝑖︷ ︸︸ ︷
R(𝐺,C𝑖) ∥22 . (1)

Implementation details Similar to NeRF, we use the EA (emission-

absorption) raymarching model [Henzler et al. 2019; Max 1995;

Mildenhall et al. 2020] for realizing the rendering function R. The
grid is scaled to a single global AABB (Axis-Aligned-Bounding-Box)

that is encompassed by the camera frustums of all the available poses

C, and is initialized with uniform random values. We optimize the

vertex values using Adam [Kingma and Ba 2014] with a learning

rate of 0.03, and all other default values, for all examples shown.

We perform the optimization progressively in a coarse-to-fine

manner similar to Karras et al. [2018]. Initially, the feature grid is

optimized at a resolution where each dimension is reduced by a

factor of 2
4
. After a fixed number of iterations at each stage 𝑁 , the

grid resolution is doubled and the features on the feature-grid 𝐺

are tri-linearly upsampled to initialize the next stage. This proceeds

until the final target resolution is reached.

Evaluation Weperform experiments on the eight synthetic Blender

scenes used by NeRF [Mildenhall et al. 2020], viz. Chair, Drums,

Ficus, Hotdog, Lego, Materials, Mic, and Ship and compare our

method to prior works, baselines, and ablations. We also show an

extension of ReLU Fields to one of their real world captured scenes,

named Flowers.

First, we compare to the mlp-based baseline NeRF [Mildenhall

et al. 2020]. For the purpose of these experiments though, we use the

public nerf-pytorch version [ner 2021] for comparable training-

time comparisons since all our implementations are in PyTorch.

For disambiguation, we refer to this PyTorch version as NeRF-PT
and the original one as NeRF-TF and report scores for both. Second,

we compare to two versions of traditional grids where vertices

store scalar density and second-degree SH approximations of the

appearance, namely Grid (i.e., 128
3
grid) and GridL (i.e., 256

3
grid).

Finally, we compare to our approach at the same two resolutions,

ReLUField and ReLUFieldL. The above four methods are optimized

with the same progressive growing settingwith𝑁 = 2000, and all the

same hyperparameters except the grid resolution. We report PSNR

and LPIPS [Zhang et al. 2018] computed on a held-out test-set of

Image-Pose pairs different from the training-set (I, C). All training
times were recorded on 32GB-V100 GPU while the inference times

were computed on RTX 2070 Super. Our method is implemented

entirely in PyTorch and does not make use of any custom GPU

kernels.

Table 1 summarizes results from these experiments. We can see

that traditional physically-based grid baselines Grid and GridL
perform the worst, while our method has comparable performance

to NeRF-PT and is much faster to reconstruct and render. This retains

the utility of grid-based models for real-time applications without

compromising on quality. Figure 4 demonstrates qualitative results

from these experiments.

Ablations We ablate the components described in 4.1, and and also

include the results in Table 1 in the last two columns. RFLong is a
normal ReLU Field optmized for a much longer time (comparable

to NeRF-PT’s training time). We see minor improvement over the

default settings, however we can see that the optimization time

plays less of a role than the resolution of the grid itself (ReLUFieldL
outperforms RFLong). RFNoPro is trained without progressive grow-
ing for the same number of total steps. We see that it yields a much

lower reconstruction quality, indicating that progressive growing is

critical for the grid to converge to a good reconstruction.

Real scene extension Similar to the real-captured-360 scenes from

the NeRF, we also show an extension of ReLU Fields to modeling

real scenes. In this example, we model the background using a

“MultiSphereGrid” representation, as proposed by Attal et al. [2020].

Please note that the background grid is modeled as a regular bilinear

grid without any ReLU. For simplicity, we use an Equi-rectangular

projection (ERP) instead of Omni-directional stereo (ODS) for map-

ping the Image-plane to the set of background spherical shells. Fig.

5 shows qualitative results for this extensions after one hour of

optimization. Here, we can see that the grid does a good job of rep-

resenting the complex details in the flower, while the background is

modeled reasonably well by the shells.

ACM Trans. Graph., Vol. 41, No. 4, Article 13. Publication date: July 2022.

ReLU Fields: The Little Non-linearity That Could • 13:5

R
el

uF
ie

ld
L

G
rid

L
N

eR
F-

PT
R

el
uF

ie
ld

L
G

rid
L

N
eR

F-
PT

R
el

uF
ie

ld
L

G
rid

L
N

eR
F-

PT

10 min5 min2 min1 min10 sec

Fig. 4. Qualitative comparison between NeRF-PT, GridL and ReLUFieldL. Grid-based versions converge much faster, and we can see significant sharpness

improvements of ReLUFieldL over GridL, for example in the leaves of the plant. See also supplementary video.

ACM Trans. Graph., Vol. 41, No. 4, Article 13. Publication date: July 2022.

13:6 • Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy J. Mitra

Table 1. Evaluation results on 3D synthetic scenes. Metrics used are PSNR (↑) / LPIPS (↓). The column NeRF-TF∗ quotes PSNR values from prior work [Mildenhall

et al. 2020], and as such we do not have a comparable runtime for this method.

Scene NeRF-TF∗ NeRF-PT Grid GridL ReLUField ReLUFieldL RFLong RFNoPro

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

Chair 33.00 0.04 33.75 0.03 25.53 0.12 27.08 0.11 31.50 0.05 32.39 0.03 31.77 0.05 13.85 0.48

Drums 25.01 0.09 23.82 0.12 19.85 0.20 20.70 0.17 23.13 0.09 25.15 0.06 23.78 0.09 10.74 0.52

Ficus 30.13 0.04 28.96 0.04 22.10 0.13 23.61 0.11 25.89 0.06 27.37 0.04 26.11 0.05 13.21 0.47

Hotdog 36.18 0.12 33.52 0.06 28.53 0.12 29.83 0.10 34.65 0.03 35.72 0.03 34.70 0.03 12.22 0.53

Lego 32.54 0.05 28.36 0.08 23.76 0.17 23.97 0.15 28.83 0.06 30.78 0.03 29.64 0.05 10.63 0.56

Materials 29.62 0.06 29.23 0.04 21.87 0.18 22.74 0.13 27.41 0.06 28.23 0.05 28.23 0.05 8.99 0.55

Mic 32.91 0.02 33.08 0.02 25.87 0.08 25.91 0.08 31.88 0.03 32.62 0.02 31.22 0.03 12.47 0.41

Ship 28.65 0.20 29.22 0.14 23.86 0.25 22.54 0.24 26.86 0.14 28.02 0.12 27.39 0.13 9.92 0.59

Average 31.01 0.07 29.99 0.07 23.92 0.16 24.54 0.14 28.77 0.07 30.04 0.05 29.10 0.06 11.50 0.51

Time (recon) — 11h:21m:00s 00h:03m:41s 00h:10m:02s 00h:03m:41s 00h:10m:36s 10h:51m:29s 00h:07m:11s

Time (render) — 16,363.0ms 9.0ms 99.1ms 9.1ms 99.5ms 9.21ms 9.8ms

composite background layer depth map foreground only

novel view 1 novel view 2 novel view 3

Fig. 5. Qualitative results for the real-captured scene extension of ReLU

Fields on Flowers. We decompose the scene into a series of spherical-

background shells and a foreground ReLU Field layer, which are alpha-

composited together to give final novel view renderings. The top-left visual-

ization shows the composite of the background spherical shells un-projected

onto a 2D image-plane.

4.2 Occupancy Fields

Another application of coordinate-based MLPs is as a representation

of (watertight) 3D geometry. Here, we fit a high resolution ground-

truth mesh, as a 3D occupancy field [Mescheder et al. 2019] into

a ReLU Field. One might want to do this in order to, for example,

take advantage of the volumetric-grid structure to learn priors over

geometry, something that is harder to do with meshes or coordinate-

based MLPs directly.

Occupancy representation The core ReLU Field representation used

for this application only differs from the radiance fields setup (see

Sec. 4.1) as follows: First, since we are only interested in geometry,

we do not store any SH coefficients on the grid, and simply model

volumetric occupancy as a probability from [0, 1]. Second, as super-
vision, we use ground truth point-wise occupancy values in 3D (i.e.,

1, if the point lies inside the mesh, and 0 otherwise), rather than

rendering an image and applying the loss on the rendered image.

Finally, since the ground truth occupancy values are binary, we use

a binary cross entropy (BCE) loss. Thus, we obtain the optimized

grid 𝐺∗
as,

𝐺∗
:= argmin𝐺

∑︁
x∈B

BCE(𝑂 (x), ReluField3D(tanh(𝐺), x)) (2)

where, 𝑂 is the ground truth occupancy, x denote sample locations

inside an axis-aligned bounding box B, BCE denotes the binary

cross entropy loss, and 𝐺 represents the ReLU Field grid. Note that

we use the tanh to limit the grid values in (−1, 1), although other

bounding functions, or tensor-normalizations can be used.

Implementation details We initialize the grid with uniform random

values. The supervision signal comes from sampling random points

inside and around the tight AABB of the GT high resolution mesh,

and generating the occupancy values for those points by doing an

inside-outside test on the fly during training. For rendering, we

directly show the depth rendering of the obtained occupancy values.

We define the grid-extent and the voxel size by obtaining the AABB
ensuring a tight fit around the GT mesh.

Table 2. Evaluation results on modeling 3D geometries as occupancy fields.

Metric used is Volumetric-IoU [Mescheder et al. 2019]. The baseline MLP is

our implementation of OccupancyNetworks [Mescheder et al. 2019].

MLP Grid ReLUField

Thai Statue 0.867 0.827 0.901
Lucy 0.920 0.883 0.935

Bimba 0.983 0.978 0.987
Grog 0.961 0.947 0.971
Lion 0.956 0.970 0.979

Ramses 0.973 0.961 0.978
Dragon 0.886 0.761 0.896

Average volumetric-IoU 0.935 0.903 0.949

ACM Trans. Graph., Vol. 41, No. 4, Article 13. Publication date: July 2022.

ReLU Fields: The Little Non-linearity That Could • 13:7

G
rid

M
LP

Re
LU

Fi
el
d

Re
fe
re
nc
e

Fig. 6. Qualitative results for the occupancy fields comparing Grid, MLP, and ReLUField.

Evaluation Figure 6 shows the qualitative results of the different

representations used for this task. We can see that a ReLUField in
this case yields higher quality reconstructions than a standard Grid,
or a coordinate-based MLP. Quantitative scores, Volumetric-IoU as

used in [Mescheder et al. 2019], for the ThaiStatue, Lucy, Bimba,

Grog, Lion, Ramses, and Dragonmodels are summarized in Tab. 2.

ReLUField and Grid require 15 mins, while MLP requires 1.5 hours

for training.

5 Discussion

5.1 Limitations

Our approach has some limitations. First, the resulting representa-

tions are large. A ReLU Field of size 128
3
used for radiance fields

(i.e., with SH coefficients) takes 260Mb, and the large version at 256
3

takes 2.0 Gb of storage. We believe that combining ReLU Field with

a sparse data structure would see significant gains in performance

and reduction in the memory footprint. However, in this work we

emphasize the simplicity of our approach and show that the single

non-linearity alone is responsible for a surprising degree of quality

improvement.

ReLU Field also cannot model more than one “crease” (i.e., discon-

tinuity) per grid cell. While learned features allow for more complex

signals to be represented, they do so at the expense of high compute

costs. The purpose of this work is to refocus attention on what is
actually required for high fidelity scene reconstruction. We believe

that the task definition and data are responsible for the high quality

results we are seeing now, and show that traditional approaches can

yield good results with minor modifications, and neural networks

may not be required. However, this is just one data-point in the

space of possible representations, for a given specific task we expect

that the optimal representation may be a combination of learned

features, neural networks, and discrete signal representations.

5.2 Conclusion

In summary, we presented ReLU Field, an almost embarrassingly

simple approach for representing signals; storing unbounded data on
N-dimensional grid, and applying a single ReLU after linear interpola-
tion. This change can be incorporated at virtually no computational

cost or complexity on top of existing grid-basedmethods, and strictly

improve their representational capability. Our approach contains

only values at grid vertices which can be directly optimized via

gradient descent; does not rely on any learned parameters, special

initialization, or neural networks; and performs comparably with

state-of-the-art approaches in only a fraction of the time.

Acknowledgments

The authors would like to thank the reviewers for their valuable

suggestions. The research was partially supported by the European

Union’s Horizon 2020 research and innovation programme under

the Marie Skłodowska-Curie grant agreement No. 956585, gifts from

Adobe, and the UCL AI Centre.

ACM Trans. Graph., Vol. 41, No. 4, Article 13. Publication date: July 2022.

13:8 • Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy J. Mitra

References

2021. Nerf-Pytorch. https://github.com/yenchenlin/nerf-pytorch.

Marco Agus, Enrico Gobbetti, José Antonio Iglesias Guitián, and Fabio Marton. 2010.

Split-Voxel: A Simple Discontinuity-Preserving Voxel Representation for Volume

Rendering.. In VG@ Eurographics. 21–28.
Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempit-

sky. 2020. Neural Point-Based Graphics. arXiv:cs.CV/1906.08240

Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, and James Tompkin.

2020. Matryodshka: Real-time 6dof video view synthesis using multi-sphere images.

In European Conference on Computer Vision. Springer, 441–459.
Kavita Bala, Bruce Walter, and Donald P Greenberg. 2003. Combining edges and points

for interactive high-quality rendering. ACM Transactions on Graphics (TOG) 22, 3
(2003), 631–640.

Fred C Billingsley. 1966. Processing ranger and mariner photography. Optical Engi-
neering 4, 4 (1966), 404147.

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De

Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero

Karras, and Gordon Wetzstein. 2021a. Efficient Geometry-aware 3D Generative

Adversarial Networks. arXiv:cs.CV/2112.07945

Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.

2021b. pi-gan: Periodic implicit generative adversarial networks for 3d-aware image

synthesis. In IEEE CVPR. 5799–5809.
Yinbo Chen, Sifei Liu, and Xiaolong Wang. 2020. Learning Continuous Image Repre-

sentation with Local Implicit Image Function. CoRR abs/2012.09161 (2020).

Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape

modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5939–5948.

Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien

Valentin. 2021. Fastnerf: High-fidelity neural rendering at 200fps. arXiv preprint
arXiv:2103.10380 (2021).

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu

Aubry. 2018. AtlasNet: A Papier-MâchéApproach to Learning 3D Surface Generation.

CoRR abs/1802.05384 (2018).

Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul

Debevec. 2021. Baking Neural Radiance Fields for Real-Time View Synthesis. arXiv
preprint arXiv:2103.14645 (2021).

Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. 2019. Escaping plato’s cave: 3d

shape from adversarial rendering. In ICCV. 9984–9993.
Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and

Thomas Funkhouser. 2020. Local Implicit Grid Representations for 3D Scenes. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive Growing

of GANs for Improved Quality, Stability, and Variation. In International Conference
on Learning Representations. https://openreview.net/forum?id=Hk99zCeAb

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 (2014).
Samuli Laine and Tero Karras. 2010. Efficient sparse voxel octrees. IEEE Transactions

on Visualization and Computer Graphics 17, 8 (2010), 1048–1059.
Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.

Neural Sparse Voxel Fields. NeurIPS (2020).
Jörn Loviscach. 2005. Efficient magnification of bi-level textures. In ACM SIGGRAPH

2005 Sketches. 131–es.
Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and

Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural Scene

Representation. arXiv:cs.CV/2105.02788

Nelson Max. 1995. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics 1, 2 (1995), 99–108.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas

Geiger. 2019. Occupancy networks: Learning 3d reconstruction in function space. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4460–4470.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance fields

for view synthesis. In ECCV. 405–421.
Luca Morreale, Noam Aigerman, Vladimir G Kim, and Niloy J Mitra. 2021. Neural

Surface Maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 4639–4648.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant

Neural Graphics Primitives with a Multiresolution Hash Encoding. arXiv:2201.05989
(Jan. 2022).

Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang.

2019. Hologan: Unsupervised learning of 3d representations from natural images.

In ICCV. 7588–7597.
Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-Liang Yang, and Niloy J. Mitra.

2020. BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled

Images. CoRR abs/2002.08988 (2020). https://arxiv.org/abs/2002.08988

Michael Niemeyer and Andreas Geiger. 2021. Giraffe: Representing scenes as composi-

tional generative neural feature fields. In IEEE CVPR. 11453–11464.
Evgueni Parilov and Denis Zorin. 2008. Real-time rendering of textures with feature

curves. ACM Transactions on Graphics (TOG) 27, 1 (2008), 1–15.
Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-

grove. 2019. Deepsdf: Learning continuous signed distance functions for shape

representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 165–174.

Darko Pavić and Leif Kobbelt. 2010. Two-Colored Pixels. In Computer Graphics Forum,

Vol. 29. Wiley Online Library, 743–752.

Ganesh Ramanarayanan, Kavita Bala, and Bruce Walter. 2004. Feature-based textures.

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. KiloNeRF: Speed-

ing up Neural Radiance Fields with Thousands of Tiny MLPs. arXiv preprint
arXiv:2103.13744 (2021).

Johannes L Schonberger and Jan-Michael Frahm. 2016. Structure-from-motion revisited.

In IEEE CVPR. 4104–4113.
Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. 2020. Graf: Generative

radiance fields for 3d-aware image synthesis. arXiv preprint arXiv:2007.02442 (2020).
Pradeep Sen. 2004. Silhouette maps for improved texture magnification. In Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. 65–73.
Pradeep Sen, Mike Cammarano, and Pat Hanrahan. 2003. Shadow silhouette maps.

ACM Transactions on Graphics (TOG) 22, 3 (2003), 521–526.
Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and

Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation

Functions. arXiv:cs.CV/2006.09661

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and

Michael Zollhöfer. 2019. DeepVoxels: Learning Persistent 3D Feature Embeddings.

arXiv:cs.CV/1812.01024

Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2021. Direct Voxel Grid Optimization:

Super-fast Convergence for Radiance Fields Reconstruction. arXiv:cs.CV/2111.11215

Marco Tarini and Paolo Cignoni. 2005. Pinchmaps: Textures with customizable discon-

tinuities. In Computer Graphics Forum, Vol. 24. Blackwell Publishing, Inc Oxford,

UK and Boston, USA, 557–568.

Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Jitendra Malik. 2017. Multi-

view supervision for single-view reconstruction via differentiable ray consistency.

In Proceedings of the IEEE conference on computer vision and pattern recognition.
2626–2634.

Jack Tumblin and Prasun Choudhury. 2004. Bixels: Picture samples with sharp embed-

ded boundaries.. In Rendering Techniques. Citeseer, 255–264.
Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and Supasorn

Suwajanakorn. 2021. Nex: Real-time view synthesis with neural basis expansion. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
8534–8543.

Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and

Angjoo Kanazawa. 2021a. Plenoxels: Radiance Fields without Neural Networks.

arXiv:cs.CV/2112.05131

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021b.

Plenoctrees for real-time rendering of neural radiance fields. arXiv preprint
arXiv:2103.14024 (2021).

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018. The

unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 586–595.

ACM Trans. Graph., Vol. 41, No. 4, Article 13. Publication date: July 2022.

https://github.com/yenchenlin/nerf-pytorch
http://arxiv.org/abs/cs.CV/1906.08240
http://arxiv.org/abs/cs.CV/2112.07945
https://openreview.net/forum?id=Hk99zCeAb
http://arxiv.org/abs/cs.CV/2105.02788
https://arxiv.org/abs/2002.08988
http://arxiv.org/abs/cs.CV/2006.09661
http://arxiv.org/abs/cs.CV/1812.01024
http://arxiv.org/abs/cs.CV/2111.11215
http://arxiv.org/abs/cs.CV/2112.05131

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	4 Applications
	4.1 Radiance Fields
	4.2 Occupancy Fields

	5 Discussion
	5.1 Limitations
	5.2 Conclusion

	Acknowledgments
	References

