
Towards Computationally Efficient,
Photorealistic, and Scalable 3D

Generative Modelling

Animesh Karnewar

A dissertation submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

July 2, 2024

2

I, Animesh Karnewar, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

GM (Generative Modelling) is a class of self-supervised Machine Learning which

finds applications in synthetic data generation, semantic representation learning,

and various creative and artistic fields. GM (aka. Generative AI) seemingly holds

the potential for the next breakthrough in AI; of which, the recent successes in

LLMs, text-to-image synthesis and text-to-video synthesis serve as formidable

testament. The way these generative models have revolutionized the process of

2D content creation, we can expect that 3D generative modelling will also contribute

significantly towards simplifying the process of 3D content creation. However, it is

non-trivial to extend the 2D generative algorithms to operate on 3D data managing

various factors such as the inherent data-sparsity, the growing memory requirements,

and the computational complexity. The application of Generative Modelling to

3D data is made even harder due to the pertaining challenges: firstly, finding a

large quantity of 3D training data is much more complex than 2D images; and

secondly, there is no de-facto representation for 3D assets, where various different

representations such as point-clouds, meshes, voxel-grids, neural (MLP)s, etc. are

used depending on the application. Thus, with the goal of ultimately enabling

3D Generative Models, and considering the aforementioned challenges, I propose

this thesis which makes substantial strides “Towards Computationally Efficient,

Photorealistic, and Scalable 3D Generative Modelling”.

Impact Statement

This thesis, shines a key new insight into our understanding of 3D representations

(chapter 4); proposes first ever approaches for certain tasks that were deemed impos-

sible earlier, such as training a 3D generative model using a single 3D scene (chapter

5), and training a 3D diffusion model only using 2D images (chapter 6); as well as

proposes a highly unique and intriguing mathematical framework of generative mod-

elling for handling arbitrary 3D representations that exist today or will be proposed

in the future (chapter 8).

Apart from the research contributions, this thesis has tangible real-world impact.

For instance, the latest release of the Mitsuba renderer version 3, demonstrates

fitting ReLU-Fields (chapter 4) as a showcase example of the framework [1]; the

5 publications in total have received over 150 citations; and, the code repositories

of publications have in total received more than 250 stars on GitHub, at the time of

writing this thesis within a period of less than 2 years.

All of our novel approaches have been published at the premier venues for

scholarly work in the fields of 3D Vision (3DV), Computer Vision (CVPR and

ICCV/ECCV) and Computer Graphics (SIGGRAPH). To encourage further research

on our approaches, I release the code, datasets and additional results for most of the

publication as allowed by the university, funding agency and company policies. For

all the publications, I release supplementary explanatory videos and project websites

for efficient dissemination of the proposed research ideas.

Acknowledgements

I would like to extend my sincere gratitude to the supervisors Prof. Niloy J. Mitra and

Prof. Tobias Ritschel for their invaluable advice and their continuous support towards

realising this research agenda. Niloy’s advise has been indispensable for keeping

the research on track, especially on such a topic which is so prone to divergence.

Looking back, it’s impossible to imagine even a single publication getting accepted

at the top venues, without his motivation, his dedication, and his meticulousness, in

spite of the hectic deadlines. He caught the minutest of mistakes, which not only

helped the research go forward, but also allowed to present and disseminate the

works in an impactful manner. I am also thankful to Tobias for all the technical

contributions and for mentoring me in this journey. I have learned almost all my

research-illustration skills from him.

It has been a journey in learning and an absolute pleasure working with my re-

search collaborators David Novotny and Prof. Andrea Vedaldi. I learned from David

how to approach a goal oriented research in an impactful manner. His discipline of

work has helped us push the research directions towards fruitful results efficiently

and productively. Not to mention, I have certainly picked up in-numerous coding and

implementation best practices from him. Andrea’s critical and mathematical thinking

has helped in developing the research ideas into their best forms. His tremendous

experience and his foresight not only made all our research discussions fruitful, but

they also provided big learning lessons to me.

I would like to mention special thanks to Oliver Wang, with whom my associa-

tion started even before the Doctoral endeavour. My research journey began with the

MSG-GAN project which was mentored by Oliver; and the discussions that we used

to have inspired me to officially pursue a PhD, quitting my full time job (R&D Engi-

Acknowledgements 6

neer, TomTom Netherlands). Because I was still collaborating with him in the initial

projects during PhD, the transition from “free-time” research to “full-time” research

became seamless for me. Most importantly, his guidance regarding incorporating a

holistic-view of research, especially in an area as crowded and as competitive as the

one I am pursuing, has not only been a life-saver, but a life-long learning that I have

imbibed in me which will drive my future research.

More than just extending gratitude, I would like to dedicate this research thesis

to my parents, especially to my mom, without whom I would definitely not have been

able to complete this research thesis. I would like to thank my family for providing

the love, care and support during this arduous, but fulfilling, journey. My sincere

homage to my grandfather Dr. C.N. Maggirwar (ex. Director, GSDA India), who has

been the source of inspiration and motivation for us. He is my role-model, and I draw

immense inspiration from his contributions to the field of Geology, his contributions

towards the society, and how he fulfilled all his responsibilities in life. Whatever I

have achieved in my life, or ever will, is all because of him.

Huge thanks to the ITN-PRIME, being a part of which has been a tremendous

privilege, honour, and a pleasure. Big thanks to my peers, the ESRs (Early Stage

Researchers) of the training network https://prime-itn.eu/about/people/

fellows/; the discussions and collaborations with whom, allowed for the cross-

pollination of ideas from diverse research-sub-fields of Computer Graphics. I thor-

oughly enjoyed the time spent with y’all during the PRIME activities, the training

sessions, and of course, our hangouts. I am also grateful for the opportunity to

connect and share my research with so many experts from academia and the industry.

Special thanks to Eva Šauerová and Markéta Tomková for looking after all the

PRIME organization, administration, and reporting, so timely and particularly.

Lastly, I would like to acknowledge and sincerely thank all the funding agencies

without whom, this research would certainly not have been possible. ITN-PRIME

(European Union’s Horizon 2020 research and innovation programme under the

Marie Skłodowska-Curie grant agreement No. 956585), UCL AI centre, gifts from

Adobe research, and last but not the least, The Rabin Ezra Scholarship Trust.

https://prime-itn.eu/about/people/fellows/
https://prime-itn.eu/about/people/fellows/

Contents

1 Introduction 11

1.1 Why 3D? . 11

1.2 What is Generative Modelling? . 13

1.3 What can Generative Modelling do? 14

1.3.1 Success stories of 2D Generative Modelling 15

1.3.2 Possible applications of 3D Generative Models 17

1.4 Scope of the thesis . 19

1.5 Challenges and Opportunities . 20

2 Preliminaries 23

2.1 Deep Learning . 23

2.1.1 Neural Networks . 25

2.1.2 Mathematical Optimization 29

2.2 3D Radiance Fields . 31

2.2.1 Differentiable volumetric rendering 33

2.2.2 End-to-end 3D reconstruction pipeline 36

2.2.3 Summary . 37

2.3 Generative Models . 38

2.3.1 Generative Adversarial Networks 38

2.3.2 Diffusion Models . 41

3 Literature survey 45

3.1 Discrete sample based representations 45

Contents 8

3.2 Differentiable rendering. 46

3.3 Learned neural representations . 46

3.4 2D-to-3D Encoding . 47

3.5 2D generative models. 48

3.6 3D generative models. 49

4 ReLU-Fields: The Little Non-linearity That Could 52

4.1 Background and Contributions . 52

4.2 Introduction . 53

4.3 It’s just a little ReLU . 55

4.4 Applications . 57

4.4.1 Radiance Fields . 58

4.4.2 Occupancy Fields . 61

4.5 Limitations . 63

4.6 Summary . 64

5 3inGAN: Learning a 3D Generative Model from Images of a Self-similar

Scene 66

5.1 Background and Contributions . 66

5.2 Introduction . 67

5.3 3inGAN approach . 70

5.3.1 Representation . 72

5.3.2 Generation . 73

5.4 Evaluation . 75

5.4.1 Qualitative Evaluation . 77

5.4.2 Quantitative Evaluation . 81

5.5 Limitations . 81

5.6 Summary . 82

6 HoloDiffusion: Training a 3D Diffusion Model using 2D Images 83

6.1 Background and Contributions . 83

6.2 Introduction . 85

Contents 9

6.3 HoloDiffusion method . 87

6.3.1 Learning 3D Categories by Watching Videos 87

6.3.2 Bootstrapped Latent Diffusion Model 88

6.3.3 Implementation Details . 91

6.4 Evaluation . 92

6.5 Limitations . 94

6.6 Summary . 95

7 HoloFusion: Towards Photo-realistic 3D Generative Modeling 96

7.1 Background and Contributions . 96

7.2 Introduction . 97

7.3 HoloFusion method . 99

7.3.1 HoloDiffusion revisited . 100

7.3.2 HoloFusion . 102

7.4 Evaluation . 106

7.4.1 Details . 106

7.4.2 Quantitative and qualitative analysis 108

7.5 Limitations . 110

7.6 Summary . 110

8 GOEmbed: Representation Agnostic 3D Feature Learning 111

8.1 Background and Contributions . 111

8.2 Introduction . 112

8.3 Method . 115

8.3.1 GOEmbed: Gradient Origin Embeddings 115

8.3.2 Experimental Evaluation Rubric 118

8.4 Plenoptic Encoding . 118

8.5 3D Generation . 121

8.6 Sparse-View 3D Reconstruction 125

8.7 Limitations . 126

8.8 Summary . 127

Contents 10

9 Conclusions 128

9.1 Summary . 128

9.2 Insights . 130

9.3 What next? . 133

9.3.1 3D Meshes are important 133

9.3.2 Scale is directly proportional to impact. 134

Bibliography 136

Abbreviations 172

Chapter 1

Introduction
3D is not special because it’s “immersive”, it’s that 2D is deficient

because it is not.

∼ Amit Jain, Luma AI

1.1 Why 3D?
Computer Graphics is the systematic field of study of processes for creating 2D

images with the use of a Digital Computer. The earliest Computer Graphics systems

consisted of sophisticated routines for 2D drawings which aided various architectural

and mapping applications [2]. These nascent graphics systems inspired almost all the

operating system interfaces that we use currently. However those 2D graphics sys-

tems were not enough for more creative applications which required realistic shading

and animations. Because of these niche requirements, very soon the discipline of

Computer Graphics evolved to encompass 3D scenes, structures and motions. It was

soon realised that it is much easier to simulate 3D rather than to emulate 3D in 2D [3].

Thus various graphics operations such as 3D scene structuring, coordinate systems,

camera representations, camera and object transformations, and most-importantly

3D lighting and shading started receiving a rigorous mathematical and physics-based

treatment [4, 5, 6]. This scientific treatment of the field of computer graphics not

only pushed the development of various efficient and photo-realistic 3D algorithms,

but also fueled creative industries such as Video Games and Movies (with CGI). Till

today, Video Games and Movies remain the most widespread and the most important

3D creative applications.

It is commonly asserted that Gen-X grew up on reading books, Millennials on

1.1. Why 3D? 12

(a) (b)

Figure 1.1: (a) A screenshot from the highest grossing game of 2023 titled “God of War:
Ragnarok”, and (b) A frame from the 2022 blockbuster movie titled “Avatar:
The way of water”.

watching movies and Gen-Z on playing video-games. We can clearly see that with

the progression of generations, the forms of entertainment as well as the forms of

learning are inclining towards more and more “immersion”. Today, the global cinema

industry is estimated to be $77 Billion [7] while the global video-game industry

is estimated to be $242.39 Billion [8]. Video-games inherently require 3D worlds

and real-time interactions (fig. 1.1 (a)), but even movies today don’t just reflect (or

satire) the state of the current society; they push the horizons of human imagination

through visual means powered by CGI [9, 10] (fig. 1.1 (b)). This underlines how

socio-economically important and generally widespread these creative applications

are; not to mention how important is 3D for driving these applications.

Apart from the traditional creative applications of Movies and Video-games,

3D is now being incorporated in the very nature of HCI (Human Computer Interface)

itself. With the development of the VR (Virtual Reality) and AR (Augmented

Reality) hardware, many more 3D applications such as 3D telepresence, and 3D

infotainment are also on the rise. For all these applications, the interaction with the

spatial-computing hardware has to be a lot more immersive and intuitive than our

current screen-based computers. Since humans are used to the 3D world naturally, it

is essential for the headsets to internally model the interfaces for a 3D world and not

2D screens.

Note that this discussion of 3D applications is far from exhaustive, and that

the focus was mostly around creative 3D applications because that is where this

thesis is directed towards. But, the requirement of 3D can be seen in many more

1.2. What is Generative Modelling? 13

applications, such as in fabrication (3D printing), medical imaging, manufacturing,

authoritative previewing, etc. to name a few. In a nutshell, 3D is not only an

additional good-to-have, but an essential feature of the future applications.

1.2 What is Generative Modelling?

As alluded to in the abstract, my thesis is about 3D Generative Modelling. Thus, we

now take a slight detour here to discuss about GM (Generative Modelling) prior to

highlighting the main goal and the scope of this thesis. Generative Modelling is a

mathematical (and statistical) tool which imparts creative intelligence to computer

algorithms. Given N i.i.d. samples {xi}N
i=1 from an unknown data distribution p(x),

the task of generative modelling is to find the parameters θ of a parametric model

pθ (x) that best approximates p(x). Assuming an ideal model pθ (x) that completely

overlaps the density function of the true p(x), we could use it to draw synthetic

samples x′ ∼ pθ , as well as compute the likelihood of newly observed (or doctored)

samples. Apart from these two direct uses, it turns out that such a model acts as a

foundational model for various other tasks. For instance, new posterior conditional

models of the form pθ (x|y) can be constructed using the foundational pθ (x) such

that y can be various different forms of correlated random variables that can act as

conditioning. Also, since this hypothetical pθ (x) model completely overlaps the

true density function, we can assume that it implicitly understands the complete

process of creation of x, and thus analysing it, perhaps in the form of directed cliques,

potentially yields key insights regarding the creation process of x, which is usually

intractable. These are only a few of the in-numerous points which underscore the

importance of GM in Artificial Intelligence.

Although this mathematical definition of Generative Modelling sounds straight-

forward, it actually hides a lot of its complexity very deceptively. In almost all

real-life applications the distribution p(x) over the random variable x involves mod-

elling interactions between many underlying latent random variables x1,x2,x3, ...,

leading to a non-factorizeable and highly intricate graphical model. Consider a

simple example of the distribution of 3D chairs. Sampling a chair from the universal

1.3. What can Generative Modelling do? 14

distribution over chairs involves understanding and simulating the process of making

a chair; implicitly requiring to model infinitely many factors. For instance, the

simple ones like the material, the colour, type, purpose etc. are factors that we

can list, but there are many more complicated factors such as the manufacturing

power, the socio-political scenario, the customs and traditions, etc. of the place

where the chair is going to be created. As is the case with this simple example of

making-chairs, it turns out that almost all the real-world processes have infinitely

many underlying random variables, which makes them intractable to represent with

probabilistic graphs.

The most popular solution to make this problem of Generative Modelling

tractable is via data-driven ML (Machine Learning). The distribution p(x) is either

explicitly or implicitly modelled by an ML model (typically a neural network) as a

latent variable model that transforms a tractable and known probability distribution

into the one being modelled. We cover the framework of ML, in detail, in the next

chapter (chapter 2). As alluded to earlier, dissecting and uncovering the learned

semantics of these models is then done as a post-training-analysis step.

1.3 What can Generative Modelling do?
One of the key characteristics of Generative Models is that there is no need for

the creation of additional ground-truth manual labels for the data-points already in

the dataset. As we will see in the next chapter, these types of models fall under

the class of self-supervised machine learning methods. Further to this, Generative

Modelling is an enabler of creative intelligence because it inherently tries to go

beyond the tight and restrictive teachings provided by supervised learning regimes.

For instance, an ML classifier might be able to classify two images as being a cat

and an astronaut easily after training, but it won’t be able to hallucinate1 an image of

an “astronaut-cat in space”. Although imagining such a scenario is trivially intuitive

for us humans, using only discriminative Machine Learning classification methods,

such an imaginative model would be very difficult to train even after creating a

1This hallucination on a classifier model could be performed using the gradient-based visualization
algorithms such as DeepDream [11].

1.3. What can Generative Modelling do? 15

(a) (b) (c)

Figure 1.2: Samples generated by Stable-Diffusion [12] for the prompts (a) “A large public
music concert on Mars”; (b) “A Unicorn swimming in the ocean”; (c) “Nean-
derthals having a candle light dinner”.

huge dataset of physically improbable images. Research to find other novel ways in

which these generative models could be employed is ongoing, but, in this section,

we highlight some of the most interesting applications that Generative Modelling

has enabled in the process of 2D content creation, and the possible applications a 3D

Generative Model could spawn.

1.3.1 Success stories of 2D Generative Modelling

Due to the readily available text and image based data on the internet, Generative

Modelling has been studied extensively in these contexts leading to works such as

LLMs (Large Language Models), DALLE [13], IMAGEN [14], Stable-Diffusion

[12], and Giga-GAN [15]. These are breakthrough milestones that have successfully

trained text-based auto-regressive and text-to-image based generative models on the

scale of billions of data-samples respectively. Thus, having trained on these humon-

gous sized datasets, the trained models can demonstrate unparalleled generalisation

and outstanding ability for hallucination. Consider, for instance, the image-samples

generated for highly imaginative text prompts by the Stable-Diffusion model in figure

1.2. The trained model has not just rotely memorized all the training-samples in the

dataset, but has built an understanding of 2D textural concepts such as “the planet

Mars” or “Unicorn” or “Neanderthals” or “candles” etc.; which it composes together

to coherently generate the images on the canvas for the complete complicated text

prompts.

1.3. What can Generative Modelling do? 16

(a) (b)

Figure 1.3: Examples of live imaginative painting from the demo created by the X-user
‘@MartinNebelong’. The user is drawing an artistic tree branch in (a), while
drawing a realistic portrait in (b). The ControlNet transforms the user’s vector
input into the specified styles of RGB images in real-time. Ref: https://x.
com/AnimeshKarnewar/status/1759997147133444194.

Extending this further, the most-recent breakthrough from OpenAI [16] titled

‘SORA’ is the latest and the greatest text-to-video generation model. The model

is capable of generating a minute of high fidelity video given text-prompts with

unparalleled realism and text coherence. Although, scientific technical details have

not been provided regarding the approach, a high-level official report reveals that

the method is a variant of space-time latent-diffusion model trained on huge datasets

using very large-scale GPU compute. Interestingly enough, the generated videos

show remarkable 3D view-consistency even though an explicit 3D inductive bias was

never applied on the model [17]. This points to the amazing potential that large-scale,

monolithic, data-driven generative models hold.

Another line of research is currently figuring out ways in which these Diffusion

Models can be fine-tuned to enable various creative controls. InstructPix2Pix [18]

finetunes Stable-Diffusion to allow for instruction based text-editing. This has been

incorporated in the latest ChaptGPT rendition which allows users to interactively

create their art. More interesting is the work of Zhang et al. [19] titled ControlNet

which fine-tunes the Stable-Diffusion model to allow for various spatial-conditioning

apart from the text. Control-Net has spawned a myriad of applications including,

but not limited to sketch-based realistic image generation, pose-to-image, depth-to-

image, etc. Figure 1.3 shows an example of the real-time demos created by technical

artists to boost their productivity using ControlNet.

https://x.com/AnimeshKarnewar/status/1759997147133444194
https://x.com/AnimeshKarnewar/status/1759997147133444194

1.3. What can Generative Modelling do? 17

Figure 1.4: Examples of textures generated by the Text2Tex method from Chen et al. [20]
given pre-made 3D meshes and user provided text-prompts.

Lastly, it is remarkable to see that the text-to-image diffusion models are also

enabling applications to increase the productivity of typical 3D content creation

pipelines. Text2Tex, from Chen et al, [20] proposes an automated pipeline which

can generate controllable textures for pre-made 3D meshes using Stable-Diffusion.

The generated textures can be controlled using provided-text-prompts. Although this

pipeline requires user created meshes, applications like Text2Tex clearly demonstrate

how foundational the Stable-Diffusion generative model is. These applications

could further benefit from leveraging the recent video-diffusion models in the short

term, while core 3D generative models will contribute more significantly towards

automating the process of 3D asset creation.

1.3.2 Possible applications of 3D Generative Models

The key ingredient that drives all the 3D applications is high-quality 3D content.

Apparently, 3D content creation is much harder than 2D content creation, which

either requires expensive and complicated scanning processes, or hours and hours

of artistic modelling efforts. Considering the way these generative models have

revolutionized the process of 2D content creation, we can fairly hypothesize that

3D generative modelling will also contribute significantly towards simplifying the

process of 3D content creation. The disruption caused in the 3D industry by the

automation of various aspects of the 3D content creation pipeline will not only make

rolling-out new Video Games and Movies faster, but also ignite creativity among the

artists since they will be able to focus more on the holistic aspects of the art rather

1.3. What can Generative Modelling do? 18

than the low-level tools required for detailing. The Holy-Grail of 3D content creation

is a system similar to the one used by the “Memory-Maker” in Blade Runner 2049

(ref: https://youtu.be/LKE4Bo7wRcY?si=9U4BgSq7gwNvQqMU). As shown in

the sequence, the Memory-Maker uses a device reminiscent of the focal rings of

a camera to create realistic 3D scenes. The minute details of the 3D world such

as, intricate branches and leaves of the trees, style of the birthday-cake, dresses

and hairstyles of the children, etc. are handled by the system; while the high-level

abstract concepts are controlled by the Memory-Maker. Interestingly, by expanding

the device rings, the system can also open-up in-depth control over something as

trivial as the size of the head of the fly on a leaf, as shown in the beginning of the

clip. Although, this system is part of science-fiction lore at the moment, it provides a

vision for what automated 3D content creation pipeline needs to realise in the future.

And, similar to the live imaginative 2D painting demo of figure 1.3, a large-scale

data-driven 3D generative model is exactly what will enable such a 3D content

creation system.

The current offline 3D rendering engines simulate the process of light-transport

to synthesize 2D images almost indistinguishable from reality. However, they require

a very long time in order to do so, restricting their use in offline applications such

as Movies, Advertisements, etc. Apart from the time constraint, there are various

phenomena such as wave-optical effects, diffraction, pearlescence etc. that even the

most sophisticated offline 3D renderers cannot model correctly because we do not

know the physics behind them yet. The online renderers can produce 2D images

much faster to enable real-time interactive applications such as 3D Video Games, but,

they inhibit many photorealistic effects and are limited to only hyperreal or artistic

3D scenes. A 3D Generative Model that has been trained on billions of 3D assets will

implicitly model all the common and rare physical effects, various real, hyperreal,

and synthetic styles, and be able to produce 3D samples in real-time with efficient

implementation. Interestingly, such a model could serve as a bridge between the

most sophisticated online and offline rendering systems. Provided with a description

of the 3D scene, a 3D Generative Renderer will be able to synthesize photorealistic

https://youtu.be/LKE4Bo7wRcY?si=9U4BgSq7gwNvQqMU

1.4. Scope of the thesis 19

renders in real-time.

Similar to what we saw in the previous subsection, the 2D text-to-video model

already contains 3D information, and is applicable in the 3D application of texturing

assets; the 3D generative model will also be able to go beyond just 3D. A large-

enough 3D generative model trained on static 3D assets could be leveraged to

generate realistic animations as well. Although slightly philosophical in nature,

but the 3D generative model might also uncover certain insights in our possible

4D world; for instance uncovering a hyperspace guiding the creation process of a

particular class of 3D objects.

1.4 Scope of the thesis

With the discussion in the previous sections, where I motivated why 3D is important

and what Generative Modelling can do, I now describe what this research thesis

endeavours.

Although the holistic problem of Generative Modelling is far from being solved,

especially with new generative modelling methods being proposed even now, for

example Denoising Diffusion GANs [21], VARs [22], and FlowMatching [23]

models; a thesis to contribute to Generative Modelling as a whole is too broad to

be taken seriously in today’s research scenario. Hence I narrow down the scope of

this thesis into a realisable goal such that small tangible steps can make substantial

contributions towards its realisation.

Firstly, I will only be concerned with applying generative modelling to 3D

data. This includes both synthetic data such as artistically modeled 3D meshes, their

textures, physically based materials, etc., as well as the real-captured 360◦ image-

based and video-based data of real-world objects. Although animations depicting

realistic motions are a key characteristic of 3D applications, I will only be working

with static 3D assets in this body of work. I believe that considering motions, and

other physical effects of 3D objects forms an orthogonal line of research and that the

exclusion of dynamic 3D assets helps defining a more realisable goal.

Secondly, 3D generative models that are practically implementable in code and

1.5. Challenges and Opportunities 20

executable on the present GPU hardware are what will make the most scientific and

social impact. Computational efficiency, both in terms of training and inference,

plays a key role in the adoption of proposed generative modelling methods. For

instance, Probabilistic-Flow based models stagnated due to their extremely long

training times and Diffusion Models were very slow in adoption due to their slow

inference. Hence, instead of only theorizing algorithmic models, I will also take into

consideration the Computational Efficiency of the 3D generative models as a key

guiding principle.

Thirdly, we know that visual quality of the generated samples is very important

in case of generative modelling. For instance, GANs were preferred over VAEs and

AutoRegressive models because they could generate compelling image samples even

though they are extremely hard to train. Thus, the quality of the samples produced by

the Generative Model is one of the key measures for assessing its potential. In case

of 3D scenes and assets, photorealism is the ultimate benchmark of visual quality,

and thus I aim towards generative model that can produce photorealistic 3D samples.

And finally, the breakthrough 3D generative model will have to be trained on

billions and billions of real-captured as well as synthetic static 3D assets. Thus

scalability of the 3D generative modelling methods is the last piece in the puzzle of

3D generative modelling.

In summary, the scope of this thesis is to contribute substantial strides towards

a specific class of Generative Models, i.e.,

Towards Computationally Efficient, Photorealistic, and Scalable

Generative Modelling of static 3D assets.

1.5 Challenges and Opportunities
There are two main challenges towards achieving 3D generative models. Firstly,

there is a lack of high-quality large-scale 3D dataset; secondly, unlike 2D images,

which are represented as grids-of-pixels, 3D assets do not have a de-facto digital

representation; these challenges are discussed in detail in the following paragraphs.

Towards the first challenge, recently, various data collection efforts such as

1.5. Challenges and Opportunities 21

Figure 1.5: Figure shows 2D orthographic projection of three 3D representations namely
point-cloud (left), mesh (middle) and voxel-grid (right).

Objaverse and Objaverse-XL [24, 25] are gathering millions of 3D textured-mesh

based assets. Also similar to Shutterstock, it can be expected that more and more

Gaming-studios and VFX-studios will democratize their 3D assets for progressing

the research in 3D generative modelling. More interestingly, the process of 3D

asset creation is already being aided with the use of 2D text-to-image generative

models. As discussed earlier, works like Text2Tex [20] can speed up the process

of 3D texture/material painting over pre-made meshes. Whereas, methods such

as DreamFusion [26] which can distill 3D assets from the 2D text-to-image and

text-to-video models [27, 26], and multi-view extensions of text-to-image generative

models such as Instant3D, SyncDreamer, etc. [28, 29, 30, 31] promise a novel

bootstrapped approach to forming a large-scale dataset of 3D assets. In a nutshell,

more and more synthetic 3D can now be created much faster using 2D pretrained

text-to-image models than earlier; which will aid overcoming the first challenge of

lack of 3D data. However, collecting 3D data of real scenes still remains an open

challenge.

Secondly, since there is no de-facto representation for 3D data that is universally

used for all applications, different 3D representations like point-clouds, meshes,

voxel-grids, etc. are used depending on the application in which they are deployed.

As shown in figure 1.5, point-clouds simply denote the various points either on the

surface of the 3D object or inside a volume for certain applications. Point-clouds

are mostly used for sensing/understanding-building applications (like robotics, au-

tonomous driving, etc.) due to their ease-of-use and low computation/processing

1.5. Challenges and Opportunities 22

requirements. However, point-clouds give very little visual information and are

rarely used in visual applications such as CGI or video-games. Meshes provide

more information about the surface geometry of the 3D objects by explicitly de-

noting the connectivity information on top of the point-clouds. Majority of the

3D graphics/rendering systems make use of triangle meshes with support for hard-

ware acceleration for their processing. With high-enough resolution, and using

state-of-the-art rendering pipelines, meshes can represent the 3D scenes at almost

photo-realistically indistinguishable quality. A much simpler representation, and

more parallel to the 2D raster image grids, is voxel-grids. Voxel grids store the

3D data such as the density information (or occupancy) and/or various scattering

parameters and/or view-dependent out-going radiance on a regular 3D grid. They

are much easier to handle in code but are very restrictive in terms of their memory

consumption for storage as well as processing. We cover in the next chapter the

volumetric representation called 3D Radiance fields which we use in our subsequent

projects (chapters) because of it’s amenability to our needs. However, apart from

these data-point-based discrete representations, there has been a surge in the research

related to neural 3D scene representations, called Neural Fields.The Neural Fields

movement in the 3D data representations research was spear-headed by the works

such as OccupancyNetworks [32] and SRNs [33] that proposed to use MLPs for

representing the 3D shapes as occupancy fields and SDFs (signed-distance fields)

respectively. But, most notably, the work NeRF (Neural Radiance Fields) [34] made

this idea popular by demonstrating the use of MLPs in the context of an application

as complex as 3D Novel-view-synthesis. Concurrently, another important work

called SIREN [35] showed that sinusoid-activated MLPs could also represent images,

videos, MRIs, etc. The research progress exploded after these two works, leading to

various works and tremendous research interest in neural 3D scene representations. I

cover more of the related work in the chapter 3.

Chapter 2

Preliminaries

The research works presented in this thesis, viz. chapters 4, 5, 6, and 7, require

some basic understanding of: Deep Learning, 3D Radiance Fields, and Generative

Models such as GANs and Diffusion models. I cover a brief overview of these

concepts in the following sections, and point the reader to relevant resources for

more in-depth explanations.

2.1 Deep Learning
There are various problems in CS (Computer Science) that have been studied con-

tinuously over the last six decades. We can perceptually divide the problems into

humanly-intuitive and non-intuitive problems1. The problems from the non-humanly

intuitive categories such as sorting, shortest-path-finding, knapsack, etc. have al-

gorithmic solutions which can yield correct answer for each and every instance

of these problems. Counter-intuitively, the humanly-intuitive problems such as

recognizing images of objects, translating from one language to another, etc. are

extremely hard for computers to solve [37]. And thus to make progress on the

class of humanly-intuitive problems, heuristic approaches were studied extensively.

Heuristic approaches differ from algorithmic approaches in that they only provide a

correct solution in a specific percentage of instances, as opposed to solving all the

instances. The heuristic approaches provide a probabilistic outlook on solving these

problems and are preferred for two reasons. Firstly, the heuristic approaches were the

1Note that this is not a formal categorization like the division from Theory of Computation [36].

2.1. Deep Learning 24

Figure 2.1: A Venn diagram showing where Deep Learning fits in the hierarchy of the
concepts in AI.

only ones that sort-of worked for these highly difficult humanly-intuitive problems

and allowed the resarch(ers) to make progress. And secondly, they are preferred over

algorithmic approaches for these problems because of the inherent ambiguity present

in these problems; for instance, two images of different objects may look extremely

similar to each other causing both class-predictions to be acceptable, or an image

may be too corrupted by low-lighting such that a classification may not be possible

at all.

The technique majorly employed for solving such problems turns out to be

ML (Machine Learning). Figure 2.1 shows the hierarchy of fields and sub-fields

in AI, highlighting where Deep Learning sits inside the broader class of Machine

Learning; which consists of methods which enables computers to solve heuristic

humanly-intuitive problems by learning from a number of data examples. A typical

machine-learning framework consists of four components (see fig 2.2):

1. A parametric model to capture the learned experience.

2. An objective function which specifies what the parametric model is supposed

to learn.

3. A training routine which describes the optimization and learning loop.

4. Last but the most important, the data used for training.

2.1. Deep Learning 25

Figure 2.2: The figure describes the flow of information in a typical Machine Learning
framework. Both the example input and example output are the same for
self-supervised learning, while in the case of unsupervised learning (K-means
for instance), the objective function doesn’t take as input any example output.

Deep Learning is a sub-class of Machine Learning which uses the overall framework

of Machine Learning, but specifically introduces a class of the parametric models

which are inspired by the biological structure of brain-cells (neurons) called Neural

Networks. As a result of using neural-networks as parametric models for ML, the

model internally learns a deep hierarchy of concepts in which the more complex

concepts are built on top of the simple ones, hence the name, Deep Learning [37].

We direct the interested readers to Goodfellow et al [37] for more in-depth coverage

of Deep Learning. In the next few subsections, we now describe the details of the

relevant components used in the Deep Learning framework.

2.1.1 Neural Networks

Majority of the success in ML has come from using neural-networks as the models

(i.e. Deep Learning) and using supervised learning algorithms. The classification

of ML methods into being supervised, unsupervised and self-supervised is not very

specific, but generally, methods which use labelled input-output data pairs are called

as supervised learning methods, while the ones which don’t are either unsupervised

or self-supervised. The distinction between unsupervised and self-supervised has to

do with how the algorithm actually learns. In case of self-supervised algorithms the

example input data is itself used as labels to train models such as AutoEncoders

2.1. Deep Learning 26

Figure 2.3: The perceptron algorithm (left) was the basis of the modern-day neural-network
models used today. (Right) shows how the individual perceptrons are arranged
in case of a Multi-Layered Perceptrons model.

or other types of generative models, while the unsupervised algorithms have an

objective function which doesn’t involve the use of labels at all, for instance clustering

algorithms such as K-Means, K-Nearest Neighbours, LDA etc. The Neural Networks

are mostly (almost exclusively) used in the context of supervised or self-supervised

learning methods. Here we describe the most influential and now most commonly

employed forms of Neural Networks in Deep Learning. Our discussion of these ML

model architectures is agnostic of the method of optimization used to train them.

The mathematical optimization techniques are covered in the next subsection.

The basis of the Neural-network models, the Perceptron algorithm (refer fig

2.3), dates back to 1957 in which Rosenblatt [38] introduced a very simple but

automatically learnable binary classification model. The Perceptron algorithm takes

as input a vector x = [x0,x1, ...,xn]
T and outputs a binary classification ŷ ∈ {0,1}.

The function that the perceptron learns can be described as:

ŷ = Ptron(x;w,b)

= σ(w.x+b)

Where w = [w0,w1, ...,wn]
T and b form the learnable parameters of the algo-

rithm called as the weights and the bias respectively. The σ : R→R is the activation

2.1. Deep Learning 27

function (in this case, the step function). A single perceptron can only learn linearly

separable patterns, while is unable to approximate non-linear classifiers. However,

later works in the following years [39, 40, 41] realized that stacking up multiple

perceptrons to form MLP s (see fig 2.3) can learn any continuous non-linear function.

This line of research piqued when Rumalhart et al proposed an end-to-end pipeline

for training the MLP s using Backpropagation and the Stochastic Gradient De-

scent optimization. Various non-linear activation functions can be employed in the

MLP custom fitting the applications and/or data-domain, but today, the Rectified

Linear Unit (ReLU) function is synonymous as an activation function with MLPs

due to it’s various appealing characteristics.

It can be observed that for various problems in high-dimensional data domains

such as image-recognition, image-segmentation, etc., or for temporal domain tasks

such as text-recognition, text-classification, text-completion, etc. the MLP archi-

tecture is not feasible due to the explosion of number of parameters. In order to be

able to solve these problems, special architectures have been devised to introduce

the inductive biases based on the domains of the input. For images, it was realised

that a fully-connected MLP is an overkill, since the visual concepts depicted in

images have translational invariance, and scale and rotational equivariance for

discriminative tasks such as classification and semantic segmentation. In simpler

words, an image will be classified in the cat class irrespective of where in the image

the cat appears, how big the cat is, and if the cat is upside-down or not. A new class

of NNs named CNNs (Convolutional Neural Networks) [42] were introduced for

image based problems. CNNs are today the de-facto architecture used for any image

domain problem, right from classification, to semantic segmentation, to even 2D

Image generation. The progression of CNNs went from the first proposed LeNet

architecture [42], by LeCun et al, till the ResNet architecture [43]; which became the

state-of-the-art in Image recognition. Some of the notable works in this progression

include AlexNet [44], VGGNet [45], InceptionNet [46], and SE-Net [47] which

introduced various novel architectural modalities in the CNN operations, but keeping

the core convolution operation the same. We note that there were actually many

2.1. Deep Learning 28

more works along the way, which are out of scope to be covered here. The main

idea of the CNN is to replace the vector-dot product operation between the inputs x

and the weights w of a single perceptron (more commonly referred to as a neuron

now) by the convolution operation. Thus, a single neuron of the CNN computes the

following function:

ŷ =CNN(x;w,b)

= σ(x∗w+b)

Where, both x and ŷ are now 2D instead of 1D vectors, and the weight w is much

smaller in dimension compared to the inputs. This operation can be viewed as

learning the kernel of a convolutional image filter. However, the neural-convolution

operation doesn’t provide any dimensionality reduction which is required for sparse

prediction tasks such as classification. Thus to introduce dimensionality reduction

and to provide scale-invariance to some extent, the pooling operations are used

by CNNs. A typical pooling operation Pool : Rc×h×w → Rc×h/2×w/2 allows only

certain activations to pass through it, killing all the non-required spatial information.

Please refer to the chapter 9. of Goodfellow et al [37] for an in-depth discussion of

Convolutional Neural Networks.

Temporal domain NNs are out of the scope for our thesis, but for completeness

of the discussion, we briefly cover the two most influential variants, viz. RNN s [48]

and Transformers [49] here. RNN s or Recurrent Neural Networks operate in the

temporal domain and can be described by the following equation:

xt ,ht = RNN(MLP(xt−1),MLP(ht−1);wrnn,brnn)

Where, xt , ht , xt−1, and ht−1 are arbitrarily shaped vectors. The h vectors record and

specify the hidden state for an input x at any particular instant in time. The RNNs

are trained by unrolling a truncated number of steps in practice.

The Transformer architecture became the state-of-the-art algorithm for various

language, speech and other temporal domain problems. At the core, it introduced a

2.1. Deep Learning 29

novel operation called self-attention which can be described as follows:

ŷ = SA(Q,K,V)

= softmax
(

QKT
√

dk

)
V

where, Q = fq(x);K = fk(x);V = fv(x)

Note that here the input x and the output y are vector sequences thus, x,y ∈ Rdk×T ,

where dk is the vector dimensionality and T are the number of time-steps. The Self-

Attention operation basically computes an affinity between each query and key vector

to then finally obtain the value-vectors through the softmax operation, which highly

resembles the attention operation of the Neural Turing Machine [50]. Interestingly,

all the three components, Q, K, and V come through functional mapping from the

input, hence the name self-attention. Transformers have apparently turned out to

be much more universally applicable and today form the basis of not only temporal

domain, but various other spatial and non-spatial domain problems as well. We

recommend the original paper on Transformers by Vaswani et al. [49] and the tutorial

videos by Grant Sanderson [51, 52] for an in-depth explanation of Transformers.

2.1.2 Mathematical Optimization

Training an NN can be viewed as an optimization process that minimizes or max-

imizes the criterion provided by the objective function to tune all the learnable

weights and biases of the NN. The objective function typically measures how well

the NN s output, for a given particular input, matches the ground-truth output from

the dataset. Covering all the different possible optimization strategies such as genetic

methods, swarm optimization, gradient based methods etc. is out-of-scope, and

thus, we only focus on the specific gradient based method called stochastic gradient

descent here. There is another ingredient known as the Backpropagation algorithm

which computes the gradients of the objective function wrt. the NN parameters

which is required for the SGD to work. We discuss both Backpropagation [48] and

SGD [53] as follows:

2.1. Deep Learning 30

The Backpropagation algorithm [48] has been one of the most seminal contri-

butions that allowed NNs to be trained autonomously on computers. At the core,

the Backpropagation algorithm makes use of the simple concept of chain-rule of

differentiation for computing the gradients. For a general objective function L(ŷ,y),
where ŷ = NN(x), the backpropagation algorithm enables the computation of the

gradients ∇{Θ,β}L, where Θ and β represent the set of all the trainable weights and

the set of all the trainable biases of the neural network NN respectively. A typical

neural network will compute the output ŷ as a series of compositions as follows:

ŷ = NN(x) = σ(nnn(...σ(nn2(σ(nn1(σ(nn0(x;θ0,b0));θ1,b1));θ2,b2)));θn,bn)

We can write this composition as a series of equations by introducing new variables

for the unactivated and activated hidden-vectors as follows:

h0 = nn0(x;θ0,b0)

a0 = σ(h0)

h1 = nn1(h0;θ1,b1)

a1 = σ(h1)

.

.

.

ŷ = σ(hn;θn,bn)

The Backpropagation algorithm then proposes to apply the chain rule to compute the

gradients for any parameter θk and bk as follows:

dL(ŷ,y)
dθk

=
dL(ŷ,y)

dŷ
.

dŷ
dhn

.
dhn

dan−1
.
dan−1

dhn−1
...

dhk

dθk

dL(ŷ,y)
dbk

=
dL(ŷ,y)

dŷ
.

dŷ
dhn

.
dhn

dan−1
.
dan−1

dhn−1
...

dhk

dbk

Using this algorithm, the gradients ∇{Θ,b}L can be calculated for weights and biases

2.2. 3D Radiance Fields 31

of the NN in one single pass. This gradient computation pass can be viewed as

propagating the error/loss value through the NN in the backward direction, and due

to this view, the name of the algorithm has been proposed to be Backpropagation.

Algorithm 1 Stochastic Gradient Descent
Require: m number of training iterations, D dataset, NN neural network for training

with Θ and β as the trainable weights and biases, and α learning rate for SGD
1: for i = 0,1,2, ...m do
2: (Xbatch,Ybatch)∼ D ▷ sample random batch from D
3: Ŷbatch := NN(Xbatch;Θ,β)
4: Θ̂ := ∇ΘL(Ŷbatch,Ybatch) ▷ compute and backpropagate errors for weights
5: β̂ := ∇βL(Ŷbatch,Ybatch) ▷ compute and backpropagate error for biases
6: Θ := Θ−αΘ̂ ▷ SGD update equation
7: β := β −αβ̂ ▷ SGD update equation
8: end for

The Stochastic Gradient Descent (SGD) algorithm is a gradient based op-

timization method used extensively to train NN and ML models. Given a dataset

D = {(x0,y0),(x1,y1), ...(xi,yi)} (where |D|= N) of N input-output pairs, SGD runs

m iterations of the optimization loop in which first a batch of input-output pairs

is randomly sampled, followed by running the forward pass of the network and

computing the loss of the predicted output wrt. the output sampled from the dataset,

followed by running the backward pass to backpropagate the errors and then finally

using the SGD update equation (line 6 and 7 of alg. 1). This enables the NN to tune

the parameters such that the loss is minimized, thus allowing the NN to progressively

better map the input to the output given the dataset. Algorithm 1 describes this

procedure in the form of a pseudo-code.

2.2 3D Radiance Fields
The most widely deployed production pipelines for 3D rendering software use

1. 3D meshes to represent various geometries (w/ or w/o motion),

2. texture-maps or BRDF-maps [54] to represent the materials,

3. and meshes or environment-maps for representing light-sources [4].

2.2. 3D Radiance Fields 32

Due to which, most of the 3D visual-application based data found today is either in

the form of 3D meshes or texture/brdf/environment maps, utilised in the context of

either non-physically based (real-time) or physically based (offline) renderers. Thus,

the logical next step is to research ways in which can we learn, from observations,

generative modelling distributions over these. However, as pointed out in the com-

prehensive surveys by Tewari et al [55, 56], the mesh-based 3D representations are

hard to utilise in the context of large-scale generative learning due to the inherent

discreteness, sparsity and high-sensitivity to initialization. Another challenge with

directly using the mesh based representations is that high-quality realistic rendering

of these is very expensive with regards to compute and resources. And, in order to

avail a very large scale of these mesh-based 3D assets (of the order of Billions similar

to the 2D generative models), methods for automatic reconstruction of meshes from

multi-view imagery are being heavily researched. Although significant progress has

been made towards reconstructing 3D meshes or discrete 3D representations [57, 58]

via differentiable mesh rendering (soft-rasterization [59, 60]), obtaining high-quality

3D geometries directly through inverse rendering is a formidable challenge. This

restricts the creation of 3D meshes to manual crafting by artists or through expensive

scanning procedures which also need manual fine-tuning most of the time.

Unlike the Surface-based 3D mesh representations, 3D Volumetric represen-

tations are much easier to optimize given image observations since the gradients

available for them during optimization are dense and informative, while also being

robust to random-initialization strategies. A 3D Radiance Field is a volumetric

representation which captures not only the 3D geometry (in the form of density), but

also photo-realistic appearance (in the form of view-directional emitted radiance)

of the 3D objects/scenes. Since the appearance is encoded in the form of emitted

radiance, the volumetric 3D radiance fields cannot be re-lit through newly added

dynamic light sources. Although methods have been proposed to extract the tradi-

tional mesh and BRDF based assets from optimized radiance fields [61, 62], research

towards transforming 3D radiance fields into 3D scattering fields is heavily ongoing.

Nevertheless, the Radiance Fields are a popular and quite useful representation due

Animesh
Highlight
should be "in which we can"

2.2. 3D Radiance Fields 33

to their peculiar aforementioned benefits over 3D meshes. We discuss 3D Radiance

Fields in detail as follows:

Mathematically, the 3D Radiance Field R is a continuous function (A 4D

vector field in a 5D space) RF : R5 → R4 which maps a 3D location p = [x y z]T

and an exitant viewing direction d = [θ φ]T to a scalar volumetric density σ and the

colour in the form of tri-wavelength radiance c = [r g b]T . There are various ways

of parametrizing this vector field, but some of the most influential representations

include: Mildenhall et al [34] which uses a single NN; Lombardi et al [63], Karnewar

et al [64], Sun et al [65] which use different flavours of 3D voxel grids; Muller et

al [66] which use neural feature based hash-grids; and Chan et al [67] which use

feature triplanes. We note that there are many more works which propose ways of

parameterizing the 3D Radiance fields in novel hybrid ways, and direct the interested

readers to the state-of-the-art survey on Neural Fields by Xie et al [68]. We note

that the most important aspect of the 3D radiance field parameterization for us

is it’s amenability to generative modeling, and thus we pick-and-choose the one

which fits our need for that particular project. Specifically, we use ReLU Fields

[64] in 3inGAN [69] (chapter 5) and Voxel-feature grids in HoloDiffusion [70]

(chapter 6) and HoloFusion [71] (chapter 7). Considering this disarray of these

parameterizations, we propose a method for encoding 2D image views into arbitrary

3D representation of 3D radiance fields in GoEmbed (chapter 8).

2.2.1 Differentiable volumetric rendering

As alluded to in the earlier discussion, we know that the 3D radiance fields are

static 3D assets which are primarily used for photo-realistic rendering. Thus here

we discuss how the 3D Radiance field assets are rendered. More importantly, this

rendering operation is continuous, smooth and differentiable, and hence can be used

in the optimization setup allowing to learn the 3D radiance fields from 2D image

observations. We discuss this end-to-end 3D reconstruction pipeline in the next

subsection. Without loss of generality, let R denote the 3D radiance field, Thus,

for each 3D point p = [x y z]T in the domain of R and for any arbitrary viewing

direction d = [θ φ]T on the sphere SO(2), R maps them to a 4D vector f = [σ r g b]T .

Animesh
Highlight
should be \mathcal{R} isntead of RF.

2.2. 3D Radiance Fields 34

Figure 2.4: Differentiable volumetric rendering of a continuous volumetric 3D radiance
field denoted by R.

The rendering operation ζ (R,P) yields a 2D image from the camera pose P for

the radiance field R. The camera pose P is represented by a 4× 4 homogeneous

matrix containing the 3×3 rotation matrix for the orientation of the camera, and the

3×1 translation vector for the location of the camera. Given the camera centre (the

translation vector) o and the viewing direction vector2 d, we define the rendering

ray as r(t) = o+ dt, where tnear < t < tfar denotes the depth of the point from the

camera centre. For the ease of the integration, we can denote the vector-field R as a

tuple: R(r(t),d) = (σ(r(t)),c(r(t),d)). Note here that the density is not dependent

on the viewing-direction; the density of a physical object doesn’t change based on

the direction from which we perceive it, whereas the appearance indeed does. The

colour value for the particular ray r, and hence for the particular pixel, is computed

2the viewing direction vector is computed by subtracting the o vector from the pixel location on
the camera’s imaging plane.

2.2. 3D Radiance Fields 35

using the Emission-Absorption [72, 73] ray-marching operation as follows:

cr =
∫ tfar

tnear

T (t)α(r(t))c(r(t),d)dt

where, T (t) = e(−
∫ t

tnear σ(r(s))ds)

and α(r(t)) = 1− e(σ(r(t))dt)

Intuitively enough, repeating this integration for all rays in a camera P yields the

rendered 2D image; given that the intrinsic properties of the camera, such as the

height, width, and the focal length are specified. Since continuous integration

of arbitrary functions is not possible on computers, we instead use quadrature for

approximating them. In spite of being an approximation, this discrete version is quite

useful because it provides the integration for the whole continuum of the domain (i.e.

all points on the ray between tnear and tfar). This is done as follows. We first sample

values of ti on the ray from N stratified bins using linear interpolation between the

chosen bin limits tnear and tfar:

ti ∼ U
[

tnear +
i−1

N
(tfar − tnear), tnear +

i
N
(tfar − tnear)

]
; i ∈ [1,N]

Then we compute the approximation of the integral as follows:

ĉr =
N

∑
i=1

T (ti)(1− e−σ(r(ti))δi)c(r(ti))

where, T (ti) = e−∑
i−1
j=1 σ(r(t j))δ j

The values δi = r(ti+1)− r(ti) denote the physical distance between any two adjacent

samples t. The use of delta allows the approximation to have the full continuous

domain. Thus, in practice, even if slightly perturbed t locations get sampled per-ray

per rendering, the rendered image doesn’t have much variance, if a sufficiently high

number of samples are chosen. Most importantly, the rendering equation is trivially

differentiable and can be back-propagated through using off-the-shelf auto-grad

packages such as PyTorch.

Animesh
Highlight
Just use density \sigma(r(t)) here.

Animesh
Highlight
remove this.

2.2. 3D Radiance Fields 36

2.2.2 End-to-end 3D reconstruction pipeline

Neural Radiance Fields, by Mildenhall et al [34], popularized the end-to-end 3D

reconstruction pipeline using only 2D Image observations. Another most notable

work during that period is Neural Volumes, by Lombardi et al [63], which also had a

similar optimization pipeline. While Neural Volumes proposed to learn a Variational

AutoEncoder (VAE) over a domain of 3D scenes (specifically 3D human faces),

NeRF only restricted the optimization to a single 3D scene. We note that there have

been countless works since then that have made novel contributions to this pipeline.

The survey titled “NeRF-Explosion” covers this vast array of works in detail [74]. In

this section we describe the vanilla version of this pipeline succinctly.

Input to this pipeline are a set of images I = {I1, . . . , In} and corresponding cam-

era poses C = {C1, . . . ,Cn}, where each camera pose consists of C= {R,H,W,T,F};

R is the rotation-matrix (R ∈ R3×3), T is the translation-vector (T ∈ R3), H, W

are the scalars representing the height and width respectively, and F denotes the

focal length of the assumed simple pin-hole camera. We assume that the respective

poses for the images are known either through hardware calibration or by using

structure-from-motion [75]. We denote the rendering operation to convert the 3D

radiance field R and the camera pose C into an image as ζ (R,C). Thus, given the

input set of images I and their corresponding camera poses C, the problem is to

recover the underlying 3D radiance field R such that when rendered from any Ci ∈ C,

R produces rendered image Îi as close as possible to the input image Ii, and produces

spatio-temporally 3D consistent Î j for poses C j ̸∈ C.

Algorithm 2 3D radiance field reconstruction pipeline

Require: m number of training iterations, D = {(Ii,Ci)|Ii ∈ I and Ci ∈ C} dataset,
R learnable 3D radiance field representation, and α learning rate for SGD
optimization.

1: for i = 0,1,2, ...m do
2: (Ibatch,Cbatch)∼ D ▷ sample random batch from D
3: Îbatch := ζ (R,Cbatch)
4: L := ||Îbatch − Ibatch||22 ▷ compute photometric loss
5: R̂ := ∇RL ▷ backpropagate loss to radiance field
6: R :=R−αR̂ ▷ update the radiance field via SGD
7: end for

2.2. 3D Radiance Fields 37

Algorithm 2 describes the pseudo-code of this optimization pipeline. In simple

words, the optimization pipeline uses the overall framework of ML training, but

replaces the ML model by the radiance field R, and uses the ground-truth image-

observations with their corresponding poses as the data for training. The gradients

are computed via backpropagation and optimization is done using SGD without

any modifications. In chapter 4 we propose a novel 3D representation for the

radiance field R titled ReLU-Fields [64], which is a very thin neural extension of

the traditional voxel grids that allows to capture sharp high-frequency details in the

3D geometries of the scenes being optimized. Please refer this chapter for examples

of how well this pipeline works for 3D scene reconstruction.

2.2.3 Summary

3D Radiance fields are a formidable alternative to 3D textured/materialed meshes,

which shines the most in the context of end-to-end 3D scene reconstruction pipeline.

Since our primary goal is to learn the generative distributions over 3D assets, 3D

Radiance fields suit our needs as follows:

1. They can be optimized (reconstructed) from 2D multi-view images at scale.

For example the Co3Dv2 dataset [76].

2. The trivially differentiable rendering of the radiance fields allow us to supervise

our generative models directly from Images and Poses.

3. Various representations for 3D radiance fields such as ReLU-Fields [64],

Feature voxel grids [70] and Triplanes [67] can be input naturally to 3D

generative model architectures.

Lastly, having restricted the scope of this thesis to static, non-relightable, object-

centric 3D assets, 3D Radiance Fields are perfect in our research context. We use

them as the primary representation for the projects described in the subsequent

chapters.

2.3. Generative Models 38

2.3 Generative Models
The proposed methods for generative models so far can be categorized into three

classes:

1. Implicit density models: GANs

2. Likelihood based models: Autoregressive, VAEs, Normalizing flows, and the

latest Diffusion Models.

3. Energy based models: RBMs, DBNs.

Since, GANs are required for 3inGAN (chap. 5) and Diffusion based generative mod-

els are required for HoloDiffusion (chap. 6), HoloFusion (chap. 7), and GoEmbed

(chap. 8), we cover these two generative models here in brief. Please refer to the

comparative survey, by Bond-Taylor et al [77], for an overview of the different types

of generative models.

2.3.1 Generative Adversarial Networks

The GANs (Generative Adversarial Networks) model belongs to the implicit density

models. GAN only learns to model the sampling procedure of a complex distribution

and does not allow for computation of explicit probability density values of samples

or the likelihood of observed samples. Introduced first in 2014 by Goodfellow et al.

[78], GANs were the state-of-the art generative models for a long time till Diffusion

Models took over. The sample quality that GANs could reach at the time was not

attainable by other competitor methods such as VAEs, and Flow-based models. The

idea behind the GAN model is explained as follows, while we cover Diffusion

Models in the next sub-section.

Given a generator network G(z) which maps a random latent variable distributed

according to a known tractable prior distribution (Gaussian is the de-facto choice) to

the desired random variable x, the problem of implicit density generative modelling

boils down to defining a distance function d(pθ , p) between the modelled pθ and the

ground-truth p distributions. Interestingly, the concept of L2 distance breaks on very

high-dimensional spaces such as the space over 100×100 pixel images. Consider

2.3. Generative Models 39

Figure 2.5: Two perceptually very similar images I1 and I2 have the maximum possible
L2 distance in the 4×4 image space where each pixel can have values strictly
between [0,1], s.t. 0 represents the colour black and 1 represents the colour
white.

Figure 2.6: The interaction between the two networks, viz. Generator G(z) and the Dis-
criminator D(x) (for real sample input) or D(x̂) (for fake sample input) during
mini-max game of the GAN training.

the example images I1 and I2 as shown in the figure 2.5. The two images are

perceptually indistinguishable (effect increases with resolution), but the L2 distance

penalizes them to be far apart. Thus, the conventional distance functions such as the

L2 distance over euclidean spaces cannot be used in this context, and an ingenious

solution is required.

Some of the first approaches tried to model this with moment matching [79],

2.3. Generative Models 40

but suffered from poor samples and were limited by computational complexity

of computing and backpropagating through higher order moments. The solution

proposed by GANs to this problem was essentially to learn the distance function

d() using another neural network titled the discriminator D(x). At first, it seems

impossible to train the discriminator network D(x) using the ML framework, because

we do not have access to the ground truth distribution p(x). But borrowing some

preliminary concepts from game-theory, one can quickly realise that the objectives

of the two networks, viz. Generator G and Discriminator D are opposite of each

other. The Generator G is tasked to generate samples similar to ground-truth samples

(by modelling the distribution p implicitly) and the Discriminator D is tasked to

distinguish between the real and the generated samples (by modelling the distance

function d() implicitly). This was the key insight that allowed Goodfellow et al.

to propose an adversarial framework for successfully training generative models

over very high-dimensional spaces. They showed in the paper through theoretical

argumentation and through empirical experiments that, by defining the training as

a mini-max game between two fairly capable networks, a nash-equilibrium can be

achieved (refer fig. 2.6). At the nash-equilibrium, the Discriminator D is no longer

able to distinguish between the real and the generated samples, while the Generator

G generates samples completely indistinguishable from the real ones. This nash-

equilibrium thus yields the sought-after Generator model G which has implicitly

learned to model the ground truth data distribution p.

Mathematically, the objective for the Discriminator is a binary-cross entropy

between real and generated samples, defined as:

LD :=
1
m

m

∑
i=0

−log(D(xi))− log(1−D(G(zi)))

While the loss for the Generator is to fool the Discriminator such that the Discrimi-

nator mis-classifies the generated samples as the real one.

LG :=
1
m

m

∑
i=0

log(D(G(zi)))

2.3. Generative Models 41

Figure 2.7: The forward and backward markov chains defined by Diffusion Models. The
first step x0 denotes the true data samples such as images while the final step xT

indicates pure Gaussian noise. All the intermediate xt represent noisy versions
of the data-samples.

We assume that the discriminator network outputs a valid normalized probability

value between [0,1]. The training of these networks proceeds as a mini-max game

between the two networks where the Discriminator minimizes the objective LD

and the Generator maximizes the objective LG during the training. In practice, the

training loop first executes the Generator update-step (keeping the Discriminator

constant) and then executes the Discriminator update-step (keeping the Generator

constant).

2.3.2 Diffusion Models

Diffusion models are the state-of-the-art method for generative modelling at the

time of writing this thesis. Diffusion models fall under the class of likelihood-based

models which are trained to maximize the likelihood of the observed samples in

the dataset and, similar to VAEs, can be used to compute the analytical likelihood

of newly observed or doctored samples. Diffusion Models are the go-to choice for

generative modelling problems due to their stable training objective and the ability

to produce high-sample quality while training on billion-scale datasets.

As described in the figure 2.7, the concept of Diffusion Models is centered on the

idea of defining a forward diffusion (noising) process q(xt |xt−1), for t ∈ [0,T]. The

noising process converts the data samples into pure noise, i.e., q(xT)≈ q(xT |xT−1) =

2.3. Generative Models 42

N (0, I). The model then learns the reverse process p(xt−1|xt), which iteratively

converts the noise samples back into data samples starting from the purely Gaussian

sample xT . Given this formulation, it goes without saying that p(x0) and q(x0)

both refer to the same thing, i.e. the ground truth data distribution whose observed

samples are available in the dataset. We don’t use q(x0) in the reverse markov chain

defined by the p(xt−1|xt) transitions to avoid confusion, and thus we may use these

two interchangeably which can be delineated from the context.

The Denoising Diffusion Probabilistic Model (DDPM) [80], in particular, de-

fines the noising transitions using a Gaussian distribution as

q(xt |xt−1) :=N (xt ;
√

αtxt−1,(1−αt)I).

The sequence αt defines a noise schedule for the diffusion process as:

αt = 1−βt , βt ∈ [0,1], s.t. βt > βt−1∀t ∈ [0,T].

Although a linear schedule with T = 1000 is good for most cases, Dhariwal et al.

[81] propose a consine schedule for the diffusion process which adds the noise more

slowly compared to the linear schedule. Interestingly, the noisy samples xt can be

easily drawn from this distribution by recursively applying the reparameterization

trick and using properties for addition and subtraction of Gaussian distributions:

xt =
√

ᾱtx0 +
√

1− ᾱtε

with ᾱt :=
t

∏
s=1

αs and ε ∼N (0,I).

Please refer to eqns. (61-70) of the ‘Understanding Diffusion Models’ report by Luo

[82], for a detailed derivation of this result. This is in fact the key mathematical

insight that allows us to train Diffusion Models programmatically using ML frame-

works. Having defined the forward process, DDPM defines the reverse denoising

2.3. Generative Models 43

process using another markov chain of Gaussian transitions:

pθ (xt−1|xt) :=N (xt−1;
√

αtDθ (xt , t),(1−αt)I),

where, the Dθ is the denoising network with learned parameters θ . Note that this

reverse process is a learned component and is what allows to generate synthetic

samples at test-time.

It is common to use the network Dθ (xt , t) to predict the noise component ε

instead of the signal component xt−1; which has the interpretation of modelling the

score of the marginal distribution q(xt) up to a scaled constant [80, 82]. However,

the “x0-formulation” has recently been explored in the context of diffusion model

distillation [83] and diffusion based generative modelling of text-conditioned videos

[14]. Since this “x0 formulation” is crucial for being able to train 3D diffusion

models directly using only 2D supervision, in the subsequent chapters 6, 7, and 8,

we detail the training and sampling procedure using this formulation as follows:

Training. Training the “x0-formulation” of a diffusion model Dθ simply comprises

of minimizing the following loss:

L= ∥Dθ (xt , t)− x0∥2,

encouraging Dθ to denoise sample xt ∼N (
√

ᾱtx0,(1− ᾱt)I) and predict the clean

sample x0.

Sampling. Once the denoising network Dθ is trained, sampling can be done by first

starting with pure noise, i.e., xT ∼N (0,I), and then iteratively refining it T times

using the network Dθ , which terminates with a sample from target data distribution

x0 ∼ q(x0) = p(x):

xt−1 ∼N (
√

ᾱt−1Dθ (xt , t),(1− ᾱt−1)I).

Lastly, note that this is a very focussed sampler of the literature available on

Diffusion based generative models. Please refer to the comprehensive survey work

2.3. Generative Models 44

by Calvin Luo [82] for more in-depth discussion on the mathematics behind the

Diffusion Models.

In summary, I covered two of the most popular generative models which are

also required for the subsequent chapters. These two models are specially unique

because they setup two different paradigms for the task of generative modelling.

More importantly, since Diffusion models have a stable learning objective, they

are the preferred models right now for training massively large scale text-to-image

and text-to-video models such as DALL-E [13], Stable-Diffusion [12], and Imagen-

Video [14]. Although, works such as GigaGAN [15] are also pushing forward the

state-of-the-art in GANs which competes with the Diffusion based state-of-the-art.

Chapter 3

Literature survey

In this chapter I try to cover the relevant related work on this topic. Note that this is

a very diverse, crowded, and heavily competitive topic, so the coverage is far from

being complete. Still, the attempt is to cover at least the main relevant works that are

directly related to the proposed methods.

3.1 Discrete sample based representations
Computer vision and graphics have long experimented with different representations

for working with visual data. While working with 2D images, they are ubiquitously

represented as 2D grids of pixels; while due to the memory requirements, 3D models

are often represented (and stored) in a sparse format, e.g., as meshes, sparse/hashed

voxel grids, or as point clouds. In the context of images, since as early as the

sixties [84], different ideas have been proposed to make pixels more expressive. One

popular option is to store a fixed number (e.g., one) of zero-crossing for explicit

edge boundary information [85, 86, 87, 88], by using curves [89], or augmenting

pixels/voxels with more than one color [90, 91]. Another idea is to deform the

underlying pixel grid by explicitly storing discontinuity information along general

curves [92]. Loviscach [93] optimized MIP maps, such that the thresholded values

match a reference. Similar ideas were also being explored for textures and shadow

maps [94, 95], addressing specific challenges in sampling. In the 2D domain, the

regular pixel grid format of images has proven to be amenable to machine learning

algorithms because CNNs are able to naturally input and output regularly sampled

3.2. Differentiable rendering. 46

2D signals as pixel grids. As a result, these architectures can be easily extended to 3D

to operate on voxel grids, and therefore can be trained for many learning-based tasks,

e.g., using differentiable volume rendering as supervision [96, 97, 98, 99]. However,

such methods are inefficient with respect to memory and are hence typically restricted

to low spatial resolution.

3.2 Differentiable rendering.
Differentiable rendering [56] enables neural networks to be trained by losses on

the resulting rendered images of a 3D representation, by allowing the gradient to

be back-propagated through the network. This has shown to be a highly effective

tool, especially for learning 3D representations that allow for novel view synthesis.

Multiple works [100, 101, 102, 103, 104, 105] have focussed on designing neural-

networks, either convolutional or otherwise, to go from spatial features to rendered

pixels. Lately, methods that use volume tracing have been favored due to the

advantage of flicker-free 2D rendering by design. NeRF [34] were the first to

introduce this way of using differentiable rendering while using a neural 3D scene

representation. Subsequently, many extensions of this have been proposed, to

increase quality, robustness to scene type, and rendering speed [34, 106, 107, 108,

109, 110, 111, 112, 113, 114]. Although using an MLP to learn a continuous scene

representation has been shown to be able to lead to very high quality view synthesis

results, such MLPs are not amenable in the generative contexts as ours.

3.3 Learned neural representations
Recently, coordinate-based MLPs representing continuous signals have been shown

to be able to dramatically increase the representation quality of 3D objects [115]

or reconstruction quality of 3D scenes [32, 34]. However, such methods incur a

high computational cost, as the MLP has to be evaluated, often multiple times,

for each output signal location (e.g., pixel) when performing differentiable volume

rendering [34, 116, 117, 118]. In addition, this representation is not well suited for

post-training manipulations as the weights of the MLP have a global effect on the

structure of the scene. To fix the slow execution, sometimes grid-like representations

3.4. 2D-to-3D Encoding 47

are fit post-hoc to a trained NeRF model [113, 112, 111, 110], however such methods

are unable to reconstruct scenes from scratch. As a result, there has been an interest in

hybrid methods that store learned features in spatial data structures, and accompany

this with an MLP, often much smaller, for decoding the interpolated neural feature

signal at continuous locations. Examples of such methods store learned features on

regular grids [99, 119], sparse voxels [120, 121], point clouds [102], local crops of

3D grids [122], or on intersecting axis-aligned planes (Triplanes) [67]. Investigating

representations suitable for efficiently representing complex signals is an active area

of research. Reporting a finding similar to ours in ReLU-Fields (chapter 4), DVGo

[65] proposes the use of a “post-activated” (i.e., after interpolation) density grid for

modelling high-frequency geometries. They model the view-dependent appearance

through a learned feature grid which is decoded using an MLP. They in-fact show

comprehensive experimental evaluation, on multiple datasets comparing to multiple

baselines, for the task of image-based 3D scene reconstruction. Plenoxels [123]

proposes the use of sparse grid structure for modeling the scene with ReLU activation

and, similar to our experiments, also uses spherical harmonic coefficients [111] for

modeling view-dependent appearance. Instant-NGP [66] proposes a hierarchical

voxel-hashing scheme to store learned features and uses a small MLP decoder for

converting them into geometry and appearance. Their reconstruction-times are

significantly lower than the others because of their impressively engineered GPU

implementation.

3.4 2D-to-3D Encoding
Most of the 3D encoding mechanisms proposed till now have been in the context

of a larger problem such as MVS or NVS, and there has also not been a standalone

principled study of the encoding mechanisms yet. Nevertheless, the early works [124]

constructed pixel-disparity based 3D cost-volumes for MVS (Multi-View Stereo)

problems. These raw-pixel based cost-volumes were soon superseded by 2D deep

image feature based ones [125, 126, 105, 70, 71] due their memory-compactness

and information expressiveness. These approaches typically proceed as: first obtain

3.5. 2D generative models. 48

per-image-per-pixel features using large pretrained image networks such as ResNet

[43] or DinoV2 [127]; then un-project these features into the 3D space using the

camera parameters associated with the views. The un-projected features are then

accumulated into the feature-voxel grid yielding the cost-volume to be used in various

3D problem contexts. Apart from voxel-grids, recent works also splat these features

either on Triplanes [128], or on the surface of proxy meshes. The most similar work

to our proposed GOEmbed method (chapter 8) in terms of the idea is the one from

Bond-Taylor and Willcocks titled GON (Gradient Origin Networks) [129], although

their proposal has no context of 3D encodings. We take inspiration from GONs, but

our proposed GOEmbeddings are different from them in that: (i) while the purpose

of GON is to obtain a compressed latent space, our GOEmbed is aimed at obtaining

a coarse partial estimate of the plenoptic 3D scene given 2D image observations; and

(ii) our GOEmbed encodings are much more local compared to the latent embeddings

obtained using the GON.

3.5 2D generative models.
Generative modeling for image synthesis learns a distribution of colour values over

the pixels of an image, and has seen tremendous progress recently, with GANs

and Diffusion models being the de-facto standard for synthesizing realistic looking

images [130, 131, 132, 133, 134]. Recent works [135] further improve result quality

in data-sparse regimes, while others [136] apply signal processing techniques to the

generator architecture to make the mapping from latent space (noise-vectors) to the

image-space (pixels) as smooth and alias-free as possible. Thereby, allowing for

realistic looking latent-space interpolations that can pass for real videos up to some

physics breaking constraints. Other contenders for generative modelling include

VAEs [137, 138, 139, 140], flow-based models [141, 142, 143], noise-diffusion based

models [144, 145, 146, 147], and even hybrids of these methods [148, 147, 149, 150].

Key to training such methods is the availability of large scale image collections,

and often times such works are used on specific target domains, such as portrait

photos. Single Image GANs (SinGANs) [151, 152] learn to generate the distribution

3.6. 3D generative models. 49

of patches of a single image, in a progressive coarse-to-fine manner so as to generate

plausible variations from that one single image. Hinz et al. [152] followed SinGAN

with tips and tricks that improve the training and generated quality of single image

GANs. Such approaches avoid the problem of needing a large dataset, while still

enabling useful applications such as retargetting. However, they are restricted to

repeated, or stochastic-like patch-based variations. In spite of all this progress in the

field of the 2D generative modelling, these models still lack 3D inductive bias and

seemingly simple tasks such as camera view transform are not possible with these

2D generative models.

3.6 3D generative models.
Due to the lack of large scale real-world datasets, much of the research in 3D

generative modeling has stayed in the synthetic realm such as modeling only 3D

shapes [153, 154, 155, 156, 157, 158], or materials [159]. Other methods use syn-

thetic datasets for predicting scene structure and use differentiable rendering for

training these models end-to-end [160, 161, 162, 163]. Recently, methods that

directly model 3D scenes, either using explicit or implicit neural scene representa-

tions, have been gaining popularity [97, 98, 116, 117, 118, 164, 165, 166]. Another

successful line of works [98, 118] uses a neural renderer to render features from

a volumetric grid, followed by per-image 2D CNNs used for upsampling, and as

such are not multiview consistent. In contrast, methods such as PiGAN and GRAF

[116, 117, 164] are view-consistent by design since they use an implicit neural repre-

sentation and explicit-implicit neural representation respectively for the 3D structure,

using a physically based rendering equation for obtaining the final 2D images. Works

such as CIPS and StyleNeRF [165, 166] produce impressive results performing 3D

synthesis with multi-view consistency. But their GAN setups also only use 2D

discriminators, and show results on some of the easier domains such as faces. Such

approaches are designed to be trained only through 2D (image) supervision, and

work best in cases where large datasets can be obtained for limited domains, such

as faces or cars. Generative Adversarial Learning (GAN) [78] learns a generator

3.6. 3D generative models. 50

network so that its “fake” samples cannot be distinguished from real images by a sec-

ond discriminator network. Approaches such as PlatonicGAN [97], HoloGAN [98],

and PrGAN [167] introduced 3D structure into the generator network, achieving

3D shape generation with only image-level supervision. Our proposed method of

HoloDiffusion (chapter 6) is related to those as it renders images from a generated

voxel grid, as well as to HoloGAN [98], which renders features and then converts

them into an image by a lightweight 2D convolutional network. Other voxel-based

3D generators include VoxGRAF [168] and NeuralVolumes [63].

More recently, 3D generators have built on neural radiance fields [34].

GRAF [117] was the first to adopt the NeRF framework; analogous to Platon-

icGAN, they generate the parameters of an MLP which renders realistic images

of the object from a random viewpoint. This idea has been improved in StyleN-

eRF [166] and EG3D [169] by adding a 2D convolutional post-processing step after

emission-absorption rendering, which is analogous to our super-resolution network

of HoloFusion [71] (chapter 7). EG3D also introduced a novel ‘tri-plane’ representa-

tion of the radiance field which, in a memory efficient manner, factorises the latter

into a triplet of 2D feature planes. EG3D inspired several improvements such as

GAUDI [170] and EpiGRAF [171]. Mesh-based 3D generators have been explored

in Wu et al. [153]. Recently, GET3D [172] replaced the radiance field with a

signed distance function to regularise the representation of geometry. The latter is

converted into a mesh and rendered in a differentiable manner by using the marching

tetrahedral representation [173].

Modeling 3D with diffusion. Diffusion methods [80] have recently became the go-to

framework for generative modeling of any kind, including 3D generative modeling.

The first applications of diffusion to 3D considered point-cloud generators trained

on synthetic data [174, 175, 176].

3D distillation of 2D diffusion models. More recently, DreamFusion [26] ported

the idea of distillation to diffusion models: they extract a neural radiance field so

that its renders match the belief of a pre-trained 2D diffusion generator [177, 81, 12].

They introduce the Score Distillation Sampling (SDS) loss which makes distillation

3.6. 3D generative models. 51

relatively efficient (but still in the order of several minutes for a single 3D sample).

Their generation can be conditioned by an image or by a textual description, making

the process rather flexible. Magic3D [178] further increases the quality of the output

by distilling a mesh-based 3D representation instead of a radiance field.

Image-conditioned 3D. The idea of distillation has been applied to few-view condi-

tioned reconstruction in [179, 180, 181, 182, 183]. SparseFusion [182] employs a

3D-based new-view synthesis model followed by a 2D diffusion upsampler. They

complete the process by 3D distillation, ensuring that the generated views of the

object are consistent. NeRFDiff [180] and 3DiM [179] bypass an explicit 3D model

and directly generate new views of an object using a 2D image generator and, in the

case of NeRFDiff, refine the results using distillation.

While SparseFusion and NeRFDiff need to be trained on a dataset of object-

centric multi-view images with pose information, RealFusion [181] and NeRDi [183]

can be used for zero-shot monocular 3D reconstruction, starting from a pre-trained

2D diffusion model. Given a single image as input, they automatically generate

a prompt for the diffusion model, using a form of prompt inversion, and then use

distillation to extract a radiance field.

Unconditional generation. Most relevant to us, unconditional generation, i.e., gen-

eration which does not require either text or image conditioning, was explored in

RODIN and DiffRF [184, 185]. While RODIN and DiffRF [185, 184] train genera-

tors given synthetic 3D ground truth, similar to us, Our proposed HoloDiffusion [70]

(chapter 6) is supervised only with real object-centric images and camera poses.

While HoloDiffusion was the first to demonstrate successful training on real image

data, its renders contain considerably lower amount of detail than samples from a

conventional 2D image generator that uses diffusion. We thus leverage a 2D diffu-

sion upsampler, conditioned on the lower-fidelity HoloDiffusion renders, to distill

higher resolution images and, eventually, 3D models in our proposed extension titled

HoloFusion [71] (chapter 7).

Chapter 4

ReLU-Fields: The Little Non-linearity

That Could

4.1 Background and Contributions
I had experience of working on Generative Models and Deep Learning prior to

starting the PhD., for instance the MSG-GAN publication [134], but I was quite new

to the world of 3D applications. This project was an initial exploration in Neural

Radiance Fields and a chance for me to understand the basics of 3D applications,

online and offline forms of rendering, etc. We began with our NeRF exploration

and decided to try out a version of SinGAN [151] in 3D. The idea of ReLU-Fields

was essentially an accidental discovery by Tobias when I had first implemented

volumetric-voxel based Radiance field optimization pipeline. He uncovered that,

in my implementation, I had applied ReLU on top of the interpolated voxel-grids

thinking that the ReLU function is a transfer function. Which was clarified to me later

that transfer functions are applied prior to interpolation and are basically a means of

tone-mapping various vector data into colour information that can be rendered and

visualized. After this discovery, we performed an initial set of experiments where

we found that the obtained sharpness of fitted ReLU-fields was much higher than

traditional linearly-interpolated voxel grids. We (Niloy, Tobias, Oliver and I) found

this insight interesting, in that, it pinpointed exactly what allows NeRFs to obtain

high-quality reconstructions; which in this case, is a simple ReLU non-linearity. It

4.2. Introduction 53

occupancy modelingscene reconstruction

time (min)

PS
N

R

ReLU Field
MLP

Figure 4.1: We present a method to represent complex signals such as images or 3D scenes,
both volumetric (left) and surface (right), on regularly sampled grid vertices.
Our method is able to match the expressiveness of coordinate-based MLPs while
retaining reconstruction and rendering speed of voxel grids, without requiring
any neural networks or sparse data structures.

was realised that this could be a useful insight for the research community and hence

we decided to go forward with the publication. I worked on the implementation and

experimentation entirely for this project and also majorly contributed to the write-up

and dissemination of the publication.

4.2 Introduction
In many recent works, multi-layer perceptions (MLPs) have been shown to be suit-

able for modeling complex spatially-varying functions including images and 3D

scenes. Although the MLPs are able to represent complex scenes with unprece-

dented quality and memory footprint, this expressive power of the MLPs, however,

comes at the cost of long training and inference times. On the other hand, bilin-

ear/trilinear interpolation on regular grid-based representations can give fast training

and inference times, but cannot match the quality of MLPs without requiring signif-

icant additional memory. Hence, in this work, we investigate what is the smallest

change to grid-based representations that allows for retaining the high fidelity result

of MLPs while enabling fast reconstruction and rendering times. We introduce a

surprisingly simple change that achieves this task – simply allowing a fixed non-

linearity (ReLU) on interpolated grid values. When combined with coarse-to-fine

optimization, we show that such an approach becomes competitive with the state-

of-the-art. We report results on radiance fields, and occupancy fields, and compare

against multiple existing alternatives. Code and data for the project are available at

4.2. Introduction 54

https://geometry.cs.ucl.ac.uk/projects/2022/relu_fields.

Coordinate-based MLP have been shown to be capable of representing complex

signals with high fidelity and a low memory footprint. Exemplar applications include

NeRF [34], which encodes lighting-baked volumetric radiance-density field into a

single MLP using posed images; LIFF [186], which encodes 2D image signal into

a single MLP using multi-resolution pixel data. Alternatively, a 3D shape can be

encoded as an occupancy field [32, 187], and a signed distance field [188].

A significant drawback of such approaches is that MLPs are both slow to train

and slow to evaluate, especially for applications that require multiple evaluations

per signal-sample (e.g. multiple per-pixel evaluations during volume tracing in

NeRFs). On the other hand, traditional data structures like n-dimensional grids

are fast to optimize and evaluate, but require a significant amount of memory to

represent high frequency content (see Figure 4.4). As a result, there has been

an explosion of interest in hybrid representations that combine fast-to-evaluate

data structures with coordinate-based MLPs, e.g., by encoding latent features in

regular [65] and adaptive [120, 102, 121, 66] grids and decoding linearly interpolated

“neural” features with a small MLP.

In this project, we revisit regular grid-based models and look for the minimum

change needed to make such grids perform on par with “neural” representations. As

the key takeaway message, we find that simply using a ReLU non-linearity on top

of interpolated grid values, without any additional learned parameters, optimized

in a progressive manner already does a surprisingly good job, with minimal added

complexity. For example, in Figure 4.1 we show results in the context of representing

volumes (left) and surfaces (right) and on regularly sampled grid vertices respectively.

As additional benefits, these grid based 3D-models are amenable to generative

modeling, and to local manipulation.

In summary, we present the following contributions:

1. we propose a minimal extension to grid-based signal representations, which

we refer to as ReLU-Fields

2. we show that this representation is simple, does not require any neural net-

https://geometry.cs.ucl.ac.uk/projects/2022/relu_fields

4.3. It’s just a little ReLU 55

0

1
ReLU �eld

Linear

Ground truth

a) b)

Figure 4.2: Representing a ground-truth function (blue) in a 1D (a) and 2D (b) grid cell
using the linear basis (yellow) and a ReLU-Fields (pink).The reference has a
c1-discontinuity inside the domain that a linear basis cannot capture. A ReLU-
Field will pick two values y1 and y2, such that their interpolation, after clamping
will match the sharp c1-discontinuity in the ground-truth (blue) function.

works, is directly differentiable (and hence easy to optimize), and is fast to

optimize and evaluate (i.e. render)

3. we empirically validate our claims by showing applications where ReLU-

Fields plug in naturally: first, image-based 3D scene reconstruction; and

second, implicit modeling of 3D geometries.

4.3 It’s just a little ReLU
We look for a representation of n-valued signals on an m-dimensional coordinate

domain Rm. For simplicity, we explain the method for m = 3. Our representation

is strikingly simple. We consider a regular (m = 3)-dimensional (r× r× r)-grid G

composed of r voxels along each side. Each voxel has a certain size defined by its

diagonal norm in the (m = 3)-dimensional space and holds an n-dimensional vector

at each of its (2m=3 = 8) vertices. Importantly, even though they have matching

number of dimensions, these values do not have a direct physical interpretation (e.g.,

color, density, or occupancy), which always have some explicitly-defined range,

e.g., [0,1] or [0,+∞). Rather, we store unbounded values on the grid; and thus for

technical correctness, we call these grids “feature”-grids instead of signal-grids. The

features at grid vertices are then interpolated using (m = 3)-linear interpolation, and

4.3. It’s just a little ReLU 56

followed by a single non-linearity: the ReLU, i.e., function ReLU(x) = max(0,x)

which maps negative input values to 0 and all other values to themselves. Note

that this approach does not have any MLP or other neural-network that interprets

the features, instead they are simply clipped before rendering. Intuitively, during

optimization, these feature-values at the vertices can go up or down such that the

ReLU clipping plane best aligns with the c1-discontinuities within the ground-truth

signal. Figure 4.2 illustrates this concept.

As a didactic example, we fit an image into a 2D ReLU-Field grid similar to

[35], where grid values are stored as floats in the (−∞,+∞) range. For any query

position, we interpolate the grid values before passing through the ReLU function

(see Algorithm 3). Since the image-signal values are expected to be in the [0,1]

range, we apply a hard-upper-clip on the interpolated values just after applying the

ReLU. We can see in figure 4.3 that ReLU-field allows us to represent sharp edges at

a higher fidelity than bilinear interpolation (without the ReLU) at the same resolution

grid size. One limitation of this representation is that it can only well represent

signals that have sparse c1-discontinuities, such as this flat-shaded images and as we

show later, 3D volumetric density. However, other types of signals, such as natural

images, do not benefit from using a ReLU-Fields representation (see supplementary

video at https://www.youtube.com/watch?v=GcRgqzWh4FA).

Algorithm 3 Fetching a 2D ReLU field.
1: procedure RELUFIELD2D(G,x)
2: xg := FLOOR(x)
3: xf := FRAC(x)
4: y00 := FETCH(G, xg + (0,0))
5: y01 := FETCH(G, xg + (0,1))
6: y10 := FETCH(G, xg + (1,0))
7: y11 := FETCH(G, xg + (1,1))
8: y := BILINEAR(y00, y01, y10, y11, xf)
9: return RELU(y)

10: end procedure

https://www.youtube.com/watch?v=GcRgqzWh4FA

4.4. Applications 57

Figure 4.3: Representing an image with a standard pixel grid bi-linearly interpolated to a
larger size (Grid) versus a ReLU-Field of the same size (ReLUField). The grid-
size of the variants, ReLUField and Grid, is 64x smaller; while of, ReLUFieldL
and GridL, is 32x smaller than the source image-resolution along each dimension.
Note that the ‘L’ variants have a bigger grid-size and hence less smaller than the
GT raster image. Simply adding a ReLU allows for significantly more sharpness
and detail to be expressed. Hence, we can say that the humble ReLU is truly the
little non-linearity that could.

4.4 Applications
We now demonstrate two different applications of ReLU-Fields; NeRF-like 3D

scene-reconstruction (4.4.1), and 3D object reconstruction via occupancy fields

4.4. Applications 58

R
el

uF
ie

ld
L

G
rid

L
N

eR
F-

PT
R

el
uF

ie
ld

L
G

rid
L

N
eR

F-
PT

R
el

uF
ie

ld
L

G
rid

L
N

eR
F-

PT

10 min5 min2 min1 min10 sec

Figure 4.4: Qualitative comparison between NeRF-PT, GridL and ReLUFieldL. Grid-based
versions converge much faster, and we can see significant sharpness improve-
ments of ReLUFieldL over GridL, for example in the leaves of the plant. See
also supplementary video.

(4.4.2).

4.4.1 Radiance Fields

In this application, we discuss how ReLU-Field can be used in place of the coordinate-

based MLP in NeRF [34]. Input to this algorithm are a set of images I = {I1, . . . , In}
and corresponding camera poses C = {C1, . . . ,Cn}, where each camera pose consists

4.4. Applications 59

of C = {R,T,H,W,F}; R is the rotation-matrix (R ∈ R3×3), T is the translation-

vector (T ∈ R3), H, W are the scalars representing the height and width respectively,

and F denotes the focal length of the assumed simple pin-hole camera. We assume

that the respective poses for the images are known either through hardware calibration

or by using structure-from-motion [75].

We denote the rendering operation to convert the 3D scene representation R
and the camera pose C into an image as ζ (R,C). Thus, given the input set of

images I and their corresponding camera poses C, the problem is to recover the

underlying 3D scene representation R such that when rendered from any Ci ∈ C, R
produces rendered image Îi as close as possible to the input image Ii, and produces

spatio-temporally consistent Î j for poses C j ̸∈ C.

Scene representation We model the underlying 3D scene representation R, which is

to be recovered, by a ReLU-Field. The vertices of the grid store, first, raw pre-relu

density values in (−∞,∞) that model geometry, and, second, the second-degree SH

coefficients [111, 189] that model view-dependent appearance. The relu is only

applied to pre-relu density, not to appearance.

We directly optimize values at the vertices to minimize the photometric loss

between the rendered images Î and the input images I. The optimized grid G∗,

corresponding to the recovered 3D scene R, is obtained as:

G∗ = argminG

n

∑
i=1

∥Ii −
Îi︷ ︸︸ ︷

ζ (G,Ci)∥2
2. (4.1)

Implementation details Similar to NeRF, we use the EA (emission-absorption)

raymarching model [72, 97, 34] for realizing the rendering function ζ . The grid is

scaled to a single global AABB (Axis-Aligned-Bounding-Box) that is encompassed

by the camera frustums of all the available poses C, and is initialized with uniform

random values. We optimize the vertex values using Adam [190] with a learning rate

of 0.03, and all other default values, for all examples shown.

We perform the optimization progressively in a coarse-to-fine manner similar

to [191]. Initially, the feature grid is optimized at a resolution where each dimension

4.4. Applications 60

Table 4.1: Evaluation results on 3D synthetic scenes. Metrics used are PSNR (↑) / LPIPS
(↓). The column NeRF-TF∗ quotes PSNR values from prior work [34], and as
such we do not have a comparable runtime for this method.

Scene NeRF-TF∗ NeRF-PT Grid GridL ReLUField ReLUFieldL RFLong RFNoPro

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

Chair 33.00 0.04 33.75 0.03 25.53 0.12 27.08 0.11 31.50 0.05 32.39 0.03 31.77 0.05 13.85 0.48
Drums 25.01 0.09 23.82 0.12 19.85 0.20 20.70 0.17 23.13 0.09 25.15 0.06 23.78 0.09 10.74 0.52

Ficus 30.13 0.04 28.96 0.04 22.10 0.13 23.61 0.11 25.89 0.06 27.37 0.04 26.11 0.05 13.21 0.47
Hotdog 36.18 0.12 33.52 0.06 28.53 0.12 29.83 0.10 34.65 0.03 35.72 0.03 34.70 0.03 12.22 0.53

Lego 32.54 0.05 28.36 0.08 23.76 0.17 23.97 0.15 28.83 0.06 30.78 0.03 29.64 0.05 10.63 0.56
Materials 29.62 0.06 29.23 0.04 21.87 0.18 22.74 0.13 27.41 0.06 28.23 0.05 28.23 0.05 8.99 0.55

Mic 32.91 0.02 33.08 0.02 25.87 0.08 25.91 0.08 31.88 0.03 32.62 0.02 31.22 0.03 12.47 0.41
Ship 28.65 0.20 29.22 0.14 23.86 0.25 22.54 0.24 26.86 0.14 28.02 0.12 27.39 0.13 9.92 0.59

Average 31.01 0.07 29.99 0.07 23.92 0.16 24.54 0.14 28.77 0.07 30.04 0.05 29.10 0.06 11.50 0.51

Time (recon) — 11h:21m:00s 00h:03m:41s 00h:10m:02s 00h:03m:41s 00h:10m:36s 10h:51m:29s 00h:07m:11s
Time (render) — 16,363.0 ms 9.0 ms 99.1 ms 9.1 ms 99.5 ms 9.21 ms 9.8 ms

is reduced by a factor of 24. After a fixed number of iterations at each stage N,

the grid resolution is doubled and the features on the feature-grid G are tri-linearly

upsampled to initialize the next stage. This proceeds until the final target resolution

is reached.

Evaluation We perform experiments on the eight synthetic Blender scenes used

by NeRF [34], viz. Chair, Drums, Ficus, Hotdog, Lego, Materials, Mic, and Ship

and compare our method to prior works, baselines, and ablations. We also show an

extension of ReLU-Fields to one of their real world captured scenes, named Flowers.

First, we compare to the mlp-based baseline NeRF [34]. For the purpose of

these experiments though, we use the public nerf-pytorch version [192] for com-

parable training-time comparisons since all our implementations are in PyTorch. For

disambiguation, we refer to this PyTorch version as NeRF-PT and the original one

as NeRF-TF and report scores for both. Second, we compare to two versions of

traditional grids where vertices store scalar density and second-degree SH approxi-

mations of the appearance, namely Grid (i.e., 1283 grid) and GridL (i.e., 2563 grid).

Finally, we compare to our approach at the same two resolutions, ReLUField and Re-

LUFieldL. The above four methods are optimized with the same progressive growing

setting with N = 2000, and all the same hyperparameters except the grid resolution.

We report PSNR and LPIPS [193] computed on a held-out test-set of Image-Pose

pairs different from the training-set (I, C). All training times were recorded on

32GB-V100 GPU while the inference times were computed on RTX 2070 Super.

4.4. Applications 61

Our method is implemented entirely in PyTorch and does not make use of any custom

GPU kernels.

Table 4.1 summarizes results from these experiments. We can see that traditional

physically-based grid baselines Grid and GridL perform the worst, while our method

has comparable performance to NeRF-PT and is much faster to reconstruct and

render. This retains the utility of grid-based models for real-time applications

without compromising on quality. Figure 4.4 demonstrates qualitative results from

these experiments.

Ablations We ablate the components described in 4.4.1, and and also include the re-

sults in Table 4.1 in the last two columns. RFLong is a normal ReLU-Field optmized

for a much longer time (comparable to NeRF-PT’s training time). We see minor

improvement over the default settings, however we can see that the optimization time

plays less of a role than the resolution of the grid itself (ReLUFieldL outperforms

RFLong). RFNoPro is trained without progressive growing for the same number of

total steps. We see that it yields a much lower reconstruction quality, indicating that

progressive growing is critical for the grid to converge to a good reconstruction.

Real scene extension Similar to the real-captured-360 scenes from the NeRF, we

also show an extension of ReLU-Fields to modeling real scenes. In this example,

we model the background using a “MultiSphereGrid” representation, as proposed

by [194]. Please note that the background grid is modeled as a regular bilinear grid

without any ReLU. For simplicity, we use an Equi-rectangular projection (ERP)

instead of Omni-directional stereo (ODS) for mapping the Image-plane to the set

of background spherical shells. Fig. 4.5 shows qualitative results for this extension

after one hour of optimization. Here, we can see that the grid does a good job of

representing the complex details in the flower, while the background is modeled

reasonably well by the shells.

4.4.2 Occupancy Fields

Another application of coordinate-based MLP is as a representation of (watertight)

3D geometry. Here, we fit a high resolution ground-truth mesh, as a 3D occupancy

field [32] into a ReLU-Field. One might want to do this in order to, for example, take

4.4. Applications 62

composite background layer depth map foreground only

novel view 1 novel view 2 novel view 3

Figure 4.5: Qualitative results for the real-captured scene extension of ReLU-Fields on
Flowers. We decompose the scene into a series of spherical-background shells
and a foreground ReLU-Field layer, which are alpha-composited together to
give final novel view renderings. The top-left visualization shows the composite
of the background spherical shells un-projected onto a 2D image-plane.

advantage of the volumetric-grid structure to learn priors over geometry, something

that is harder to do with meshes or coordinate-based MLP directly.

Occupancy representation The core ReLU-Field representation used for this ap-

plication only differs from the radiance fields setup (see 4.4.1) as follows: First,

since we are only interested in geometry, we do not store any SH coefficients on the

grid, and simply model volumetric occupancy as a probability from [0,1]. Second,

as supervision, we use ground truth point-wise occupancy values in 3D (i.e., 1, if

the point lies inside the mesh, and 0 otherwise), rather than rendering an image and

applying the loss on the rendered image. Finally, since the ground truth occupancy

values are binary, we use a binary cross entropy (BCE) loss. Thus, we obtain the

optimized grid G∗ as,

G∗ := argminG ∑
x∈B

BCE(O(x),RELUFIELD3D(tanh(G),x)) (4.2)

where, O is the ground truth occupancy, x denote sample locations inside an axis-

aligned bounding box B, BCE denotes the binary cross entropy loss, and G represents

4.5. Limitations 63

the ReLU-Field grid. Note that we use the tanh to limit the grid values in (−1,1),

although other bounding functions, or tensor-normalizations can be used.

Implementation details We initialize the grid with uniform random values. The

supervision signal comes from sampling random points inside and around the tight

AABB of the GT high resolution mesh, and generating the occupancy values for

those points by doing an inside-outside test on the fly during training. For rendering,

we directly show the depth rendering of the obtained occupancy values. We define

the grid-extent and the voxel size by obtaining the AABB ensuring a tight fit around

the GT mesh.

Table 4.2: Evaluation results on modeling 3D geometries as occupancy fields. Metric used
is Volumetric-IoU [32]. The baseline MLP is our implementation of Occupan-
cyNetworks [32].

MLP Grid ReLUField

Thai Statue 0.867 0.827 0.901
Lucy 0.920 0.883 0.935

Bimba 0.983 0.978 0.987
Grog 0.961 0.947 0.971
Lion 0.956 0.970 0.979

Ramses 0.973 0.961 0.978
Dragon 0.886 0.761 0.896

Average volumetric-IoU 0.935 0.903 0.949

Evaluation Figure 4.6 shows the qualitative results of the different representations

used for this task. We can see that a ReLUField in this case yields higher quality

reconstructions than a standard Grid, or a coordinate-based MLP. Quantitative scores,

Volumetric-IoU as used in [32], for the ThaiStatue, Lucy, Bimba, Grog, Lion, Ramses,

and Dragon models are summarized in 4.2. ReLU-Field and Grid require 15 mins,

while MLP requires 1.5 hours for training.

4.5 Limitations
Our approach has some limitations. First, the resulting representations are large. A

ReLU-Field of size 1283 used for radiance fields (i.e., with SH coefficients) takes

260Mb, and the large version at 2563 takes 2.0 Gb of storage. We believe that

4.6. Summary 64

G
rid

M
LP

Re
LU

Fi
el
d

Re
fe
re
nc
e

Figure 4.6: Qualitative results for the occupancy fields comparing Grid, MLP, and ReLU-
Field.

combining ReLU-Field with a sparse data structure would see significant gains in

performance and reduction in the memory footprint. However, in this work we

emphasize the simplicity of our approach and show that the single non-linearity

alone is responsible for a surprising degree of quality improvement.

ReLU-Field also cannot model more than one “crease” (i.e., discontinuity) per

grid cell. While learned features allow for more complex signals to be represented,

they do so at the expense of high compute costs. The purpose of this work is to

refocus attention on what is actually required for high fidelity scene reconstruction.

We believe that the task definition and data are responsible for the high quality results

we are seeing now, and show that traditional approaches can yield good results with

minor modifications, and neural networks may not be required. However, this is

just one data-point in the space of possible representations, for a given specific task

we expect that the optimal representation may be a combination of learned features,

neural networks, and discrete signal representations.

4.6 Summary
In summary, we presented ReLU-Field, an almost embarrassingly simple approach

for representing signals; storing unbounded data on N-dimensional grid, and apply-

4.6. Summary 65

ing a single ReLU after linear interpolation. This change can be incorporated at

virtually no computational cost or complexity on top of existing grid-based methods,

and strictly improve their representational capability. Our approach does not rely

on any learned parameters, special initialization, or neural networks; and performs

comparably with state-of-the-art approaches in only a fraction of the time.

Chapter 5

3inGAN: Learning a 3D Generative

Model from Images of a Self-similar

Scene

5.1 Background and Contributions
As alluded to earlier, one of the challenges towards achieving 3D generative models

is lack of sufficient-quality and large-scale 3D datasets. During the timeline of this

project, this challenge was particularly significant since datasets such as Co3D [76]

and OmniObject3D [195] were not released. Thus, being equipped with the basics of

3D volumetric representations and differentiable rendering from the previous project,

we decided to get started with 3D generative modelling by temporarily narrowing

down the problem statement further to patch-based 3D generative modelling. Inspired

by the seminal work of SinGAN [151] (Shaham et al), we narrowed down our

problem statement to: “Can we train a 3D generative model using only a single 3D

scene?”. This project is essentially a journey into finding an answer to this question.

It turns out that a naive translation of 2D SinGAN to 3D is not enough, and we detail

these challenges and how to overcome them in this chapter.

In terms of contributions, I worked on the implementation and experimentation

entirely for this project and also majorly contributed to the write-up and dissemination

of the paper. The supervisors Niloy, Tobias, and Oliver helped with critical analysis

5.2. Introduction 67

of the results, drafting of the paper and illustrations of ideas. From this project, I got

to learn a lot about how scientific figures should be illustrated to get the idea across

clearly and coherently from Tobais. I try to apply these learnings in the subsequent

chapter 8.

5.2 Introduction
We introduce 3INGAN, an unconditional 3D generative model trained from 2D

images of a single self-similar 3D scene. Such a model can be used to produce 3D

“remixes” of a given scene, by mapping spatial latent codes into a 3D volumetric

representation, which can subsequently be rendered from arbitrary views using

physically based volume rendering. By construction, the generated scenes remain

view-consistent across arbitrary camera configurations, without any flickering or

spatio-temporal artifacts. During training, we employ a combination of 2D, obtained

through differentiable volume tracing, and 3D GAN losses, across multiple scales,

enforcing realism on both its 2D renderings and its 3D structure. We show results

on semi-stochastic scenes of varying scale and complexity, obtained from real and

synthetic sources. We demonstrate, for the first time, the feasibility of learning

plausible view-consistent 3D scene variations from a single exemplar scene and

provide qualitative and quantitative comparisons against two recent related methods.

Code and data for the project are available at https://geometry.cs.ucl.ac.uk/

group_website/projects/2022/3inGAN.

In the context of images, unconditional generative models, such as GAN, learn

to map latent spaces to diverse yet realistic high resolution images – notable architec-

tures include StyleGan [131] and BigGAN [133]. Furthermore, these models have

been shown to contain high-level semantics in their latent space mappings, allowing

powerful post-hoc image editing operations, such as changing the appearance and

expression of a generated person [196, 197, 198]. One key question therefore, is

whether it is possible to learn similar generative models for 3D scenes.

There are, however, two key challenges. First, 3D generation suffers from data

scarcity as obtaining large and diverse datasets for 3D data, both geometry and

https://geometry.cs.ucl.ac.uk/group_website/projects/2022/3inGAN
https://geometry.cs.ucl.ac.uk/group_website/projects/2022/3inGAN

5.2. Introduction 68

3I
N

G
A

N

Si
ng

le
 R

ea
l W

or
ld

 S
ce

ne

...

3D Scene Remixes2D Photos

Tr
ai
n

Sa
m
pl
e

z1

z2

zn

I1

I2

I3

...

Figure 5.1: Single scene 3D remixes. We introduce 3INGAN that takes a set of 2D photos
of a single self-similar scene to produce a generative model of 3D scene remixes,
each of which can be rendered from arbitrary camera configurations, without
any flickering or spatio-temporal artifacts. Bottom row insets show zooms from
different generative samples, rendered from the same camera view, to highlight
the quality and diversity of the results.

appearance, is significantly more challenging than for 2D data, where one can simply

scrape images from the internet. Second, generative models struggle as the domain

complexity increases, as well as when datasets are not pre-aligned. This problem is

even more severe in 3D, due to the added scene complexity, both in terms of scene

5.2. Introduction 69

structure and object appearance, and the fact that 3D models and scans often come

with their own coordinate systems and/or scaling.

In this work, we propose 3INGAN, a solution to address both problems in a

restrictive setting: an unconditional generative model for 3D scenes that works on

a per-scene basis for self-similar configurations. As our method does not require

a large 3D dataset during training, it could be used across a wide range of real

world domains. By restricting the data domain to a single 3D scene, we simplify

the unconditional generation problem space to one with limited domain complexity,

allowing us to learn a high-quality generator. We were inspired by similar approaches

proposed for 2D images, e.g., SinGAN [151]. However, extending such approaches

to 3D is nontrivial, as in 3D, one must be able to generate arbitrary views in a way

that is multi-view consistent. We handle this by directly generating a 3D scene

representation that is, by definition, multiview consistent. In particular, we generate

a regularly sampled nonlinearly-interpolated-voxel grid [64] due to its simplicity,

local (feature) influence, rendering efficiency, and its amenability to the prevailing

convolutional generator and discriminator architectures in 2D/3D. In order to achieve

realism, both in terms of 3D structure and 2D image appearance, we simultaneously

use 3D feature patches and 2D image patches to obtain gradients from the 3D and 2D

discriminators, respectively. We link the 3D and 2D domains by using a differentiable

volume rendering module to interpret the feature grid as RGB images.

Note that recent neural 3D generators (e.g., BlockGAN [199], GRAF [117],

π-GAN [116]) are trained on image/shape collections, and are not easily applicable

in our setup (see sec. 5.4 for comparison). For example, Fig. 5.3 shows a sampling

of “remixed” results generated from images of a school of fish.

In summary, ours is the first work to introduce an unconditional generative

model from a single 3D scene. In particular, we investigate scenes with some degree

of stochastic structure, which are suitable to shuffling or “remixing” the scene content

into a new 3D scene that makes sense. In addition, we make a further simplifying

assumption in that we drop the view specific effects and reconstruct Lambertian

scenes. We evaluate our proposed method on a series of synthetic and real scenes

5.3. 3inGAN approach 70

and show that our approach outperforms baselines in terms of quality and diversity.

5.3 3inGAN approach
Motivation. As input, we require an exemplar self-similar scene, which is provided

as a set of posed 2D images. We desire that our method produces a plausible 3D

scene structure that matches the exemplar scene on a patch basis, and realistic 2D

image renderings that are consistent across the space of all views of that scene.

Given this goal, we choose to directly generate a 3D representation, so that

we are guaranteed view consistency when rendering 2D images from it. The first

question is, what 3D representation should we use? One choice would be coordinate-

based MLPs, which have been shown to be compact scene representations able

to generate very high quality novel views [34]. However, such a representation is

ill-suited for a generative setup, as the costly evaluation makes rendering volumetric

and image patches in the training loop infeasible, and the global and distributed

nature of the MLP representation makes GAN training challenging in our patch-

based setting. Another option is to operate directly on discretized RGBA volumes

but, as demonstrated in Karnewar et al. [64], i.e., chap. 4, such an approach results

in limited quality (blurry) results. Instead, we build the 3INGAN approach using the

previously described grid-based ReLU Field representation. This representation is

revisited very briefly in sub-sec. 5.3.1.

A naı̈ve extension of SinGAN [151] to 3D fails to produce good results for

multiple reasons:

1. only using a 3D discriminator doesn’t have the notion of free-space in the

volume and also tries to replicate the inside regions of the occupied space that

may contain random values. When such a model is rendered, the results have

shape distortions and chromatic noise.

2. only using 2D discriminators on the rendered images is challenging. Specifi-

cally, when trained on too small patches the discriminator becomes too weak

to inform the generator of the underlying 3D shape, and when trained on too

large patches, the generator simply memorizes the initial reconstruction.

5.3. 3inGAN approach 71

GeneratorSeed Generated 3D Grid Reference 3D Grid Reference renderignsGenerated renderings

Reference 3D GridInput 2D Images

2D/3D Patch

Le
ve

l 1
Le

ve
l 2

Le
ve

l n

Discriminator
Renderer Loss

Photconsistency

Downsample

Discriminator

Init

Renderer

Loss

Render

Switch

Reference 2D renderings Renderer

G1

G2

Gn

D3D,n

zn

z2

z1

D2D,n

D3D,2

D2D,2

D3D,1

D2D,1

Figure 5.2: 3INGAN setup. Overview of our approach with two parts: an initialization of
a reference 3D feature grid (top) and a stage-wise learning of a generative model
(bottom). Input to the system is a set of 2D images seen on the top left. From
these, optimization using differentiable rendering for known views produces
the reference feature grid, which is the input to the next step. The rows below
(“Level”) denote levels of training the generator, a 2D discriminator, and a 3D
discriminator. The 3D discriminator (right) gets random 3D patches from the
reference or generated 3D grid, while the 2D discriminator (right) gets random
2D patches from reference or from generated renderings.

Our solution involves two main ingredients: the use of ReLU-Fields repre-

sentation [64] instead of the standard RGBA volumes for inherently inducing the

notion of free space in the 3D-grid; and a mixture of 2D and 3D discriminators,

along with multi-scale training, that robustly produce consistent and high quality

reconstructions.

Method overview. Input to our method is a set of n 2D images I := {I1, . . . , In}
taken from a single real world or synthetic self-similar scene. Fig. 5.2 presents a

graphical overview and alg. 4 presents a pseudo-code version. Our method consists

of two main steps. First, we convert the 2D image set into a 3D feature grid V

(para. Optimization of subsec. 5.3.1). Then, we train a generative model G of 3D

scenes from this 3D feature grid and its 2D rendered images (sub-sec. 5.3.2). This

generative model G(z) then converts spatial random latent grids (z) into 3D feature

grids containing remixes of the exemplar scene, which can be consistently rendered

5.3. 3inGAN approach 72

Algorithm 4 Our 3INGAN training. Function sample(. . .) samples all distributions
provided as arguments; up(a,b) ADAM-updates the parameters a by the gradient of
expression b with respect to a.

1: repeat ▷ 3D representation building
2: {I,C} := sample(I,C)
3: V := up(V,∥ζ (V,C)− I∥2

2)
4: until converged.

5: repeat ▷ Generator training
6: {z,C} := sample(N ,D)
7: P := P2D(ζ (Gθ (z),C))
8: φ := up(φ ,Dφ

2D(P = fake)) ▷ 2D fake disc. update

9: C := sample(D)
10: P := P2D(ζ (V,C))
11: φ := up(φ ,Dφ

2D(P = real)) ▷ 2D real disc. update

12: z := sample(N)
13: P := P3D(Gθ (z))
14: ψ := up(ψ,Dψ

3D(P = fake)) ▷ 3D fake disc. update

15: P := P3D(V)
16: ψ := up(ψ,Dψ

3D(P = real)) ▷ 3D real disc. update

17: {z,C} := sample(N ,D) ▷ Generator update
18: θ := up(θ ,Dφ

2D(P2D(ζ (Gθ (z),C)) = real)) ▷ from 2D disc.
19: θ := up(θ ,Dψ

3D(P3D(Gθ (z)) = real)) ▷ from 3D disc.
20: until converged.

from arbitrary views.

5.3.1 Representation

Foreground ReLU Field [64]. Foreground is bound by a user-provided AABB

covered by a volumetric grid, V , of fixed resolution nVx × nVy × nVz to contain

feature values in the [−1,1] range. These values correspond to the raw-features that

are stored on the voxel-grid. In order to obtain continuous density field, the trilinearly

interpolated values of these raw features are passed through a single channel-wise

ReLU to convert them to [0,1] range which can be physically interpreted as the

density values. We do not model view-dependent appearance, i.e., we approximate

the scene with Lambertian materials.

Background. The background is assumed to be constant black for synthetic scenes.

For real scenes, we model the background of the scene using an implicit neu-

5.3. 3inGAN approach 73

ral network B, similar to NeRF++ [106], but without using the inverted-sphere

parametrization of the scene. Our goal is not to model the entire scene perfectly, but

rather to provide appropriate inductive bias to the reconstruction pipeline to do the

foreground-background separation correctly. This allows us to reconstruct real-world

scenes without the requirement of additional segmentation masks.

Optimization. Let the camera pose (extrinsic translation and rotation as well as

intrinsics) for each input image be C := {C1, . . . ,Cn} and assume they are known,

e.g., by using structure-from-motion (we use ColMap [75]). Further, we denote the

rendering operation to convert the feature grid V and the camera pose C into an

image as ζ (V,C). Specifically, we use emission-absorption raymarching [72, 97].

See supplementary for more details for the rendering. We can then directly optimize

the photometric loss over the feature grid, given the pose and the 2D images as,

argminV

n

∑
i=1

∥Ii −ζ (V,Ci)∥2
2. (5.1)

We minimize this loss with batched optimization over 2048 random rays out of

all the rays for which we know the 2D input image pixel value. Input images are of

size 512×512. Further, instead of directly optimizing for the full-resolution volume

V , training proceeds progressively in a coarse-to-fine manner. Initially, the feature

grid is optimized at a resolution where each dimension is smaller by factor 16. After

seeing 20k batches of input rays, the feature grid resolution is multiplied by two and

the feature grid tri-linearly upsampled.

5.3.2 Generation

Training the generative model makes use of the 3D feature grid V trained in the

previous sub-section 5.3.1, which we denote as the reference grid herein. We look

into the generator details first, before explaining the losses used to train it: 2D and

3D discriminators, and a 2D and 3D reconstruction loss.

Generator. Recall, that the model G maps random latent codes z to a 3D feature

grid G(z) at the coarsest stage. While adds fine residual details to previous stage’s

outputs at the rest of the stages similar to SinGAN [151]. The generator is a 3D CNN

5.3. 3inGAN approach 74

(Convolutional Neural Network) that stagewise decodes a spatial grid of noise vectors

z of size nz (we use seedDimension = 4) into the grid of the desired resolution.

Training. We train the architecture progressively: the generator first produces grids

of reduced resolution. Only once this has converged, layers are added and the model

is trained to produce the higher resolution. Note that we freeze the previously trained

layers in order to avoid the GAN training from diverging. We employ an additional

reconstruction loss that enforces one single fixed seed z⋆ to map to the reference

grid. We supervise this fixed seed loss via an MSE over the 3D grids and with 2D

rendered patches.

2D discriminator. A 2D loss discriminates 2D patches of renderings of the generated

feature grid from 2D patches rendered from the reference grid V . To render the 3D

grids we need to model another distribution of poses, denoted by D, that uniformly

samples camera locations to point at the center of the hemisphere and where focal

length is varied stagewise linearly, where the value at the final stage corresponds to

the actual camera intrinsics. Further, let P2D() be an operator to extract a random

patch from a 2D image, with discriminators p2D
F and p2D

R . They are defined as:

p2D
F = P2D(ζ (G(z),D)) and p2D

R = P2D(ζ (V,D)). (5.2)

Note, that we did not define p2D
R = P2D(I), as this would limit ourselves to use

real samples only from the limited set of known 2D image patches. “Trusting” our

reference 3D feature grid has been extracted properly, we can instead sample it from

arbitrary views and get a much richer set.

3D discriminator. The 3D discriminator compares 3D patches from the generated

feature grid to 3D patches of the reference feature grid. Let P3D(V) be an operator

to extract a random patch from a 3D feature grid V . The distributions to discriminate

are,

p3D
F = P3D(G(z)) and p3D

R = P3D(V). (5.3)

5.4. Evaluation 75

Finally, we use Wasserstein GAN [200] to discriminate the corresponding distribu-

tions as well as the reconstruction losses in both 2D and 3D,

L= γ2D·wgan(p3D
R , p3D

F)+ γ3D ·wgan(p2D
R , p2D

F)+

ρ2D·EC∈D[∥ζ (G(z⋆),C)−ζ (V,C)∥2
2]+

ρ3D·∥G(z⋆)−V∥2
2,

(5.4)

weighted by two pairs of two factors γ2D, γ3D and ρ2D, ρ3D. In practice, we use

γ2D = γ3D = 1.0 and as well as ρ2D = ρ3D = 10.

5.4 Evaluation
We perform quantitative and qualitative evaluations of our approach on a number of

different scenes. We compare our method to prior works on 3D generative modelling

as baselines, and evaluate design choices via an ablation study.

Comparisons and ablations. We compare to four methods (tab. 5.1). Besides our

full method 3INGAN (Ours), we study two prior approaches and two ablations.

As there was no existing method, at the time of the publication, for 3D single

scene remixing, we instead compared to two recent methods that were designed

to learn a 3D generative model for classes of objects, trained on a dataset of im-

ages/renderings where each instance (object) is seen from multiple different views,

PiGAN [116] and Graf [117]. In these baselines, we test how well such methods

work when given instead, many rendered views of a single scene. In both cases, we

use the code provided by the authors and their recommended parameter settings. We

mark whether the original approach was designed for a single scene or not in the last

column in tab. 5.1.

In the first ablation, our 2D only ablation, we evaluate the importance of the 3D

discriminator and 3D reconstruction seed losses by running a version of our method

with those losses removed, i.e. (ρ3D = γ3D = 0 in eqn. 5.4). We refer to this method

as OursPlatoGAN, as its GAN loss setting, which is only on the rendered 2D images,

is similar to the setup used in Henzler et al. [97], while being applied on only a single

scene.

5.4. Evaluation 76

BALLOON BLOCKS CHALKDIRTFISHESRFISHES FOREST PLANTS

Figure 5.3: Datasets. Example renderings of the scenes from our synthetic and real world
datasets (Blocks, Chalk).

Table 5.1: Comparisons and ablations. We enumerate the different methods based on how
they make use of 2D versus 3D information, and if they operate on a single scene
or multiple scenes.

Disc. Recon. Single
scene2D 3D 2D 3D

PiGAN [116] ✓ ✕ ✕ ✕ ✕

Graf [117] ✓ ✕ ✕ ✕ ✕

OursPlatoGAN ✓ ✕ ✓ ✕ ✓
OursSinGAN3D ✕ ✓ ✕ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

In the second ablation, our 3D only ablation, we evaluate the importance of the

2D discriminator and 2D reconstruction seed loss, which we refer to as OursSin-

GAN3D. This approach is a naı̈ve extension of SinGAN [151] to 3D. In other words,

it is our approach without any differentiable rendering, i.e., with the 2D discrim-

inator and 2D reconstruction seed losses removed (γ2D = ρ2D = 0). Please visit

the webpage https://geometry.cs.ucl.ac.uk/group_website/projects/

2022/prj-animesh_research_blog/project_pages/leaderboard_pages/

thr3inGan/results_index.html for further ablations of the reconstruction seed

losses.

Scenes. We consider a mix of synthetic and real scenes, with various levels of

stochasticity (a requirement for patch-based remixing of scenes). These scenes

include a synthetic scene rendered from Blender showing fishes with the same

orientation (Fish) as well as with random orientations (FishRot), a scene composed

of 3D balloons (Balloons), inspired by [151]. We also use four semi-synthetic scenes

that were real scenes reconstructed from images using photogrammetry and then

cleaned by an artist and sold on SketchFab: a pile of dirt (DirtPile), a log pile (Logs),

and a bush (Plants). We also make a fully synthetic (Forest) scene which has a

ground plane so as to resemble most real-world settings. Finally, we include two

https://geometry.cs.ucl.ac.uk/group_website/projects/2022/prj-animesh_research_blog/project_pages/leaderboard_pages/thr3inGan/results_index.html
https://geometry.cs.ucl.ac.uk/group_website/projects/2022/prj-animesh_research_blog/project_pages/leaderboard_pages/thr3inGan/results_index.html
https://geometry.cs.ucl.ac.uk/group_website/projects/2022/prj-animesh_research_blog/project_pages/leaderboard_pages/thr3inGan/results_index.html

5.4. Evaluation 77

real scenes with background for which we have no ground truth 3D available, which

both show a random arrangement of geometric toys (Blocks) or pieces of colored

chalks (Chalk). Note that in all the cases, regardless of the source, our method only

accesses 2D renderings/images of the scene, not the 3D scene.

Evaluation metric. We evaluate our method along two axes – visual quality, and

scene diversity. With traditional 2D GANs, these are most commonly evaluated using

FID. However, this metric is typically used over two datasets of images, whereas our

situation is slightly different; we have only one ground truth scene, and a diverse

distribution of generated scenes. We extend SIFID [151] to 3D, and also explicitly

separate quality and diversity to separately compare along each axis.

Visual quality is measured as the expectation of SIFID scores between the

distribution of exemplar 2D images and the distribution of rendered generated 2D

images for a fixed camera over multiple seeds. We compute this expectation by

taking a mean over a number of camera-views. This is similar in sprit to SIFID,

except we compute it over images rendered from different views of the 3D scenes.

Lower distance reflects better quality.

Unfortunately, in the single scene case, we cannot meaningfully compute FID

scores between the exemplar patch distribution and the distribution of all generated

patches across seeds as it would make diversity appear as a distribution error. This is

different from a typical GAN setup where we are given real images as samplings

of desirable distribution of both quality and diversity. Instead, we measure scene

diversity as the variance of a fixed patch from a fixed view over random seeds, which

is a technique used to study texture synthesis diversity [201]. Larger diversity is

better.

5.4.1 Qualitative Evaluation

In fig. 5.5 and fig. 5.6, we present qualitative results of 3INGAN, prior methods, and

ablations. We can see that, by construction, our method produces variations of 3D

scenes that are view consistent.

Visual quality. While some artifacts remain, we observe that this task is challenging

for all existing approaches, and when compared to prior work and simple baselines,

5.4. Evaluation 78

Figure 5.4: Single 3D scene FID. We extend FID scores to our single scene use case. The
distribution of feature responses is computed for different camera views (rows)
and generations (columns). The reference (left) leads to a certain distribution of
features. Rather than matching the reference distribution across all views and all
seeds (red lines), we compare it to the distribution of a single fixed seed across
all views (green lines) to measure visual quality. Then, we compare the variance
of the distribution of features across all seeds under a fixed view as a measure of
scene diversity.

OursPlatoGAN OursSinGAN3D

B
A

LL
O

O
N

S
D

IR
T

FO
R

ES
T

PiGAN OursGraf

Figure 5.5: Qualitative comparison. Comparison of visual quality for different methods
(columns) for different scenes (rows).

5.4. Evaluation 79

Table 5.2: Quality versus diversity. A good generative model should have a good mix of
quality and diversity – excellent quality with no diversity or vice versa are both
undesirable. Visual Quality and Scene Diversity for different methods (columns)
and different data sets (rows). To simplify comparison, we normalize the numbers
so that ours is always 1. The best for each metric on each dataset is bolded
and second best is underlined. Please refer to the supplementary for unscaled
numbers.

PiGAN [116] Graf [117] OursPlatoGAN OursSinGAN3D Ours

Qual. ↓ Div. ↑ Qual. ↓ Div. ↑ Qual. ↓ Div. ↑ Qual. ↓ Div. ↑ Qual. ↓ Div. ↑

Fish 15.74 0.261 264.27 0.359 465.47 2.282 8.98 0.332 1.00 1.000
FishR 2.47 0.440 3.07 1.018 46.02 2.499 2.70 0.170 1.00 1.000

Balloons 1.44 0.024 3.25 0.477 1.79 0.482 9.57 0.083 1.00 1.000
Dirt 0.96 0.264 1.69 0.440 0.66 0.131 6.06 0.164 1.00 1.000

Forest 1.33 0.473 1.69 0.801 0.70 0.883 2.14 0.439 1.00 1.000
Plants 5.99 0.261 6.56 0.648 12.81 0.144 9.15 0.326 1.00 1.000

Blocks 0.91 0.224 0.73 0.342 1.83 0.334 3.32 0.329 1.00 1.000
Chalk 0.02 0.061 0.01 0.320 0.54 0.088 0.85 0.035 1.00 1.000

BALLOONS

Seed 1 Seed 3Seed 2 Seed 2

FOREST

Seed 1 Seed 3

O
u
r
s
P
l
a
t
o
G
A
N

O
u
r
s
S
i
n
G
A
N
3
D

P
i
G
A
N

O
u
r
s

G
r
a
f

Figure 5.6: Diversity across different generative samples. Diversity under changing seeds
(columns) of different methods (rows) for different scenes (left and right blocks).
See also Figure 5.3.

our method achieves higher visual quality. As expected, scenes with higher stochas-

ticity result in better visual quality and diversity. For example, the balloons are

mostly intact but shifted to different locations, and the dirt pile consists largely of

reasonable structures.

5.4. Evaluation 80

Scene diversity. Compared to the competing baselines, PiGAN and Graf, we observe

that 3INGAN obtains significantly more scene diversity. This is not surprising, as

prior methods have been designed to work on multi-scene image collections, and

hence experience mode collapse when given views of only a single scene. This

motivates the development of a patch-based generative model for 3D scenes. We see

that 3INGAN learns to keep the identity of objects (e.g., balloons, fish, chalk) and

create plausible 3D variations (e.g., balloons floating in air, or blocks meaningfully

stacked). Please refer to the supplementary for more results.

Figure 5.7: Scene retargetting. Retargeting the Plants, the Logs, and Fish scenes to novel
aspect ratios. Since ours is CNN-based, it is easy to retarget scenes to different
sizes.

Scene retargeting. In fig. 5.7 we show results of changing the aspect ratio of gen-

erated scenes. As our generator is fully convolutional, this can be done simply by

changing the shape of the input noise. We can see that the scene structure remains

plausible, with the semi-stochastic content repeated to fill in the space.

5.5. Limitations 81

5.4.2 Quantitative Evaluation

In tab. 5.2, we quantitatively compare the different variations using our proposed

metrics. Mirroring the qualitative observations, we can see that 3INGAN performs

better than prior work and ablations in terms of visual quality. The numbers show

the importance of having both the 2D and 3D discriminators as they help to improve

the object appearance and geometric structure, respectively, of the generations. Our

main advantage is the noticeable boost in diversity of the generated results, as also

measured in the 2–5× boost in scene diversity score over the other methods. Note that

as indicated by the relative Visual Quality scores, our results are not yet close to being

photorealistic (indistinguishable from the reference distribution) but nonetheless we

achieve a healthy gain in over quality/diversity over competing alternatives.

5.5 Limitations
Our approach has a number of limitations. For one, we note that the proposed

method of generating a distribution (i.e., a generative model) from a single scene

only makes sense in case where scenes contain stochastic structures that can be

shuffled around. We do not expect our method to work on highly structured content,

e.g., people. Furthermore, we observe that results can still exhibit artifacts, such as

high frequency noise, blobby output, and floaters. We believe that this is because

the scene distribution is being estimated from very limited data (i.e., a single scene),

and is analogous to the “splotchyness” commonly seen in 2D GANs when trained in

limited data settings or over complex distributions. In this case, it should be possible

to improve quality by using data augmentation as recommended in [135], or by

improving the training regime, as in [152], however in the latter case it is important

to balance diversity to avoid mode collapse. Finally, in our implementation, we

assume scenes to be Lambertian, i.e., without view-dependent effects. In the future,

view-dependent specular effects could be modelled using SH components.

5.6. Summary 82

5.6 Summary
We have presented 3INGAN, a method for training a generative model of remixes of

a single 3D scene. Similar to SinGAN, our approach works on “long-tail” data, as it

does not require aligned 3D datasets for training. Instead, we require only a set of

posed images of a single self-similar scene as input. We believe that this method has

a number of downstream applications, such as retargetting or harmonization [151],

and furthermore, studies in generative models for 3D scenes may, one day, lead

to realistic view-consistent scene generation on par with images. This would be

practical not only for 3D content generation, but as a generative prior to be used in

many 3D reconstruction and editing tasks.

Chapter 6

HoloDiffusion: Training a 3D

Diffusion Model using 2D Images

6.1 Background and Contributions
Around this time, Diffusion Models (chapter 2.3.2) were gaining traction in the

research community, due to the ground-breaking results produced by works such

as Stable-Diffusion [12]. Stable-Diffusion built upon the works of iDDPM [202],

guided-diffusion [81], and latent-diffusion [203]. These works pushed forward the

sota in 2D text-to-image synthesis, which motivated us to also consider Diffusion

Models in our research on 3D synthesis. So, as a tryout, we decided to replace the

GAN part in 3inGAN (chapter 5) with a Diffusion Model. This lead to a mini-project

titled “3inFusion”, the idea of which is described in figure 6.1. Once trained, the

3inFusion model can then be used to generate semantically meaningful “remixes” of

the original 3D scene (see figure 6.2). Although this mini-project shares the same

problem motivation as 3inGAN, we found the diffusion model to be much easier to

work with. Using diffusion as the generative backbone allowed us to use a much

simpler architecture here, compared to the multi-scale setup required for 3inGAN,

and the models trained much smoothly requiring little-to-no hyperparameter tuning.

Given these observed benefits in 3inFusion, moving on from the 3inGAN

project, we decided to pursue diffusion models in the rest of the projects instead of

GANs. I then started a Research Scientist internship at Meta under the mentorship

6.1. Background and Contributions 84

Figure 6.1: The 3inFusion pipeline takes as input random 3D crops of the fitted ReLU-Field
grid. This input is then combined with time-conditional Gaussian noise, which is
then denoised by the 3D-Unet. During inference, we use this 3D crop denoiser to
denoise a noise grid of the original grid-size iteratively to generate semantically
meaningful variations of the original scene.

of David Novotny. The overall idea of this research project here was to train a larger-

scale diffusion model on real-captured 3D data, since the team had just released

the now popular Co3D dataset [76]. As obvious, the straightforward approach was

to do this in two stages, where we first fit a chosen 3D scene representation for

all the G.T. multi-view posed imagery. And, then train a 3D diffusion denoiser

model on this corpus of fitted 3D scenes. As it turns out, many parallel works such

as DiffRF [185] and RODIN [184] proposed this exact approach. However, it is

still quite puzzling that both of these methods apply 2D render-losses for training

the diffusion models in spite of carrying out the computationally expensive fitting

stage. So, I hypothesized that perhaps this fitting stage is redundant, and proposed

a harder version of the problem in that: “can we train a 3D diffusion model using

only multi-view 2D images?”. This question motivated and drove this project titled

HoloDiffusion, in which we do propose such a pipeline that can train 3D diffusion

models while only requiring 2D multi-view image based datasets. Such a method is

a perfect fit for the Co3D dataset, because the dataset contains of 360◦ spin-around

videos of commonly occurring 3D objects.

Since the Co3D dataset was newly released, and it used a newly developed

framework titled Implicitron (https://github.com/facebookresearch/

pytorch3d/tree/main/pytorch3d/implicitron), there wasn’t much docu-

https://github.com/facebookresearch/pytorch3d/tree/main/pytorch3d/implicitron
https://github.com/facebookresearch/pytorch3d/tree/main/pytorch3d/implicitron

6.2. Introduction 85

Figure 6.2: Given a ReLU-field grid of a 3D scene, 3inFusion can generate semantically
meaningful variations of it, much better than 3inGAN, while training in a simple
and stable manner.

mentation available regarding them. Thus, David helped with the implementation of

this idea in Implicitron using the Co3D dataset. Although the research motivation

and the core of the idea were proposed by me, David made the key addition of the

bootstrapped denoising trick which allowed to obtain correct 3D samples from the

trained models. The details regarding this can be found later in the chapter. Because

of this, David and I share equal contribution on this publication. Niloy and Andrea

provided crucial insights in our research discussions and also contributed to drafting

and disseminating the paper.

6.2 Introduction
Diffusion models have rapidly emerged as formidable generative models for images,

replacing others (e.g., VAEs, GANs) for a range of applications, including image

colorization [204], image editing [205], and image synthesis [206, 81]. These models

explicitly optimize the likelihood of the training samples, can be trained on millions

if not billions of images, and have been shown to capture the underlying model

distribution better [81] than previous alternatives.

6.2. Introduction 86

Figure 6.3: We present HoloDiffusion as the first 3D-aware generative diffusion model that
produces 3D-consistent images and is trained with only posed image supervision.
Here we show a few different samples generated from models trained on different
classes of the CO3D dataset [76].

A natural next step is to bring diffusion models to 3D data. Compared to 2D

images, 3D models facilitate direct manipulation of the generated content, result in

perfect view consistency across different cameras, and allow object placement using

direct handles. However, learning 3D diffusion models is hindered by the lack of a

sufficient volume of 3D data for training. A further question is the choice of repre-

sentation for the 3D data itself (e.g., , voxels, point clouds, meshes, occupancy grids,

etc.). Researchers have proposed 3D-aware diffusion models for point clouds [174],

volumetric shape data using wavelet features [207] and novel view synthesis [179].

They have also proposed to distill a pretrained 2D diffusion model to generate neural

radiance fields of 3D objects [26, 178]. However, a diffusion-based 3D generator

model trained using only 2D image for supervision is not available yet.

In this chapter, we contribute HoloDiffusion, the first unconditional 3D diffusion

model that can be trained with only real posed 2D images. By posed, we mean

different views of the same object with known cameras, for example, obtained by

means of structure from motion [75].

We make two main technical contributions: (i) We propose a new 3D model

that uses a hybrid explicit-implicit feature grid. The grid can be rendered to produce

images from any desired viewpoint and, since the features are defined in 3D space, the

rendered images are consistent across different viewpoints. Compared to utilizing

an explicit density grid, the feature representation allows for a lower resolution

grid. The latter leads to an easier estimation of the probability density due to

6.3. HoloDiffusion method 87

diffuser
diffusion

UNetIi1

Ii2

render

camera

E

E

E

{si} := {(Iij , P i
j)

Nframes

j=1
}

V̄ ∈ RS3×dV

∼ N (0, I) t ∼ U [0, T]

Dθ

Pj

IiNframes

sampling

bootstrapping via
second denoising pass

V̄t

Lphoto Lphoto

t (Dθ(V̄t, t), t)
V

rζ(V, Pj)

Figure 6.4: Method overview. Our HoloDiffusion takes as input video frames for category-
specific videos {si} and trains a diffusion-based generative model Dθ . The
model is trained with only posed image supervision {(Ii

j,P
i
j)}, without access to

3D ground-truth. Once trained, the model can generate view-consistent results
from novel camera locations.

a smaller number of variables. Furthermore, the resolution of the grid can be

decoupled from the resolution of the rendered images. (ii) We design a new diffusion

method that can learn a distribution over such 3D feature grids while only using

2D images for supervision. Specifically, we first generate intermediate 3D-aware

features conditioned only on the input posed images. Then, following the standard

diffusion model learning, we add noise to this intermediate representation and train a

denoising 3D UNet to remove the noise. We apply the denoising loss as photometric

error between the rendered images and the Ground-Truth training images. The key

advantage of this approach is that it enables training of the 3D diffusion model from

2D images, which are abundant, sidestepping the difficult problem of procuring a

huge dataset of 3D models for training.

We train and evaluate our method on the Co3Dv2 [76] dataset where HoloDif-

fusion outperforms existing alternatives both qualitatively and quantitatively.

6.3 HoloDiffusion method

6.3.1 Learning 3D Categories by Watching Videos

Training data. The input to our learning procedure is a dataset of N ∈ N video

sequences {si}N
i=1, each depicting an instance of the same object category (e.g., ,

car, carrot, teddy bear). Each video si = (Ii
j,P

i
j)

Nframes
j=1 comprises Nframes pairs (Ii

j,P
i
j),

6.3. HoloDiffusion method 88

each consisting of an RGB image Ii
j ∈ R3×H×W and its corresponding camera pose

Pi
j ∈ R4×4, represented as a 4×4 camera matrix. Our goal is to train a generative

model p(V) where V is a representation of the shape and appearance of a 3D object;

furthermore, we aim to learn this distribution using only the 2D training videos

{si}N
i=1.

3D feature grids. As 3D representation V we pick 3D feature voxel grids V ∈
RdV×S×S×S of size S ∈ N containing dV -dimensional latent feature vectors. Given

the voxel grid V representing the object from a certain video s, we can reconstruct any

frame (I j,Pj)∈ s of the video as I j = rζ (V,Pj) by the means of the rendering function

rζ (V,Pj) : RdV×S×S×S ×R4×4 7→ R3×H×W , where ζ are the function parameters.

Next, we discuss how to build a diffusion model for the distribution p(V) of feature

grids. One might attempt to directly apply the methodology of base diffusion models,

setting x = V , but this does not work because we have no access to ground-truth

feature grids V for training; instead, these 3D models must be inferred from the

available 2D videos while training. We solve this problem in the next section.

6.3.2 Bootstrapped Latent Diffusion Model

In this section, we show how to learn the distribution p(V) of feature grids from the

training videos s alone. In what follows, we use the symbol V as a shorthand for p(V).

The training videos provide RGB images I and their corresponding camera poses

P, but no sample feature grids V from the target distribution V . As a consequence,

we also have no access to the noised samples Vt ∼N (
√

ᾱtV0,(1− ᾱt)I) required to

evaluate the denoising objective and thus learn a diffusion model. To solve this issue,

we introduce the BLDM (Bootstrapped Latent Diffusion Model). BLDM can learn

the denoiser-cum-generator Dθ given samples V̄ ∼ V̄ from an auxiliary distribution

V̄ , which is closely related but not identical to the target distribution V .

The auxiliary samples V̄ . As shown in 6.4, our idea is to obtain the auxiliary samples

V̄ as a (learnable) function of the corresponding training videos s. To this end, we use

a design strongly inspired by Warp-Conditioned-Embedding (WCE) [208], which

demonstrated compelling performance for learning 3D object categories. Specifically,

given a training video s containing frames I j, we generate a grid V̄ ∈ RdV×S×S×S of

6.3. HoloDiffusion method 89

auxiliary features V̄:mno ∈ [−1,1]dV by projecting the 3D coordinate xV
mno of the each

grid element (m,n,o) to every video frame I j, sampling corresponding 2D image

features, and aggregating those into a single dV -dimensional descriptor per grid

element. The 2D image features are extracted by a trainable encoder (we use the

ResNet-32 encoder [43]) E.

Auxiliary denoising diffusion objective. The standard denoising diffusion loss

is unavailable in our case because the data samples V are unavailable. Instead,

we leverage the “x0-formulation” of diffusion to employ an alternative diffusion

objective which does not require knowledge of V . Specifically, we replace with a

photometric loss

Lphoto := ∥rζ (Dθ (V̄t , t),Pj)− I j∥2, (6.1)

which compares the rendering rζ (Dθ (V̄t , t),Pj) of the denoising Dθ (V̄t , t) of the

noised auxiliary grid V̄t to the (known) image I j with pose Pj. The diffusion loss can

be computed because the image I j and camera parameters Pj are known and V̄t is

derived from the auxiliary sample V̄ , whose computation is given in the previous

section.

Train/test denoising discrepancy. Our denoiser Dθ takes as input a sample V̄t from

the noised auxiliary distribution V̄t instead of the noised target distribution Vt . While

this allows to learn the denoising model by minimizing the diffusion loss, it prevents

us from drawing samples from the model at test time. This is because, during training,

Dθ learns to denoise the auxiliary samples V̄ ∈ V̄ (obtained through fusing image

features into a voxel-grid), but at test time we need instead to draw target samples

V ∈ V as specified by the sampling equation per sampling step. We address this

problem by using a bootstrapping technique that we describe next.

Two-pass diffusion bootstrapping. In order to remove the discrepancy between the

training and testing sample distributions for the denoiser Dθ , we first use the latter

to obtain ‘clean’ voxel grids from the training videos during an initial denoising

phase, and then apply a diffusion process to those, finetuning Dθ as a result. Our

bootstrapping procedure rests on the assumption that once Lphoto is minimized, the

denoisings Dθ (V̄t , t) of the auxiliary grids V̄ ∼ V̄ follow the clean data distribution

6.3. HoloDiffusion method 90

Viewpoint change
0∘ 60∘ 120∘ 180∘ 240∘ 300∘ 360∘

HoloDiffusion

pi-GAN

Figure 6.5: View consistency. Evaluation of the consistency of the shape renders under
camera motion. While our results (top) remain consistent, pi-GAN [116]’s re-
sults (bottom) suffer from significant appearance variations across view changes.

V , i.e., , Dθ⋆(V̄t , t)∼ V for the optimal denoiser parameters θ ⋆ that minimize Lphoto.

Simply put, the denoiser Dθ learns to denoise both the diffusion noise and the noise

resulting from imperfect reconstructions. Note that our assumption Dθ⋆(V̄t , t)∼ V is

reasonable since recent single-scene neural rendering methods [34, 63, 209] have

demonstrated successful recovery of high-quality 3D shapes solely by optimizing

the photometric loss via differentiable rendering. Given that Dθ⋆ is now capable of

generating clean data samples, we can expose it to the noised version of the clean

samples V by executing a second denoising pass in a recurrent manner. To this end,

6.3. HoloDiffusion method 91

we define the bootstrapped photometric loss L′
photo:

L′
photo := ∥rζ (Dθ (εt ′(Dθ (V̄t , t), t ′),Pj)− I j∥2 (6.2)

with εt ′(Z) ∼ N (
√

ᾱt ′Z,(1− ᾱt ′)I) denoting the diffusion of input grid Z at time

t ′. Intuitively, the two pass bootstrapping equation evaluates the photometric error

between the ground truth image I and the rendering of the doubly-denoised grid

Dθ (εt ′(Dθ (V̄t , t), t ′)).

6.3.3 Implementation Details

Training details. HoloDiffusion training finds the optimal model parameters θ ,ζ

by minimizing the sum of the photometric and the bootstrapped photometric losses

Lphoto +L′
photo using the Adam optimizer with an initial learning rate 5 ·10−5 (de-

caying ten-fold whenever the total loss plateaus) until convergence is reached. In

each training iteration, we randomly sample 10 source views {I j} from a randomly

selected training video si to form the grid of auxiliary features V̄ . The auxiliary

features are noised to form V̄t and later denoised with Dθ (V̄t). Afterwards Dθ (V̄t) is

noised and denoised again during the two-pass bootstrap procedure. To avoid two

rendering passes in each training iteration (one for Lphoto and the second for L′
photo),

we randomly choose to optimize the L′
photo with 50-50 probability in each iteration

as a lazy regularization. The photometric losses compare renders rζ (·,Pj) of the

denoised voxel grid to 3 target views (different from the source views).

Rendering function rζ . The differentiable rendering function rζ (V,Pj) uses

Emission-Absorption (EA) ray marching as follows. First, given the knowl-

edge of the camera parameters Pj, a ray ru ∈ S2 is emitted from each pixel

u ∈ {0, . . . ,H − 1} × {0, . . . ,W − 1} of the rendered image Î j ∈ R3×H×W . We

sample NS 3D points (pi)
NS
i=1 on each ray at regular intervals ∆ ∈ R. For each

point pi, we sample the corresponding voxel grid feature V [pi] ∈ RdV
, where V [·]

stands for trilinear interpolation. The feature V [pi] is then decoded by an MLP

as fζ (V [pi],ru) := (σi,ci) with parameters ζ to obtain the density σi ∈ [0,1] and

the RGB color ci ∈ [0,1]3 of each 3D point. The MLP f is designed so that the

6.4. Evaluation 92

Apple Hydrant TeddyBear Donut

4285f4

pi
-G

A
N

EG
3D

G
ET

-3
D

H
ol

oD
iff

us
io

n

Figure 6.6: Comparisons. Samples generated by our HoloDiffusion compared to those by
pi-GAN, EG3D, and GET3D.

color c depends on the ray direction ru while the density σ does not, similar to

NeRF [34]. Finally, EA ray marching renders the ru’s pixel color cru = ∑
NS
i=1 w(pi)ci

as a weighted combination of the sampled colors. The weights are defined as

w(pi) = Ti −Ti+1 where Ti = e−∑
i−1
1 σi∆.

6.4 Evaluation
In this section, we evaluate our method. First we perform the quantitative evaluation

and then follow it by visualizing samples for assessing the quality of generations.

Datasets and baselines. For our experiments, we use CO3Dv2 [76], which is cur-

rently the largest available dataset of fly-around real-life videos of object categories.

The dataset contains videos of different object categories and each video makes a

complete circle around the object, showing all sides of it. Furthermore, camera poses

and object foreground masks are provided with the dataset (they were obtained by the

authors by running off-the-shelf Structure-from-Motion and instance segmentation

software, respectively).

6.4. Evaluation 93

We consider the four categories Apple, Hydrant, TeddyBear and Donut for

our experiments. For each of the categories we train a single model on the 500 “train”

videos (i.e. approx. 500×100 frames in total) with the highest camera cloud quality

score, as defined in the CO3Dv2 annotations, in order to ensure clean ground-truth

camera pose information. We note that all trainings were done on 2-to-8 V100 32GB

GPUs for 2 weeks.

We consider the prior works pi-GAN [116], EG3D [169], and GET3D [172] as

baselines for comparison. Pi-GAN generates radiance fields represented by MLPs

and is trained using an adversarial objective. Similar to our setting, they only use

2D image supervision for training. EG3D [169] uses the feature triplane, decoded

by an MLP as the underlying representation, while needing both the images and the

camera poses as input to the training procedure. GET3D [172] is another GAN-based

baseline, which also requires the images and camera poses for training. Apart from

this, GET3D also requires the fg/bg masks for training; which we supply in form

of the masks available in CO3Dv2. Since GET3D applies a Deformable Marching

Tetrahedra step in the pipeline, the samples generated by them are in the form of

textured meshes.

Table 6.1: Quantitative evaluation. FID and KID on 4 classes of CO3Dv2 comparing our
HoloDiffusion with the baselines pi-GAN [116], EG3D [169], GET3D [172], and
the non-bootstrapped version of our HoloDiffusion. The column “VP” denotes
whether renders of a method are 3D view-consistent or not.

method VP Apple Hydrant TeddyBear Donut Mean

FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓

pi-GAN [116] ✕ 49.3 0.042 92.1 0.080 125.8 0.118 99.4 0.069 91.7 0.077
EG3D [169] ✓ 170.5 0.203 229.5 0.253 236.1 0.239 222.3 0.237 214.6 0.233
GET3D [172] ✓ 179.1 0.190 303.3 0.380 244.5 0.280 209.9 0.230 234.2 0.270
HoloDiffusion (No bootstrap) ✓ 342.9 0.400 277.9 0.305 222.1 0.217 272.1 0.199 278.7 0.280
HoloDiffusion ✓ 94.5 0.095 100.5 0.079 109.2 0.106 115.4 0.085 104.9 0.091

Quantitative evaluation. We report Frechet Inception Distance (FID) [210], and

Kernel Inception Distance (KID) [211] for assessing the generative quality of our

results. As shown in quantitave evaluation table, our HoloDiffusion produces better

scores than EG3D and GET3D. Although pi-GAN gets better scores than ours

on some categories, we note that the 3D-agnostic training procedure of pi-GAN

cannot recover the proper 3D structure of the unaligned shapes of CO3Dv2. Thus,

6.5. Limitations 94

time t
1000 750 500 250 0

Figure 6.7: Sampling across time. Rendering of HoloDiffusion’s iterative sampling
process for a hydrant and a teddy bear. The diffusion time decreases from left
(t = T = 1000) to the right (t = 0).

without the 3D-view consistency, the 3D neural fields (MLPs) produced by pi-GAN

essentially mimic a 2D image GAN.

Qualitative evaluation. Figure 6.6 depicts random samples generated from all the

methods under comparison. HoloDiffusion produces the most appealing, consistent

and realistic samples among all. Figure 6.6 further analyzes the viewpoint consis-

tency of pi-GAN compared to ours. It is evident that, although individual views of pi-

GAN samples look realistic, their appearance is inconsistent with the change of view-

point. Please refer to the project webpage at https://holodiffusion.github.io

for more examples and videos of the generated samples.

6.5 Limitations
At present, our method requires access to camera information at training time. One

possibility is to jointly train a viewpoint estimator to pose the input images, but the

challenge may be to train this module from scratch as the input view distribution is

unlikely to be uniform [212]. An obvious next challenge would be to test the setup for

conditional generation, either based on images (i.e., single view reconstruction task)

or using text guidance. Beyond generation, we would also like to support editing the

generated representations, both in terms of shape and appearance, and compose them

together towards scene generation. Finally, we want to explore multi-class training

where diffusion models, unlike their GAN counterparts, are known to excel without

suffering from mode collapse.

https://holodiffusion.github.io

6.6. Summary 95

6.6 Summary
We have presented HoloDiffusion, an unconditional 3D-consistent generative diffu-

sion model that can be trained using only posed-image supervision. At the core of

our method is a learnable rendering module that is trained in conjunction with the

diffusion denoiser, which operates directly in the feature space. Furthermore, we use

a pretrained feature encoder to decouple the cubic volumetric memory complexity

from the final image rendering resolution. We demonstrate that the method can

be trained on raw posed image sets, even in the few-image setting, striking a good

balance between quality and diversity of results.

Our method primarily contributes towards the generative modeling of 3D real-

captured assets. Thus as is the case with 2D generative models, ours is also prone

to misuse of generated synthetic media. In the context of synthetically generated

images, our method could potentially be used to make fake 3D view-consistent

GIFs or videos. Since we only train our models on the virtually harmless Co3D

(Common objects in 3D) dataset, our released models could not be directly used to

infer potentially malicious samples. As diffusion models can be prone to memorizing

the training data in limited data settings [213], our models can also be used to recover

the original training samples. Analyzing the severity and the extent to which our

models suffer from this, is an interesting future direction for exploration.

Chapter 7

HoloFusion: Towards Photo-realistic

3D Generative Modeling

7.1 Background and Contributions
We successfully proposed a method in HoloDiffusion [70] (chapter 6) that can train

a 3D diffusion model using only multi-view 2D images as supervision. It produced

decent quality 3D view-consistent results, but one of the issues with the approach

was visual quality of the samples. Since we aimed to obtain photo-realistic 3D

samples using generative modelling on this research journey, we decided to focus on

the sample quality aspect of the proposed HoloDiffusion pipeline. Thus, in short, the

main goal of this research project was to find an answer to the question: “can we

improve the quality of the HoloDiffusion generated samples to photo-realistic level?”.

We detail various aspects of finding the answer to this question in this chapter. Our

proposed solution HoloFusion applies a 3D-2D hybrid diffusion based approach that

can produce almost photo-realistic 3D samples while still only requiring mutli-view

2D images as supervision. In order to continue working on this project, I joined the

same team at Meta as a visiting researcher along side my PhD fellowship.

I contributed most of the main ideas, the code and the experimentation of

this project. David again helped quite a bit with the compute-clusters to run these

experiments and also squashed some key bugs in the code that allowed to obtain

the photo-realistic results that we showcase in the project. Niloy and Andrea, as

7.2. Introduction 97

High-quality 3D shape

D
is

til
la

tio
n

lo
ss

HoloDiffusion samples HoloFusion high quality samplesDistillation

EA Rendering

Figure 7.1: We propose HoloFusion to generate photo-realistic 3D radiance fields by ex-
tending the HoloDiffusion method with a jointly trained 2D ‘super resolution’
network. The independently super-resolved images are fused back into the 3D
representation to improve the fidelity of the 3D model via distillation, while
preserving the consistency across view changes.

usual provided important insights in the research discussions and contributed to the

drafting, presentation and dissemination of the paper.

7.2 Introduction
Diffusion-based image generators can now produce high-quality and diverse samples,

but their success has yet to fully translate to 3D generation: existing diffusion

methods can either generate low-resolution but 3D consistent outputs, or detailed 2D

views of 3D objects but with potential structural defects and lacking view consistency

or realism. We present HoloFusion, a method that combines the best of these

approaches to produce high-fidelity, plausible, and diverse 3D samples while learning

from a collection of multi-view 2D images only. The method first generates coarse

3D samples using a variant of the recently proposed HoloDiffusion generator. Then,

it independently renders and upsamples a large number of views of the coarse 3D

model, super-resolves them to add detail, and distills those into a single, high-fidelity

implicit 3D representation, which also ensures view-consistency of the final renders.

The super-resolution network is trained as an integral part of HoloFusion, end-to-

end, and the final distillation uses a new sampling scheme to capture the space of

super-resolved signals. We compare our method against existing baselines, including

7.2. Introduction 98

DreamFusion, Get3D, EG3D, and HoloDiffusion, and achieve, to the best of our

knowledge, the most realistic results on the challenging CO3Dv2 dataset.

Diffusion models [177, 81, 12] are at the basis of state-of-the-art 2D image

generators which can now produce very high-quality and diverse outputs. However,

their success has yet to be translated to 3D and there is no generator that can produce

3D assets of a comparable quality.

Recent attempts at extending diffusion to 3D generation have reported mixed

success. Some authors have attempted to apply diffusion directly in 3D [70], or still

in 2D but using a 3D-aware neural network [179, 214]. This requires solving two

problems: first, finding a suitable 3D representation (e.g., triplane features [169],

mesh [178], voxels [70]) that scales well with resolution and is amenable to diffu-

sion; and, second, obtaining a large amount of 3D training data, for example using

synthetic models [184, 185], or training the model using only 2D images [70], often

via differentiable (volume) rendering [97, 34]. However, the quality of results so far

is limited, especially when training on real images.

Other authors have proposed to distill 3D objects from pre-trained 2D image

generators. For instance Score Distillation Sampling (SDS) [26] can sample 3D

objects from a high-quality off-the-shelf 2D diffusion model while requiring no

(re)training. However, without any 3D guidance, distillation methods often produce

implausible results; for example, they suffer from the ‘Janus effect’, where details

of the front of the object are replicated on its back. They also create overly-smooth

outputs that average out inconsistencies arising from the fact that the signal obtained

from the 2D model is analogous to sampling independent views of the object for

examples). Furthermore, distillation methods do not support unconditional sampling,

even if the underlying image generator does, as strong language guidance is required

to stabilise the 3D reconstruction.

In this work, we propose HoloFusion, a method that combines the best of both

approaches. We start from HoloDiffusion [70], a diffusion-based 3D generator. This

model can be trained using only a multiview image dataset like [76] Co3Dv2 and

produces outputs that are 3D consistent. However, the output resolution is limited

7.3. HoloFusion method 99

by computation and memory. We augment the base model with a lightweight super-

resolution network that upscales the initial renders. Crucially, the 2D super-resolution

model is integrated and trained jointly with the 3D generator, end-to-end.

The super-resolution network outputs detailed views of the 3D object, and the

underlying 3D generator ensures that the coarse structure of these views is indeed

consistent (e.g., , avoiding the Janus effect and other structural artifacts). However,

the 2D upscaling still progresses independently for different views, which means that

fine grained details may still be inconsistent between views. We address this issue

by distilling a single, coherent, high quality 3D model of the object from the output

of the upsampler. For this, we propose a new distillation technique that efficiently

combines several putative super-resolved views of the object into a single, coherent

3D reconstruction.

With this, we are able to train a high-quality 3D generator model purely from

real 2D data. This model is capable of generating consistent and detailed 3D objects,

which in turn result in view-consistent renderings at a quality not achievable by

prior methods. We evaluate HoloFusion on real images (CO3Dv2 dataset [76])

and compare with a variety of competing alternatives (e.g., , HoloDiffusion [70],

Get3D [172], EG3D [169], DreamFusion [27]) demonstrating that view-consistent

high-quality 3D generation is possible using our simple, effective, easy-to-implement

hybrid approach.

7.3 HoloFusion method
We present HoloFusion, a method that can learn a high-quality diffusion-based 3D

generator from a collection of multiview 2D images. HoloFusion first obtains an

unconditional low-resolution 3D sample using diffusion and then distills a high-

resolution 3D radiance field representing a higher-quality version of the generated

object. We first discuss the low-resolution 3D generator in section 7.3.1 followed by

super-resolution distillation in section 7.3.2.

7.3. HoloFusion method 100

Neural renderer
Channelwise concatenation

HoloDiffusion
Denoiser

Unprojected
features

3D noise Feature grid

2D noise

Upsampled render

2D Upsampling
Denoiser

Ground truth

Ground truth

Low-res render

Camera

Figure 7.2: Overview. HoloFusion, which trains the 3D denoiser network Dθ , is augmented
with the 2D ‘super-resolution’ diffusion model Dβ . Both models are trained
end-to-end by supervising their outputs with 2D photometric error.

7.3.1 HoloDiffusion revisited

Given a large dataset of 3D models, the framework of DDPM [80] could be used

to train a corresponding probability distribution. However, such a dataset is not

available, and we must instead learn from 2D images of physical 3D objects. Given

a dataset containing several views of a large number of objects, we could use image-

based reconstruction (e.g., , using neural rendering) to obtain corresponding 3D

models first, and then use those to train a diffusion model. Instead, we adopt, and

slightly upgrade, the HoloDiffusion method [70], which learns a 3D diffusion model

directly from the 2D images.

Training data. HoloDiffusion learns from a collection D of N image sequences

si = (Ii
j,C

i
j)

Nframe
j=1 , i = 1, . . . ,N, where frame Ii

j ∈ R3×H×W is an RGB image and

Ci
j ∈ R4×4 is the corresponding camera projection matrix, collectively defining the

motion of the camera.

3D representation and rendering. The shape and appearance of the object are rep-

resented by a voxel grid V ∈Rd×S×S×S with resolution S containing a d-dimensional

feature vector per voxel. Given a 3D point p ∈ R3, its opacity σ(p) ∈ R+ and color

c(p) ∈ R3
[0,1] are obtained from the voxel grid by an MLP Mη(V (p)) that takes as

input the d-dimensional feature vector V (p) extracted form the grid via trilinear

7.3. HoloFusion method 101

interpolation [120]. The usual emission-absorption model [34, 72] is then used to

implement a differentiable rendering function Rη , mapping the voxel grid V and the

camera viewpoint C into an image Î = Rη(V,C), where η are the parameters of the

MLP.

Training scheme. HoloDiffusion leverages the DDPM framework (revised in the

previous paragraphs) to recover the density p(V) over voxel grids x =V encoding

plausible real-life objects. In order to train a DDPM on such 3D data, we would

need access to ground-truth 3D models V , which are not available. HoloDiffusion

addresses this problem by making three changes to DDPM.

First, it replaces the data denoising loss with a photometric reconstruction loss.

Given a pair (I,C) ∈ s from one of the training sequences s, it replaces the denoising

model objective with Et,ε,C
[
∥I −Rη(Dθ (ε̂t(V), t),C)∥2] where the goal is not to

reconstruct the ‘clean’ volume V (which is unknown), but rather its image I (which

is known).

Second, also because the ‘clean’ volume V is not available, we cannot use

the traditional sampling equation to generate the noisy volumes Vt to denoise; the

only exception is the last sample VT , which is pure noise. This suggests to adopt

a ‘double denoising’ step. First, pure noise VT is fed into the denoiser to obtain

an (approximate) version of V0 = Dθ (VT ,T) of the clean volume V0 = V . Then,

noise is applied to obtain Vt = ε̂t(V0) =
√

ᾱTV0 +
√

1− ᾱtεt according to traditional

sampling equation, and the latter is fed back into the denoiser as above.

Finally, there is the issue that unconditional generation of the clean volume

V0 from pure noise VT is difficult, especially in the first iterations of training. On

the other hand, the problem of view-conditioned generation is considerably easier.

Hence, the third idea is to learn a conditional generator, using a variable number of

input views. Specifically, given a training sequence s, the method extracts a random

subset of frames s̄ ⊂ s (which could be empty, which corresponds to unconditional

generation). Then, a feature volume V̄ = Φ(s̄) ∈ Rd×S×S×S is obtained from the

selected frames. This extracts 2D image features using a pre-trained and frozen 2D

image encoder and then pools them in 3D via ‘unprojection’ [125, 208] into V̄ , where

7.3. HoloFusion method 102

V̄ = 0 if s̄ is empty. Finally, these pooled features are used to condition the denoising

network V0 = Dθ (VT ,V̄ ,T), which, on average, leads to a simpler reconstruction

problem.

Putting it all together, the training loss becomes:

L(θ |I,C, s̄) = Et,ε̂,VT

[
∥Î − I∥2] , (7.1)

where Î = Rη(Dθ (Vt ,V̄ , t),C), (7.2)

Vt = ε̂t(V0),

V0 = Dθ (VT ,V̄ ,T),

V̄ = Φ(s̄).

This loss is averaged over training sequences s, subsequences s̄ ⊂ s, and views

(I,C) ∈ s therein. Note that this is slightly different than the original HoloDiffusion,

where feature volume V̄ and reconstructed volumes Vt overlap as arguments of the

denoiser; we found that keeping them separated in the formulation leads to more

stable training and additionally allows for view-conditioned generation.

7.3.2 HoloFusion

The method of section 7.3.1 learns to generate 3D objects from 2D image supervision

only, but the fidelity of the output is limited by the resolution at which the operations

are carried out. Increasing resolution is difficult due to the GPU memory impact

of the voxel-based representation, so we seek a more efficient way to do so. The

idea is to incorporate a 2D super-resolution network (section 7.3.2.1), trained end-

to-end, that improves the output from the base model. The super-resolved images

are eventually fused back in an improved 3D model, which also has the benefit of

further increasing view consistency (section 7.3.2.2).

7.3.2.1 Integrating super-resolution

As shown in figure 7.2, we augment the method of section 7.3.1 with a lightweight

refinement post-processor network that takes the 2D image Î generated by the base

model and outputs a higher quality version Îsuper of the same. This can be thought

7.3. HoloFusion method 103

of as a form of super-resolution; however, due to the particular statistics of the

input (‘low-res’) images Î that HoloDiffusion generates, it is necessary to train this

super-resolution network in an end-to-end fashion with HoloDiffusion, integrating

the two models.

To make this integration seamless, we formulate super-resolution as another

diffusion process that runs ‘in parallel’ with 3D reconstruction. Hence, the super-

resolved image Îsuper = Dβ (It , Î, t) is the output of a denoiser network (a lightweight

U-Net), which takes as input the noised target image It = ε̂t(I) and is also conditioned

on the ‘low-res’ output Î = Rη(V,C) of HoloDiffusion from equation 7.2. This

denoiser is trained with the DDPM loss:

L(β |I) = Et,ε̂
[
∥Dβ (ε̂t(I), Î, t)− I∥2] . (7.3)

Training details The overall model (Dβ and Dθ) is trained end-to-end by optimising

the loss L(θ |I,C, s̄)+L(β |I) obtained by summing the respective equations.

As training data, we use a large dataset of images capturing object-centric scenes

([76]). In each training batch, we pick a random training scene s and sample 15

different source images s̄src ⊂ s which are unprojected to generate the feature volume

conditioning V̄ . Then, V̄ is rendered into 4 random target views s̄tgt ⊂ (s\ s̄src) which

allows to optimize the training image reconstruction loss L(θ |I,C, s̄)+L(β |I). The

latter uses the Adam optimizer with an initial learning rate of 5 · 10−5 decaying

tenfold whenever the loss plateaus until convergence.

7.3.2.2 Fusing super-resolved views in 3D

The method of section 7.3.2.1 leaves us with high-resolution views Îsuper of the

generated 3D object. However, we would like to obtain a single, high-quality 3D

model, not just individual views of it. In this section, we discuss how to take the

super-resolved images and fuse them into such a model, while addressing the issues

that these images are not perfectly view-consistent.

The basic idea is simple. We can generate a certain number (e.g., 100) high-

resolution images of the object from different viewpoints C and then use a technique,

7.3. HoloFusion method 104

Best Match

Patch-based
photometric error

Neural renderer
Super resolution (2D)

Patch remix

Figure 7.3: Distillation. HoloFusion distills a single high-resolution voxel grid V H
0 by

minimizing a top-k patch-remix loss Ldistil between the grid renders Rη ′(V H
0 ,C)

and a bank IC of K = 5 high-res images output by the 2D diffusion upsampler
Dβ for each scene camera C.

akin to neural rendering, to fuse them back into a single 3D model. However, there is

a problem with this idea: The model of section 7.3.2.1 generates high-quality views

Isuper, but these are view-dependent samples from the distribution p(Îsuper|Î) where

Î = Rη(V,C) is the ‘low-res’ output form HoloDiffusion. Because super-resolving

details is intrinsically ambiguous, there is no reason why samples Isuper taken from

different viewpoints C would be consistent (figure 7.7). Fusing them into a single

3D model would then result in a blurry appearance yet again.

As described in figure 7.3, we address this issue in a principled manner by con-

sidering several possible super-resolved images IC = {Isuper ∼ p(Îsuper|Î)} sampled

from each given viewpoint C. Then, we optimize a high-resolution voxel grid V H
0 by

minimizing the photometric loss:

Ldistil(η
′,V H

0 |IC) = EC

[
min

Isuper∈IC
∥Isuper −Rη ′(V H

0 ,C)∥2
]

(7.4)

where Rη ′(V H
0 ,C) is the render of a high-resolution voxel grid V H

0 ∈Rd×S′×S′×S′ ,S′>

S using the learnable renderer Rη ′ with scene specific parameters η ′. Minimizing

7.3. HoloFusion method 105

π-
G
A
N

D
re

am
Fu

si
on

H
ol

oD
iff

us
io

n
H

ol
oD

iff
us

io
n*

H
ol

oF
us

io
n

0° 36° 72° 108° 144° 180°

Figure 7.4: Generated 3D samples visualized from a moving camera. π-GAN and
HoloDiffusion∗ fail to produce 3D view consistent samples, while DreamFusion
suffers from the “Janus” problem (multiple heads).

with respect to Isuper means that the 3D model must be consistent with at least one of

the possible super-resolved images, drawn from the distribution of super-resolved

samples, for each view C.

Patch remix. In practice, this approach requires a very large number of super re-

solved images IC to be effective. We found that we can significantly improve the

statistical efficiency by performing the minimization at the level of individual patches.

Namely, we produce a stack of only K = |IC|= 5 super resolved images and perform

the minimization in equation 7.4 at the level of small 16×16 patches independently

(effectively allowing super-resolved images to ‘remix’ as needed to fit the generated

view Rη ′(V H
0 ,C)).

Distillation details. Ldistil is optimized independently for each generated scene with

Adam (lr=2 ·10−4) for 25K steps until convergence. While η ′ is initialized using

7.4. Evaluation 106

the pretrained multi-sequence weights η , V H
0 is initialized by trilinearly upsampling

the low-resolution volume V0 output by HoloDiffusion. Cameras C are sampled at

uniform azimuths with elevation fixed at object’s equator.

7.4 Evaluation
We begin with a description of the experiments conducted in subsection 7.4.1,

followed by an analysis and discussion of the results in subsection 7.4.2.

7.4.1 Details

Dataset. We experiment on the challenging large-scale Co3Dv2 [76] dataset which

is a popular choice for a real-world 3D reconstruction benchmark. More specifically,

4 categories are selected, Apple, Hydrant, TeddyBear, and Donut, with 500 3D-

scenes per category for training. Each 3D scene contains ∼ 200 images of the object

of interest along with poses of their corresponding cameras.

Baselines. We use two sets of baselines for comparison (table 7.1): (i) general 3D

generative modeling baselines and (ii) diffusion distillation based baselines. π-

GAN [116], EG3D [169], GET3D [172], and HoloDiffusion [70] are considered

as the 3D generative baselines. Along with HoloDiffusion, we also test the super-

M
SE

SD
S

O
ur

s

Figure 7.5: Fusing views. Our patch-remix (section 7.3.2.2) compared to the SDS and
MSE distillation. MSE has “floaters” and viewpoint inconsistencies, SDS over-
smooths the texture. Ours is robust and produces superior quality.

7.4. Evaluation 107

Apple Hydrant TeddyBear Donut

4285f4

π-
G
A
N

EG
3D

G
ET

-3
D

D
re
am

Fu
si
on

H
ol
oD

iff
us
io
n

H
ol
oD

iff
us
io
n*

H
ol
oF
us
io
n

Figure 7.6: 3D samples generated by our HoloFusion compared to π-GAN, EG3D, GET3D,
HoloDiffusion, HoloDiffusion∗, and the text-to-3D Stable-DreamFusion.

resolution integrated model HoloDiffusion∗. For the distillation-based baselines,

we consider the open-source implementation of DreamFusion [26] titled Stable-

DreamFusion [27]. For the latter, scenes are generated by conditioning on prompts

comprising names of Co3Dv2 categories extended with color and style modifier

phrases leading to ∼200 prompts / 3D shapes per class. More details regarding the

prompt creation are in the supplementary.

7.4. Evaluation 108

Table 7.1: FID (↓) and KID (↓) on 4 classes of Co3Dv2 [76]. We compare with 3D gen-
erative modeling baselines (rows 1–5); with an SDS distillation-based Stable-
DreamFusion (row 6); and with ablations of our HoloFusion (rows 7–8). The
column “VP” denotes whether renders of a method are 3D view-consistent or not.

method VP Apple Hydrant TeddyBear Donut Mean

FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓

π-GAN [116] ✕ 49.3 0.042 92.1 0.080 125.8 0.118 99.4 0.069 91.7 0.077
EG3D [169] ✓ 170.5 0.203 229.5 0.253 236.1 0.239 222.3 0.237 214.6 0.233
GET3D [172] ✓ 179.1 0.190 303.3 0.380 244.5 0.280 209.9 0.230 234.2 0.270
HoloDiffusion [70] ✓ 94.5 0.095 100.5 0.079 109.2 0.106 115.4 0.085 122.5 0.102
HoloDiffusion∗ ✕ 55.9 0.045 62.6 0.045 116.6 0.101 99.6 0.079 83.7 0.068

Stable-DreamFusion [27] ✓ 139.0 0.104 185.2 0.132 183.4 0.125 169.3 0.114 169.2 0.119

HoloFusion (MSE) ✕ 72.7 0.067 62.2 0.045 87.2 0.076 109.0 0.099 82.8 0.072
HoloFusion (SDS) ✓ 123.0 0.105 77.1 0.058 117.8 0.090 142.8 0.087 115.2 0.085

HoloFusion (Ours) ✓ 69.2 0.063 66.8 0.047 87.6 0.075 109.7 0.098 83.3 0.071

Metrics. We use FID [210] and KID [211] to compare the quality of our 2D renders,

as these are commonly used to assess 2D and 3D generators.

7.4.2 Quantitative and qualitative analysis

Table 7.1 evaluates quantitatively while Figure 7.6 qualitatively. Furthermore, Fig-

ure 7.4 compares rendering view-consistency.

HoloFusion (Ours) yields better FID/KID scores than the general 3D generative

baselines except for π-GAN on Apple and Donut classes. However, since π-GAN

does not guarantee view consistency by design, it essentially acts as a 2D image

GAN, and thus does better on the 2D FID/KID metrics, but it generates significantly

view-inconsistent renders (see figure 7.4 and the supplementary webpage at https:

//holodiffusion.github.io/holofusion/).

We observed that the other 3D-GAN baselines, EG3D and GET3D, are prone to

collapsing to a single adversarial sample leading to poor FID/KID scores. The latter

is probably due to the 3D misalignment of the CO3Dv2 sequences across instances,

which makes training harder.

HoloFusion also outperforms the text-to-3D Stable-DreamFusion on both

FID/KID. Stable-DreamFusion yields good shapes, but produces synthetic-looking

and overly-smooth textures and thus performs poorly when compared to the real-

world images of Co3Dv2. As evident from the TeddyBear samples, the method also

https://holodiffusion.github.io/holofusion/
https://holodiffusion.github.io/holofusion/

7.4. Evaluation 109

Te
dd

yB
ea

r
H

yd
ra

nt
A

pp
le

D
on

ut

N
orm

alized std

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.7: Heatmaps illustrating the per-pixel color variance of K = 10 hypothesis pro-
duced by the upsampler Dβ . Some samples contain artifacts around the object
boundaries which correspond to the high-variance regions in the figure. Our
top-K patch-remix increases robustness by allowing the loss to discard such
artifacts during distillation.

suffers from the “Janus” issue.

Compared to HoloDiffusion, we improve the FID/KID scores by a significant

margin, mainly due to the more photo-realistic renders that include high-frequency

details. Although the 2D Diffusion upsampler of HoloDiffusion∗ produces renders

with the highest amount of details yielding scores similar to ours, they are not 3D

view-consistent (as apparent from figure 7.4 and as explained in section 7.3.2).

Ablations. In table 7.1 and in figure 7.5 we ablate components of our HoloFusion to

verify their contribution.

The first variant, HoloFusion (SDS), replaces the Top-k patch-remixed distil-

lation loss with the score distillation sampling (SDS) gradient as proposed in [26].

As apparent from figure 7.5 and from the lower scores, SDS washes out all the

high-frequency details in the textures.

Secondly, HoloFusion (MSE) reduces the number of upsampling hypotheses I

7.5. Limitations 110

to the minimum of |I|= 1. Even though this slightly improves the 2D metrics, as can

be seen from figure 7.5, the samples lack view-consistency and introduce “floaters”.

In figure 7.7 we further illustrate the variability of the upsampling hypotheses.

7.5 Limitations
Our method suffers from limitations that can be addressed in future work. First, our

method is slow to sample from as the sampling process takes about 30 mins for each

generation, because it is still a distillation-based method. An interesting extension

would be to train another network to directly distill a set of super-resolved images,

without requiring explicit optimization during inference. Second, we do not produce

an explicit surface representation (e.g., a mesh), which could be done by integrating

a differentiable mesh render in the loop as done in some prior work.

7.6 Summary
We have presented a hybrid diffusion-based method that can generate high-quality 3D

neural radiance fields of real-life object categories. Our method starts by producing

coarse 3D models whose renders are independently super-resolved, and finally

consolidated using a robust distillation process. We evaluated our method on the

Co3D v2 dataset and presented 3D-consistent, diverse, and high-quality results

superior to all competing baselines.

Chapter 8

GOEmbed: Representation Agnostic

3D Feature Learning

8.1 Background and Contributions
We successfully pushed the frontier of 3D generative modelling to a method that

can produce almost photo-realistic 3D samples while only requiring multi-view 2D

images for supervision in HoloFusion [71] (chapter 7). Moving forward, we analyzed

the proposed HoloFusion pipeline and found that there is scope for improving the

computational efficiency, while noting that exercising frugality in the computational

budget is quite important for our research agenda. Firstly, the proposed pipeline has

two stages, of which, the second fine-tuning optimization stage is quite computa-

tionally expensive. And secondly, the use of feature-voxel-grids adds quite a lot of

redundant computations in free-space. Interestingly, focusing more on the second

phenomenon, we find that if the method could use a more compact 3D representation

such as Triplanes [169, 209], then we could use a bigger first stage backbone network

to predict the Triplanes, making the second finetuning stage obsolete. Thus replacing

feature-voxel-grids with Triplanes could solve two problems in one go. However, the

operation where we encode 2D views into an approximate 3D representation at the

beginning of the HoloFusion pipeline is far from being trivial to adapt to Triplanes

maintaining a robust feature flow in the pipeline. While doing this encoding for other

3D neural representations such as Hash-grids and MLPs is seemingly impossible. It

8.2. Introduction 112

turned out that the solution for 2D views to Triplane encoding that I invented was

much more general, allowing for not only Hash-grids, and MLPs, but any arbitrary

3D representation that may be proposed in the future as well. In this chapter, we

describe this problem and this intriguing solution proposed by us in great details.

I worked on this project almost autonomously while receiving timely advice

from David, Niloy, and Andrea. Roman and Tom are also authors on this publication

because I used some of the code they had developed internally at Meta.

8.2 Introduction
Encoding information from 2D views of an object into a 3D representation is crucial

for generalized 3D feature extraction and learning. Such features then enable various

3D applications, including reconstruction and generation. We propose GOEmbed:

Gradient Origin Embeddings that encodes input 2D images into any 3D represen-

tation, without requiring a pre-trained image feature extractor; unlike typical prior

approaches in which input images are either encoded using 2D features extracted

from large pre-trained models, or customized features are designed to handle differ-

ent 3D representations; or worse, encoders may not yet be available for specialized

3D neural representations such as MLPs and Hash-grids. We extensively evalu-

ate our proposed general-purpose GOEmbed under different experimental settings

on the OmniObject3D benchmark. First, we evaluate how well the mechanism

compares against prior encoding mechanisms on multiple 3D representations using

an illustrative experiment called Plenoptic-Encoding. Second, the efficacy of the

GOEmbed mechanism is further demonstrated by achieving a new SOTA FID of

22.12 on the OmniObject3D generation task using a combination of GOEmbed and

DFM (Diffusion with Forward Models), which we call GOEmbedFusion. Finally,

we evaluate how the GOEmbed mechanism bolsters sparse-view 3D reconstruction

pipelines.

The rate of progress in 3D Computer Vision research has risen in the last

decade due to increased interest in various AR (Augmented Reality), VR (Virtual

Reality) and MR (Mixed Reality) applications [56, 55, 68, 215, 216]. Many 3D

8.2. Introduction 113

3D Reconstruction

3D samples

G
O

E
m

bed: G
radient O

rigin E
m

bedding

GOEmbedFusion: GOEmbed based 3D Diffusion with Forward model

origin

poses

source-views

originsource-views

source-views

source-views
origin

origin

Hash-table

Voxel-grid Triplane

MLP

posesposes

poses

Figure 8.1: We propose the GOEmbed (Gradient Origin Embedding) mechanism that
encodes source views (octxt) and camera parameters (φ ctxt) into arbitrary 3D
Radiance-Field representations g(c,d) (sec. 8.3). We show how these general-
purpose GOEmbeddings can be used in the context of 3D DFMs (Diffusion with
Forward Models) (sec. 8.5) and for sparse-view 3D reconstruction (sec. 8.6).

Computer Vision problems are newly being viewed in the light of Deep-Learning

based solutions. The process of encoding the information in 2D images into deep

features over the chosen 3D representation can be found in the Deep-Learning

solutions to almost all these problems, for instance, consider various solutions to

long-standing problems such as MVS (Multi-View Stereo) [105, 125, 126], NVS

(Novel-View Synthesis) or IBR (Image Based Rendering) [31, 217, 108, 109, 218],

and 3D reconstruction [219, 220, 221], as well as to the nascent 3D problems such

as 3D synthesis [70, 222, 223], and 3D distillation [71, 224]. Surprisingly, despite

being such a critical operation, no systematic standalone study of this 2D to 3D

encoding operation exists (to the best of our knowledge).

3D scenes/assets do not have a de-facto data representation, and different

representations are utilized depending upon the requirements of the applications. For

instance, just for representing Radiance Fields of static 3D assets, various neural

8.2. Introduction 114

data representations such as MLPs [34, 107, 33], Triplanes [67, 209], Feature-voxel-

grids [63, 225], Hash-grids [66, 226], as well as non-neural ones like ReLU-Fields

[64], Plenoxels [123], DVGo [65], 3DGS [227] are being utilized in various 3D

applications. Interestingly, none of these is foolproof and each has certain pros-

and-cons. For instance, on the one hand NeRF MLPs can very compactly (∼ 5MB)

represent extensive 3D spatial scenes, but on the other require excessively long times

for training (∼1-2 days) and rendering (∼1-2 mins). Thus, given this disarray around

3D scene representations, it is a key challenge to come up with a 2D-to-3D encoding

method that can: (i) generalize to arbitrary 3D representations, (ii) while being able

to capture maximum information in the 3D features from the 2D images.

Existing methods of encoding can be grouped into two categories. (i) In the

first category, the methods are similar to cost-volume-construction-like approaches

where 2D deep features are extracted from the images, and then these 2D features

are un-projected into the 3D space. On top of the deep-feature extraction network,

this un-projection operation can require predicted depths using off-the-shelf depth-

estimation models [228, 229, 230] for 3D representations such as point-clouds

[231, 102, 232]. For 3D representations such as feature-voxel-grids, per-voxel-costs

in the form of variance of the per-2D-view features implicitly encodes 3D depths but

requires large amount of compute-memory [126, 105]. What is further limiting is that

the un-projection operation, is non-trivial and challenging to extend to specialized

3D neural representations such as MLPs and Hash-grids, and hence the approaches

from this category are mostly limited to only certain 3D representations. (ii) In the

second category, the methods entirely circumvent all forms of 3D inductive biases

and directly inject the 2D features into the problem specific backbone networks.

For example, methods like NeRFformer [76] and LRM [31] use cross-attention to

directly inject 2D features into the 3D sparse-view-reconstruction backbone network.

Apart from the limitation of requiring the memory-heavy cross-attention operation,

given the results of our sparse-view-3D-reconstruction experiments (sec. 8.6), we

hypothesize that these learned-feature-injection approaches may not be learning

sufficient 3D-priors and are specializing only to the domains of training (albeit on

8.3. Method 115

large-scale).

To overcome the aforementioned limitations, we propose GOEmbed: Gradient

Origin Embeddings (fig. 8.1) to encode the information in 2D images into any 3D

representation which exists currently or which will be proposed in the future; as

long as the differentiable render operation can be defined on it. Succinctly, the

GOEmbed defines the 3D embeddings as the gradient of the mean-squared-error

between renders (of the origin 3D representation) and the G.T. 2D views wrt. a

predefined origin over the chosen 3D representation (fig. 8.2 and sec. 8.3). In

most cases (except for MLPs due to symmetry-breaking), a simple zero-feature

initialization is sufficient to define the origin. Apart from the 3D representation

agnostic general-purpose applicability, our GOEmbeddings are light-weight since

they do not require memory-heavy large pretrained 2D feature-extraction networks,

and they try to maximize the information transfer between 2D and 3D. In summary,

our contributions are:

• We propose the GOEmbed as a generalized encoding mechanism of 2D source

views into different 3D representations (sec. 8.3, eq. 8.1).

• We propose a novel 3D diffusion pipeline by combining our GOEmbed with

DFM (Diffusion with Forward Model) to achieve the state-of-the-art score on

the OmniObject3D generation benchmark (sec. 8.5, eq. 8.3 - 8.6).

• We evaluate the efficacy of GOEmbed for extracting different 3D representa-

tions from source images in the illustrative Plenoptic Encoding experiment

(sec. 8.4); and also evaluate its utility in the sparse-view 3D reconstruction

task (sec. 8.6).

8.3 Method

8.3.1 GOEmbed: Gradient Origin Embeddings

Let g(c,d) represent a static 3D scene as a Radiance-Field such that c = [x,y,z]

denotes the 3D coordinates of a point in the Euclidean space, d = [θ ,γ]1 denotes
1We deviate from the more common use of [θ ,φ] for spherical polar coordinates in favour of

[θ ,γ] to avoid confusion with φ ctxt and φ trgt used to denote context and target camera parameters

8.3. Method 116

origin

poses

source-views

Triplane

GOEmbed: Gradient Origin Embedding

Render Backprop

origin with params

poses

source-views

Figure 8.2: GOEmbed illustration. We demonstrate the mechanism here using the Triplane
representation for g(c,d), but note that this can be applied to other representa-
tions as well. The GOEmbed mechanism (eq. 8.1) consists of two steps. First we
render the origin ζ0 from the context-poses φ ctxt; then we compute the gradient
of the MSE between the renders and the source-views octxt wrt. the origin ζ0
which gives us the GOEmbed encodings ζenc.

the spherical polar coordinates of an outgoing direction from the point, and the

function g : R5 → R4 maps each 3D coordinate and a particular outgoing direction

to four values (σ ,R,G,B). Here, σ represents density and [R,G,B] represents the

outgoing radiance. Let R(g,φ) denote the rendering functional that converts the

Radiance-Field function into an image of a certain resolution from a certain camera

viewpoint, as described by the camera parameters φ . We use the differentiable

Emission-Absorption Volume Raymarching algorithm for rendering [34, 72]. For the

encoding mechanism to be unified and general-purpose, it must have the following

three properties:

(i) It should be able to encode one or more views alike.

(ii) It should generalize to any parameterization/realization of the function g, i.e.,

the encoding mechanism should be applicable irrespective of whether the

Radiance-Field is represented as an MLP [34], a Hash-grid [66], a Triplane

[67, 184], or a Voxel-grid [64, 123, 65].

(iii) It should try to maximize the information transfer from the 2D views to the

respectively.

8.3. Method 117

3D embedding.

We introduce the Gradient Origin Embeddings, where we define the encoding of

the observations (2D views) as the gradient of the mean-squared error between the

rendered and ground truth 2D views with respect to a predefined origin (zero vector

or features) 3D representation.

Without any loss of generality, assuming that ζ are the parameters of the g

function (i.e., the features/weights of the 3D Radiance-Field) and ζ0 denotes the

origin (zero features/weights), we define the encodings ζenc as (fig. 8.2):

ζenc := GOEmbed(g,octxt,φ ctxt)

:=−∇ζ0
||octxt −R(g(c,d;ζ0),φ

ctxt)||22 (8.1)

where, octxt and φ ctxt are the G.T. 2D views and their camera parameters, respec-

tively, which are to be encoded into the 3D representation ζenc. Note that the

proposed encoding function GOEmbed backpropagates through the differentiable

rendering functional R. By construction, such an encoding satisfies the formerly

stated properties (i) and (ii). Further, we minimize the loss function

LGOEmbed(octxt,otrgt) := ||octxt − ôctxt||22 + ||otrgt − ôtrgt||22
where, ô =R(g(c,d;ζenc),φ), (8.2)

for maximizing the information content in the encodings ζenc to satisfy property (iii).

Here, φ ctxt are the context views used for encoding while φ trgt are some target views

of the same scene but different from the source ones. Intuitively, we repurpose the

backward pass of the rendering functional to encode the information in the source

views octxt into the parameters of the 3D scene representation ζ . Thus, as long as

a mathematically differentiable rendering operator is possible on it, any 3D scene

representation can be encoded using our GOEmbed encoder.

8.4. Plenoptic Encoding 118

8.3.2 Experimental Evaluation Rubric

We evaluate the generality of GOEmbed mechanism along three axes: firstly, to

measure the information transfer, we run experiments in a Plenoptic Encoding setting

(sec. 8.4); secondly, we train the GOEmbedFusion model to learn a 3D generative

model using 2D images to evaluate its 3D generative capability (sec. 8.5); and finally,

we also evaluate the GOEmbed mechanism in a sparse-view 3D reconstruction

setting (sec. 8.6).

Dataset. We perform all our experiments on the recently released OmniObject3D

dataset [195] containing ∼6K 3D scans of real world objects from daily life. The

dataset contains a large-vocabulary of ∼200 categories of daily life classes having

some overlap with COCO [233]. Only for our non-forward diffusion baseline, we

also use the text-captions recently released by the OmniObject3d authors at their

GitHub page [234].

Metrics. For the experiments in the Plenoptic-Encoding setting (sec. 8.4), we use the

standard image reconstruction metrics PSNR, LPIPS [193] and SSIM [235], while

for the quantitative analysis in generative modeling experiments (sec. 8.5) we use

the FID [210] and KID [211] metrics following prior works. And, lastly for the 3D

reconstruction experiments (sec. 8.6) we again use the standard image reconstruction

metrics similar to the Plenoptic-Encoding experiments. We color code all the scores

as first , second , and third .

8.4 Plenoptic Encoding
To evaluate the information transfer from the source views to the encoded 3D

representation, we train the standalone GOEmbed component on its own before

using it in different contexts. Specifically, given the dataset D = {(I j
i ,φ

j
i)|i ∈

[1,N] and j ∈ [1,C]} of N 3D scenes where each scene contains C images and camera

parameters, we define the Plenoptic Encoding as a mechanism which encodes k

source views and camera parameters, of a certain 3D scene, into the representation g

(whose parameters are ζ). The encoded scene representation should be such that the

rendered views from the same source cameras, and some l different target cameras,

8.4. Plenoptic Encoding 119

M
LP

Tr
ip

la
ne

Vo
xe

l-g
rid

GOEmbed Plenoptic Encoder SSO G.T.

#Source-views

Target-view Render

Figure 8.3: Plenoptic Encoding Qualitative Evaluation. The rows MLP, Triplane and
Voxel-grid show the renders of the GOEmbed encoded representations from the
target-view respectively. The colour-coded columns demonstrate the effect of
varying the number-of-source views (1, 2, 3, 4) used in the GOEmbed encoding.
The SSO column shows the target render of the single-scene-overfitted represen-
tation while the G.T. column shows the mesh-render from the dataset (repeated
for clarity).

Table 8.1: Plenoptic Encoding Quantitative Evaluation. PSNR(↑), LPIPS(↓) and SSIM(↑)
reported on three different representations of the 3D Radiance-Field g, namely,
Triplanes, Voxel-Grids and MLPs. All the metrics are evaluated for target views
(different from the source views) against the G.T. mesh renders from the dataset.
The SSO (Single Scene Overfitting) scores denote the case of individually fitting
the representations to the 3D scenes.

Method Triplane Voxel-Grid MLP

PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑)

DinoV2 1 source-view 14.182 1.286 0.425 14.419 1.151 0.485 N/A N/A N/A
DinoV2 2 source-views 14.482 1.235 0.435 15.330 0.925 0.526 N/A N/A N/A
DinoV2 3 source-views 14.664 1.213 0.430 15.685 0.864 0.546 N/A N/A N/A
DinoV2 4 source-views 14.711 1.199 0.425 15.834 0.857 0.551 N/A N/A N/A

(Ours) 1 source-view 15.711 1.025 0.477 15.514 1.008 0.479 11.208 1.124 0.496
(Ours) 2 source-views 15.513 1.068 0.468 15.319 1.067 0.480 11.406 1.197 0.489
(Ours) 3 source-views 15.672 1.129 0.456 15.590 1.110 0.484 11.490 1.202 0.500
(Ours) 4 source-views 15.919 1.150 0.472 15.755 1.145 0.486 11.599 1.195 0.505

SSO 28.165 0.087 0.941 32.061 0.067 0.9582 27.382 0.119 0.918

should be as close as possible to the G.T. images I, i.e., the PlenopticEncoder

PE : Rk×h×w×c ×Rk×4×4 → R(k+l)×h×w×c should minimize the following mean

8.4. Plenoptic Encoding 120

squared error objective:

LPE-MSE := E(I,φ)∼D∥I −PE(I,φ)∥2
2.

Although this experimental setup is quite similar to typical MVS/NVS or 3D re-

construction or 3D prior learning setups, in form and essence; we note here that

the plenoptic encoder PE is neither targeted to do Multi-View Stereo nor 3D recon-

struction. To set the correct expectations, we note that the main and the only goal

here is to evaluate how much information is transferred from the 2D images to the

chosen 3D representation. We evaluate the GOEmbed encodings on three different

3D Radiance-Field representations, g, namely Triplanes [169], Feature-Voxel grids

[64, 70, 123, 65], and MLPs [34] and compare them to cost-volume like approaches

where possible.

All the evaluations in Table 8.1 are done on 100 randomly chosen test scenes

from the OmniObject3D dataset on 1, 2, 3, and 4, number of source views. Although

the loss is optimized on both source and target camera views, the reported scores are

for target-views only, since we are interested in measuring the “3D” encoding ability,

as opposed to overfitting the source views into the representation. If we consider

only the source-view metrics, there is a possibility of the degenerate solution where

the encoder copies all the source views as-it-is disregarding any 3D structure. Also,

all the scores are computed against the renders of the G.T. meshes, but since some

quality can be lost by the choice of the representation itself, the SSO (Single-Scene-

Overfitting) version, where we fit the representation directly to the scene, is also

provided for a more grounded comparison.

Table 8.1 summarizes the scores obtained in this setup of experiments. We

compare against cost-volume construction approach using DinoV2 [127], where

we first un-project the per-view image features into a feature-voxel grid and then

accumulate the per-view features into the cost-volume similar to StereoMachines

[125] and many others [126, 70, 109, 224, 105]. We further splat the voxel-features

into the mutually orthogonal planes in case of the Triplanes based cost-volume

baseline. As apparent from the table, GOEmbed outperforms the DinoV2 cost-

8.5. 3D Generation 121

EG
3D

G
ET

3D
D

iff
R

F
D

iff
TF

N
on

-F
or

w
ar

d
D

FM
G

O
Em

be
dF

us
io

n
(O

ur
s)

(O
ur

s)

Figure 8.4: 3D Generation Qualitative Evaluation. 3D samples generated by our GOEm-
bedFusion compared to the prior GAN, and Diffusion based baselines.

volume-approach for Triplanes and comes very close to the Voxel-Grids one. Note

that the cost-volume approach is not trivial to come-up with for MLPs, whereas our

GOEmbed can handle this representation by design and obtains formidable scores

in this setup. Apart from this advantage, GOEmbed only has learnable parameters

(∼17K) as part of the renderer functional R (usually an MLP), while the DinoV2

has excess of ∼1B parameters, albeit pretrained. Finally, what is most surprising

is that our light-weight GOEmbed approach is actually able to obtain almost 50%

of the SSO scores which is the practically achievable performance for the chosen

3D representations (last row of table 8.1). Figure 8.3 illustrates this phenomenon

visually.

8.5 3D Generation
Although prior works like RenderDiffusion [214] and HoloDiffusion [70] were al-

ready proposed to train 3D diffusion models using only 2D images, recently, the

notable work of Tewari et al. [222] proposed a unified mathematical framework for

8.5. 3D Generation 122

the stochastic-inverse setting of generative modeling where we only have access to

partial observations of the underlying ground-truth signals, but never the underlying

signals themselves; in which 3D inverse graphics is a special case. Despite this, the

proposed vanilla realization of the DFM framework for 3D generative modeling has

certain limitations; first, it is only specific to the feature-point-cloud 3D representa-

tion and does not generalize to other 3D representations; second, it cannot generate

purely unconditional 3D samples since it is a 2D view conditioned 3D diffusion

model; and third, it requires a computationally expensive auto-regressive process for

sampling the underlying 3D scenes.

We propose a novel realization of the DFM framework called GOEmbedFusion

where our proposed GOEmbed drives the diffusion with forward model training

pipeline; while overcoming all the limitations as mentioned earlier. Our unobserved

samples here correspond to the ζ parameters since we are interested in modeling the

generative probability distribution over the 3D Radiance-Fields. A single forward

pass through our proposed GOEmbedFusion pipeline is defined through the following

equations:

ζenc := GOEmbed(g,octxt,φ ctxt)

ζ̂0 :=Dθ (ζT ,T ;ζenc)

ζ̂t ∼ q(ζ̂t |ζ̂t−1) = q(ζ̂0)
t

∏
k=1

q(ζ̂k|ζ̂k−1)

ôtrgt :=R(g(c,d;Dθ (ζ̂t , t;ζenc)),φ
trgt),

(8.3)

(8.4)

(8.5)

(8.6)

where T corresponds to the highest timestep and ζT ∼N (0, I) is a sample of the stan-

dard Gaussian noise distribution. Equation 8.3 first encodes the context observations

and their parameters (octxt,φ ctxt) into the GOEmbed encoding ζenc using eq. 8.1.

Then, eq. 8.4 uses the denoiser network to predict a pseudo-deterministic estimate

of the clean 3D scene ζ̂0 conditioned on the GOEmbed encodings ζenc. While the

noise can impart some degree of stochasticity to the output, the network can, in

theory, completely ignore the noise. We let the network learn what to do based on

the training and the data complexity, and hence call this step “pseudo”-deterministic.

This is followed by obtaining a noisy version of the 3D scene ζ̂t through standard

8.5. 3D Generation 123

forward diffusion corruption (eq. 8.5). We estimate the process of drawing from

the distribution q(ζ̂t |ζ̂t−1) using the standard DDPM [80] closed-form equation

ζ̂t =
√

αt ζ̂0+
√

1−αtε , where ε is pure Gaussian noise and αt denotes the schedule

of diffusion. And finally, we predict any target observations by rendering the output

of the denoiser network Dθ for ζ̂t conditioned on the GOEmbed encodings ζenc and

the timestep t using eq. 8.6.

We note here that the network Dθ operates in the x start diffusion formulation

in contrast to the popular epsilon formulation. We require a few different loss

functions to be able to train this pipeline end-to-end such that each component does

what it is supposed to:

LGOEmbedFusion := Et,otrgt∥otrgt − ôtrgt∥2
2

LPSE-DET := Et,otrgt∥otrgt −R(g(c,d; ζ̂0)),φ
trgt)∥2

2.

The final objective is simply the sum of the three loss functions as,

Ltotal := LGOEmbedFusion +LPSE-DET +LGOEmbed.

The loss function LGOEmbed is required to maximize the information content in the

GOEmbed encodings. In contrast, the LPSE-DET tries to maximize the reconstruction

quality of the pseudo-deterministic output ζ̂0. The LGOEmbedFusion loss function actu-

ally trains the GOEmbedFusion pipeline. As apparent, the GOEmbed mechanism

enables the GOEmbedFusion model to use any parameterization of the g function

as long as it allows differentiable rendering and can define a zero-origin over its pa-

rameters ζ . Empirically, we found that the two-step bootstrapped-denoising as done

in eqn. 8.1 and eqn. 8.6, similar to prior works [70, 71], is crucial to correctly train

this diffusion pipeline in the forward setting. In practice, we train the model using

the classifier free guidance training scheme [236], where we dropout the GOEm-

bed conditioning randomly with a probability of 0.5, to allow for both conditional

and unconditional sampling. Lastly, samples can be generated by iterative denois-

ing using the trained model Dθ either unconditionally or conditionally using the

8.5. 3D Generation 124

GOEmbed encodings of certain context observations. Here, we can directly sample

(denoise) in the space of the unobserved underlying data samples ζ , eliminating the

need for the expensive auto-regressive fusion required by the vanilla realization.

Table 8.2: 3D Generation Quantitative Evaluation. FID(↓) and KID(↓) scores on the Om-
niObject3D dataset comparing our GOEmbedFusion with GAN baselines EG3D
[169], and GET3D[172]; with the non-forward diffusion baselines DiffRF[185],
DiffTF[237], and Our non-forward diffusion baseline; and, with the DFM (Diffu-
sion with Forward Model) [222].

Method FID (↓) KID (↓)

EG3D [169] 41.56 1.0
GET3D [172] 49.41 1.5
DiffRF [185] 147.59 8.8
DiffTF [237] 25.36 0.8

DFM [222] 73.51 3.8
Ours non-forward 119.67 8.0

GOEmbedFusion (Ours) 22.12 0.6

As shown in table 8.2, our GOEmbedFusion sets the new state-of-the-art FID

and KID scores on the OmniObject3D dataset in comparison to the prior state-

of-the-art DiffTF [237], our implementation of a DiffTF like baseline called Ours

non-forward, the DFM [222] model, the DiffRF [185] model, and the prior GANs

EG3D [169] and GET3D [172]. We note that our improvements are not only limited

to the quality of generation, but also to the benefits provided by our GOEmbedFusion

formulation over the vanilla realisation of the DFM (row 5 table 8.2). While DiffTF

[237] uses many architectural modifications and other tricks specific to Triplanes

and the OmniObject3D dataset, we only use the base DiT [238] architecture with no

modifications as our backbone denoiser network Dθ . Also our proposed GOEmbed-

Fusion training pipeline is a diffusion with forward model, and hence can be trained

only using 2D images, unlike DiffTF which first fits ground-truth 3D Triplanes and

then trains the diffusion model. Our qualitative samples in figure 8.4 further support

these arguments.

8.6. Sparse-View 3D Reconstruction 125

8.6 Sparse-View 3D Reconstruction
The Plenoptic Encoding experiments (sec. 8.4) are in an illustrative setup and

provide insights into how well our propsed GOEmbed can transfer information from

2D images into various different 3D representations such as Triplanes, MLPs and

Voxel-Grids. In this section, we aim to evaluate the utility of the GOEmbeddings in

a practical application setup. Thus, although the mathematical experimental setup is

similar to the Plenoptic Encoding one, here we input the obtained GOEmbeddings to

a backbone sparse-view-3D-reconstruction network. Specifically, we use the DiT

based transformer network, which is 12-layers wide as the reconstruction backbone.

The end-to-end pipeline is supervised with exactly the same losses as that of the

Plenoptic Encoding setup. Intuitively, our GOEmbed reconstruction model replaces

the input learned triplane positional encodings with our GOEmbeddings and removes

the cross-attention layers from the LRM (Large Reconstruction Model) architecture.

Additionally, we also evaluate the reconstruction capability of our GOEmbedFusion

model by running the pipeline only till the “pseudo”-deterministic output stage (i.e.,

eqn. 8.4).

We compare this transformer-based reconstruction setup of ours to the most

recent baseline of LRM (Large Reconstruction Model) [31], which is also based

on the transformer architecture. Since LRM’s code has not been published, we

implement this baseline in our code-base as close to the paper-description as possible,

for a fair comparison. Specifically, we train two versions of the LRM, the first one

which is 16-layers wide (the base published model), and second smaller version

which is 6-layers wide. We introduced the 6-layers version since we found the base-

model to be overfitting to the OmniObject3D training subset, which is much smaller

in scale than the dataset on which LRM is trained. All the learned network baselines

are evaluated on the ∼ 200 test scenes of the OmniObject3D dataset while the

Triplane-SSO (from the Plenoptic Encoding section 8.4) is evaluated on 100 scenes.

These 100 SSO scenes form a proper subset of the test-set, so the comparison here is

fair. Please check the supplemental for more details of our GOEmbed reconstruction

architecture.

8.7. Limitations 126

Table 8.3: 3D reconstruction Quantitative Evaluation. PSNR(↑), LPIPS(↓) and SSIM(↓)
of our GOEmbed reconstruction model, and GOEmbedFusion’s “pseudo”-
deterministic 3D reconstruction output compared to LRM baselines. We again
include the SSO (Single Scene Overfitting) here for comparison.

Method PSNR (↑) LPIPS (↓) SSIM (↑)

LRM (Our) 6 layer 23.788 0.119 0.827
LRM (Our) 16 layer 23.247 0.121 0.813

GOEmbed recon 27.650 0.109 0.900
GOEmbedFusion (PSE-DET) 26.447 0.119 0.890

Triplane SSO 28.165 0.087 0.941

As summarized in the table 8.3, both our GOEmbed reconstruction model as

well as the diffusion based GOEmbedFusion model outperforms the LRM baselines.

Also, our reconstruction model gets quite close to the practical performance limit as

set by the Triplane-SSO experiment. Thus, given these results, we can assert that our

proposed GOEmbeddings generalise to larger datasets like OmniObject3D and can

strengthen the sparse-view-3D-reconstruction pipelines.

8.7 Limitations
Although our framework applies theoretically to any arbitrary 3D Radiance-Field

representations, its use in the 3D generative modeling is restricted by the representa-

tion’s compatibility with existing denoiser network architectures. We believe that

Transformers [49] get close to being universally applicable, but it still remains a

challenge to adapt certain 3D representations such as Hash-grids [66] as input to

Transformers. Nevertheless, we believe that our proposed GOEmbed mechanism

makes a substantial research stride and will inspire further interesting applications

and theoretical insights. Apart from this, upon close qualitative examination, we find

that the samples generated using our GOEmbedFusion model have some peculiar

checkerboard artifacts. Similar to the findings of the recent Denoising-ViT [239],

we hypothesize that these artifacts in our model are also because of the positional

encodings in the DiT architecture. Finding the exact reason for these artifacts and

getting rid of them constitutes a future direction to be pursued.

Although our proposed method primarily contributes to general-purpose 3D

8.8. Summary 127

feature extraction and learning, as shown in our 3D generation experiments, our

method could be applied in the context of the generative modeling of real-captured

or synthetic 3D assets. Hence, similar to the case of 2D generative models, our

proposed GOEmbedFusion model is also prone to the misuse of the synthetically

generated media. We note that there is a potential for our method to be used in the

creation of fake 3D-consistent videos.

8.8 Summary
We presented the GOEmbed as a general-purpose mechanism for encoding the

information in 2D images into arbitrary 3D scene representations and evaluated its

information transfer ability with the Plenoptic Encoding experiments. We show

that the encodings can be applied to Triplanes, Voxel-grids and MLPs, but note that

exploring these in the context of other popular 3D representations (e.g., meshes,

point clouds) forms scope for future work. The GOEmbeddings find a practical use

in the context of improving the framework of DFM models, which we demostrate

through the 3D generation experiments on the OmniObject3D benchmark; and in

the context of sparse-view 3D reconstruction as well.

Chapter 9

Conclusions

9.1 Summary
In this thesis, I have tried to pave the way towards achieving computationally effi-

cient, photorealistic, and scalable 3D generative models. In this section, I present a

discussion of how the proposed methods in this research journey contribute specifi-

cally to each of the characteristics of the ultimate 3D generative models that we wish

to achieve. While the first project, ReLU-Fields (chapter 4), showed a key insight

on what is the bare-minimum required change to the traditional 3D voxel-grids that

allows them to match the quality of NeRFs, the rest of the projects that followed,

all focussed on 3D generative modelling, and contributed to the ultimate vision of

achieving foundational 3D generative models.

Computational Efficiency is certainly the most important property required in 3D

Generative Models. Perhaps the GPUs in the future will have Terabytes of on-board

memory and might allow processing of very high-resolution 3D voxel grids, but

even then the Neural Networks won’t be scalable if they wasted computations in

free-space. Computational efficiency has served as an important guiding principle

when designing methods for 3D generative modelling in this thesis. HoloDiffusion

[70] (chapter 6) circumvents the need for the redundant step of fitting 3D assets given

multi-view 2D images in order to train a 3D diffusion model. Typically, fitting a

feature-voxel-grid with sufficient quality on a single 3D scene, blocks one GPU with

minimum of 32GB on-board memory for 2-3 hours. Thus constructing a corpus of

9.1. Summary 129

50K scenes, would require roughly ∼5K GPU hours. Unlike methods such as RODIN

[184] and DiffRF [185] which perform this fitting stage to construct a dataset of 3D

representations prior to training the diffusion model, our proposed HoloDiffusion

saves up on crucial computational budget by training the 3D diffusion model directly

on multi-view 2D images. Later when trying to scale up our HoloFusion [71]

(chapter 8) pipeline to larger datasets, we investigate what can make the pipeline

more computationally efficient to arrive at the pipeline of GOEmbedFusion (chapter

8). Our proposed GOEmbed operation allows us to encode multi-view 2D images

into arbitrary 3D scene representation such as Triplanes which are more efficient

than the previously used feature-voxel-grids in HoloDiffusion and HoloFusion.

Photorealism. The ideal 3D Generative Model should be able to produce 3D samples

that are indistinguishable from the reality. The 3D objects in real life are seen by our

eyes due to the interaction of the light with the objects. This gives rise to the notion of

photorealism as perceived by the human brain. How can we achieve photorealism in

the synthetic samples generated by our 3D generative models? The answer is simple

yet extremely challenging. We need to capture as much real-life 3D data as possible

and then use it for training the 3D generative models. Our proposed HoloDiffusion

[70] (chapter 6) makes a very important contribution towards this goal by proposing

a method that can directly train 3D diffusion models using real-captured multi-view

imagery, since multi-view images remain to be the most cost-effective solution for

capturing 3D assets in real life. With a hybrid 3D-2D extension of the HoloDiffusion

pipeline, we show in HoloFusion [71] (chapter 7) that the visual fidelity of the

generated samples can be taken to the level of photorealism on real-captured 3D

datasets. I hypothesize that a large enough 3D generative model trained on billions

of real-captured 3D scenes will be able to understand the physics behind the light-

interactions, and thus be able to not-only generate photorealistic 3D assets, but also

allow for physically accurate manipulation of lighting.

Scalability. As more and more 3D data keeps getting accumulated, the proposed

methods of 3D Generative Modelling should exhibit linear scale-curves. I.e. propor-

tionately bigger Neural Network should be able to train on bigger data with more

9.2. Insights 130

compute. However, for 3D data, this is not so straight-forward as 2D images, since

more data will mean more disarray around the 3D representations. Hence, the only

solution for achieving scalability in 3D generative modelling is for the research

works to encompass continual empirical growth in the benchmark dataset sizes. As

the sizes grow, new challenges will keep getting uncovered and will have to be over-

come. We demonstrate exactly this approach towards scalability through our research

projects. 3inGAN [69] (chapter 5) started by training on a single 3D scene, followed

by HoloDiffusion [70] and HoloFusion [71] (chapters 6 and 7) which increased the

datasets size to a few 1000 samples, till the most recent proposal of GOEmbedFusion

(chapter 8) which was trained on the OmniObject3D dataset containing many more

diverse classes and total samples more than Co3D individual classes. Also from

some of the internal experiments we were able to establish successful training of

GOEmbed on >100K data samples using a backbone architecture similar to LRM

[31]. In a nutshell, we need to keep increasing the sizes of the benchmarks gradually

while simultaneously exploring different 3D representations to keep improving the

scalability properties of the 3D generative modelling methods.

9.2 Insights
This has been a long journey starting from absolute scratch (some prior knowledge

of generative modelling, and no background in 3D applications) till reaching a

method capable of training a 3D diffusion based generative model of any arbitrary

3D representation using only 2D images for supervision (GOEmbed chapter 8). I

have learned a lot from the successes and the failures on this journey, and so, I now

present the main highlights distilled from it as follows.

Don’t discard old methods, review them in new light. Most of the times when

we were stuck on a problem, we found its solution to be rooted in a well developed

traditional method. The first and the best example for this is ReLU-Fields. While

the research community was absolutely mesmerized by the amazing quality of the

reconstructions produced by NeRFs, who would have thought that a simple “ReLU”

non-linearity is all you need to bring the traditional linear voxel grids to the quality

9.2. Insights 131

of NeRFs. While working on HoloDiffusion, for encoding 2D images into 3D voxel

grids, we had to resort to the feature-cost-volume construction module which has

been around for at least a decade. These are only the most relatable examples that

I highlighted here, but I will certainly note that in almost all the projects, we do

end-up applying a method which has very old roots. The point I am trying to make is

two-fold. Firstly, instead of reinventing the wheel, it’s quite important to understand

why we stand where we stand and then build up on the knowledge base constructed

by the previous generation of researchers. But secondly, which I think is the most

important, is to not rely on huge parametric-networks for solving all problems. The

solutions should exhibit computational efficiency and try to apply strong inductive

biases in the proposed methods.

GANs or Diffusion Models? This debate has not been concluded yet, especially

since the work GigaGAN [15] has been released. However, I assert that diffusion

models remain preferable for training 3D generative models compared to GANs,

since 3D data comes with an inherent scale issue and thus leaves less scope for

hyperparameter tuning without which GAN training is impossible. Also from my

experience, the hyperparameter settings for training GANs on 3D data do not transfer

from one domain to the other, and thus significant time and compute resources are

required to successfully train the GANs. Whereas, Diffusion models behave as stably

as any other supervised Machine Learning model, and thus are more preferable for

3D generative modelling. This is of course unless a break-through idea challenges

the unstability issue of GANs, making them as easy-to-use as Diffusion Models. To

go a step further in this debate, from my experience, I find that GANs are really

good at covering fine-peaks in the generative distributions, while Diffusion Models

are very good at capturing the holistic modes of the distributions. Consider the

adversarial LPIPS used by Stable-Diffusion [12] which brings the high-frequency

details in the AutoEncoder reconstructions. Upon closer observation, I find that the

results of 3inGAN have a lot of high-frequency details in them, almost causing the

geometries to shatter in order to produce them, while the 3inFusion results are quite

smooth. As a general recipe, I suggest to first train diffusion model to learn the

9.2. Insights 132

coarse structure of the generative distribution, and then train a GAN to refine the

produced samples and bring the realism in them. Also, the best strategy for training

GANs successfully in my opinion is to first pre-train the GAN stage with a simpler

loss like Mean-Squared error, and then kick in the discriminator loss. This strategy

always works allowing for the discriminator loss to cover the last-mile in the results.

In nutshell, Diffusion for obtaining 99% of the results and GANs for obtaining the

last 1%.

Real captured data or Synthetic? This is a question that requires more thorough

scientific research while progressing on the path of achieving 3D generative models.

However, from my experience, I think there is a clear distinction between these two

settings. For synthetic scenes, the main challenge, as well as the goal, is to obtain very

high quality of visual fidelity while also allowing the users of the generative model to

exert high level of control on the generation process. Whereas for the real-captures

the main challenge is to train using in-the-wild data. For the synthetic case, the

datasets of large-scale textured meshes have started to rise; for instance the Objaverse

[24], the ObjaverseXL [240], and the dataset made available by Shutterstock. Similar

to these, I would expect many other gaming-studios and vfx-studios to also try to

democratize their 3D assets to aid 3D generative modelling. While, in case of the real

setting, 360◦ captures of real objects are much more expensive and 3D reconstruction

quality is heavily dependent on Structure-from-Motion [75]. I would hypothesize

that generative models on synthetic data would not-only make more scientific and

social impact, but also aid the process of the 3D generative modelling on real-data.

Thus, at least for the immediate term, I will focus more on the generative modelling

of synthetic 3D data after my PhD.

The devil is in the detail. Lastly, I would like to highlight the importance of tiny

details that get missed while looking at the larger-picture of the proposed methods.

For instance, training NeRFs is impossible with ReLU-MLPs if the training density

noise is not added; our proposed ReLU-Fields pin-points exactly such a detail that

makes the most impact in terms of reconstruction quality; HoloDiffusion will not

work without the bootstrapped training; and many more. It is not easy to predict

9.3. What next? 133

which details of a proposed method are how important; and it is likely not going

to be possible to always run the code of the proposed method many times to get

exactly the results that the authors were able to achieve. I have tried to highlight these

deviled-details as much as possible in this thesis, but it is still hard to meticulously

enlist all such details. The bottom-line is that we need to explore, analyze, ablate,

and understand proposed methods on a very deeper level in order to make sustainable

progress on this path to 3D generative models.

9.3 What next?
In this final section, I discuss some directions that I would like to pursue further after

the PhD. I also present some thoughts about the future of 3D generative modelling

as follows:

9.3.1 3D Meshes are important

3D Meshes are quite important for two reasons. Firstly since most of the offline

and online renderers use 3D Mesh based assets to represent the geometries, most

of the available G.T. synthetic 3D data is going to be in the form of meshes. And

secondly, in spite of very promising new 3D representations such as Gaussian Splats

[227], most of the rendering machinery (software and hardware) is customised to

meshes. Also the controllability and compatibility with physics-engines is a major

contributing factor for the popularity of meshes. Thus, 3D generative modelling

methods that take as input 3D meshes and that produce 3D Meshes as output are

going to be important. As mentioned earlier in the introduction (chapter 1), opti-

mization based 3D reconstruction of surface meshes is hard, thus methods such as

Flexicubes [241] are going to play a key role in the immediate future, although this

problem is somewhat orthogonal to 3D generative modelling. Flexicube grids are

readily compatible with the existing backbone neural network architectures such

as UNets and Transformers, thus a method that can filter Meshes into Flexicubes

without point-based optimization is an interesting and quite needed future direction

to explore. Such a method would boslter 3D generative pipelines to produce 3D

Meshes directly as output. The resolution of the Meshes is restricted by Flexicube

9.3. What next? 134

grid-size, thus methods that can represent hierachy of coarse-to-fine details of the G.T.

high-resolution meshes in a manner that is amenable for 3D generative modelling is

also another prudent future direction to pursue.

9.3.2 Scale is directly proportional to impact.

Lastly I would like to highlight challenges and opportunities that lie ahead when

focussing on scaling up the 3D generative models. We can all agree that an impactful

breakthrough 3D generative model will be trained on at-least a billion 3D samples.

The current methods have only been scaled to 100K samples successfully, and almost

all of these seem to be hitting the glass ceiling when trying to scale beyond this size.

I think there are various aspects that the current methods are missing which need to

be incorporated when moving ahead in the scale axis.

1. Sparsity: The key difference between 3D and 2D data is that 3D data is

inherently sparse. Almost all of the 2D images have much more information

per-capita, while the 3D meshes only contain information on the surfaces,

which is a very small subset of the 3D domain. This makes it very challenging

to choose a particular 3D representation from the ones that we have available.

For instance, Triplanes are quite compact compared to voxel-grids, but even

the projection planes of Triplanes have sufficiently large empty backgrounds.

Hash-grids are supposedly more information rich than Triplanes, but they

do not have spatial structure making them incompatible with the existing

3D neural network architectures. Thus, the two possible interesting future

directions are: 1. innovate neural network architectures to operate on Hash-

grids, and 2. invent 3D spatial representation that is even more compact than

Triplanes. Nevertheless, a principled study of the differences between 2D and

3D data is required to go forward.

2. Latent-compression: One of the main innovations that allowed Stable-

Diffusion to scale to large-datasets is the latent-compression. This idea of

operating in the latent space while delegating the coding-and-decoding of raw

information in the data-space to a dedicated AutoEncoder has been applied by

9.3. What next? 135

many others, including the latest video diffusion model from OpenAI titled

SORA. I hypothesize that this latent-compression operation while considering

the inherent sparsity of the 3D data will be of prime importance in scaling up

the 3D generative models.

3. Quality of text: The quality of the text-captions is certainly an overlooked

aspect in the present state-of-the-art 3D generative models. It has been suffi-

ciently proven by prior works that the text-captions play an important role in

training large-scale 2D generative models, and thus improving the coherence

of the text-captions of the available 3D data should be prioritised.

4. Coarse-to-fine: Although latent-diffusion and cascaded-diffusion models

perform coarse-to-fine generation implicitly, various new works such as VAR

[22] are bringing back the coarse-to-fine generation characteristic of the state-

of-the-art GAN models in 2D. Even though this is a hard research direction

for 3D Meshes, I believe that coarse-to-fine is not-only important for scaling

up the 3D generative models, but also for availing various control axes over

the generation process.

5. Simplicity: Finally, I would like to draw attention to the principle of Occam’s

Razor, emphasizing on importance of simplicity in the proposed approaches.

Many works are proposing variations of multi-stage pipelines comprising first

going from text-to-2D then from 2D to multi-view 2D and then from multi-

view 2D to 3D as approaches for text-to-3D generation. Apart from being

complicated, such large pipelines have many moving parts and are prone to be

bottle-necked by certain points of failure. Although such pipelines could yield

low-hanging fruits, In my humble opinion, they are not going to be viable in

the long run. The methods for 3D generative modelling should think about the

holistic research on this path and should have as few stages as possible.

This concludes my Doctoral Thesis, and I sincerely hope that this not-only

contributes to further research, but also inspires new readers to pursue this path.

Bibliography

[1] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-

David, Delio Vicini, Tizian Zeltner, Baptiste Nicolet, Miguel Cre-

spo, Vincent Leroy, and Ziyi Zhang. Mitsuba 3 renderer, 2022.

https://mitsuba.readthedocs.io/en/latest/src/inverserendering/radiance f ieldreconstruction.html.

[2] Steven Harrington. Computer graphics: a programming approach. McGraw-Hill,

Inc., 1987.

[3] David F Rogers and James Alan Adams. Mathematical elements for computer

graphics. McGraw-Hill, Inc., 1989.

[4] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering: From

theory to implementation. MIT Press, 2023.

[5] Adam Marrs, Peter Shirley, and Ingo Wald. Ray tracing Gems II: next generation

real-time rendering with DXR, Vulkan, and OptiX. Springer Nature, 2021.

[6] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-time rendering. AK

Peters/crc Press, 2019.

[7] Wikipedia. Film industry — Wikipedia, the free encyclopedia. http://en.

wikipedia.org/w/index.php?title=Film%20industry&oldid=1185181785,

2023. [Online; accessed 16-November-2023].

[8] Wikipedia. Video game industry — Wikipedia, the free encyclope-

dia. http://en.wikipedia.org/w/index.php?title=Video%20game%

20industry&oldid=1184994563, 2023. [Online; accessed 16-November-2023].

http://en.wikipedia.org/w/index.php?title=Film%20industry&oldid=1185181785
http://en.wikipedia.org/w/index.php?title=Film%20industry&oldid=1185181785
http://en.wikipedia.org/w/index.php?title=Video%20game%20industry&oldid=1184994563
http://en.wikipedia.org/w/index.php?title=Video%20game%20industry&oldid=1184994563

Bibliography 137

[9] Kip Thorne. The science of Interstellar. WW Norton & Company, 2014.

[10] James Cameron, Stephen E Rivkin, and John Refoua. Avatar. Twentieth Century

Fox Home Entertainment, 2010.

[11] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going

deeper into neural networks. Google research blog, 20(14):5, 2015.

[12] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-

mer. High-resolution image synthesis with latent diffusion models. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

10684–10695, 2022.

[13] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.

Hierarchical text-conditional image generation with clip latents. arXiv preprint

arXiv:2204.06125, 2022.

[14] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey

Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet,

et al. Imagen video: High definition video generation with diffusion models. arXiv

preprint arXiv:2210.02303, 2022.

[15] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain

Paris, and Taesung Park. Scaling up gans for text-to-image synthesis. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

10124–10134, 2023.

[16] OpenAI. Video generation models as world simulators. https://openai.com/

index/video-generation-models-as-world-simulators, 2024. [Online; ac-

cessed 5-May-2024].

[17] Xuanyi Li, Daquan Zhou, Chenxu Zhang, Shaodong Wei, Qibin Hou, and Ming-

Ming Cheng. Sora generates videos with stunning geometrical consistency. arXiv

preprint arXiv:2402.17403, 2024.

https://openai.com/index/video-generation-models-as-world-simulators
https://openai.com/index/video-generation-models-as-world-simulators

Bibliography 138

[18] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to

follow image editing instructions. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 18392–18402, 2023.

[19] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to

text-to-image diffusion models. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 3836–3847, 2023.

[20] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and Matthias

Nießner. Text2tex: Text-driven texture synthesis via diffusion models. arXiv preprint

arXiv:2303.11396, 2023.

[21] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning

trilemma with denoising diffusion gans. arXiv preprint arXiv:2112.07804, 2021.

[22] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual au-

toregressive modeling: Scalable image generation via next-scale prediction. arXiv

preprint arXiv:2404.02905, 2024.

[23] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le.

Flow matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[24] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli Van-

derBilt, Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi.

Objaverse: A universe of annotated 3d objects. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 13142–13153, 2023.

[25] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya

Kusupati, Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al.

Objaverse-xl: A universe of 10m+ 3d objects. Advances in Neural Information

Processing Systems, 36, 2024.

[26] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-

to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988, 2022.

Bibliography 139

[27] Jiaxiang Tang. Stable-dreamfusion: Text-to-3d with stable-diffusion, 2022.

https://github.com/ashawkey/stable-dreamfusion.

[28] Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong

Hong, Kalyan Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3d: Fast text-

to-3d with sparse-view generation and large reconstruction model. arXiv preprint

arXiv:2311.06214, 2023.

[29] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and

Wenping Wang. Syncdreamer: Generating multiview-consistent images from a

single-view image. arXiv preprint arXiv:2309.03453, 2023.

[30] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream:

Multi-view diffusion for 3d generation. arXiv preprint arXiv:2308.16512, 2023.

[31] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu,

Kalyan Sunkavalli, Trung Bui, and Hao Tan. Lrm: Large reconstruction model for

single image to 3d. arXiv preprint arXiv:2311.04400, 2023.

[32] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and

Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function

space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4460–4470, 2019.

[33] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation

networks: Continuous 3d-structure-aware neural scene representations. Advances in

Neural Information Processing Systems, 32, 2019.

[34] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi

Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for

view synthesis. In ECCV, pages 405–421, 2020.

[35] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and

Gordon Wetzstein. Implicit neural representations with periodic activation functions,

2020.

Bibliography 140

[36] Michael Sipser. Introduction to the theory of computation. ACM Sigact News,

27(1):27–29, 1996.

[37] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[38] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386, 1958.

[39] AG Ivakhnenko and GA Ivakhnenko. The review of problems solvable by algorithms

of the group method of data handling (gmdh). Pattern recognition and image analysis

c/c of raspoznavaniye obrazov i analiz izobrazhenii, 5:527–535, 1995.

[40] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation,

10(2):251–276, 1998.

[41] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[42] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural information processing

systems, 25, 2012.

[45] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[46] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

Bibliography 141

deeper with convolutions. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1–9, 2015.

[47] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 7132–7141,

2018.

[48] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal

representations by error propagation, 1985.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[50] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv

preprint arXiv:1410.5401, 2014.

[51] Grant Sanderson. But what is a gpt? visual intro to transformers — chapter 5, deep

learning. https://www.youtube.com/watch?v=wjZofJX0v4M, 2024. [Online;

accessed 8th-April-2024].

[52] Grant Sanderson. Visualizing attention, a transformer’s heart — chapter 6, deep

learning. https://www.youtube.com/watch?v=eMlx5fFNoYc, 2024. [Online;

accessed 8th-April-2024].

[53] Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical

Statistics, 22:400–407, 1951.

[54] Brent Burley and Walt Disney Animation Studios. Physically-based shading at

disney. In Acm Siggraph, volume 2012, pages 1–7. vol. 2012, 2012.

[55] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk,

Wang Yifan, Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen

Lombardi, et al. Advances in neural rendering. In Computer Graphics Forum,

volume 41, pages 703–735. Wiley Online Library, 2022.

https://www.youtube.com/watch?v=wjZofJX0v4M
https://www.youtube.com/watch?v=eMlx5fFNoYc

Bibliography 142

[56] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi,

Kalyan Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih, Matthias

Nießner, et al. State of the art on neural rendering. In Comput. Graph. Forum,

volume 39, pages 701–727, 2020.

[57] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large steps in inverse rendering

of geometry. ACM Transactions on Graphics (TOG), 40(6):1–13, 2021.

[58] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Differentiable signed distance

function rendering. ACM Transactions on Graphics (TOG), 41(4):1–18, 2022.

[59] Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang, Clement Fuji Tsang, Sameh

Khamis, Or Litany, and Sanja Fidler. Dib-r++: learning to predict lighting and

material with a hybrid differentiable renderer. Advances in Neural Information

Processing Systems, 34:22834–22848, 2021.

[60] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. Soft rasterizer: Differen-

tiable rendering for unsupervised single-view mesh reconstruction. arXiv preprint

arXiv:1901.05567, 2019.

[61] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T

Freeman, and Jonathan T Barron. Nerfactor: Neural factorization of shape and

reflectance under an unknown illumination. ACM Transactions on Graphics (ToG),

40(6):1–18, 2021.

[62] Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang Han, Sai Bi, Xiaowei

Zhou, Zexiang Xu, and Hao Su. Tensoir: Tensorial inverse rendering. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

165–174, 2023.

[63] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas

Lehrmann, and Yaser Sheikh. Neural volumes: Learning dynamic renderable vol-

umes from images. arXiv preprint arXiv:1906.07751, 2019.

Bibliography 143

[64] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy J. Mitra. ReLU

fields: The little non-linearity that could. In Proc. of SIGGRAPH, volume 41, pages

13:1–13:8, 2022.

[65] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization:

Super-fast convergence for radiance fields reconstruction, 2021.

[66] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural

graphics primitives with a multiresolution hash encoding. arXiv:2201.05989, January

2022.

[67] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan,

Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh

Khamis, Tero Karras, and Gordon Wetzstein. Efficient geometry-aware 3d genera-

tive adversarial networks, 2021.

[68] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,

Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural

fields in visual computing and beyond. In Computer Graphics Forum, volume 41,

pages 641–676. Wiley Online Library, 2022.

[69] Animesh Karnewar, Oliver Wang, Tobias Ritschel, and Niloy J Mitra. 3ingan:

Learning a 3d generative model from images of a self-similar scene. In 2022

International Conference on 3D Vision (3DV), pages 342–352. IEEE, 2022.

[70] Animesh Karnewar, Andrea Vedaldi, David Novotny, and Niloy J Mitra. Holod-

iffusion: Training a 3d diffusion model using 2d images. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18423–

18433, 2023.

[71] Animesh Karnewar, Niloy J Mitra, Andrea Vedaldi, and David Novotny. Holofusion:

Towards photo-realistic 3d generative modeling. arXiv preprint arXiv:2308.14244,

2023.

Bibliography 144

[72] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on

Visualization and Computer Graphics, 1(2):99–108, 1995.

[73] James T Kajiya and Brian P Von Herzen. Ray tracing volume densities. ACM

SIGGRAPH computer graphics, 18(3):165–174, 1984.

[74] Frank Dellaert and Lin Yen-Chen. Neural volume rendering: Nerf and beyond. arXiv

preprint arXiv:2101.05204, 2020.

[75] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited.

In IEEE CVPR, pages 4104–4113, 2016.

[76] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick

Labatut, and David Novotny. Common objects in 3d: Large-scale learning and

evaluation of real-life 3d category reconstruction. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 10901–10911, 2021.

[77] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G Willcocks. Deep generative

modelling: A comparative review of vaes, gans, normalizing flows, energy-based

and autoregressive models. IEEE transactions on pattern analysis and machine

intelligence, 2021.

[78] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.

Communications of the ACM, 63(11):139–144, 2020.

[79] Yujia Li, Kevin Swersky, and Richard S. Zemel. Generative moment matching

networks. CoRR, abs/1502.02761, 2015.

[80] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.

Advances in Neural Information Processing Systems, 33:6840–6851, 2020.

[81] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image

synthesis. Advances in Neural Information Processing Systems, 34:8780–8794,

2021.

Bibliography 145

[82] Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint

arXiv:2208.11970, 2022.

[83] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion

models. arXiv preprint arXiv:2202.00512, 2022.

[84] Fred C Billingsley. Processing ranger and mariner photography. Optical Engineering,

4(4):404147, 1966.

[85] Kavita Bala, Bruce Walter, and Donald P Greenberg. Combining edges and points

for interactive high-quality rendering. ACM Transactions on Graphics (TOG),

22(3):631–640, 2003.

[86] Jack Tumblin and Prasun Choudhury. Bixels: Picture samples with sharp embedded

boundaries. In Rendering Techniques, pages 255–264. Citeseer, 2004.

[87] Ganesh Ramanarayanan, Kavita Bala, and Bruce Walter. Feature-based textures,

2004.

[88] Samuli Laine and Tero Karras. Efficient sparse voxel octrees. IEEE Transactions on

Visualization and Computer Graphics, 17(8):1048–1059, 2010.

[89] Evgueni Parilov and Denis Zorin. Real-time rendering of textures with feature curves.

ACM Transactions on Graphics (TOG), 27(1):1–15, 2008.

[90] Darko Pavić and Leif Kobbelt. Two-colored pixels. In Computer Graphics Forum,

volume 29, pages 743–752. Wiley Online Library, 2010.

[91] Marco Agus, Enrico Gobbetti, José Antonio Iglesias Guitián, and Fabio Marton.

Split-voxel: A simple discontinuity-preserving voxel representation for volume

rendering. In VG@ Eurographics, pages 21–28, 2010.

[92] Marco Tarini and Paolo Cignoni. Pinchmaps: Textures with customizable discon-

tinuities. In Computer Graphics Forum, volume 24, pages 557–568. Blackwell

Publishing, Inc Oxford, UK and Boston, USA, 2005.

Bibliography 146

[93] Jörn Loviscach. Efficient magnification of bi-level textures. In ACM SIGGRAPH

2005 Sketches, pages 131–es. 2005.

[94] Pradeep Sen, Mike Cammarano, and Pat Hanrahan. Shadow silhouette maps. ACM

Transactions on Graphics (TOG), 22(3):521–526, 2003.

[95] Pradeep Sen. Silhouette maps for improved texture magnification. In Proceedings of

the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages

65–73, 2004.

[96] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Jitendra Malik. Multi-view

supervision for single-view reconstruction via differentiable ray consistency. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 2626–2634, 2017.

[97] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Escaping plato’s cave: 3d shape

from adversarial rendering. In ICCV, pages 9984–9993, 2019.

[98] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang

Yang. Hologan: Unsupervised learning of 3d representations from natural images.

In ICCV, pages 7588–7597, 2019.

[99] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein,

and Michael Zollhöfer. Deepvoxels: Learning persistent 3d feature embeddings,

2019.

[100] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. In IEEE CVPR, pages 1125–1134,

2017.

[101] Phong Nguyen, Animesh Karnewar, Lam Huynh, Esa Rahtu, Jiri Matas, and Janne

Heikkila. Rgbd-net: Predicting color and depth images for novel views synthesis.

arXiv preprint arXiv:2011.14398, 2020.

[102] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor

Lempitsky. Neural point-based graphics, 2020.

Bibliography 147

[103] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan

Catanzaro. High-resolution image synthesis and semantic manipulation with condi-

tional gans. In IEEE CVPR, pages 8798–8807, 2018.

[104] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari,

Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical

view synthesis with prescriptive sampling guidelines. ACM Trans. Graph., 38(4):1–

14, 2019.

[105] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo

magnification: Learning view synthesis using multiplane images. In ACM Trans.

Graph., 2018.

[106] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing

and improving neural radiance fields. arXiv preprint arXiv:2010.07492, 2020.

[107] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-

aliasing neural radiance fields. arXiv preprint arXiv:2103.13415, 2021.

[108] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural

radiance fields from one or few images. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 4578–4587, 2021.

[109] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi

Yu, and Hao Su. Mvsnerf: Fast generalizable radiance field reconstruction from

multi-view stereo. arXiv preprint arXiv:2103.15595, 2021.

[110] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien

Valentin. Fastnerf: High-fidelity neural rendering at 200fps. arXiv preprint

arXiv:2103.10380, 2021.

[111] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.

Plenoctrees for real-time rendering of neural radiance fields. arXiv preprint

arXiv:2103.14024, 2021.

Bibliography 148

[112] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul

Debevec. Baking neural radiance fields for real-time view synthesis. arXiv preprint

arXiv:2103.14645, 2021.

[113] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf:

Speeding up neural radiance fields with thousands of tiny mlps. arXiv preprint

arXiv:2103.13744, 2021.

[114] Pengsheng Guo, Miguel Angel Bautista, Alex Colburn, Liang Yang, Daniel Ulbricht,

Joshua M. Susskind, and Qi Shan. Fast and explicit neural view synthesis, 2021.

[115] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu

Aubry. Atlasnet: A papier-mâché approach to learning 3d surface generation. CoRR,

abs/1802.05384, 2018.

[116] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-

gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis.

In IEEE CVPR, pages 5799–5809, 2021.

[117] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative

radiance fields for 3d-aware image synthesis. arXiv preprint arXiv:2007.02442,

2020.

[118] Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as composi-

tional generative neural feature fields. In IEEE CVPR, pages 11453–11464, 2021.

[119] Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-Liang Yang, and Niloy J.

Mitra. Blockgan: Learning 3d object-aware scene representations from unlabelled

images. CoRR, abs/2002.08988, 2020.

[120] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.

Neural sparse voxel fields. NeurIPS, 2020.

[121] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro,

and Gordon Wetzstein. Acorn: Adaptive coordinate networks for neural scene

representation, 2021.

Bibliography 149

[122] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner,

and Thomas Funkhouser. Local implicit grid representations for 3d scenes. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2020.

[123] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and

Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks, 2021.

[124] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan.

Cascade cost volume for high-resolution multi-view stereo and stereo matching. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 2495–2504, 2020.

[125] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view stereo

machine. Advances in neural information processing systems, 30, 2017.

[126] Phong Nguyen, Animesh Karnewar, Lam Huynh, Esa Rahtu, Jiri Matas, and Janne

Heikkila. Rgbd-net: Predicting color and depth images for novel views synthesis. In

2021 International Conference on 3D Vision (3DV), pages 1095–1105. IEEE, 2021.

[127] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,

Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-

Nouby, et al. Dinov2: Learning robust visual features without supervision. arXiv

preprint arXiv:2304.07193, 2023.

[128] Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Barlas Oğuz. 3dgen: Tri-

plane latent diffusion for textured mesh generation. arXiv preprint arXiv:2303.05371,

2023.

[129] Sam Bond-Taylor and Chris G Willcocks. Gradient origin networks. arXiv preprint

arXiv:2007.02798, 2020.

[130] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196,

2017.

Bibliography 150

[131] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for

generative adversarial networks. In IEEE CVPR, pages 4401–4410, 2019.

[132] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and

Timo Aila. Analyzing and improving the image quality of stylegan. In IEEE CVPR,

pages 8110–8119, 2020.

[133] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for

high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[134] Animesh Karnewar and Oliver Wang. Msg-gan: Multi-scale gradients for generative

adversarial networks. In IEEE CVPR, pages 7799–7808, 2020.

[135] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo

Aila. Training generative adversarial networks with limited data. arXiv preprint

arXiv:2006.06676, 2020.

[136] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko

Lehtinen, and Timo Aila. Alias-free generative adversarial networks. arXiv preprint

arXiv:2106.12423, 2021.

[137] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder.

arXiv preprint arXiv:2007.03898, 2020.

[138] Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin

Murphy. Fixing a broken elbo. In International Conference on Machine Learning,

pages 159–168. PMLR, 2018.

[139] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[140] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew

Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic

visual concepts with a constrained variational framework. 2016.

Bibliography 151

[141] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible

1x1 convolutions. arXiv preprint arXiv:1807.03039, 2018.

[142] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using

real nvp. arXiv preprint arXiv:1605.08803, 2016.

[143] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent

components estimation. arXiv preprint arXiv:1410.8516, 2014.

[144] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood

training of score-based diffusion models. arXiv preprint arXiv:2101.09258, 2021.

[145] Yang Song and Stefano Ermon. Improved techniques for training score-based

generative models. arXiv preprint arXiv:2006.09011, 2020.

[146] Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Rémi Tachet des Combes, and

Ioannis Mitliagkas. Adversarial score matching and improved sampling for image

generation. arXiv preprint arXiv:2009.05475, 2020.

[147] Jyoti Aneja, Alexander Schwing, Jan Kautz, and Arash Vahdat. Ncp-vae: Variational

autoencoders with noise contrastive priors. arXiv preprint arXiv:2010.02917, 2020.

[148] Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial latent

autoencoders. In IEEE CVPR, pages 14104–14113, 2020.

[149] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum

likelihood and adversarial learning in generative models. In AAAI, 2018.

[150] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole

Winther. Autoencoding beyond pixels using a learned similarity metric. volume 48,

pages 1558–1566, New York, New York, USA, 20–22 Jun 2016.

[151] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative

model from a single natural image. In ICCV, pages 4570–4580, 2019.

Bibliography 152

[152] Tobias Hinz, Matthew Fisher, Oliver Wang, and Stefan Wermter. Improved tech-

niques for training single-image gans. In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, pages 1300–1309, 2021.

[153] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and Joshua B

Tenenbaum. Learning a probabilistic latent space of object shapes via 3d generative-

adversarial modeling. In Adv. Neural Inform. Process. Syst., pages 82–90, 2016.

[154] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. Polygen: An

autoregressive generative model of 3d meshes. In International Conference on

Machine Learning, pages 7220–7229. PMLR, 2020.

[155] Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis, Michael Bronstein, and

Stefanos Zafeiriou. Neural 3d morphable models: Spiral convolutional networks for

3d shape representation learning and generation. In ICCV, pages 7213–7222, 2019.

[156] Heli Ben-Hamu, Haggai Maron, Itay Kezurer, Gal Avineri, and Yaron Lipman.

Multi-chart generative surface modeling. ACM Trans. Graph., 37(6):1–15, 2018.

[157] Luca Cosmo, Antonio Norelli, Oshri Halimi, Ron Kimmel, and Emanuele Rodolà.

Limp: Learning latent shape representations with metric preservation priors. In

ECCV, pages 19–35. Springer, 2020.

[158] Matheus Gadelha, Giorgio Gori, Duygu Ceylan, Radomir Mech, Nathan Carr, Tamy

Boubekeur, Rui Wang, and Subhransu Maji. Learning generative models of shape

handles. In IEEE CVPR, pages 402–411, 2020.

[159] Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang Zhao. Ma-

terialgan: reflectance capture using a generative svbrdf model. arXiv preprint

arXiv:2010.00114, 2020.

[160] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yinan Zhang, Antonio

Torralba, and Sanja Fidler. Image gans meet differentiable rendering for inverse

graphics and interpretable 3d neural rendering. arXiv preprint arXiv:2010.09125,

2020.

Bibliography 153

[161] Seung Wook Kim, Jonah Philion, Antonio Torralba, and Sanja Fidler. Drivegan:

Towards a controllable high-quality neural simulation. In IEEE CVPR, pages 5820–

5829, 2021.

[162] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural

scene graphs for dynamic scenes. In IEEE CVPR, pages 2856–2865, June 2021.

[163] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt

Rusiniak, David Acuna, Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to

generate synthetic datasets. In ICCV, pages 4551–4560, 2019.

[164] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava, Graham W. Taylor,

and Joshua M. Susskind. Unconstrained scene generation with locally conditioned

radiance fields. 2021.

[165] Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian. Cips-3d: A 3d-aware gener-

ator of gans based on conditionally-independent pixel synthesis. arXiv preprint

arXiv:2110.09788, 2021.

[166] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylenerf: A style-

based 3d-aware generator for high-resolution image synthesis. arXiv preprint

arXiv:2110.08985, 2021.

[167] Jing Wen, Bi-Yi Chen, Chang-Dong Wang, and Zhihong Tian. Prgan: personalized

recommendation with conditional generative adversarial networks. In 2021 IEEE

International Conference on Data Mining (ICDM), pages 729–738. IEEE, 2021.

[168] Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao, and Andreas Geiger.

Voxgraf: Fast 3d-aware image synthesis with sparse voxel grids. Advances in Neural

Information Processing Systems, 35:33999–34011, 2022.

[169] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini

De Mello, Orazio Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis,

et al. Efficient geometry-aware 3d generative adversarial networks. In Proceedings

Bibliography 154

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

16123–16133, 2022.

[170] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Walter Talbott, Alexander

Toshev, Zhuoyuan Chen, Laurent Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht,

et al. Gaudi: A neural architect for immersive 3d scene generation. Advances in

Neural Information Processing Systems, 35:25102–25116, 2022.

[171] Ivan Skorokhodov, Sergey Tulyakov, Yiqun Wang, and Peter Wonka. Epigraf:

Rethinking training of 3d gans. Advances in Neural Information Processing Systems,

35:24487–24501, 2022.

[172] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li,

Or Litany, Zan Gojcic, and Sanja Fidler. Get3d: A generative model of high quality

3d textured shapes learned from images. Advances In Neural Information Processing

Systems, 35:31841–31854, 2022.

[173] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep

marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis.

Advances in Neural Information Processing Systems, 34:6087–6101, 2021.

[174] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud genera-

tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2837–2845, 2021.

[175] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through

point-voxel diffusion. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 5826–5835, 2021.

[176] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler,

and Karsten Kreis. Lion: Latent point diffusion models for 3d shape generation.

arXiv preprint arXiv:2210.06978, 2022.

[177] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L

Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim

Bibliography 155

Salimans, et al. Photorealistic text-to-image diffusion models with deep language

understanding. Advances in Neural Information Processing Systems, 35:36479–

36494, 2022.

[178] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun

Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-

resolution text-to-3d content creation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 300–309, 2023.

[179] Daniel Watson, William Chan, Ricardo Martin-Brualla, Jonathan Ho, Andrea

Tagliasacchi, and Mohammad Norouzi. Novel view synthesis with diffusion models.

arXiv preprint arXiv:2210.04628, 2022.

[180] Jiatao Gu, Alex Trevithick, Kai-En Lin, Joshua M Susskind, Christian Theobalt,

Lingjie Liu, and Ravi Ramamoorthi. Nerfdiff: Single-image view synthesis with

nerf-guided distillation from 3d-aware diffusion. In International Conference on

Machine Learning, pages 11808–11826. PMLR, 2023.

[181] Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, and Andrea Vedaldi. Realfusion:

360deg reconstruction of any object from a single image. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8446–

8455, 2023.

[182] Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Distilling view-conditioned

diffusion for 3d reconstruction. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 12588–12597, 2023.

[183] Congyue Deng, Chiyu Jiang, Charles R Qi, Xinchen Yan, Yin Zhou, Leonidas Guibas,

Dragomir Anguelov, et al. Nerdi: Single-view nerf synthesis with language-guided

diffusion as general image priors. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 20637–20647, 2023.

[184] Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin Bao, Tadas Baltrusaitis,

Jingjing Shen, Dong Chen, Fang Wen, Qifeng Chen, et al. Rodin: A generative model

Bibliography 156

for sculpting 3d digital avatars using diffusion. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 4563–4573, 2023.

[185] Norman Müller, Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulo, Peter

Kontschieder, and Matthias Nießner. Diffrf: Rendering-guided 3d radiance field

diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 4328–4338, 2023.

[186] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representa-

tion with local implicit image function. CoRR, abs/2012.09161, 2020.

[187] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape model-

ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5939–5948, 2019.

[188] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven

Lovegrove. Deepsdf: Learning continuous signed distance functions for shape

representation. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 165–174, 2019.

[189] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and Supa-

sorn Suwajanakorn. Nex: Real-time view synthesis with neural basis expansion. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 8534–8543, 2021.

[190] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[191] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

GANs for improved quality, stability, and variation. In International Conference on

Learning Representations, 2018.

[192] Lin Yen-Chen. Nerf-pytorch. https://github.com/yenchenlin/

nerf-pytorch/, 2020.

https://github.com/yenchenlin/nerf-pytorch/
https://github.com/yenchenlin/nerf-pytorch/

Bibliography 157

[193] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The

unreasonable effectiveness of deep features as a perceptual metric. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 586–595,

2018.

[194] Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, and James Tomp-

kin. Matryodshka: Real-time 6dof video view synthesis using multi-sphere images.

In European Conference on Computer Vision, pages 441–459. Springer, 2020.

[195] Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren, Liang Pan, Wayne Wu,

Lei Yang, Jiaqi Wang, Chen Qian, et al. Omniobject3d: Large-vocabulary 3d object

dataset for realistic perception, reconstruction and generation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 803–814,

2023.

[196] Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka. Styleflow: Attribute-

conditioned exploration of stylegan-generated images using conditional continuous

normalizing flows. ACM Trans. Graph., 40(3):1–21, 2021.

[197] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. Interfacegan: Interpreting

the disentangled face representation learned by gans. IEEE Trans. Pattern Anal.

Mach. Intell., 2020.

[198] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace:

Discovering interpretable gan controls. arXiv preprint arXiv:2004.02546, 2020.

[199] Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-Liang Yang, and Niloy

Mitra. Blockgan: Learning 3d object-aware scene representations from unlabelled

images. arXiv preprint arXiv:2002.08988, 2020.

[200] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.

[201] Philipp Henzler, Niloy J Mitra, , and Tobias Ritschel. Learning a neural 3d texture

space from 2d exemplars. In CVPR, June 2019.

Bibliography 158

[202] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion

probabilistic models. In International conference on machine learning, pages 8162–

8171. PMLR, 2021.

[203] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in

latent space. Advances in neural information processing systems, 34:11287–11302,

2021.

[204] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim

Salimans, David Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion

models. In ACM SIGGRAPH 2022 Conference Proceedings, pages 1–10, 2022.

[205] Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano

Ermon. Sdedit: Image synthesis and editing with stochastic differential equations.

arXiv preprint arXiv:2108.01073, 2021.

[206] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi,

and Tim Salimans. Cascaded diffusion models for high fidelity image generation. J.

Mach. Learn. Res., 23(47):1–33, 2022.

[207] Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural wavelet-domain

diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers,

pages 1–9, 2022.

[208] Philipp Henzler, Jeremy Reizenstein, Patrick Labatut, Roman Shapovalov, Tobias

Ritschel, Andrea Vedaldi, and David Novotny. Unsupervised learning of 3d object

categories from videos in the wild. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 4700–4709, 2021.

[209] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial

radiance fields. In European Conference on Computer Vision, pages 333–350.

Springer, 2022.

Bibliography 159

[210] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium. Advances in neural information processing systems, 30, 2017.

[211] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. De-

mystifying mmd gans. arXiv preprint arXiv:1801.01401, 2018.

[212] Michael Niemeyer and Andreas Geiger. Campari: Camera-aware decomposed

generative neural radiance fields. In 2021 International Conference on 3D Vision

(3DV), pages 951–961. IEEE, 2021.

[213] Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom

Goldstein. Diffusion art or digital forgery? investigating data replication in diffusion

models. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 6048–6058, 2023.

[214] Titas Anciukevičius, Zexiang Xu, Matthew Fisher, Paul Henderson, Hakan Bilen,

Niloy J Mitra, and Paul Guerrero. Renderdiffusion: Image diffusion for 3d recon-

struction, inpainting and generation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 12608–12618, 2023.

[215] Zifan Shi, Sida Peng, Yinghao Xu, Andreas Geiger, Yiyi Liao, and Yujun Shen. Deep

generative models on 3d representations: A survey. arXiv preprint arXiv:2210.15663,

2022.

[216] Kyle Gao, Yina Gao, Hongjie He, Dening Lu, Linlin Xu, and Jonathan Li. Nerf:

Neural radiance field in 3d vision, a comprehensive review. arXiv preprint

arXiv:2210.00379, 2022.

[217] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou,

Jonathan T Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser.

Ibrnet: Learning multi-view image-based rendering. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 4690–4699, 2021.

Bibliography 160

[218] Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping Wang.

Sparseneus: Fast generalizable neural surface reconstruction from sparse views.

In European Conference on Computer Vision, pages 210–227. Springer, 2022.

[219] Xingkui Wei, Yinda Zhang, Zhuwen Li, Yanwei Fu, and Xiangyang Xue. Deepsfm:

Structure from motion via deep bundle adjustment. In Computer Vision–ECCV 2020:

16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I

16, pages 230–247. Springer, 2020.

[220] Xingkui Wei, Yinda Zhang, Xinlin Ren, Zhuwen Li, Yanwei Fu, and Xiangyang

Xue. Deepsfm: Robust deep iterative refinement for structure from motion. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2023.

[221] Aji Resindra Widya, Akihiko Torii, and Masatoshi Okutomi. Structure-from-motion

using dense cnn features with keypoint relocalization. arXiv e-prints, pages arXiv–

1805, 2018.

[222] Ayush Tewari, Tianwei Yin, George Cazenavette, Semon Rezchikov, Joshua B

Tenenbaum, Frédo Durand, William T Freeman, and Vincent Sitzmann. Diffusion

with forward models: Solving stochastic inverse problems without direct supervision.

arXiv preprint arXiv:2306.11719, 2023.

[223] Eric R. Chan, Koki Nagano, Matthew A. Chan, Alexander W. Bergman, Jeong Joon

Park, Axel Levy, Miika Aittala, Shalini De Mello, Tero Karras, and Gordon Wetzstein.

GeNVS: Generative novel view synthesis with 3D-aware diffusion models. In arXiv,

2023.

[224] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu,

and Hao Su. One-2-3-45: Any single image to 3d mesh in 45 seconds without

per-shape optimization. Advances in Neural Information Processing Systems, 36,

2024.

[225] Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng Wang, Christian Theobalt,

Xiaowei Zhou, and Wenping Wang. Neural rays for occlusion-aware image-based

Bibliography 161

rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 7824–7833, 2022.

[226] Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan

McGuire, Alec Jacobson, and Sanja Fidler. Variable bitrate neural fields. In ACM

SIGGRAPH 2022 Conference Proceedings, pages 1–9, 2022.

[227] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.

3d gaussian splatting for real-time radiance field rendering. ACM Transactions on

Graphics, 42(4), July 2023.

[228] Reiner Birkl, Diana Wofk, and Matthias Müller. Midas v3. 1–a model zoo for robust

monocular relative depth estimation. arXiv preprint arXiv:2307.14460, 2023.

[229] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller.

Zoedepth: Zero-shot transfer by combining relative and metric depth. arXiv preprint

arXiv:2302.12288, 2023.

[230] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang

Zhao. Depth anything: Unleashing the power of large-scale unlabeled data. arXiv

preprint arXiv:2401.10891, 2024.

[231] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. Synsin:

End-to-end view synthesis from a single image. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 7467–7477, 2020.

[232] Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lempitsky, and Evgeny Burnaev.

Npbg++: Accelerating neural point-based graphics. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 15969–15979, 2022.

[233] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects

in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,

Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer,

2014.

Bibliography 162

[234] Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren, Liang Pan, Wayne Wu,

Lei Yang, Jiaqi Wang, Chen Qian, et al. Omniobject3d github code and dataset,

2023. https://github.com/omniobject3d/OmniObject3D.

[235] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity

for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals,

Systems & Computers, 2003, volume 2, pages 1398–1402. Ieee, 2003.

[236] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint

arXiv:2207.12598, 2022.

[237] Ziang Cao, Fangzhou Hong, Tong Wu, Liang Pan, and Ziwei Liu. Large-vocabulary

3d diffusion model with transformer. arXiv preprint arXiv:2309.07920, 2023.

[238] William Peebles and Saining Xie. Scalable diffusion models with transformers. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

4195–4205, 2023.

[239] Jiawei Yang, Katie Z Luo, Jiefeng Li, Kilian Q Weinberger, Yonglong Tian, and Yue

Wang. Denoising vision transformers. arXiv preprint arXiv:2401.02957, 2024.

[240] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya

Kusupati, Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al.

Objaverse-xl: A universe of 10m+ 3d objects. arXiv preprint arXiv:2307.05663,

2023.

[241] Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wen-

zheng Chen, Zan Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. Flexible

isosurface extraction for gradient-based mesh optimization. ACM Transactions on

Graphics (TOG), 42(4):1–16, 2023.

List of Figures

1.1 (a) A screenshot from the highest grossing game of 2023 titled “God

of War: Ragnarok”, and (b) A frame from the 2022 blockbuster

movie titled “Avatar: The way of water”. 12

1.2 Samples generated by Stable-Diffusion [12] for the prompts (a) “A

large public music concert on Mars”; (b) “A Unicorn swimming in

the ocean”; (c) “Neanderthals having a candle light dinner”. 15

1.3 Examples of live imaginative painting from the demo created by

the X-user ‘@MartinNebelong’. The user is drawing an artistic tree

branch in (a), while drawing a realistic portrait in (b). The ControlNet

transforms the user’s vector input into the specified styles of RGB

images in real-time. Ref: https://x.com/AnimeshKarnewar/

status/1759997147133444194. 16

1.4 Examples of textures generated by the Text2Tex method from Chen

et al. [20] given pre-made 3D meshes and user provided text-prompts. 17

1.5 Figure shows 2D orthographic projection of three 3D representations

namely point-cloud (left), mesh (middle) and voxel-grid (right). . . 21

2.1 A Venn diagram showing where Deep Learning fits in the hierarchy

of the concepts in AI. 24

2.2 The figure describes the flow of information in a typical Ma-

chine Learning framework. Both the example input and

example output are the same for self-supervised learning, while

in the case of unsupervised learning (K-means for instance), the

objective function doesn’t take as input any example output. . . . 25

https://x.com/AnimeshKarnewar/status/1759997147133444194
https://x.com/AnimeshKarnewar/status/1759997147133444194

List of Figures 164

2.3 The perceptron algorithm (left) was the basis of the modern-day

neural-network models used today. (Right) shows how the individual

perceptrons are arranged in case of a Multi-Layered Perceptrons model. 26

2.4 Differentiable volumetric rendering of a continuous volumetric 3D

radiance field denoted by R. 34

2.5 Two perceptually very similar images I1 and I2 have the maximum

possible L2 distance in the 4×4 image space where each pixel can

have values strictly between [0,1], s.t. 0 represents the colour black

and 1 represents the colour white. 39

2.6 The interaction between the two networks, viz. Generator G(z) and

the Discriminator D(x) (for real sample input) or D(x̂) (for fake

sample input) during mini-max game of the GAN training. 39

2.7 The forward and backward markov chains defined by Diffusion

Models. The first step x0 denotes the true data samples such as

images while the final step xT indicates pure Gaussian noise. All the

intermediate xt represent noisy versions of the data-samples. 41

4.1 We present a method to represent complex signals such as images

or 3D scenes, both volumetric (left) and surface (right), on regularly

sampled grid vertices. Our method is able to match the expres-

siveness of coordinate-based MLPs while retaining reconstruction

and rendering speed of voxel grids, without requiring any neural

networks or sparse data structures. 53

4.2 Representing a ground-truth function (blue) in a 1D (a) and 2D

(b) grid cell using the linear basis (yellow) and a ReLU-Fields

(pink).The reference has a c1-discontinuity inside the domain that a

linear basis cannot capture. A ReLU-Field will pick two values y1

and y2, such that their interpolation, after clamping will match the

sharp c1-discontinuity in the ground-truth (blue) function. 55

List of Figures 165

4.3 Representing an image with a standard pixel grid bi-linearly inter-

polated to a larger size (Grid) versus a ReLU-Field of the same size

(ReLUField). The grid-size of the variants, ReLUField and Grid, is

64x smaller; while of, ReLUFieldL and GridL, is 32x smaller than

the source image-resolution along each dimension. Note that the ‘L’

variants have a bigger grid-size and hence less smaller than the GT

raster image. Simply adding a ReLU allows for significantly more

sharpness and detail to be expressed. Hence, we can say that the

humble ReLU is truly the little non-linearity that could. 57

4.4 Qualitative comparison between NeRF-PT, GridL and ReLUFieldL.

Grid-based versions converge much faster, and we can see significant

sharpness improvements of ReLUFieldL over GridL, for example in

the leaves of the plant. See also supplementary video. 58

4.5 Qualitative results for the real-captured scene extension of ReLU-

Fields on Flowers. We decompose the scene into a series of spherical-

background shells and a foreground ReLU-Field layer, which are

alpha-composited together to give final novel view renderings. The

top-left visualization shows the composite of the background spheri-

cal shells un-projected onto a 2D image-plane. 62

4.6 Qualitative results for the occupancy fields comparing Grid, MLP,

and ReLUField. 64

5.1 Single scene 3D remixes. We introduce 3INGAN that takes a set

of 2D photos of a single self-similar scene to produce a generative

model of 3D scene remixes, each of which can be rendered from

arbitrary camera configurations, without any flickering or spatio-

temporal artifacts. Bottom row insets show zooms from different

generative samples, rendered from the same camera view, to high-

light the quality and diversity of the results. 68

List of Figures 166

5.2 3INGAN setup. Overview of our approach with two parts: an

initialization of a reference 3D feature grid (top) and a stage-wise

learning of a generative model (bottom). Input to the system is a set

of 2D images seen on the top left. From these, optimization using

differentiable rendering for known views produces the reference

feature grid, which is the input to the next step. The rows below

(“Level”) denote levels of training the generator, a 2D discriminator,

and a 3D discriminator. The 3D discriminator (right) gets random

3D patches from the reference or generated 3D grid, while the 2D

discriminator (right) gets random 2D patches from reference or from

generated renderings. 71

5.3 Datasets. Example renderings of the scenes from our synthetic and

real world datasets (Blocks, Chalk). 76

5.4 Single 3D scene FID. We extend FID scores to our single scene use

case. The distribution of feature responses is computed for different

camera views (rows) and generations (columns). The reference (left)

leads to a certain distribution of features. Rather than matching

the reference distribution across all views and all seeds (red lines),

we compare it to the distribution of a single fixed seed across all

views (green lines) to measure visual quality. Then, we compare the

variance of the distribution of features across all seeds under a fixed

view as a measure of scene diversity. 78

5.5 Qualitative comparison. Comparison of visual quality for different

methods (columns) for different scenes (rows). 78

5.6 Diversity across different generative samples. Diversity under

changing seeds (columns) of different methods (rows) for different

scenes (left and right blocks). See also Figure 5.3. 79

5.7 Scene retargetting. Retargeting the Plants, the Logs, and Fish

scenes to novel aspect ratios. Since ours is CNN-based, it is easy to

retarget scenes to different sizes. 80

List of Figures 167

6.1 The 3inFusion pipeline takes as input random 3D crops of the fitted

ReLU-Field grid. This input is then combined with time-conditional

Gaussian noise, which is then denoised by the 3D-Unet. During

inference, we use this 3D crop denoiser to denoise a noise grid of

the original grid-size iteratively to generate semantically meaningful

variations of the original scene. 84

6.2 Given a ReLU-field grid of a 3D scene, 3inFusion can generate

semantically meaningful variations of it, much better than 3inGAN,

while training in a simple and stable manner. 85

6.3 We present HoloDiffusion as the first 3D-aware generative diffu-

sion model that produces 3D-consistent images and is trained with

only posed image supervision. Here we show a few different sam-

ples generated from models trained on different classes of the CO3D

dataset [76]. 86

6.4 Method overview. Our HoloDiffusion takes as input video frames

for category-specific videos {si} and trains a diffusion-based gen-

erative model Dθ . The model is trained with only posed image

supervision {(Ii
j,P

i
j)}, without access to 3D ground-truth. Once

trained, the model can generate view-consistent results from novel

camera locations. 87

6.5 View consistency. Evaluation of the consistency of the shape ren-

ders under camera motion. While our results (top) remain consistent,

pi-GAN [116]’s results (bottom) suffer from significant appearance

variations across view changes. 90

6.6 Comparisons. Samples generated by our HoloDiffusion compared

to those by pi-GAN, EG3D, and GET3D. 92

6.7 Sampling across time. Rendering of HoloDiffusion’s iterative

sampling process for a hydrant and a teddy bear. The diffusion time

decreases from left (t = T = 1000) to the right (t = 0). 94

List of Figures 168

7.1 We propose HoloFusion to generate photo-realistic 3D radiance

fields by extending the HoloDiffusion method with a jointly trained

2D ‘super resolution’ network. The independently super-resolved im-

ages are fused back into the 3D representation to improve the fidelity

of the 3D model via distillation, while preserving the consistency

across view changes. 97

7.2 Overview. HoloFusion, which trains the 3D denoiser network Dθ ,

is augmented with the 2D ‘super-resolution’ diffusion model Dβ .

Both models are trained end-to-end by supervising their outputs with

2D photometric error. 100

7.3 Distillation. HoloFusion distills a single high-resolution voxel grid

V H
0 by minimizing a top-k patch-remix loss Ldistil between the grid

renders Rη ′(V H
0 ,C) and a bank IC of K = 5 high-res images output

by the 2D diffusion upsampler Dβ for each scene camera C. 104

7.4 Generated 3D samples visualized from a moving camera. π-GAN

and HoloDiffusion∗ fail to produce 3D view consistent samples,

while DreamFusion suffers from the “Janus” problem (multiple

heads). 105

7.5 Fusing views. Our patch-remix (section 7.3.2.2) compared to the

SDS and MSE distillation. MSE has “floaters” and viewpoint in-

consistencies, SDS over-smooths the texture. Ours is robust and

produces superior quality. 106

7.6 3D samples generated by our HoloFusion compared to π-GAN,

EG3D, GET3D, HoloDiffusion, HoloDiffusion∗, and the text-to-3D

Stable-DreamFusion. 107

7.7 Heatmaps illustrating the per-pixel color variance of K = 10 hypoth-

esis produced by the upsampler Dβ . Some samples contain artifacts

around the object boundaries which correspond to the high-variance

regions in the figure. Our top-K patch-remix increases robustness by

allowing the loss to discard such artifacts during distillation. 109

List of Figures 169

8.1 We propose the GOEmbed (Gradient Origin Embedding) mecha-

nism that encodes source views (octxt) and camera parameters (φ ctxt)

into arbitrary 3D Radiance-Field representations g(c,d) (sec. 8.3).

We show how these general-purpose GOEmbeddings can be used in

the context of 3D DFMs (Diffusion with Forward Models) (sec. 8.5)

and for sparse-view 3D reconstruction (sec. 8.6). 113

8.2 GOEmbed illustration. We demonstrate the mechanism here using

the Triplane representation for g(c,d), but note that this can be

applied to other representations as well. The GOEmbed mechanism

(eq. 8.1) consists of two steps. First we render the origin ζ0 from

the context-poses φ ctxt; then we compute the gradient of the MSE

between the renders and the source-views octxt wrt. the origin ζ0

which gives us the GOEmbed encodings ζenc. 116

8.3 Plenoptic Encoding Qualitative Evaluation. The rows MLP, Tri-

plane and Voxel-grid show the renders of the GOEmbed encoded

representations from the target-view respectively. The colour-coded

columns demonstrate the effect of varying the number-of-source

views (1, 2, 3, 4) used in the GOEmbed encoding. The SSO column

shows the target render of the single-scene-overfitted representa-

tion while the G.T. column shows the mesh-render from the dataset

(repeated for clarity). 119

8.4 3D Generation Qualitative Evaluation. 3D samples generated by

our GOEmbedFusion compared to the prior GAN, and Diffusion

based baselines. 121

List of Tables

4.1 Evaluation results on 3D synthetic scenes. Metrics used are PSNR

(↑) / LPIPS (↓). The column NeRF-TF∗ quotes PSNR values from

prior work [34], and as such we do not have a comparable runtime

for this method. 60

4.2 Evaluation results on modeling 3D geometries as occupancy fields.

Metric used is Volumetric-IoU [32]. The baseline MLP is our imple-

mentation of OccupancyNetworks [32]. 63

5.1 Comparisons and ablations. We enumerate the different methods

based on how they make use of 2D versus 3D information, and if

they operate on a single scene or multiple scenes. 76

5.2 Quality versus diversity. A good generative model should have

a good mix of quality and diversity – excellent quality with no

diversity or vice versa are both undesirable. Visual Quality and Scene

Diversity for different methods (columns) and different data sets

(rows). To simplify comparison, we normalize the numbers so that

ours is always 1. The best for each metric on each dataset is bolded

and second best is underlined. Please refer to the supplementary for

unscaled numbers. 79

List of Tables 171

6.1 Quantitative evaluation. FID and KID on 4 classes of CO3Dv2

comparing our HoloDiffusion with the baselines pi-GAN [116],

EG3D [169], GET3D [172], and the non-bootstrapped version of

our HoloDiffusion. The column “VP” denotes whether renders of a

method are 3D view-consistent or not. 93

7.1 FID (↓) and KID (↓) on 4 classes of Co3Dv2 [76]. We compare

with 3D generative modeling baselines (rows 1–5); with an SDS

distillation-based Stable-DreamFusion (row 6); and with ablations

of our HoloFusion (rows 7–8). The column “VP” denotes whether

renders of a method are 3D view-consistent or not. 108

8.1 Plenoptic Encoding Quantitative Evaluation. PSNR(↑), LPIPS(↓)

and SSIM(↑) reported on three different representations of the 3D

Radiance-Field g, namely, Triplanes, Voxel-Grids and MLPs. All

the metrics are evaluated for target views (different from the source

views) against the G.T. mesh renders from the dataset. The SSO

(Single Scene Overfitting) scores denote the case of individually

fitting the representations to the 3D scenes. 119

8.2 3D Generation Quantitative Evaluation. FID(↓) and KID(↓)

scores on the OmniObject3D dataset comparing our GOEmbed-

Fusion with GAN baselines EG3D [169], and GET3D[172]; with

the non-forward diffusion baselines DiffRF[185], DiffTF[237], and

Our non-forward diffusion baseline; and, with the DFM (Diffusion

with Forward Model) [222]. 124

8.3 3D reconstruction Quantitative Evaluation. PSNR(↑), LPIPS(↓)

and SSIM(↓) of our GOEmbed reconstruction model, and GOEm-

bedFusion’s “pseudo”-deterministic 3D reconstruction output com-

pared to LRM baselines. We again include the SSO (Single Scene

Overfitting) here for comparison. 126

Abbreviations

AI Artificial Intelligence 21

AR Augmented Reality 9

CGI Computer-Generated Imagery 8, 9, 19

CNN Convolutional Neural Network 24, 25

CS Computer Science 20

GAN Generative Adversarial Network 35–37

GM Generative Modelling 3, 10

HCI Human Computer Interface 9

LLM Large Language Model 3, 12

ML Machine Learning 11, 21, 22, 28, 34, 37, 39

MLP Multi Layer Perceptron 3, 24

NN Neural Network 24–28, 30

RNN Recurrent Neural Network 25

SGD Stochastic Gradient Descent 26, 28

VAE Variational Auto-Encoder 33

VR Virtual Reality 9

	Introduction
	Why 3D?
	What is Generative Modelling?
	What can Generative Modelling do?
	Success stories of 2D Generative Modelling
	Possible applications of 3D Generative Models

	Scope of the thesis
	Challenges and Opportunities

	Preliminaries
	Deep Learning
	Neural Networks
	Mathematical Optimization

	3D Radiance Fields
	Differentiable volumetric rendering
	End-to-end 3D reconstruction pipeline
	Summary

	Generative Models
	Generative Adversarial Networks
	Diffusion Models

	Literature survey
	Discrete sample based representations
	Differentiable rendering.
	Learned neural representations
	2D-to-3D Encoding
	2D generative models.
	3D generative models.

	ReLU-Fields: The Little Non-linearity That Could
	Background and Contributions
	Introduction
	It's just a little ReLU
	Applications
	Radiance Fields
	Occupancy Fields

	Limitations
	Summary

	3inGAN: Learning a 3D Generative Model from Images of a Self-similar Scene
	Background and Contributions
	Introduction
	3inGAN approach
	Representation
	Generation

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation

	Limitations
	Summary

	HoloDiffusion: Training a 3D Diffusion Model using 2D Images
	Background and Contributions
	Introduction
	HoloDiffusion method
	Learning 3D Categories by Watching Videos
	Bootstrapped Latent Diffusion Model
	Implementation Details

	Evaluation
	Limitations
	Summary

	HoloFusion: Towards Photo-realistic 3D Generative Modeling
	Background and Contributions
	Introduction
	HoloFusion method
	HoloDiffusion revisited
	HoloFusion

	Evaluation
	Details
	Quantitative and qualitative analysis

	Limitations
	Summary

	GOEmbed: Representation Agnostic 3D Feature Learning
	Background and Contributions
	Introduction
	Method
	GOEmbed: Gradient Origin Embeddings
	Experimental Evaluation Rubric

	Plenoptic Encoding
	3D Generation
	Sparse-View 3D Reconstruction
	Limitations
	Summary

	Conclusions
	Summary
	Insights
	What next?
	3D Meshes are important
	Scale is directly proportional to impact.

	Bibliography
	Abbreviations

