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Figure 1: We present BLiSS, a method that progressively builds a human body shape space and brings unregistered scans into
correspondence to a given template. Starting from as few as 200 manually registered scans (green samples), BLiSS creates an
expressive shape space (pink samples), performing on-par with state-of-the-art models such as SMPL, STAR, and GHUM.
(Right) Our space can be used to recover the body-shape parameters of raw scans by projecting them directly to ours.

Abstract

Morphable models are a backbone for many human-
centric workflows as they provide a simple yet expressive
shape space. Creating such morphable models, however, is
both tedious and expensive. The main challenge is to care-
fully establish dense correspondences among raw scans
that capture sufficient shape variation. This is often ad-
dressed using a mix of non-rigid registration and signifi-
cant manual intervention. We observe that creating a shape
space and solving for dense correspondence are tightly cou-
pled – while dense correspondence is needed to build shape
spaces, an expressive shape space can provide a reduced
dimensional space to regularize the search. We introduce
BLiSS, a method to solve both progressively. Starting from a
small set of manually registered scans to bootstrap the pro-
cess, we simultaneously enrich the shape space and then
use that to automatically get new unregistered scans into
correspondence. The critical component of BLiSS is a non-
linear deformation model that captures details missed by
the low-dimensional shape space, thus allowing progressive
enrichment of the space. We show that ours produces, in the
context of body variations, a shape space that is at par with
state-of-the-art shape spaces (e.g., SMPL, STAR, GHUM),

while requiring much fewer (e.g., 5%) manual registrations.

1. Introduction

Morphable models [8, 30, 44] continue to strongly in-
fluence research towards human-centric workflows. This
success is explained by the simple and versatile encoding
of the underlying shape space, providing interpretable han-
dles for both shape and pose variations. The compact shape
space has been extensively used for a variety of applica-
tions, including retexturing [20], shape editing [14], pose
and illumination manipulation [53], animation [49], avatar
creation [24], to name only a few.

While morphable models are widely acknowledged to be
useful, creating them is surprisingly difficult. Theoretically,
given a set of 3D shapes (e.g., scans of human bodies) with
vertex-level correspondence, morphable models can ‘sim-
ply’ be built using linear (e.g., principal component anal-
ysis (PCA)) or nonlinear (e.g., autoencoder [35, 55]) di-
mensionality reduction methods. The hurdles lie first in
getting scans of many subjects, with a wide coverage of
body shape and pose variations, and second in establishing
vertex-level correspondence across the scans. Given these



challenges, not surprisingly, only very few high-quality
morphable models (e.g., SMPL [30], STAR [36]) are pub-
licly available.

The first hurdle has been significantly lowered with rapid
advances [9, 17, 18] in affordable, portable, fast, and ro-
bust (hardware) 3D scanning solutions (e.g., RGBD sen-
sors, range scanners etc.).

The second hurdle is more algorithmic. The most com-
mon approach to establish dense correspondence across the
raw scans is to use non-rigid registration [3] to align scans
with a template (body) mesh. This works well when the
input shapes have limited variations and are clean. Unfor-
tunately, when shape variability is large (as among scans
capturing representative variations across a population) or
contains holes and noise, successful registration must rely
on manual intervention or strong shape priors. Thus, either
users have to annotate landmark correspondence across the
scans, or provide shape priors to regularize the registration
step. Manual annotation is expensive and does not scale
easily. Providing a shape prior is also tricky as that requires,
in the first place, shapes in correspondence to generate one
– this leads to a chicken-and-egg problem.

In this work, we provide a solution that, starting from
a small set of registered scans, alternates between building
an underlying linear shape space and utilizing the current
shape space model to automatically bring new (raw) scans
into correspondence. At the core of our approach is a non-
linear deformation setup, expressed in the form of a neural
network, i.e., Neural Jacobian Fields (NJF) [2], that helps
to predict dense correspondence for scans close to the cur-
rently modeled shape space. NJF is trained to add infor-
mation beyond the current PCA space which is critical for
registering new target scans, especially in the early stages
where our linear shape space may not be expressive enough.
Once such correspondences are established, they enrich the
shape space with additional scans. We repeat this process it-
eratively until all scans are brought into correspondence and
a final shape space is achieved. We term this bootstrapping
scheme Bootstrapped Linear Shape Space (BLiSS).

We evaluate BLiSS on the commonly used CEASAR
dataset [43] and show that starting from only as few as
200 manually registered scans, we can jointly learn a shape
space and automatically bring additional scans into corre-
spondence. We evaluate the expressive power of the learned
shape space on held out test scans and show that our model
performs on par with models that require all scans to be
registered manually. We also compare with standard non-
registration methods and demonstrate that our method is
more robust against noise and holes in the scans.

To sum up, this work has the following contributions:
(i) an on-the-fly PCA shape space and correspondence
learning framework: starting from only 200 registered
shapes, we progressively enrich the model with new shapes

and eventually reach a shape space that is on par with the
one trained with 3800 registrations directly; and (ii) a novel
combination of linear PCA and non-linear Neural Jacobian
Field (NJF) deformation model that brings the target scans
into better correspondence.

2. Related Work
2.1. Non-rigid registration

Registering two sets of raw scans (i.e., point clouds) is
a long-standing problem [6, 16], typically consisting of two
steps: (i) estimating correspondence between the source and
the target scans; and (ii) minimizing the distances between
each correspondence pair to bring the source closer to the
target. Since this work is concerned with human bodies that
often deform non-rigidly, we review how correspondences
are estimated in non-rigid registration of 3D human data.

Optimization-based (ICP). When the source and the target
points are roughly aligned in the ambient 3D space, corre-
spondences can be approximated by seeking nearest points.
Following this intuition, existing methods [22, 23, 25, 29,
39] alternate between searching the closest point and de-
forming the source points, which can be seen as non-rigid
variants of the classical Iterative-Closest-Point (ICP) algo-
rithm [12, 7]. For fast convergence, such methods assume
the two sets of points to be close enough, or require an “or-
acle guess” to initialize the correspondences.

Furthermore, these methods often require additional reg-
ularization terms to avoid local minima, e.g., Laplacian [47]
and ARAP [46]. They impose extrinsic heuristics to con-
strain the deformation, which do not always apply to the
target tasks. In contrast, we employ the recently introduced
Neural Jacobian Fields (NJF) [2] that implicitly learns an
appropriate regularization in a data-driven manner. We also
use NJF in our method as it has been shown to better dis-
tribute error by having a global Poisson solve to integrate
local gradient (i.e., Jacobian) information.

Learning-based shape matching. Global registration
methods exist that match two human shapes without assum-
ing they are close in 3D space. Instead of matching points
in 3D space, they measure the similarity in a pre-defined
feature space [4, 41, 48, 45] and leverage machine-learning
techniques to estimate correspondences [10, 26, 34, 52], op-
tionally refined with a global optimization [5, 11, 42]. The
quality of these methods degrades significantly when the
shapes are outside the distribution of the training data. More
importantly, such methods do not yet handle noise in raw
scans, and hence cannot be easily used in our setting.

2.2. 3D Morphable Models for Humans

A standard human body model has to account for pose
and shape deformation. In this work, we are particularly in-
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Figure 2: Given a sparse set of scans SR, and their registrations R to a common template, we learn a linear shape space
BPCA using RPCA and train a non-linear NJF based deformation model using RDEFORM . Given a scan SU from a set
of unregistered scans U , we first project it to the PCA basis to obtain Xo and utilize NJF-based deformation to recover its
registration to the template X ′ in the canonical pose. We compute the Chamfer Distance (DCD) of the registrations to the
target scans and add all the registrations where the distance is within one standard deviation of the minimum distance to
RPCA and update our shape space. By repeating these steps, we jointly register raw scans and enhance our shape space.

terested in the latter – the anthropometric variability across
identities, and we focus the discussion on this aspect.

Parametric mesh. Representing human body parts as
statistical shape models dates back to Cootes et al. [13]
in 2D and Blanz & Vetter [8] in 3D. The latter has be-
come the de facto standard for modeling 3D human shapes
[19, 50], often called 3D morphable models (3DMM). The
goal of a 3DMM is to adapt the template to each person
by controlling the shape variations in a low-dimensional
space. In the context of whole body, a myriad of work
[3, 28, 30, 36, 37, 38, 55, 56] has been proposed for this pur-
pose and has led to rapid progress in monocular and multi-
view human body reconstruction [50].

Learning such a parametric shape space, however, re-
quires firstly, a large database of body scans, and more dif-
ficultly, bringing them into correspondence by registering a
common template mesh to them. Most models above are
trained with thousands or ten thousands of registrations to
body scans in CAESAR [43] and/or SizeUSA [1], curated
with manual intervention for quality control (see Table 1).

Method SMPL GHUM DenseRac STAR BLiSS

# shape 3800 64000 2500 15000 200
space PCA PCA/VAE PCA PCA PCA

Table 1: Comparison with SMPL [30], GHUM [55],
DenseRac [56], and STAR [36] w.r.t. the number of reg-
istrations used in training respective morphable models.

Another frequently overlooked challenge is that databases
have each subject scanned in similar but not exactly the
same pose (e.g., A pose in CAESAR) while the template
is desired to be in one canonical pose (typically T pose). To
factor out the pose variation in the data, an un-posing pro-
cess is performed to bring registrations to the canonical pose
[30], which we refer to as “canonical shapes” in the rest of
the text. Any artifact introduced in this step will be kept in
the learned shape space. Our formulation can take A-posed
scans as input and output the canonical shapes in T-pose,
requiring no un-posing before including them to training.

The most relevant work of Hirshberg et al. [23] explores
a “semi-supervised” setting of co-registration of multiple
scans similar to ours. However, their approach differs from
us in several aspects: (i) they aim to “simultaneously” learn
a morphable model and bring scans into correspondence in
one shot, without iterations. Consequently, it amounts to
a big optimization problem where one has to provide good
initialization (e.g., via manual landmarks) and carefully an-
neal the weights of each term, which may be easy to break.
Due to the complexity of the optimization, this method can
handle hundreds of scans whereas we can scale our iterative
pipeline to thousands of scans; (ii) they rely on model-free
registrations with a nearly isometric regularization term to
capture information beyond the model space. While there
is no publicly available code for us to perform an exact
comparison, we compare to baselines where we employ a
similar edge-preserving non-rigid registration approach and
demonstrate superior performance.

Implicit surfaces. A well-known limitation of meshes



is that it is limited in handling deformations that require
changes in the topology. Recent work [15, 32, 33, 51] ex-
plores representing human bodies with neural fields [54],
which does not assume a consistent mesh topology. They
take the translations and rotations of body joints as input
and estimate whether a query 3D point is inside the body
or not. However, so far the effort has been devoted primar-
ily in generalization of articulated poses, where large-scale
motion capture datasets [21, 31] are used for training.

To help generalize to multiple subjects, it is encouraged
to condition the networks on body shapes. However, in
these methods, shape information is carried only in the loca-
tions of input joints, which is a very coarse anthropometric
feature as two bodies can share the same joints but different
surface shapes. In this work, we consider explicit surface
meshes in order to better capture details in human bodies.

3. Method

3.1. Overview

Given a large set of raw scans S of varied human body
shapes in roughly a similar pose (e.g., A-pose), our goal is
to learn a shape space in a canonical but different pose (e.g.,
T-pose) that captures the variation of plausible body shapes.
We learn a shape space with respect to a predefined shape
template topology; in our setup, we use the SMPL [30] tem-
plate, denoted as TSMPL with N vertices. We also assume
having access to a small set of registered shapesR where a
small set of scans SR have been brought to the same topol-
ogy as TSMPL in the canonical pose via a manual non-rigid
registration process to avoid any registration artifacts. Start-
ing with R and TSMPL, we iteratively expand R with new
shapes from the unregistered scans U that are automatically
brought into correspondence with TSMPL and learn an en-
hanced shape space. Note that we always have S = SR∪U .

Our method works by deforming the template TSMPL to
closely match a new raw scan SU ∈ U . This deformation
model consists of two parts: (i) a PCA-based shape space
BPCA that provides a search space for shapes; and (ii) a
neural deformation model f that maps shapes obtained by
searching BPCA to targets that better capture the shape de-
tails of the raw scan. The two deformation models work in
tandem to jointly register scans and yield correspondence
with TSMPL, resulting in registered scans based on the cur-
rent shape space. We then ‘close the loop’ by selecting a
few new registrations based on their distance to the scan
and adding them to recompute a PCA basis BPCA, thus en-
riching the shape space further. We repeat this process for
multiple iterations, with each pass progressively learning a
richer shape space and using it to register raw scans. Figure
2 illustrates the pipeline of BLiSS.

Algorithm 1
1: procedure BLISS(R,SR,U , f, n)

▷R = Registered Set, SR = Corresponding set of scans
▷ U = Unregistered set of scans
▷ f = Deformation Model, n = Number of rounds

2: for Round ∈ [1,n]: do
3: RPCA,RDEFORM ← R
4: BPCA, g(·)← PCA(RPCA) ▷ build shape sp.
5: for X,SX ∈ (R,SR): do ▷ build deform mod.
6: {α⋆

i }, θ⋆ = g(SX) ▷ Fit using basis
7: Xo = S̄ +

∑k
i=1 α

⋆
i vsi ▷ init. canon. shape

8: X ′ = f(Xo, SX) ▷ Register with NJF
9: Lvertex = ∥X ′ −X∥2 ▷ Vertex Loss

10: LJacobian = ∥J ′ − J∥2 ▷ Jacobian Loss
11: f(...; γi) = f(...; γi−1) ▷ Backprop
12: end for
13: C = ∅ ▷ New Candidate Registrations
14: for SU ∈ U : do
15: {α⋆

i }, θ⋆ = g(SU )

16: Xo = S̄ +
∑k

i=1 α
⋆
i vsi

17: X ′ = f(Xo, SU )
18: C ← C ∪X ′

19: end for
20: D← ChamferDist(C,U)
21: th←min(D) + σ(D)
22: Cprune ← {c|c ∈ C, ChamferDist(c, U) < th}
23: R ← R∪ Cprune ▷ Update Basis
24: end for
25: returnR
26: end procedure

3.2. PCA-based Shape Space

We use a subset of the shapes in R, RPCA to compute
a PCA basis in a similar fashion to classical works like
SMPL [30] and STAR [36]. Note that we use only a subset
of the R and save the rest for the data-driven deformation
model (see Section 3.3). Our shape space BPCA, similar
to others, is composed of a pose-corrective deformation ba-
sis allowing for pose-conditioned deformations and a shape
basis that enables body-shape deformations. In our work,
since we are primarily interested in learning a space of body
shapes, we borrow the pose corrective directly from SMPL,
which is denoted as BP (θ) : R∥pose∥ → R3N as well as
a rigged skeleton to pose TSMPL, where ∥pose∥ = 24x3,
corresponding to 3 axis-angles for each of the 24 joints. We
represent the shape basis BPCA with k shape eigenvectors
BPCA := {vsi}, where k is selected such that the shape
variation in the dataset is explained using the k basis vec-
tors. In this computed space, we define a new shape Sc in



any particular pose θ as,

Sc({αi}, θ) := S̄ +

k∑
i=1

αivsi +BP (θ)

Sp({αi}, θ) :=W (Sc({αi}, θ),J , θ,Ws) ,

where S̄ is the mean shape, J is the joint regressor that
provides the joint locations given the vertex positions in the
shape, Ws is a fixed set of skinning weights, and finally,W
is the skinning function as defined in [30]. Now, given a
target scan S and a current set of shape basis vectors vsi ,
we optimize for the pose parameters and shape coefficients:

g(SU ) := ({α⋆
i }, θ⋆)

= arg min
{αi},θ

DCD(W(Sc,J , θ,Ws), SU ),(1)

where DCD is the Chamfer Distance and SU is an unregis-
tered raw scan.

We optimize Eq. 1 to find the shape in BPCA that best
matches the scan SU while also optimizing for the pose pa-
rameters θ. In other words, the function g “projects” the
raw scan SU onto the shape space BPCA. After optimiza-
tion, we obtain the canonical shape that corresponds to the
scan as Xo := S̄+

∑k
i=1 α

⋆
i vsi . Note that due to the limited

expressivity of the linear basis, Xo may not accurately rep-
resent SU . We now seek a deformation model that can fur-
ther enrich Xo with the details from SU . This shape space
optimization also provides a good initial point to seed our
subsequent nonlinear deformation model, as explained next.

3.3. Neural Deformation with NJF

In our work, a nonlinear deformation is simply an as-
signment of new 3D positions to the vertices of the given
(template) mesh. We adopt Neural Jacobian Fields (NJF)
[2] as our nonlinear deformation model f . NJF trains an
MLP to map triangles on a source mesh to a corresponding
deformed triangle on a target mesh using only local infor-
mation. The key step is to have this training receive gradi-
ents through a differentiable global Poisson Solve layer to
then directly predict the positions of the vertices.

We consider another subset of shapes in R, RDEFORM

where RDEFORM ⊂ R \ RPCA, and their corresponding
raw scans to train NJF. For each shape X ∈ RDEFORM ,
we first optimize for parameters g(SX) where SX is the
raw scan corresponding to X , giving us a shape space pro-
jection Xo. We then train NJF to map the canonical Xo to
the canonical X , conditioned on the scan SX that can be
in any pose. Essentially, we ask our deformation model f
to deform the result of our (current) shape space projection
Xo to the target registration X that contains richer details.
The deformation function f is conditioned on the raw scan
representing the target, and is capable of fixing any residues

not covered by the optimization step. Specifically, we train
f with per-vertex L2 loss,

Lvertex := ∥f(Xo, SX ; γ)−X∥2, (2)

where γ represents learnable parameters, and a per-triangle
Jacobian loss LJacobian which supervises the ground-truth
Jacobians J (see [2]), with our total training signal being,

Ltotal = 10 · Lvertex + LJacobian . (3)

We slightly abuse notation in Equation 2 – in practice, Xo

and SX are represented as features and not by vertex loca-
tions themselves. Specifically, we use Pointnet encodings
[40] of both shapes. Details of the network architectures
and the features used are in the supplemental.

With our initial shape space defined byRPCA and a non-
linear deformation model trained with RDEFORM , we can
now use these in tandem to register new scans.

3.4. Closing the Loop

For each unregistered scan SU ∈ U , we first fit the
template TSMPL to it by optimizing parameters g(SU ) in
Equation 1, to obtain the canonical pose Xo. We then
use the trained NJF to predict the final registration as
f(Xo, SU ; γ) → X ′. The model X ′ is then “posed” to
match the pose of SU by using the optimized pose param-
eters θ⋆. We compute the Chamfer Distance to their cor-
responding scans, and if the error falls within one standard
deviation from the minimum error, we augmentRPCA with
the new shapes X ′ in T-pose. In the next iteration, the
shape space will be updated by computing PCA with the
augmented setRPCA. The updated basis also provides new
initial states for training our deformation model f . Note that
we do not add the pca projections Xo to RPCA as it does
not carry “fresh” information like X ′.

We repeat the steps of constructing a PCA basis, learning
an NJF based deformation model, and registering new scans
for several rounds, with each round expanding the shape
space (see Algorithm 1).

4. Experiments
4.1. Dataset and Protocols

We use 429 scans from the CAESAR dataset that were
registered by a professional artist, i.e., |R| = 429. Note
that the artist took 40-60 min per scan using a combi-
nation of landmark point specification, running nonrigid
ICP, and then manually fine-tuning dense correspondence
correction/specification (e.g., around fingers, armpit, etc.),
costing around $25 for each scan. We consider these artist-
registered meshes as Ground Truth for evaluation, training,
and, in the case of some baselines, as targets. Specifically,
we first sample two mutually exclusive sets RPCA and



Method |RE | initial |RPCA| |RDEFORM | regularizations # shapes ∈ U v2v (↓)

(i) BASELINE1- full PCA11+NJF 29 400 400 ✗ ✗ 0.87

(ii) BASELINE2- PCA11 + non-rigid 229 100 ✗ small ∥∆v∥ 800 3.11
(iii) BASELINE3- PCA11 + non-rigid 229 100 ✗ edge-preserving 800 3.26
BLiSS (PCA11 only) 229 100 100 ✗ 800 1.31
BLiSS 229 100 100 ✗ 800 0.90

Table 2: Evaluating ours against baselines. (i) Learning a one-time static shape space from 400 available registrations; (ii)
and (iii) replacing our non-linear deformation model with classical non-rigid registration. Errors are in cm.

RDEFORM from R to train the initial PCA space and NJF
respectively, where |RPCA| = 100 and |RDEFORM | =
100. We use all the remaining 229 registrations in RE for
evaluation purposes unless noted otherwise.

Since the original CAESAR dataset consists of around
4000 scans, 429 of which we have registrations from the
artist, we consider the rest 3.5k scans as unregistered scans
U . In Algorithm 1 Ln. 14-18, scans in U are brought to
correspondence, added toRPCA, and contribute to the new
shape space BPCA, whereas RDEFORM is kept fixed to
the initial 100 artist registrations. Throughout the experi-
ment, we always use k=11 basis for any PCA-based shape
space, denoted as PCA11. Note that despite RDEFORM be-
ing fixed, in each round, since the basis of the shape space
BPCA changes, Xo changes, and consequently, the amount
of details that NJF needs to compensate also changes.
Hence, our NJF is rebuilt in each iteration (Algorithm 1
Ln. 5-11). At test time, since BLiSS consists of a PCA
shape space and an NJF network, whenever we evaluate
only the learned PCA space, we denote it as “PCA11 only”
to distinguish from running the full pipeline.

4.2. Evaluation and Metrics

For each registration in RE , we take the correspond-
ing raw scan and obtain a registered shape using either our
method or the baselines below. We measure the vertex-to-
vertex (v2v) distance between the ground truth and the esti-
mated canonical shapes, using the artist-annotated scan-to-
template correspondences. When comparing to other shape
spaces which have different topology (e.g., GHUM), we
first perform a non-linear registration between the target
and our mean body shape models at the same pose and map
each point on our template to the target body model using
barycentric coordinates on the corresponding face. We also
report the vertex-to-plane error, v2p, which does not require
the same mesh topology.

4.3. Comparisons

We consider several baselines. (i) BASELINE1: We
spare 29 registered shapes for evaluation and use all of the
remaining 400 to train a PCA model. We further train an

NJF with the same 400 scans to add the missing details not
covered by the PCA model, denoted as “full PCA+NJF”.
This baseline represents scenarios where one trains the
model in one go with all available registrations, without any
bootstrapping schemes that leverage the unregistered scans.
Hence, this can be seen as an upper bound.

Next, we consider a baseline where NJF is replaced in
our pipeline with classical non-rigid registration methods.
Given an unregistered scan SU , we first obtain the projec-
tion in the PCA space Xo and then optimize the location
of each vertex on Xo, such that when posed with θ⋆, the
shape yields low Chamfer Distance to the scan SU . This
“free-form deformation” scheme can fall into local mini-
mum easily even if we provide Xo as close initialization.
Therefore we define new baselines where we constrain it
with standard regularization terms: (ii) BASELINE2: ver-
tices should not be deviating too far from the canonical
shapes Xo, i.e., ∥∆v∥ should be small favoring smooth sur-
faces; (iii) BASELINE3: the deformation should preserve
edge lengths, i.e., favor near-isometric deformations.

Finally, we also compare to existing shape spaces includ-
ing SMPL [30], STAR [36], and GHUM [55].

4.4. Results and Discussions

Progressive improvement of the shape space. First, we
illustrate how our shape space is progressively improved,

Method # shapes ∈ U v2v (↓) (cm) v2p (↓) (cm)

BLiSS (PCA11 only) 200 1.31 0.67
BLiSS 200 0.90 0.65
SMPL (PCA11) 3800 1.72 0.62
STAR (PCA11) 15000 2.15 0.58
GHUM-VAE 64000 5.89 2.63
GHUM-PCA 64000 6.74 3.01

Table 3: Comparison between our shape space vs SMPL,
STAR, and GHUM in FULL protocol after we absorb 800
more shapes from CAESAR. Note that ours, which uses
only 200 registered scans, compares favorably against all,
which were trained with a magnitude of more scans.
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Figure 3: We show the histogram of the v2v error of the scans in our test set at different iterations of our method. We also
color code the per-vertex error for an example scan. As our method progresses, the error decreases, and we observe a slight
left shift in the histogram as the shape space improves. Insets show residue error on one scan over iterations.

i.e., becomes more expressive. In Figure 3, we show the
histograms of the v2v residue error at different iterations of
our method as it progresses by consuming new scans from
U and visualize the error as heat maps in each inset image.
One can observe that the error gets reduced as we have more
rounds, meaning the correspondence quality improves pro-
gressively.

Further, we compare with a method that simultaneously
burns all available 400 scans into model training – BASE-
LINE1. As shown in Table 2 upper part, it attains the lowest
v2v error of 0.87cm on a smaller evaluation set of 29. In the
bottom part, we can observe that, despite trained initially
with only 100 registrations, BLiSS yields v2v error that is
on par with the upper bound by automatically extending the
set of registered scans to 800.

Effect of NJF as a non-linear registration module. In
BASELINE2-3, we run Algo. 1 but estimate detailed shapes
X ′ at Ln. 16 by non-rigid registration methods instead of
NJF f . We then evaluate how well the resulting PCA shape
space explains the test set RE and compare with our PCA
shape space. In Table 2 bottom part, we observe that af-
ter consuming 800 unregistered scans, our shape space ex-
plains scans in RE with 1.31cm v2v error (PCA11 only),
while NJF further reduces it to 0.9cm. Consuming the same
amount of scans, shape spaces enriched with X ′ from non-
rigid registration yield errors of 3.11cm and 3.26cm respec-
tively. This suggests using a data-driven NJF in the loop re-
covers better correspondence than using optimization-based
registration methods, and when included in RPCA, it leads
to a new PCA space BPCA with richer information.

Comparison to existing shape spaces. We compare
BLiSS with the following existing shape spaces: (i) the
classical SMPL [30] shape space trained with the registra-
tions of 3800 CAESAR scans, (ii) its follow-up STAR [36]
which uses additional 10000 registrations of the SizeUSA
dataset [1], (iii) GHUM which uses registrations for an ad-
ditional proprietary dataset of 60000 scans (where a ma-
jority consists of body, hand, and, facial pose variations)
along with CAESAR. GHUM presents both a VAE-based
non-linear shape space as well as a linear shape space both

of which we include in our comparisons. For each corre-
sponding scan in RE , we optimize for the pose and shape
parameters of each body model and report both the v2v and
v2p errors in Table 3. We also show qualitative compari-
son in Figure 4 where we color code each optimized body
model using the v2p error with respect to the ground truth
artist provided registration.

We observe that BLiSS yields consistently lower v2v er-
ror than other shape spaces. We use 11 PCA components for
SMPL, STAR, and BLiSS while all the PCA components
for GHUM. Our Ground Truth are artist-annotated registra-
tions, which can still potentially contain errors which might
have an effect on this gap. Nevertheless, our method per-
forms on par with SMPL and STAR based on the v2p error
and better than GHUM. Hence, the primary observation in
Table 3 is that, despite starting from only a small amount of
registrations (100+100), our model yields on-par expressiv-
ity compared to a model trained with an order of magnitude
more registrations. We attribute this to the novel combina-
tion of linear PCA and non-linear NJF deformation model,
as well as the progressive scheme leveraging such a hybrid
deformation model for better correspondence.

Scan SMPL STAR GHUM-VAEGHUM-PCA PCA-100 BLiSS

0.005 m

0.03 m

Figure 4: For a given raw scan, we register each body
model by predicting pose and body shape parameters. (Top)
Each result is color coded based on the v2p error in meters
w.r.t. the ground truth registration provided by the artist.



Space Ours GHUM STAR SMPL

Ours (4.10) 3.57 1.38 1.46
GHUM 4.03 (4.48) 3.65 3.71
STAR 1.79 3.74 (3.96) 1.37
SMPL 1.90 3.75 1.36 (4.14)

Table 4: We sample 500 shapes in each space by Farthest
Sampling. For off-diagonal entries, we compute for each
shape in a given space its distance to the closest shape in all
the other shape spaces, and report the average for every pair,
in both directions (in cm). For spaces A and B, low values
for (A, B) and (B, A) indicate that the spaces are similar. For
diagonal entries, we compute the diversity of samples inside
each space, with higher values indicating more diversity.

Diversity of body shape spaces. We qualitatively show
the diversity of body shapes represented by our shape space
by randomly sampling our final PCA space using farthest
sampling in terms of vertex differences. Sampled shapes are
shown in Figure 1. In Figure 5, we show shape variations
captured by the top three PCA modes of our shape space.

In order to compare the diversity of our and existing
shape spaces, we sample 500 body shapes in each shape
space by furthest point sampling. For each sampled body
shape, we compute is nearest sample within the same shape
space by measuring the v2v error. We report the average
of such pairwise sample error along the diagonal of Ta-
ble 4 where higher pairwise distance means a diverse shape
space. As shown quantitatively, the diversity of our shape
space is on par with existing shape spaces. For each sample
in one body shape space, we also compute its nearest sam-
ple in all other shape spaces as well. For each shape space
in each row, we compute the pairwise sample distance with
respect to each shape space in each column. Smaller num-

Figure 5: We show shapes along the top three principal di-
rections in different rows, and observe variations in gender,
height, and weight along the respective PCA modes.

bers indicate the similarity of shape spaces. We observe that
our shape space is closer to SMPL and STAR.

Number of PCA components. While we use k=11 ba-
sis consistently for all PCA-bsaed methods, we also analyze
the effect of using more bases with k=30, 50, 100. Using
higher number of basis increases the expressivity of PCA,
but empirically we observe very little change in our metrics
– to the order of 10−5 – by considering more PCA compo-
nents, and thus stick to using just k=11 in all experiments.

Application. A typical application of a body shape space
is to predict a given raw scan’s shape parameters. We
demonstrate the use of BLiSS shape space in such an ap-
plication in Figures 6 and 1 (right) . Since our work focuses
on capturing body shape variation, we optimize for pose in
SMPL’s pose space. For each raw scan we use 9 manually
annotated landmarks to estimate the initial pose, then we
estimate the body pose (with SMPL) and shape parameters
in our shape space. We observe that our space accurately
estimates the body shape despite the scans being noisy.

Figure 6: Registration (pink) of noisy scans (blue) with our
final shape space. The joints corresponding to the greyed-
out regions are reset to default poses after the optimization.
In each case, a set of 9 landmark correspondences were used
for initial pose estimation.

5. Conclusions
We have presented a method that takes in a small set

of artist-annotated scans along with a much larger corpus
of unregistered scans, and jointly learns a (linear) shape
space while progressively bringing the unregistered scans
into correspondence. At the core of our approach is a novel
formulation that continuously refines the underlying shape
space and a learned nonlinear module that automatically
registers models ‘close’ to the current shape space. We
demonstrate that our approach, trained only with 200 reg-
istered scans, can produce competitive performance com-
pared to established shape space models, trained using thou-
sands of registered scans.

The main limitation of our method is that it does not cap-
ture a pose corrective shape space. Tackling the challeng-
ing problem of learning a pose corrective shape space from
unregistered scans using the non-linear deformation mod-
ule in an iterative fashion is an exciting next step. Yet an-
other addition would be to use nonlinear shape spaces (e.g.,



AE or VAE), but the challenge would be how to progres-
sively yet robustly grow while using nonlinear models on
limited data, especially in the initial rounds of the approach.
Also, since we leverage SMPL’s pose space, which does not
model finger articulation, our method cannot handle hands
in complex poses. Note that we may want to minimize
the use of shape regularizers (e.g., ARAPReg [27], data-
efficient shape VAE [35]) as they may unnecessarily restrict
the flexibility of the learned shape spaces. An alternate ap-
proach, beyond fully self-supervised shape space building,
is to adopt the method to directly select models that we can
then ask artists to annotate, to maximize fresh information.
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