
Towards 3D Generative Models With
Sparse Guidance

Sanjeev Muralikrishnan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

June 11, 2025

2

I, Sanjeev Muralikrishnan, confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that this

has been indicated in the work.

Abstract

Storytelling in its various forms has been a part of the human experience for several

millenia. From cave impressions to contemporary virtual experiences, the tools for

telling stories have evolved a long way. Today, digital 3D assets are the alphabets of

modern storytelling, invaluable in several creative pipelines from games to movies

to advertisements. They provide creative storytellers with a powerful medium to

immerse their audiences in vivid worlds.

Creating rich 3D content typically calls for teams of highly skilled artists work-

ing with sophisticated and complex authoring tools. As such, creating high-quality

3D assets is quite expensive in time and cost. This barrier greatly limits the avail-

ability of 3D data compared to domains like images and text. Thus there has always

been a need for automated or semi-automated creation of 3D content. In recent

years, with the advent of generative machine learning, artists benefit from AI mod-

els that are trained to generate or edit 3D assets. These AI models aim to augment

the artists’ creativity and continually ease the process of 3D content creation. How-

ever, for contemporary generative models to be truly useful, they need to be trained

on large datasets of 3D content leading to a cyclic chicken-and-egg problem wherein

to aid artists create 3D content we require large volumes of difficult-to-author 3D

content in the first place. In this thesis, we present algorithms to learn generative

models for 3D that can be trained with sparse datasets that are more easily avail-

able. We introduce three such novel frameworks, and they tackle the problem of 3D

generation for shapes, poses and animation in these sparse data settings.

Acknowledgements

This thesis is the culmination of a long, arduous yet satisfying journey that began in

2015 with my first foray into research. Its a journey I’m proud to have taken for it

was one of self-discovery, of gratitude and immense personal growth beyond what I

thought possible. I take this opportunity to express my gratitude to the people who

knowingly or otherwise made this journey possible.

I thank my parents and my sister Vinitra for always believing in my dreams,

for being there in persistent support as I chased them. Thank you for everything you

did to make this dream possible.

I thank Siddhartha Chaudhuri for initiating this journey in 2015, for fueling it

with passion and inculcating in me the belief that I can thrive on this path.

I thank my supervisor Niloy J. Mitra for helping me discover the scientist I

want to be, for his incessant drive in pushing me to always aim for excellence in

science and for being in the trenches with me through tough deadlines.

Special thanks to Vladimir Kim, Noam Aigerman, Matthew Fisher, Duygu

Ceylan and Chun-Hao Paul Huang for believing in the research I proposed to un-

dertake and for helping me stress-test every aspect of the work we produced.

A PhD can be a lonely journey, it wasn’t for me. I’m immensely grateful to

my colleagues at 169 Euston Road and the many friends in London and back home

for their support and friendship through this ride. I thank Michael and Luca for

the numerous times I needed their advice, the laughter and the lunchtime banters,

you have been invaluable. I thank Yiftach and Shalini for the exciting board-game

nights, for the laughs and their sagely advice. I particularly thank Yiftach for his

wonderful friendship that set me at ease during this long walk.

Acknowledgements 5

Thank you Michael, Niladri, Karran, Romy for your companionship, the amaz-

ing climbing sessions and for answering some confounding questions I struggled to

answer during these years. I also thank Shravan, Mohit and Nishchay for setting me

on this journey through the Swayam Satellite project, for initiating me in the ways

of science and for their constant support and guidance.

My deepest gratitude goes to my school friends Amey, Yogesh, Aditya, Suraj,

Nimesh, Ishan, Vivek and Ashwin for being my everyday-family, for being my

virtual home away from home. Thank you for your friendship, laughter and the

countless cricket and random discussions that kept me going every single day.

I thank Amey for believing in me, for always lifting me up when I was down

and prodding me along this road. I have been very lucky to have you as my friend.

I’m deeply grateful to my cats Ginny, Joey and Trubbsy for adopting me into

their warm furry world. My deepest gratitude to the goodest boy Bruno who through

serendipity brought me together with my wife.

Lastly, I am filled with immense gratitude for my wife Harshita. I feel incredi-

bly lucky to have met you during this journey. In my quest to discover the scientist

I want to be, you helped me become the person I want to be. Thank you for being

the rock during these times, for being proud of me and believing in me.

I’m forever indebted to everyone who made this thesis possible.

Publications

The work presented in this thesis has been published as conference papers, refer-

ences are listed below.

• Chapter 2:

Sanjeev Muralikrishnan, Siddhartha Chaudhuri, Noam Aigerman, Vladimir

G. Kim, Matthew Fisher, Niloy J. Mitra. GLASS: Geometric Latent Augmen-

tation for Shape Spaces In Proc. Computer Vision and Pattern Recognition,

IEEE, 2022.

• Chapter 3:

Sanjeev Muralikrishnan, Chun-Hao Paul Huang, Duygu Ceylan, Niloy J.

Mitra BLiSS: Bootstrapped Linear Shape Spaces In Proc. International Con-

ference on 3D Vision, IEEE, 2024.

• Chapter 4:

Sanjeev Muralikrishnan, Niladri Shekhar Dutt, Siddhartha Chaudhuri,

Noam Aigerman, Vladimir G. Kim, Matthew Fisher, Niloy J. Mitra. Tem-

poral Residual Jacobians for Rig-free Motion Transfer In Proc. European

Conference on Computer Vision , Springer Science, 2024.

Code has been released for all these works.

Impact Statement

This thesis presents three works that introduce frameworks for generating static and

dynamic 3D content from very sparse datasets. They were presented at CVPR, 3DV,

and ECCV. These works primarily learn to generate human/animal shapes in varied

poses and/or shapes. In this context, pose refers to the orientation of parts relative

to others according to a hierarchical kinematic tree defined on body joints, while

shape refers to geometric surface details – like curvature and normal orientation –

that define the identity of the human or animal.

Chapter 2 (GLASS) introduces a method to iteratively grow pose spaces - the

space of relative part orientations - seeded with 3–10 poses to rich spaces of up to

2500 pose variations (identity-preserving deformations), by injecting classical geo-

metric priors into the neural learning process. Chapter 3 (BLiSS) extends this idea

by injecting learned neural priors to model shape variation - identity-changing de-

formations. Starting with 200 artist-curated body shapes, BLiSS grows the shape

space – the space of all identities – to 1000 through iterative growth. Chapter 4

(Temporal Residual Jacobians) boosts learning of spatio-temporal motion fields

from very few motion examples by learning temporal signals that preserve mo-

tion consistency; the learned field, when applied to characters-in-the-wild, imparts

complex motion to these stylistic characters, creating newly animated shapes from

sparse motion datasets.

Each chapter is self-contained, with its associated literature review included.

This thesis demonstrates that learning generative 3D models greatly benefits from

task-specific priors, enabling such models to be trained from super-sparse guidance.

Contents

1 Introduction 20

2 GLASS: Geometric Latent Augmentation for Shape Spaces 25

2.1 Introduction . 26

2.2 GLASS: Related Work . 28

2.2.1 Geometric shape deformation. 28

2.2.2 Learned deformation models. 29

2.2.3 Unsupervised data augmentation. 30

2.3 Approach . 31

2.3.1 Problem Setup . 31

2.3.2 Deformation-Aware VAE 32

2.3.3 Augmenting via Latent Space Exploration 33

2.4 Implementation Choices . 37

2.5 Evaluation . 38

2.6 Conclusion . 45

3 BLiSS: Bootstrapped Linear Shape Space 47

3.1 Introduction . 48

3.2 BLiSS: Related Work . 50

3.2.1 Non-rigid registration . 50

3.2.2 3D Morphable Models for Humans 51

3.3 Approach . 53

3.3.1 Overview . 53

Contents 9

3.3.2 PCA-based Shape Space 55

3.3.3 Neural Deformation with NJF 56

3.3.4 Closing the Loop . 57

3.4 Evaluation . 59

3.4.1 Dataset and Protocols . 59

3.4.2 Results and Discussions 61

3.5 Conclusions . 66

4 Temporal Residual Jacobians for Rig-free Motion Transfer 68

4.1 Introduction . 69

4.2 TRJ: Related Work . 71

4.2.1 Parametric Shape Deformation. 71

4.2.2 Dynamic Motion. 72

4.2.3 Discrete Time Motion Models. 72

4.3 Approach . 73

4.3.1 Overview . 74

4.3.2 Preliminaries . 75

4.3.3 Motion Transfer with Space-time Integration 77

4.4 Evaluation . 81

4.5 Conclusion . 87

5 Discussion 89

Appendices 93

A GLASS: Geometric Latent Augmentation for Shape Spaces 93

A.1 Additional Generated Samples . 93

A.2 Expression generation using COMA dataset 93

A.3 Additional Interpolation Examples 93

A.4 Network Architecture . 94

A.5 Dataset Images . 94

Contents 10

B BLiSS: Bootstrapped Linear Shape Space 104

B.1 Shape Estimation from Single Image 104

B.2 Iterative improvements . 105

B.3 Hand Registration - MANO . 105

B.4 Implementation Details . 106

B.4.1 Features for Neural Jacobian Field 106

B.4.2 Summary of the Use of CAESAR data 106

B.5 Nearest Lookup from Others to GHUM 107

Bibliography 109

List of Figures

2.1 Starting from just 10 shapes (larger), our method iteratively aug-

ments the collection by alternating between training a VAE, and

exploring random perturbations in its low-dimensional latent space

guided by a purely geometric deformation energy. Here we show

the 1000 most diverse shapes from the first 5K discovered by our

method, positioned according to their latent embedding (projected

to 2D via t-SNE). Shapes are colored according to the initial land-

mark they trace back to, with shapes added in later iterations lighter

(greyer) in color. The augmentation effectively fills in the space

between the sparse initial landmarks, and even extrapolates beyond

them. It manages to also interpolate global rotations for samples

near the back-facing exemplar, and yields shapes with larger feet-

strides (far left), and crossed arms or feet (front, left and center)

even though there are no such initial landmarks. 26

2.2 We present GLASS to iteratively build a deformation-aware VAE

latent space and analyzing it to generate new training samples to

augment the original training set. These enables generation of di-

verse yet plausible shape variations starting from very few input

examples. 32

2.3 tSNE embedding of generated samples shows progressive augmen-

tation of the shape space. Sample color indicates originating (par-

ent) shape. See also Fig. 2.1. 33

List of Figures 12

2.4 Generation results evaluated by coverage. We train different meth-

ods on the same training data (col 1) and generate comparable num-

bers of shapes. Given two shapes from the holdout data (col 2), we

evaluate the methods by finding the closest generated shape (cols

3-9). Note how the baselines exhibit strong artifacts and usually do

not match the query shape. 38

2.5 Training GLASS on the human, centaur, and horse meshes using the

3 examples each (top). (Bottom) We show random samples from the

latent space, which combine different properties learned from the

example deformations. Please see Appendix A for more generation

results. 39

2.6 We compare the interpolation results between our method, several

ablations of our method, and prior work. 39

2.7 Interpolation results. In gray, we show two landmark shapes. In

gold, we show the decoded meshes after we linearly interpolate the

latent space between these two landmarks. All models are trained

on only 5 landmarks. See Appendix A for more interpolation results. 41

3.1 We present BLISS, which progressively builds a human body shape

space and brings unregistered scans into correspondence to a given

template mesh. Starting from as few as 200 manually registered

scans (green samples), BLISS creates an expressive shape space

(pink samples), performing on par with state-of-the-art models such

as SMPL, STAR, and GHUM, while requiring only 5% of annota-

tions compared to the others. (Right) Our space can then recover

the body-shape parameters of raw scans by projecting them directly

to ours. 48

List of Figures 13

3.2 Given a sparse set of scans SR, and their registrations R to a common

template, we learn a linear shape space BPCA using RPCA and train

a non-linear NJF-based deformation model using RDEFORM. Then,

given a scan SU from a set of unregistered scans U , we project it

to the PCA basis to obtain Xo and utilize NJF-based deformation

to recover its registration to the template X → in the canonical pose.

To enhance our shape space, we calculate the Chamfer Distance

(DCD) of registrations to target scans. We add all registrations where

the distance falls within one standard deviation of the minimum

distance to RPCA. We repeat this process to jointly register raw scans

and enrich our shape space. 54

3.3 We show the histogram of the v2v error of the scans in our test set

at different iterations of our method. We also color code the per-

vertex error for an example scan. As our method progresses, the

error decreases, and we observe a slight left shift in the histogram

as the shape space improves. Insets show residue error on one scan

over iterations. 58

3.4 For a given raw scan, we register each body model by predicting

pose and body shape parameters. (Top) Each result is color coded

based on the v2p error in meters w.r.t. the ground truth registration

provided by the artist. 63

3.5 We show shapes along the top three principal directions in different

rows, and observe variations in gender, height, and weight along the

respective PCA modes. 64

List of Figures 14

3.6 Left: Registration (pink) of noisy scans (blue) with our final shape

space. Since our model does not capture finger-level details, after

optimization, the joints corresponding to the greyed-out regions are

reset to default poses. Right: We show sampled faces from our

final face-shape space after growing it from 20 ↑ 800 shapes. We

observe a variety of face changes in the cheek and nose regions.

(Bottom) We take the test scans from the COMA dataset (in blue)

and register them in our final face-shape space, which is shown in

pink. 64

4.1 Given a stick figure dance motion (top-right), Temporal Residual

Jacobians retarget the animation to unseen, unrigged meshes (top-

left) across time, producing realistic motion dynamics. Please refer

to the webpage for videos. Our method can be trained on limited

data, does not require rigged models or skinning weights during

training or inference, and does not assume paired sequences or reg-

istration to any canonical template mesh. The method was trained

on other bodyshapes: no target characters were seen during train-

ing. All results in the paper and the webpage were obtained with

automatic feature correspondences and without any postprocessing

or smoothing applied. 69

List of Figures 15

4.2 Method overview. Starting from input stick figure motion ({Mi})

and a target body shape (X0), Temporal Residual Jacobians makes

local predictions, using primary fP and residual fR MLPs, to predict

spatial and temporal changes to per-triangle Jacobians respectively.

fP (middle, top) predicts per-face deformations independently at

each time step. These are attended to in fixed windows by atten-

tion blocks (A) and encoded as previous (EW↓1) and current win-

dow (EW) motion features. These features along with bodyshape

signature ! are input to our temporal residue module fR (middle,

bottom) which predicts the Residual Jacobians to be added to per-

frame Jacobians, to make them temporally coherent. These resid-

uals are then integrated in time, via numerical Euler stepping to

predict the stitched Jacobians at time t, followed by a spatial inte-

gration of these Jacobians via a Poisson Solve. 77

4.3 Generalization across bodyshapes. We show results of different

motion transfers on meshes found in-the-wild (blue), FAUST scans

(pink) and Mixamo characters (green). We observe a smooth mo-

tion consistent with the target geometry in each case. Please see the

webpage for the videos. 82

4.4 Generalization across shapes with very sparse training sets.

Here, we show motion transfer from two animal sequences (in yel-

low) sampled from the DeformingThings4D dataset [1], to animal

meshes found in the wild (in blue). Our method was trained on

only two sequences from this dataset and yet generates plausible

motion transfer to unseen shapes. Rigs were not available to our

algorithm at training and/or test time. (Note: blue sequences have

been slightly globally rotated for visibility.) 83

List of Figures 16

4.5 Motion transfer from COP3D dataset. We train on only four se-

quences of dogs obtained from the COP3D dataset [2], which are

monocular video recordings of animal motion, and transfer the ob-

served regressed motion (in yellow) to creature meshes found in the

wild (in blue). 84

4.6 Observed artifacts in baselines. For each motion, we show results

from an intermediate frame of the motion transfer for our baselines.

VertexODE (left, yellow) completely distorts the shape, while not

following the target motion. NJF (right, brown) suffers from tem-

poral discontinuity resulting in motion-driven geometric artifacts –

extended or shrunken parts as it tends to a linear path in later time

steps – and jitter. 85

A.1 We show some of the samples generated by GLASS (gold), from

only 10 Faust poses (gray). Several poses of the limbs are unseen

in the training set - crossed arms, long leg strides, half-lowered arms. 94

A.2 We show some of the samples generated by GLASS (gold), from

only 6 Centaur poses (gray). We see novel poses like bent back legs

and torso facing upwards. 95

A.3 We show some of the samples generated by GLASS (gold), from

only 8 Horse poses (gray). We see novel poses like front legs raised

beyond what’s seen in the training set, upright torso and back legs

stretching farther. 96

A.4 We show facial expressions generated (gold) by training GLASS on

3 expressions from the COMA dataset (gray) 96

A.5 We show facial expressions generated (gold) by training GLASS on

6 expressions from the COMA dataset (gray) 97

A.6 Interpolated shapes (gold) between 2 Centaurs Poses (gray) inside

the latent space generated using GLASS. 97

A.7 Interpolated shapes (gold) between 2 Horse Poses (gray) inside the

latent space generated using GLASS. 98

List of Figures 17

A.8 Interpolated shapes (gold) between 2 Faust Poses (gray) inside the

latent space generated using GLASS. 99

A.9 The VAE architecture used by GLASS. 100

A.10 The Faust-10 dataset with 10 poses. Please refer to Figure A.11 for

the corresponding even sparser versions of the dataset used in our

experiments. 101

A.11 Faust-3 (top left), Faust-5 (top right) and Faust-7 (bottom). 102

A.12 Centaurs-6 (top), Centaurs-3 (bottom left), Centaurs-4 (bottom right).102

A.13 Horses-8 (top), Horses-3 (bottom left), Horses-4 (bottom right). . . 102

A.14 The keypoints of 5 different Dynamic Faust sequences used for

training, for Table 2.2 in Chapter 2 103

B.1 Here we use the trained SMPLify-X [3] model to estimate the shape

from a single image. For BLISS, we plugin our shape space as a

drop-in replacement for SMPL’s space, while using SMPL’s pose

space. 104

B.2 Iterative Shape Corrections: Lightly colored faces in the mid-

dle are our registrations in earlier iterations of the space, and the

pink-colored face on the right is our registration after five rounds of

BLISS. As the rounds progress, registrations in later rounds more

accurately capture the scan (left, in Blue), as observed by the broad-

ening of the nose and jawline. 105

B.3 Registering Hand scans: We use our final hand-shape space to reg-

ister hand scans (blue); registrations in canonical pose (i.e., default)

shown in pink. 105

B.4 For a sample in each of SMPL, STAR and BLISS, we lookup the

nearest shape in GHUM’s space (green). We randomly sampled

10000 shapes in each space. 108

List of Tables

2.1 Surface smoothness/Coverage with respect to excluded

set, of generated samples. Lower is better. 40

2.2 L2 Error wrt excluded DFaust frames and reconstruction error of

those excluded frames. Lower is better. The table shows results

with GLASS trained on 5 frames from 5 different motion sequences

(indicated by “DFaust-index”) . 41

2.3 Surface smoothness/ARAP energy/Interpolation

Smoothness across different datasets. All results are normal-

ized such that Vanilla VAE is 1.0, and lower numbers are better. . . 43

2.4 Ablation study results – Surface smoothness/ARAP energy/Interpolation

Smoothness . 43

2.5 Correspondence error on the Faust INTRA benchmark, by GLASS-

augmenting 3D-CODED with deformations sampled from our

method. 44

3.1 Comparison with SMPL [4], GHUM [5], DenseRac [6], and

STAR [7] w.r.t. the number of registrations used in training respec-

tive morphable models. 50

3.2 Comparison with SMPL [4], GHUM [5], DenseRac [6], and

STAR [7] w.r.t. the number of registrations used in training respec-

tive morphable models. 51

List of Tables 19

3.3 Evaluating ours against alternatives. (i) Learning a one-time static

shape space from 400 available registrations provides an upper

bound; (ii) and (iii) provide baselines replacing our non-linear de-

formation model with classical non-rigid registration. Errors are in

cm. 58

3.4 Ours, after absorbing 800 shapes from CEASER, outperformed

SMPL, STAR, and GHUM even though we only used 200 regis-

tered scans, compared to their much larger number of scans. 62

3.5 Left: We use Farthest Sampling to gather 500 shapes from each

space. To determine the similarity between the different spaces, we

calculate the distance between each shape in one space and its clos-

est counterpart in all other spaces, including off-diagonal entries.

We then report the average distance (in centimeters) for each possi-

ble pairing of spaces in both directions. Low values for (A, B) and

(B, A) suggest the two spaces are similar. Right: We compute the

diversity of samples inside each space, with higher values indicating

more diversity. 63

4.1 Quantitative evaluation. Average vertex-to-vertex error in cm, L2

error of predicted Jacobians and angular error of normals in degrees,

measured against ground truth sequences, for different motion cate-

gories and averaged over multiple sequences within the same target

motion category. Here we compare against neural ODE [8] and an

extended version of NJF [9]. Lower values indicate better general-

ization. 86

A.1 Ablation study. Surface smoothness of extrapolated shapes. All

results are normalized such that Vanilla VAE is 1.0, and lower num-

bers are better. 93

Chapter 1

Introduction

As our tools for communicating with each other evolve, so does our reliance

on newer, richer and more complex forms of data. One such relatively modern

modality is digital 3D data. 3D data have become invaluable in gaming, movie-

making (CGI, VFX), animated stories, engineering (CAD, simulation), news me-

dia, sports broadcasting and more recently in creating immersive experiences in

Virtual/Augmented Reality settings. This reliance on 3D content is only expected

to increase, calling for easier and faster ways of creating them.

Compared to other communication media like images or text (which either

already have a large volume or are easier to capture), creating and/or capturing 3D

content involve cumbersome pipelines with experts involved at various stages of

3D acquisition. Thus, while our need for 3D data increases we face the bottlenecks

inherent with its creation or acquisition. The most common pipeline is that of artists

authoring 3D data in authoring environments like Blender, Maya, 3DS Max and

others. Each of these provide a complex set of tools that enable creating 3D assets

and often require the artist to be fluent at employing these tools. An alternative

pipeline is that of acquiring 3D content via RGBD scanners which output 3D shapes

as a collection of points in space. However most graphics pipelines cannot use these

scans in their raw form and require tedious post-processing and cleaning by highly-

skilled artists.

Thus, research efforts have focused on easing the process of 3D content cre-

ation. Before the rise of deep learning, substantial research focused on intuitive,

21

artist-friendly methods for 3D content creation. These included sketch-based mod-

eling systems [10, 11], example-based modeling using shape galleries [12, 13],

and part-assembly-driven shape construction [14, 15]—all aimed at simplifying the

modeling process through familiar and interactive paradigms. Complementary to

these approaches, techniques that enable 3D generation and editing through se-

mantic attributes allow artists to specify or adjust features using language, making

it possible to emphasize or suppress certain characteristics in the resulting shapes

[16, 17]. Together, these works highlight the longstanding goal of making 3D con-

tent creation more accessible, efficient, and intuitive.

More recent attempts offer to convert from easier-to-acquire modalities - text,

image, videos - to 3D assets. These advances aim to create far less cumbersome

workflows for creating 3D data, both for expert artists and relative novices. Both

unconditional [18] and conditional 3D generation [19, 20] have seen a surge in

research focus, aided by the progress in Transformer [21] based generative archi-

tectures. Strong 2D Diffusion models [22] trained on millions of images have fur-

ther boosted text-driven 3D content generation [23, 24, 25, 26] allowing artists and

novices to instantly create 3D assets using single or multi-view images and simple

text prompts. However, being a relatively new field of research the assets created

from these works are far from usable in standard graphics pipelines for two rea-

sons - they often generate 3D content in non-mesh representations, while most real-

time graphics pipelines rely on high quality mesh assets, or when they do generate

meshes, do so with poor triangulation quality with elongated or very small triangles

[18] making them unsuitable for animation and deformation tasks. More impor-

tantly, training these generative models require large volumes of 3D data in the first

place, leading to a cyclic problem.

In this thesis, we focus on learning generative models for 3D content that can

represent a wide range of poses and shapes, using very sparse and easily obtainable

datasets. Within this context, we define “shape” as the selection of parts, along with

their local geometric details, that together establish a unique identity—for example,

the specific structural characteristics that distinguish chair ’A’ from any other chair.

22

In contrast, “pose” refers to the relative arrangement or orientation of these parts

within a given shape. Varying the pose alters the configuration without changing

the underlying identity—for instance, tilting the backrest of a chair relative to its

seat transforms it into a reclining chair, while retaining its identity as the same

chair. Thus, a single shape can appear in multiple poses, and each object category

(e.g., chairs, airplanes, humans) can include a wide variety of distinct shapes.

For any given object category, the generative space can be viewed as spanning

two primary axes: shape (also referred to as body shape), which defines the iden-

tity of an object within the category, and pose, which specifies the configuration

or articulation of that shape. An ideal 3D dataset would comprehensively cover all

object categories, with each shape observed across a wide range of poses. However,

constructing such datasets is infeasible in practice, as the number of possible cat-

egories and the combinatorial variety of shape–pose configurations are effectively

unbounded.

In reality, popular datasets such as [27, 28] typically take the form of a bag-

of-shapes: diverse collections containing a broad assortment of objects, but only a

few instances per category—and even fewer examples of the same shape in differ-

ent poses. In contrast, articulated shape spaces such as SMPL [4], SMPL-X [29],

and GHUM [5] are explicitly designed to provide dense, continuous coverage of the

shape–pose space for a specific category—usually humans, hands, or faces. These

models parameterize along both axes, enabling disentangled sampling of pose and

shape. However, building such spaces requires large volumes of high-quality, finely

annotated data for a single category, capturing both local geometric detail and ar-

ticulation. As a result, these models are not easily generalizable to other object

categories and are typically constrained to humanoid and animal forms.

This thesis similarly focuses on humans and animals, using mesh-based rep-

resentations—that is, collections of 3D points connected via triangulated faces that

define the object’s surface geometry.

Given that most readily available shape datasets contain only a few shapes,

each observed in even fewer poses, the goal of this thesis is to complete the

23

shape–pose matrix by discovering novel instances along each axis. Specifically,

we address shape and pose generation independently across different works.

In GLASS (Chapter 2), we introduce a framework for discovering novel poses

of a fixed shape, starting from as few as 5–10 exemplar poses. In BLiSS (Chapter

3), we present a method for generating novel shapes in a fixed pose, given a sparse

set of shape exemplars. Finally, in Temporal Residual Jacobians (TRJ) (Chapter 4),

we extend shape generalization—similar to BLiSS—to dynamic motion sequences,

focusing on deformation over time for varying identities.

The central challenge in completing the sparse shape–pose matrix lies in its

inherently circular nature: the very sparsity of the data makes it difficult to train

models capable of overcoming that sparsity. Neural generative models typically

require large datasets to learn meaningful and generalizable representations. How-

ever, when trained on limited data, such models tend to overfit, exhibiting poor

capacity for generating novel content. In contrast, the works in this thesis seek

to train generative models from sparse examples while still expecting them to ex-

trapolate significantly beyond the observed data. This goal—robust generalization

from limited supervision—stands in contrast to much of the existing deep learning

literature, which rarely addresses such extreme data scarcity.

Our key insight is that we can learn rich shape spaces from sparse datasets by

injecting plausibility priors in the training process. In our first work GLASS (Chap-

ter 2), we build a rich pose-space of 2000+ poses starting from as few as 3-10 pose

examples. The space is iteratively grown over several iterations; in each iteration

we search the current version of the space, which is noisy due to the sparsity, for

novel and plausible new poses. This search is guided by a classical geometric en-

ergy function which vastly constraints the search space. This energy function is the

plausibility prior in this case, and the shapes discovered in each iteration are refined

and projected back to obtain the new, richer version. After several iterations, we

end up with a rich space of poses despite beginning with fewer than 10 initial poses.

In our next work BLISS (Chapter 3), we follow a similar iterative approach

however here the prior is learned from a small dataset of artist-annotated shapes.

24

We first build a linear shape space using the initial sparse set. Being a sparse space

it is limited in expressing the details on shape surfaces. In each iteration, the current

version of the space is used to register raw noisy scans to the shape space resulting

in coarse registrations. We train a surface deformation model using a small set (100)

of artist-registered shapes to map from these coarse registrations to highly-detailed

ones. Thus the new registrations are imparted fine detail through this learned prior

and finally projected to the linear space, leading to its next version. Again, starting

from 100, over several iterations we grow to a space of about 1000 shapes.

Finally, having presented generative models for static poses and shapes, we

turn our attention in TRJ (Chapter 4) to learning spatio-temporal motion fields from

a sparse set of motion examples. To address the challenge of limited data (5–10

examples), we design our model to learn motion-consistency priors by focusing

on the temporal residuals of the motion field at each time step. These temporal

residuals capture the underlying principles governing motion evolution, serving as

learned priors that guide the generation process. By leveraging these priors, our

model can effectively propagate the motion field across time, enabling the synthesis

of complex, long-range animations. Moreover, these learned priors generalize to

unseen static shapes, transforming them into dynamically animated characters.

To summarize, 3D asset generation remains a labor-intensive process for artists

or requires large volumes of high-quality training data to support deep generative

models. The latter often produce shapes in non-mesh formats—unsuitable for stan-

dard graphics pipelines—or generate meshes with poor triangulation, limiting their

practical utility. A key source of data scarcity lies in the absence of comprehensive

pose–shape matrix datasets for most object categories.

In this thesis, we introduce a set of novel tools that leverage geometric pri-

ors and localized deformations to enable 3D generative modeling in sparse-data

regimes. Across the presented works, we demonstrate the effectiveness of using

priors—both learned and handcrafted—to constrain the generative space. These

priors guide the models toward plausible outputs and allow meaningful generaliza-

tion to unseen cases, despite limited training supervision.

Chapter 2

GLASS: Geometric Latent

Augmentation for Shape Spaces

In this chapter, we begin our investigation of the problem of training generative

models on very sparse collections of 3D models. Particularly, instead of using

difficult-to-obtain large sets of 3D models, we demonstrate that geometrically-

motivated energy functions can be used to effectively augment and boost only a

sparse collection of example (training) models. Technically, in this work, we an-

alyze the Hessian of the as-rigid-as-possible (ARAP) energy to adaptively sam-

ple from and project to the underlying (local) shape space, and use the augmented

dataset to train a variational autoencoder (VAE). We iterate the process, of building

latent spaces of VAE and augmenting the associated dataset, to progressively reveal

a richer and more expressive generative space for creating geometrically and seman-

tically valid samples. We extensively evaluate our method against a set of strong

baselines, provide ablation studies, and demonstrate application towards establish-

ing shape correspondences. GLASS (Geometric Latent Augmentation for Shape

Spaces) produces multiple interesting and meaningful pose variations even when

starting from as few as 3-10 training poses.

In GLASS we focus on novel pose generation for given shape identities while

in Chapter 3 we do shape generation for a fixed pose.

2.1. Introduction 26

2.1 Introduction

Figure 2.1: Starting from just 10 shapes (larger), our method iteratively augments the col-
lection by alternating between training a VAE, and exploring random pertur-
bations in its low-dimensional latent space guided by a purely geometric de-
formation energy. Here we show the 1000 most diverse shapes from the first
5K discovered by our method, positioned according to their latent embedding
(projected to 2D via t-SNE). Shapes are colored according to the initial land-
mark they trace back to, with shapes added in later iterations lighter (greyer) in
color. The augmentation effectively fills in the space between the sparse initial
landmarks, and even extrapolates beyond them. It manages to also interpolate
global rotations for samples near the back-facing exemplar, and yields shapes
with larger feet-strides (far left), and crossed arms or feet (front, left and center)
even though there are no such initial landmarks.

This work is concerned with generating plausible deformations of a 3D shape

from a very sparse set of examples. Fig. 2.1 shows an input of 10 human 3D meshes

in different poses, and the additional deformations generated by our method. 3D de-

formations have a strong semantic element to them – e.g., a human’s limbs should

only bend at the joints, and then, under normal circumstances, not beyond certain

angular ranges. Arguably, this can only be deduced in general via learning by ex-

ample from a dataset.

Unfortunately, in contrast to 2D images, the 3D domain poses several chal-

lenges for data-driven frameworks. Probably the most significant one is that data

acquisition is complex and tedious, making datasets both scarcer and sparser.

Given this data paucity, we tackle the challenge of generating additional mean-

ingful deformations from a given (very) sparse set of landmark deformations. Our

method meaningfully augments the sparse sets to create larger datasets that, in turn,

2.1. Introduction 27

can be leveraged by other techniques that cannot operate on sparse datasets.

Producing plausible deformations from a few landmarks is difficult. Linearly

interpolating the vertices of two landmarks yields highly implausible intermediates.

A key insight is that while meaningful deformations are semantic, they often have

a very strong pure-geometric element, e.g., they are smooth (i.e., preserve local

details) and don’t distort the shape too much (i.e., local distances are preserved).

However, simply perturbing vertices while minimizing a geometric energy (e.g.,

smoothness or metric distortion) generates artifacts such as smooth global bending

or surface ripples because by itself, the energy is not a sufficient constraint. In-

terpolating landmark pairs, while preserving the energy, fares better but produces

limited variations [30, 31]. An alternative approach is to jointly rig the given meshes

using methods such as [32], [33], and [34], and then generate novel poses by sam-

pling from the rig. However, as shown in [4] and [29], achieving reliable pose

deformations requires identity-specific pose correctives, which are typically either

handcrafted by artists or learned from data. Moreover, defining the plausibility of

generated poses without relying on manually crafted metrics necessitates a data-

driven prior. While rigs provide a compact, low-dimensional deformation space,

discovering novel and plausible poses within this space remains a significant chal-

lenge—one that this work seeks to address. In our approach, the plausibility of

a newly generated pose is guided by the current set of poses (which has grown

iteratively from an initial set), while a latent encoding serves as a compact repre-

sentation of the deformation space. Our work, like other recent approaches [35, 36],

advocates learning a low-dimensional generative latent space which maps out the

underlying manifold jointly defined by the landmarks, while simultaneously min-

imizing a deformation energy. However, these prior methods still require a large

dataset to learn a rich set of variations.

Our core contribution is to address this difficulty with a novel data augmen-

tation approach that alternates between latent space training and energy-guided ex-

ploration. We employ supervised learning of a generative space from a training

dataset, a very sparse one, but augment that set in an unsupervised, geometry-aware

2.2. GLASS: Related Work 28

way. Specifically, we train a Variational Autoencoder (VAE) on the given dataset.

After training, we use the eigenmodes of a deformation energy’s Hessian to perturb

and project latent codes of training shapes in a way that ensures they yield smooth,

low-distortion deformations, which we add back as data augmentation to the input

set. We then re-train the VAE on the augmented dataset and repeat the process iter-

atively until the space has been densely sampled. In addition to reducing spurious

deformations, the use of a low-dimensional, jointly-trained latent space allows low-

energy perturbations of one landmark to be influenced by other landmarks, yielding

richer variations. We call our method GLASS.

We evaluate GLASS on several established datasets and compare performance

against baselines using multiple metrics. The experiments show the effectiveness

of GLASS to recover meaningful additional deformations from a mere handful of

exemplars. We also evaluate the method in the context of shape correspondence,

demonstrating that our sampling process can be used as a data augmentation tech-

nique to improve existing strongly-supervised correspondence algorithms (e.g., 3D-

CODED [37]).

2.2 GLASS: Related Work

2.2.1 Geometric shape deformation.

Parametric deformation methods express 2D or 3D shapes as a known function of

a set of common parameters, and model deformations as variations of these param-

eters. Such methods include cages [38], blendshapes [39], skinned skeletons [40]

and Laplacian eigenfunctions [41]. Semantically plausible shapes can be generated

using these parameterizations by imposing constraints in the parameter space—for

example, joint rotation limits for skeletal models [42]. However, such annotations

must be defined separately for each new shape category, which limits scalability.

Additionally, pose plausibility is often dependent on body shape (identity), requir-

ing shape-specific pose correctives [4, 29]. In contrast, our data-driven approach

generalizes across shape categories without the need for additional manual anno-

tation and allows the data itself to define shape-specific plausibility. In contrast,

2.2. GLASS: Related Work 29

variational methods model deformations as minimizers of an energy functional

– e.g. Dirichlet [43], isometric [31], conformal [44], Laplacian [45], As-Rigid-

As-Possible (ARAP) [46], or As-Consistent-As-Possible (ACAP) [47] – subject to

user constraints. In our work we focus on minimizing the ARAP energy, although

our method supports any twice-differentiable energy function. There are strong

connections between the parametric and variational approaches, for instance bihar-

monic skinning weights [48] (parametric) are equivalent to minimizing the Lapla-

cian energy (variational). Please see surveys [49, 50] for a complete discussion.

We are also inspired by work on modal analysis [51], which linearise the deforma-

tion space of a shape in terms of the least-significant eigenvectors of the Hessian

of some energy functional. In the current work, we effectively perform learned

non-linear modal analysis: starting with a variational formulation – the implicitly-

defined manifold of low-energy perturbations of a few landmark shapes – we learn

the corresponding parametric representation as the latent space of an autoencoder

by iteratively exploring locally linear perturbations.

Our work on data augmentation from a sparse set of landmark shapes is related

to interpolation/morphing between, and extrapolation from, sets of shapes. As in

our scenario, the set typically comprises articulations of a common template. See

e.g. [52] for a survey of classical (non-learning-based) methods for shape interpo-

lation. Plausible extrapolation is less well-defined, and less studied, in the classical

literature. Kilian et al. [31] extend geodesics of an isometric energy in the defor-

mation space, though it is restricted to exploring (and extrapolating) paths between

shapes rather than the full deformation space.

2.2.2 Learned deformation models.

Various types of generative models based on graphical models, GANs, VAEs etc

have been developed to probabilistically synthesize shape variations. A full treat-

ment is beyond the scope of this work, please see surveys such as [53]. Here, we

focus on models which capture the space of smooth deformations of a given shape.

The best-studied domain is that of virtual humans, beginning with seminal works

capturing face [54], bodyshape [55] and pose [56] variations in a data-driven fash-

2.2. GLASS: Related Work 30

ion from scanned exemplars. These works, like several subsequent ones, rely on

variations of principal component analysis (PCA) to parameterize the deformation

space. Yumer et al. [57] learn a common set of deformation handles for a dataset.

More recent work uses deep neural networks to learn shape deformation models

from training sets [58, 59, 60, 61, 62], and use them for applications such as non-

rigid correspondences [37]. Tan et al. [63] and Huang et al. [36] regularize a VAE

with an energy-based loss. We use the latter [36] as our choice for energy. How-

ever, the primary role of the energy in our method is to guide exploration for data

augmentation.

Crucially, all the above methods rely on extensive training data. In contrast,

we specifically aim to learn meaningful data-driven deformation models under ex-

treme sparsity constraints, from just a handful of landmarks indicating modes of

the distribution. While this is broadly related to few-shot learning scenarios, only

a few other papers consider these requirements in the context of geometric shape

synthesis, or without any auxiliary data from other domains. LIMP [35] is an im-

portant recent work that tries to regularize the latent space of a 3D shape VAE by

requiring points sampled on the line segment between two latent codes to minimize

geometric distortion relative to the endpoints. Unlike our method, LIMP does not

explore the full volume of the hull bounding the training landmarks, or extrapolate

beyond it – regularization is limited to the web of pairwise paths. We modified

LIMP to work with ARAP energy, and demonstrate that our method significantly

outperforms their approach on a variety of metrics.

2.2.3 Unsupervised data augmentation.

Our work is part of a wide class of methods for synthetically increasing the size of

training datasets for data-hungry machine learning, without additional supervision.

For broad coverage, we refer the reader to surveys on images [64], time series [65],

and NLP [66]. A particularly relevant recent technique is Deep Markov Chain

Monte Carlo [67], which samples perturbations of training data using MCMC on

an energy functional, trains an autoencoder on these samples, and uses the resulting

latent space for lower-dimensional (and hence faster) MCMC. We observed that on

2.3. Approach 31

very sparse and high-dimensional datasets (only a few landmark 3D shapes), the

initial samples of Deep MCMC do not capture meaningful variations, and hence

it does not adequately augment the dataset. Also related are methods that aug-

ment classification datasets with adversarial perturbations along the gradients of

loss functions [68, 69]. In contrast, we seek to preserve an energy-based loss, and

hence eliminate the gradient and other high-change directions from consideration.

2.3 Approach

2.3.1 Problem Setup

We assume all shapes in a particular input dataset are meshes with consistent topol-

ogy and correspond to the same underlying identity—for example, a single indi-

vidual such as person ’A’. Given a mesh with N vertices V ↔ RN↗3 and triangle

faces T , a mesh deformation is simply an assignment of a new position to each

vertex, denoted as W ↔ RN↗3. We consider the input dataset itself as deformations

of a base topology and we are given a sparse set of n deformation “examples”,

W 1, . . .W n. We assume access to a deformation energy f (W,W →) which measures

the distortion of candidate deformation W with respect to an exemplar deformation

W →, with higher values indicating more severe distortion induced by the candidate.

For brevity, we omit W → and simply write f (W) to mean energy with respect to the

relevant base shape. We use the As-Rigid-As-Possible (ARAP) energy [46] and its

latent-space approximation ARAPReg [36] to measure the deviation of a deforma-

tion from isometry, i.e., how much do geodesic lengths change with respect to the

rest pose V .

We devise a subspace-sampling strategy that adheres to two properties: (i) it

should be data-driven, and contain deformations from the given sparse set; and (ii) it

should be geometrically-meaningful, i.e., the deformations should have low energy,

wrt the given deformation energy f (W).

Our main contribution is a method for online data augmentation during the

training of a variational autoencoder (VAE) [70]. Namely, during training, our

method explores the current sample space, guided by the deformation energy f (W),

2.3. Approach 32

Deformation-aware VAE (Sec. 3.2)

deformation-aware
exploration

Latent Space Augmentation (Sec. 3.3)

data-driven
pruning

deformation-aware
projection

latent space

augmented
shape

input shapes output shapes

Figure 2.2: We present GLASS to iteratively build a deformation-aware VAE latent space
and analyzing it to generate new training samples to augment the original train-
ing set. These enables generation of diverse yet plausible shape variations start-
ing from very few input examples.

to discover additional meaningful deformation samples. These are progressively

used as additional sample points to form an augmented dataset that is used to re-

train the VAE, and the process is iterated until convergence.

2.3.2 Deformation-Aware VAE

Let E : RN↗3 ↑ RK be the encoder in the standard VAE architecture, mapping a

deformation W into vectors of mean µ and variance ! into a distribution E(W) ↘

N (µ,!). These vectors define the mean and variance of a multivariate Gaussian

distribution from which the latent code z, of dimension K, is sampled, i.e., z ↘

N (µ,!). Similarly, let D : RK ↑ RN↗3 be the decoder mapping the latent code

to a deformation, D(z) =W . We shall slightly abuse notation and use D(E(W)) to

denote the full autoencoding process of W , including the step of sampling from the

Gaussian. We define three losses to be used in training.

(i) Reconstruction Loss: We require that the VAE reduces to an identity map

for any sample deformation,

LReconstruction := ≃D(E(W))↓W≃2. (2.1)

(ii) Gaussian Regularizer Loss: Instead of the standard the KL divergence reg-

ularizer used in VAEs, we constrain the sample mean and covariance of the mini-

2.3. Approach 33

batch to that of a unit Gaussian, as proposed in [71]. We found that for a small

sample size this batch-based loss leads to faster convergence, compared to the stan-

dard KL-Divergence. We denote this loss as,

LGaussian :=
1
b

b

∀
i=1

(
≃µi≃2 +≃!i ↓ I≃2) , (2.2)

where b is the mini-batch size, µi,!i are the predicted mean and covariance for the

i-th sample in the mini-batch, and I is the identity matrix.

(iii) Deformation Energy: Lastly, we require the resulting deformation to have

low deformation energy,

LDeformation := f (D(E(W))). (2.3)

In summary, our network training loss is

L := LReconstruction +LGaussian +∀LDeformation (2.4)

where ∀ is a scalar weight applied to the energy function.

2.3.3 Augmenting via Latent Space Exploration

We now describe the main step of our technique – adding additional deformation

examples W j to the latent space to reinforce training (Algorithm 1). Simply opti-

mizing (2.4) is not enough to cover the deformation space. Instead, we continuously

introduce new low-energy deformations into the training set, by which we make the

data term aware of the deformation energy. We achieve this through three steps:

(i) deformation-aware perturbation of the latent code in directions that locally least

Figure 2.3: tSNE embedding of generated samples shows progressive augmentation of
the shape space. Sample color indicates originating (parent) shape. See also
Fig. 2.1.

2.3. Approach 34

Algorithm 1 Pseudocode for searching the latent space, starting from deformation
W , for a new augmenting shape.

1: procedure LATENTAUGMENT(W ,E,D, f ,R)
ω E = Encoder, D= Decoder
ω W = Initial deformation, f = Energy
ω R = All previously input or generated shapes

2: l = E(W) ω latent code
3: H ⇐ #l#l f (D(l)) ω approximate Hessian
4: # ,U⇒(H) = EigenDecomposition(H)

5: #k,U
⇒
k (H)⇑ # ,U⇒(H) ω retain k components

6: Wd = /0
7: for j ↔ [1,s]: do
8: ! ↘ N (0,I) ↔ Rk ω sample ! , k ⇓ K
9: !̂ = !/∀k

i=1 ! 2
i

10: ∃ =
√

2%/∀i=k
i=1 !̂ 2

i #i

11: Ŵj = D(l +∃ ∀k
i=1 !̂iU

⇒
i (H))

12: Wd ⇑Wd ⇔Ŵj ω add to candidates
13: end for
14: W ↖ = MMR(W,R,Wd) ω prune candidates
15: WProjected = argmin f (W ↖) ω project
16: R ⇑ R⇔{WProjected} ω augment training set
17: end procedure

modify the deformation energy; (ii) data-driven pruning of perturbed codes that do

not introduce variance to the current dataset; and (iii) deformation-aware projec-

tion of the new codes to further lower their deformation energy, with an optional

high-resolution projection to transfer the deformation from a low-resolution mesh

to a higher resolution one. Figure 2.3 illustrates how the latent space is progres-

sively populated with new deformations over iterations, where colors indicate the

base shapes.

(i) Deformation-aware perturbation in latent space. Our goal is to create vari-

ations of a given code in latent space without modifying its deformation energy

significantly: let W be a deformation, and l = E(W) ↔ RK a latent code achieved

from encoding it. We aim to find the low-energy perturbation modes of l. In short,

we aim to perturb the deformation while not changing the deformation energy too

much, or in other words – we wish to stay on the current level set of the energy. To

achieve that, we can restrict ourselves to perturbations on the local tangent space of

2.3. Approach 35

the energy’s level set. This tangent space simply comprises of all directions orthog-

onal to the gradient #l f (D(l)).

In the tangent space, we can pick better directions using a second order analy-

sis. Let H denote the Hessian of the deformation energy with respect to the latent

code,

H := #l#l f (D(l)). (2.5)

Let #i, and U⇒
i (H) respectively denote the eigenvalues and eigenvectors of H, in

ascending order of eigenvalues. Since smaller eigenvalues correspond to directions

of less change in energy, we retain only the k (k << K) smallest #i and U⇒
i (H).

We then draw a random perturbation, by sampling a random vector ! ↔ Rk from a

normal distribution. Each !i ↔ ! corresponds to step along the eigenvector U⇒
i (H).

We normalize ! to !̂ such that ∀k
i=1 !̂iU

⇒
i (H) is a unit vector, i.e., ∀k

i=1 !̂ 2
i = 1. We

then take a step,
lt := l +∃

k

∀
i=1

!̂iU
⇒
i (H), (2.6)

where ∃ denotes the step-size and lt is in the tangent plane. We repeat this process s

times for each latent code l to get s perturbed codes l̃1, l̃2, . . . l̃s. Let {W̃ 1,W̃ 2 . . .W̃ s}

denote the decoded perturbed deformations where W̃ j = D(l̃ j).

Variable step size: Different regions of the latent space have different local

deformation landscapes, e.g., curvatures along different directions on the tangent

plane. Hence, we should adapt ∃ to the nature of the local landscape around l.

To that end, we formulate the step size ∃ in terms of the eigenvalues #i and a

user-prescribed threshold % on the allowed deformation energy f (i.e., f () ↙ %).

Assuming C2 continuity for deformation energy f (), we can obtain the following

bound on the step size.

∃ ↙
√

2%
∀k

i=1 !̂ 2
i #i

.

This gives an upper bound on the step size along any deformation direction.

Proof: Let f be the energy function and l be the latent code corresponding to a

zero/low energy shape in the training set, and lt be the latent code obtained from the

2.3. Approach 36

update in Equation 2.6 under a small (update) step (i.e., ≃lt ↓ l≃ can be considered

to be infinitesimal). Assuming that the deformation energy is C2 continuous (and

single valued), f (lt) can be approximated using Taylor series expansion of the up

to the 2 order as,

f (lt)⇐ f (l)+(lt ↓ l)T #l f (lt)+
1
2
(lt ↓ l)T H(lt ↓ l), (2.7)

where H is the Hessian from Equation 2.5. Note that H denotes the Hessian term

with respect to the current pose l. Since (lt ↓ l) and #l f (lt) are orthogonal, (lt ↓

l)T #l f (lt) = 0. The update step can be expressed in terms of the local eigenvectors

as,

(lt ↓ l) = ∃
i=k

∀
i=1

!̂iU
⇒
i (H).

Further, since eigenvalues and eigenvectors are related as HU⇒
i (H) = #iU

⇒
i (H)

and the vectors U⇒
i (H) have unit length, we obtain,

f (lt)⇐ f (l)+
1
2

∃2
i=k

∀
i=1

!̂ 2
i #i.

By setting an upper bound on the change in deformation energy f (lt)↓ f (l)↙

% , we obtain the relation for ∃ as,

∃ ↙
√

2%
∀k

i=1 !̂ 2
i #i

.

The step-size ∃ is therefore obtained in relation to the threshold change in

energy value % ; in our experiments we set % to 10↓4

(ii) Data-driven pruning of the perturbed deformations. In order to add diverse

samples, given the set of candidate deformations Wd , we select one example to be

added to the dataset, via Maximal Marginal Relevance (MMR) ranking [72]. Specif-

ically, MMR gives a higher score to perturbations that are similar to the unperturbed

W , but different from the existing deformations set R, containing the landmarks and

deformations generated so far. We compute as,

2.4. Implementation Choices 37

F(w) = &M(w,W)↓ (1↓ &)max
r↔R

M(w,r), (2.8)

where M(x,y) is the cosine similarity between x and y. Thus, we choose the defor-

mation W ↖ ↔Wd that maximizes the MMR function with its latent code denoted l↖.

We perform five explorations per W , resulting in five candidates that are added to

Wd . This choice provides sufficient variation for meaningful selection.
(iii) Deformation-aware projection to smooth, low-energy deformations. Al-

though the deformation-aware perturbation somewhat avoids high-energy states,

the perturbed deformation W ↖ may still exhibit undesirable artifacts such as lack

of smoothness or high deformation energy. Hence, we project the code to have

lower deformation energy with respect to the unperturbed W . We achieve this by

treating W as the rest pose, defining a deformation energy with respect to it, fW . We

perform a fixed number of gradient descent steps starting from W ↖ to lower the en-

ergy, which yields the final deformation WProjected. In our experiments, we optimize

up to the threshold of 10↓5.

(iv) Augment and iterate: Finally, we append the newly generated deformations

to the current (training) set, and continue training. We repeat this augmentation and

retraining several times, until we reach a target training set size.

2.4 Implementation Choices
Choice of energy f . For training the VAE, we set f as the L2 formulation of the

ARAPReg energy [36]. ARAPReg is an efficient approximation of the ARAP en-

ergy [46] that is conducive for network training. This energy computes an approx-

imate Hessian H of ARAP with respect to the latent space, and directly minimizes

the eigenvalues of H.

Approximation of Hessian. Similarly, for step (i) in Section 2.3.3, we use the ap-

proximate Hessian H ⇐ JT HJ proposed in [36] in our Equations 2.5 and 2.6, where

H is the exact Hessian of ARAP and J is the stochastic Jacobian of the ARAP with

respect to the RK latent space.

The above choices speed up training and yield better results than classical ARAP.

2.5. Evaluation 38

Figure 2.4: Generation results evaluated by coverage. We train different methods on the
same training data (col 1) and generate comparable numbers of shapes. Given
two shapes from the holdout data (col 2), we evaluate the methods by finding
the closest generated shape (cols 3-9). Note how the baselines exhibit strong
artifacts and usually do not match the query shape.

We still use ARAP for step (iii) where Hessian approximation is not needed.

Upper bound for ∃ . The eigenvalues allow us to choose an appropriate local step-

size, but they only yield a local approximation of the deformation energy. As our

method continues adding low-energy shapes, the eigenvalues become lower, lead-

ing to an extremely large step size ∃ . Thus, we set an upper bound of 2 on ∃ .

High-resolution projection. To speed up training and avoid deformations that are

too high-frequency, we use low-resolution meshes (low vertex count). We decimate

the high-resolution meshes by preserving a subset of the vertices, thus retaining

correspondence from low to high. The generated low-res deformations can later be

projected back to original high-res meshes by treating the chosen subset of vertices

as deformation constraints in the ARAP optimization proposed in [46].

Our network architecture is visualized in Figure A.9 in Appendix A.

2.5 Evaluation
We evaluate GLASS on public data of humans (FAUST [73]) and creatures

(TOSCA [74]) in different poses. In our experiments, we sample X landmark poses

of a model from a dataset and train our method. We evaluate quality and diversity of

newly generated poses as well as interpolation sequences between landmark poses.

We denote our experiments as “SubjectName-X” to indicate the type of the subject

and the number of landmark poses provided as an input to our method (see A.5 in

Appendix A for the landmark poses in each “SubjectName-X“); most results use

2.5. Evaluation 39

Figure 2.5: Training GLASS on the human, centaur, and horse meshes using the 3 examples
each (top). (Bottom) We show random samples from the latent space, which
combine different properties learned from the example deformations. Please
see Appendix A for more generation results.

between 3 and 10 landmarks.

Evaluation metrics. We use the following to evaluate performance:

(i) Coverage: While it is difficult to evaluate whether generated poses are meaning-

ful and diverse, we propose using the holdout data (SH) that was not part of the input

exemplars to see if the newly generated poses LG cover every holdout example:

Mcoverage :=∀s↔SH ming↔LG D(s,g)/|SH |, where D(s,g) is the average Euclidean dis-

Figure 2.6: We compare the interpolation results between our method, several ablations of
our method, and prior work.

2.5. Evaluation 40

Table 2.1: Surface smoothness/Coverage with respect to excluded set, of gener-
ated samples. Lower is better.

Data Vanilla VAE +Interpolation +Interp. +Energy LIMP Deep-MCMC +ARAP SI [30] GLASS
Faust-3 1.0 / 1.0 0.73 / 0.96 0.75 / 0.89 1.06 / 1.01 1.04 / 0.95 0.77 / 1.09 0.63 / 0.77
Faust-5 1.0 / 1.0 0.65 / 1.04 0.62 / 0.88 1.0 / 0.96 1.06 / 0.94 0.62 / 0.97 0.59 / 0.78
Faust-7 1.0 / 1.0 1.00 / 1.51 0.57 / 1.61 1.07 / 0.93 1.01 / 0.96 0.85 / 1.84 0.54 / 0.81

Centaurs-3 1.0 / 1.0 0.83 / 0.96 0.85 / 0.94 1.03 / 0.97 1.04 / 0.98 0.85 / 0.99 0.69 / 0.84
Centaurs-4 1.0 / 1.0 0.81 / 0.97 0.84 / 0.95 1.01 / 0.99 1.08 / 0.96 0.81 / 1.0 0.69 / 0.84

Horses-3 1.0 / 1.0 0.66 / 0.95 0.73 / 0.91 1.06 / 1.03 1.02 / 1.05 0.65 / 0.94 0.61 / 0.89
Horses-4 1.0 / 1.0 0.65 / 0.94 0.68 / 0.95 1.03 / 0.98 1.04 / 1.04 0.62 / 1.0 0.60 / 0.80

tance between corresponding vertices of shapes s and g. We use Euclidean distance

to measure shape similarity, as the shapes in both sets share consistent topology and

are in correspondence.

(ii) Mesh smoothness: This metric measures how well a method preserves the orig-

inal intrinsic structure of the mesh. We compute the mean curvature obtained from

the discrete Laplace-Beltrami operator:

Msmoothness := ∀N
i=1≃∃(Vi)≃/2 where ∃ is the area-normalized cotangent Laplace-

Beltrami operator and N is the number of mesh vertices.

(iii) Interpolation smoothness: In addition to measuring quality of individual

meshes, we also evaluate the quality of interpolations between pairs of shapes.

Since none of the existing methods guarantee a clear relationship between the dis-

tances in the latent space and differences between their 3D counterparts, we first

densely sample 1000 poses between pairs of landmark deformations and then keep

a subset of 30 poses so that they have approximately equal average Euclidean dis-

tance between subsequent frames. We then measure the standard deviation of these

Euclidean distances, as a way to penalize interpolations that yield significant jumps

between frames. While this measure is imperfect (e.g., variance could decrease as

we increase the sampling rate), we found it to stabilize in practice after 1000 poses

(we sampled up to 3000), which suggests that denser sampling would not reveal

new poses in the latent space. Additionally, since these are deformations of the

same underlying identity and share a common topology, we use Euclidean distance

to measure point-wise motion, and its standard deviation to identify sudden jumps.

Method Comparison While existing methods are not designed to learn generative

latent spaces from sparse data, we adapt them as baselines. Since ARAP projection

to high resolution is specific to our method (see 2.4), we compare methods using

2.5. Evaluation 41

Figure 2.7: Interpolation results. In gray, we show two landmark shapes. In gold, we show
the decoded meshes after we linearly interpolate the latent space between these
two landmarks. All models are trained on only 5 landmarks. See Appendix A
for more interpolation results.

Table 2.2: L2 Error wrt excluded DFaust frames and reconstruction error of those excluded
frames. Lower is better. The table shows results with GLASS trained on 5 frames
from 5 different motion sequences (indicated by “DFaust-index”)

Data Vanilla VAE +Interpolation +Interp. +Energy LIMP +ARAP SI [30] GLASS
DFaust-1 1.0 / 1.0 0.48 / 0.51 0.48 / 0.40 0.53 / 0.56 0.94 / 0.92 0.45 / 0.40
DFaust-2 1.0 / 1.0 0.56 / 0.48 0.51 / 0.42 1.06 / 1.07 0.84 / 0.81 0.47 / 0.40
DFaust-3 1.0 / 1.0 0.61 / 0.57 0.51 / 0.44 1.08 / 2.0 0.77 / 0.8 0.45 / 0.41
DFaust-4 1.0 / 1.0 0.59 / 0.35 0.57 / 0.5 0.84 / 1.73 0.87 / 1.14 0.46 / 0.32
DFaust-5 1.0 / 1.0 0.27 / 0.38 0.3 / 0.27 0.53 / 1.28 0.67 / 1.2 0.22 / 0.24

the low-res version that we train with.

(i) Vanilla VAE: We train a VAE using only the sparse set of shapes, with no

data augmentation. (ii) +Interpolation: We generate new shapes by interpolating

between all pairs of available landmarks by simply averaging coordinates of corre-

sponding vertices. We interpolate such that the amount of augmented data is equiv-

alent to what is generated with GLASS (2500 shapes). Then we train a VAE with

these poses. (iii) +Interp. +Energy: This is an extension of the previous method.

Since raw interpolation can deviate from the underlying shape space, in addition

to interpolation, we perform projection by minimizing the sum of ARAP energies

with respect to both shapes in the pair. (iv) LIMP-ARAP [35]: This method is

motivated by the training strategy proposed in LIMP [35]. They train a VAE with

pairs of shapes in every iteration - for each pair, they pick a random latent code on

the line between the two, decode it to a new shape, and minimize its energy. Since

2.5. Evaluation 42

we only want to compare augmentation strategies we adapt LIMP to use ARAP en-

ergy. (v) + ARAP Shape Interpolation [30]: This method morphs a shape from a

source pose to a target pose. The morph is rigid in the sense that local volumes are

least-distorting as they vary from their source to target configurations. (vi) Deep-

MCMC [67]: This method explores parameter variations via a latent space and

generate samples by performing HMC steps in the latent space and decoding the

generated codes.

Generation Experiments After training, we sample latent codes from a Unit Gaus-

sian in RK , and decode with our decoder to generate samples (see Figures 2.1 and

2.5 and additional generation results in Appendix A). Our generated poses look sub-

stantially different from the training data and combine features from multiple input

examples.

We compare our approach to all the baselines. We sample from the unit Gaus-

sian for all VAE-based techniques, where the only exception is Deep-MCMC where

we use latent-space HMC as proposed in their work. We show qualitative results in

Figure 2.4 and quantitative evaluations in Table 2.1. Each cell reports smoothness

and coverage errors, normalized based on the corresponding errors for Vanilla-VAE.

Note that our method outperforms all baselines in its ability to generate novel and

plausible poses (i.e., the poses from the hold-out set of the true poses). In particular,

we ensure plausibility of generated results by a combination of taking small adap-

tive steps from shapes in the current set and the data-driven pruning by Maximal

Marginal Relevance (Eq 2.8). The lower Mesh Smoothness scores indicate that our

method generates shapes free from common artifacts such as pinching and face-

flipping—issues often seen in rig-based methods when joint limits are exceeded

and shape-specific pose correctives are absent. Importantly, we achieve this without

explicitly applying pose correctives, instead leveraging data to learn and enforce

shape-specific plausibility.

Interpolation Experiments We compare our method and the first five baselines

by evaluating the quality of interpolations produced between all pairs of landmark

shapes (we omit Deep-MCMC since it is not suitable for interpolation). We show

2.5. Evaluation 43

Table 2.3: Surface smoothness/ARAP energy/Interpolation
Smoothness across different datasets. All results are normalized such
that Vanilla VAE is 1.0, and lower numbers are better.

Data Vanilla VAE +Interpolation +Interp. +Energy LIMP +ARAP SI GLASS
Faust-3 1.0 / 1.0 / 1.0 0.47 / 0.22 / 0.43 0.44 / 0.24 / 0.29 0.45 / 0.32 / 0.7 0.95 / 1.49 / 0.91 0.42/0.20 / 0.21
Faust-5 1.0 / 1.0 / 1.0 0.53 / 0.25 / 0.49 0.53 / 0.25 / 0.41 0.52 / 0.27 / 0.5 0.99 / 1.13 / 0.87 0.51 / 0.23 / 0.38
Faust-7 1.0 / 1.0 / 1.0 0.64 / 0.31 / 0.49 0.57 / 0.26 / 0.62 0.62 / 0.32 / 0.72 0.84 / 0.57 / 0.86 0.57 / 0.3 / 0.23

Faust-10 1.0 / 1.0 / 1.0 0.71 / 0.37 / 0.3 0.67 / 0.43 / 0.27 0.66 / 0.36 / 1.52 0.78 / 0.48 / 0.55 0.55 / 0.27 / 0.54
Centaurs-3 1.0 / 1.0 / 1.0 0.53 / 0.31 / 0.22 0.51 / 0.31 / 0.48 0.52 / 0.34 / 0.24 0.89 / 1.28 / 2.12 0.5 / 0.28 / 0.18
Centaurs-4 1.0 / 1.0 / 1.0 0.53 / 0.24 / 0.27 0.52 / 0.26 / 0.17 0.51 / 0.25 / 0.48 0.88 / 0.88 / 0.8 0.49 / 0.25 / 0.1
Centaurs-6 1.0 / 1.0 / 1.0 0.59 / 0.26 / 0.33 0.65 / 0.38 / 0.5 0.6 / 0.27 / 0.47 0.98 / 1.02 / 0.44 0.58 / 0.22 / 0.43

Horses-3 1.0 / 1.0 / 1.0 0.44 / 0.39 / 0.33 0.46 / 0.33 / 0.28 0.44 / 0.4 / 0.43 0.9 / 1.41 / 1.28 0.42 / 0.24 / 0.43
Horses-4 1.0 / 1.0 / 1.0 0.48 / 0.29 / 0.28 0.47 / 0.3 / 0.45 0.45 / 0.36 / 0.85 0.94 / 1.25 / 1.42 0.48 / 0.22 / 0.44
Horses-8 1.0 / 1.0 / 1.0 0.55 / 0.31 / 0.55 0.56 / 0.38 / 0.7 0.53 / 0.43 / 1.29 0.83 / 0.76 / 0.74 0.53 / 0.25 / 0.28

Table 2.4: Ablation study results – Surface smoothness/ARAP
energy/Interpolation Smoothness

Data 1: Vanilla VAE 2: (1)+Ldeform 3: (1) + perturb 4: (2) + perturb 5: (3)+project 6: (4)+project
Faust-10 1.0 / 1.0 / 1.0 0.63 / 0.39 / 0.6 0.61 / 0.35 / 0.6 0.59 / 0.32 / 0.59 0.56 / 0.32 / 0.57 0.55 / 0.27 / 0.54

Centaurs-6 1.0 / 1.0 / 1.0 0.69 / 0.34 / 0.54 0.62 / 0.31 / 0.47 0.59 / 0.29 / 0.47 0.59 / 0.27 / 0.46 0.58 / 0.22 / 0.43
Horses-8 1.0 / 1.0 / 1.0 0.66 / 0.37 / 0.43 0.59 / 0.37 / 0.33 0.56 / 0.29 / 0.32 0.54 / 0.27 / 0.29 0.53 / 0.25 / 0.28

our results in Figure 2.7 (more results in Appendix A) and comparisons in Figure 2.6

with corresponding stats in Table 2.3. Each cell reports smoothness, ARAP score,

and interpolation quality, and to make results more readable we normalize the scores

using the corresponding value for Vanilla VAE.

Ours performs the best with respect to ARAP score and also yields consistently

smoother shapes with fewer artifacts, both in terms of individual surfaces, as well

as discontinuities in interpolation sequences. In particular, the lower Interpolation

Smoothness score indicates that GLASS produces shapes that closely follow the

interpolation path, maintaining plausibility without relying on annotations such as

joint-angle limits typically required in rig-based generation [42]. ARAP Shape In-

terpolation is performing consistently worse than all baselines except Vanilla-VAE -

this is because while the underlying deformation is non-linear, this baseline follows

a linear path in the rotation space. Interpolation-based baselines sometimes yield

smoother interpolations, something we would expect to be true for simpler, linear

motions. However, as seen in Figure 2.6, an outlier global rotation can disturb the

otherwise smooth interpolation, which does not happen with GLASS. Additionally,

we demonstrate that they are limited in their ability to synthesize novel plausible

poses. As a data-driven method, GLASS does not explicitly prevent unnatural joint

bending at arbitrary angles. However, this is implicitly mitigated by the data con-

straint, as we only take small steps from the current set.

2.5. Evaluation 44

Table 2.5: Correspondence error on the Faust INTRA benchmark, by GLASS-augmenting
3D-CODED with deformations sampled from our method.

Data +GLASS augmentation Error (cm)
Faust-3 0 26.90
Faust-3 3,065 13.18
Faust-7 0 22.10
Faust-7 3,573 11.78

SMPL-280 0 14.59
SMPL-280 40,000 6.85

Dynamic Faust Interpolation Dynamic Faust [75] (DFaust) provides meshed data

of captured motion sequences, from which we selected 5 sequences with the most

variance in vertex positions. Each sequence contains 100-200 shapes from which

we select ⇐ 5 keypoints and train GLASS and the baselines on these. We then evalu-

ate interpolation by measuring the L2 distance between the generated interpolations

and the ground-truth frames in the sequence that were excluded from training. Ad-

ditionally, we measure the reconstruction error of the excluded frames. The results

are compared in table 2.2. Our method significantly outperforms the baselines.

Using GLASS for Learning Correspondences

We now evaluate our data augmentation technique on the practical task of

learning 3D correspondences between shapes. We pick a state-of-the-art correspon-

dence learning method, 3D-CODED [37], as a reference. Originally, this method

was trained on 230k deformations, most of them sampled from the SMPL model [4]

and 30k synthetic augmentations. We evaluate how well this method could perform

with a smaller training set, with and without the proposed augmentation.

We train 3D-CODED using 280 sampled shapes from SMPL [4] that are aug-

mented with a number of additional deformations generated from our model (see

Table 2.5). Ours consistently provides a significant improvement over training 3D-

CODED with the original landmarks. For reference, the correspondence error of

3D-CODED trained on the full 230k pose dataset is 1.98cm.

Ablation study

In this section we evaluate the contribution of various steps in GLASS to our in-

terpolation metrics. We evaluate on the Faust-10, Centaurs-6 and Horses-8 datasets.

2.6. Conclusion 45

Since these samples are all that is available we do not have a hold-out set, so we do

not measure coverage. Starting with Vanilla-VAE (that only uses LReconstruction and

LGaussian), we first add the deformation energy loss (LDeformation), which is ARA-

PReg [36]. Table 2.4(1,2) shows this improves all metrics.

Next, we consider our perturbation strategy (Section 2.3.3 i, ii) and add it

to both vanilla and energy-guided VAE (Table 2.4.3, 2.4.4). We observe that

LDeformation performs better because it makes the latent-space conducive for sam-

pling low energy shapes. Having LDeformation helps our perturbation strategy find

low energy shapes that are suitable for our projection step. Due to this, we discover

shapes with energy as low as 0.001, while without it, the discovered shapes can

have energy > 0.1. This difference helps the subsequent projection step converge

faster to our required threshold of 10↓5.

Finally, we look at the projection step (Section 2.3.3 iii). We add it to both

baseline techniques that have perturbation, and report results in Table 2.4.5, 2.4.6,

where column (6) corresponds to our final method. Adding the projection step im-

proves the smoothness and ARAP scores. After projection, our shapes have very

low ARAP, in the order of 10↓5. Since these are added back to the training set, we

observe that perturbation steps in future iterations find lower energy shapes. This

further improves convergence of the projection step in future iterations. Overall

LDeformation helps both the perturbation and projection steps converge faster to low

energy shapes, and since projected shapes are encoded again by training, both per-

turbation and projection steps require fewer iterations.

2.6 Conclusion
GLASS is shown to be an effective generative technique for 3D shape deforma-

tions, relying solely on a handful of examples and a given deformation energy. The

main limitation of our method is its reliance on a given mesh with vertex correspon-

dences, preventing its use on examples with different triangulations. Additionally,

the diversity of our generated results is inherently limited by the variability present

in the initial dataset. For example, if a bending pose is absent from the starting

2.6. Conclusion 46

set, our method is unlikely to generate such a pose. To mitigate this limitation, we

sample the initial set using farthest point sampling where applicable, as described

in the Dynamic FAUST Interpolation experiment (Section 2.5).

We believe our proposed technique opens many future directions. There are

many other deformation energies that could be explored; e.g., densely sampling

conformal (or quasi-conformal) deformations from a given sparse set can be an

extremely interesting followup. More broadly, replacing the deformation energy

with learned energies, such as the output of an image-discriminator, may enable

generating plausible images, given a very sparse set of examples.

In the next chapter, we employ learnable priors (albeit not as energy functions)

in aiding the creation of dense shape spaces from sparse initial sets.

Chapter 3

BLiSS: Bootstrapped Linear Shape

Space

In this chapter, we continue our investigation into learning generative models from

sparse datasets in the context of morphable models. Specifically, this chapter fo-

cuses on learning generative spaces for human bodyshapes (with fixed pose). Mor-

phable models are fundamental to numerous human-centered processes as they offer

a simple yet expressive shape space. Creating such morphable models, however, is

both tedious and expensive. For example, SMPL [4] and the follow-up models were

learned from thousands of shapes acquired via expensive capturing setups and reg-

istered by expert artists. The main challenge is establishing dense correspondences

across raw scans that capture sufficient shape variation. This is often addressed us-

ing a mix of significant manual intervention and non-rigid registration. We observe

that creating a shape space and solving for dense correspondence are tightly coupled

– while dense correspondence is needed to build shape spaces, an expressive shape

space provides a reduced dimensional space to regularize the search. We introduce

BLISS, a method to solve both progressively. Starting from a small set of manu-

ally registered scans to bootstrap the process, we enrich the shape space and then

use that to get new unregistered scans into correspondence automatically. The crit-

ical component of BLISS is a non-linear deformation model that captures details

missed by the low-dimensional shape space, thus allowing progressive enrichment

of the space.

3.1. Introduction 48

scan ��ed model

Figure 3.1: We present BLISS, which progressively builds a human body shape space and
brings unregistered scans into correspondence to a given template mesh. Start-
ing from as few as 200 manually registered scans (green samples), BLISS cre-
ates an expressive shape space (pink samples), performing on par with state-
of-the-art models such as SMPL, STAR, and GHUM, while requiring only 5%
of annotations compared to the others. (Right) Our space can then recover the
body-shape parameters of raw scans by projecting them directly to ours.

3.1 Introduction
Morphable models [76, 4, 77] continue to strongly influence research towards

human-centric workflows. This success is explained by the simple and versatile

encoding of the underlying shape space, while providing interpretable handles for

both shape and pose variations. The compact shape space has been extensively used

for a variety of applications, including retexturing [78], shape editing [79], pose and

illumination manipulation [80], animation [81], avatar creation [82], to name only

a few.

While morphable models are widely considered useful, creating them is sur-

prisingly tedious. Theoretically, given a set of 3D shapes (e.g., scans of human

bodies) with vertex-level correspondence, morphable models can ‘simply’ be built

using linear (e.g., principal component analysis (PCA)) or nonlinear (e.g., autoen-

coder [83, 5]) dimensionality reduction methods. The hurdles lie first in getting

scans of many subjects, with a wide coverage of body shape and pose variations, and

second in establishing vertex-level dense correspondence across the scans. Given

these challenges, not surprisingly, only very few high-quality morphable models

(e.g., SMPL [4], STAR [7], GHUM [5]) are publicly available.

The first hurdle has been significantly lowered with rapid advances [84, 85, 86]

3.1. Introduction 49

in affordable, portable, fast, and robust (hardware) 3D scanning solutions (e.g.,

RGBD sensors, range scanners etc.). The second hurdle is algorithmic. The dom-

inant approach to establish dense correspondence across the raw scans is to use

non-rigid registration [56] to align scans with a template (body) mesh. This works

well when the input shapes have limited variations and are clean. Unfortunately,

when shape variability is large (as among scans capturing representative variations

across a population) or contains holes and noise, successful registration must rely

on manual intervention or strong shape priors. Thus, either users have to annotate

landmark correspondence across the scans, or provide shape priors to regularize the

registration step. Manual annotation is expensive and does not scale easily. Provid-

ing a shape prior is also tricky as generating one requires shapes in correspondence

– this leads to a chicken-and-egg problem.

We provide a solution that, starting from a small set of registered scans, alter-

nates between building an underlying linear shape space and utilizing the current

shape space model to automatically bring new (raw) scans into correspondence. At

the core of our approach is a nonlinear deformation setup, expressed in the form of

a neural network, i.e., Neural Jacobian Fields (NJF) [9], that helps to predict dense

correspondence for scans close to the currently modeled shape space. NJF is trained

to add information beyond the current PCA space which is critical for registering

new target scans, especially in the early stages where our linear shape space may

yet not be sufficiently expressive. Once such correspondences are established, they

enrich the shape space with additional scans. We repeat this process iteratively until

all scans are brought into correspondence and a final shape space is achieved. We

term this bootstrapping scheme Bootstrapped Linear Shape Space (BLISS). In its

current form, BLISS does not handle pose correctives. We leverage the pose space

of SMPL-H [4], optimizing over its pose parameters, while using BLISS’s shape

space to fit body shape.

We evaluate BLISS on the commonly used CEASAR dataset [87] and show

that starting from only as few as 200 manually registered scans, we can jointly learn

a shape space and automatically bring additional scans into correspondence. We

3.2. BLiSS: Related Work 50

evaluate the expressive power of the learned shape space on held out test scans

and show that our model performs on par with models that require all scans to be

registered manually. We also compare with standard non-registration methods and

demonstrate that our method is more robust against noise and holes in the scans.

Finally, we apply the methodology of BLISS in the context of face shape space

construction to emphasize its generalizability.

In summary, we make the following contributions: (i) an on-the-fly PCA shape

space and correspondence learning framework: starting from only 200 registered

shapes, we progressively enrich the model with new shapes and eventually reach a

shape space that is on par with the one trained with 3800 registrations directly; and

(ii) a novel combination of linear PCA and non-linear Neural Jacobian Field (NJF)

deformation model that brings the target scans into better correspondence.

3.2 BLiSS: Related Work

3.2.1 Non-rigid registration
Registering two sets of raw scans (i.e., point clouds) is a long-standing problem

[88, 89], typically consisting of two steps: (i) estimating correspondence between

the source and the target scans; and (ii) minimizing the distances between each

correspondence pair to bring the source closer to the target. Since this work is

concerned with human bodies that often deform non-rigidly, we review how corre-

spondences are estimated in non-rigid registration of 3D human data.

Optimization-based (ICP). When the source and the target points are roughly

aligned in the ambient 3D space, correspondences can be approximated by seeking

nearest points. Following this intuition, existing methods [90, 91, 92, 93, 94] al-

ternate between searching the closest point and deforming the source points, which

Table 3.1: Comparison with SMPL [4], GHUM [5], DenseRac [6], and STAR [7] w.r.t. the
number of registrations used in training respective morphable models.

Method SMPL GHUM DenseRac STAR BLISS

shape 3800 64000 2500 15000 200
space PCA PCA/VAE PCA PCA PCA

3.2. BLiSS: Related Work 51

can be seen as non-rigid variants of the classical Iterative-Closest-Point (ICP) algo-

rithm [95, 96]. For fast convergence, such methods assume the two sets of points to

be close enough, or require an “oracle guess” to initialize the correspondences.

Furthermore, these methods often require additional regularization terms to

avoid local minima, e.g., Laplacian [97] and ARAP [98]. They impose extrin-

sic heuristics to constrain the deformation, which do not always apply to the

target tasks. In contrast, we employ the recently introduced Neural Jacobian

Fields (NJF) [9] that implicitly learns an appropriate regularization in a data-driven

manner. We also use NJF in our method as it has been shown to better distribute

error by having a global Poisson solve to integrate local gradient (i.e., Jacobian)

information.

Learning-based shape matching. Global registration methods exist that match

two human shapes without assuming they are close in 3D space. Instead of match-

ing points in 3D space, they measure the similarity in a pre-defined feature space

[99, 100, 101, 102] and leverage machine-learning techniques to estimate corre-

spondences [103, 104, 105, 106], optionally refined with a global optimization

[107, 108, 109]. The quality of these methods degrades significantly when the

shapes are outside the distribution of the training data. More importantly, such

methods do not yet handle noise in raw scans, and hence cannot be easily used in

our setting.

3.2.2 3D Morphable Models for Humans

A standard human body model has to account for pose and shape deformation. In

this work, we are particularly interested in the latter – the anthropometric variability

across identities, and we focus the discussion on this aspect.

Table 3.2: Comparison with SMPL [4], GHUM [5], DenseRac [6], and STAR [7] w.r.t. the
number of registrations used in training respective morphable models.

Method SMPL GHUM DenseRac STAR GLASS

shape 3800 64000 2500 15000 200
space PCA PCA/VAE PCA PCA PCA

3.2. BLiSS: Related Work 52

Parametric mesh. Representing human body parts as statistical shape models dates

back to Cootes et al. [110] in 2D and Blanz & Vetter [76] in 3D. The latter has

become the de facto standard for modeling 3D human shapes [111, 112], often

called 3D morphable models (3DMM). The goal of a 3DMM is to adapt the template

to each person by controlling the shape variations in a low-dimensional space. In

the context of whole body, a myriad of work [56, 113, 4, 7, 114, 3, 5, 6] has been

proposed for this purpose and has led to rapid progress in monocular and multi-view

human body reconstruction [112].

Learning such a parametric shape space, however, requires firstly, a large

database of body scans, and more difficultly, bringing them into correspondence

by registering a common template mesh to them. Most models above are trained

with thousands or ten thousands of registrations to body scans in CAESAR [87]

and/or SizeUSA [115], curated with manual intervention for quality control (see

Table 3.2). Another frequently overlooked challenge is that databases have each

subject scanned in similar but not exactly the same pose (e.g., A pose in CAESAR)

while the template is desired to be in one canonical pose (typically T pose). To

factor out the pose variation in the data, an un-posing process is performed to bring

registrations to the canonical pose [4], which we refer to as “canonical shapes” in

the rest of the text. Any artifact introduced in this step will be kept in the learned

shape space. Our formulation can take A-posed scans as input and output the canon-

ical shapes in T-pose, requiring no un-posing before including them to training.

The most relevant work of Hirshberg et al. [91] explores a “semi-supervised”

setting of co-registration of multiple scans similar to ours. However, their approach

differs from us in several aspects: (i) they aim to “simultaneously” learn a mor-

phable model and bring scans into correspondence in one shot, without iterations.

Consequently, it amounts to a big optimization problem where one has to provide

good initialization (e.g., via manual landmarks) and carefully anneal the weights of

each term, which may be easy to break. Due to the complexity of the optimiza-

tion, this method can handle hundreds of scans whereas we can scale our itera-

tive pipeline to thousands of scans; (ii) they rely on model-free registrations with a

3.3. Approach 53

nearly isometric regularization term to capture information beyond the model space.

While there is no publicly available code for us to perform an exact comparison, we

compare to baselines where we employ a similar edge-preserving non-rigid regis-

tration approach and demonstrate superior performance.

Implicit surfaces. A well-known limitation of meshes is that it is limited

in handling deformations that require changes in the topology. Recent work

[116, 117, 118, 119] explores representing human bodies with neural fields [120],

which does not assume a consistent mesh topology. They take the translations and

rotations of body joints as input and estimate whether a query 3D point is inside the

body or not. However, so far the effort has been devoted primarily in generalization

of articulated poses, where large-scale motion capture datasets [121, 122] are used

for training.

To help generalize to multiple subjects, it is encouraged to condition the net-

works on body shapes. However, in these methods, shape information is carried

only in the locations of input joints, which is a very coarse anthropometric feature

as two bodies can share the same joints but different surface shapes. In this work, we

consider explicit surface meshes in order to better capture details in human bodies.

3.3 Approach

3.3.1 Overview

Given a large set of raw scans S of varied human body shapes in roughly a similar

pose (e.g., A-pose), our goal is to learn a shape space in a canonical but different

pose (e.g., T-pose) that captures the variation of plausible body shapes. We learn

a shape space with respect to a predefined shape template topology; in our setup,

we use the SMPL [4] template, denoted as TSMPL with N vertices. We also assume

having access to a small set of registered shapes R where a small set of scans SR

have been brought to the same topology as TSMPL in the canonical pose via a manual

non-rigid registration process to avoid any registration artifacts. Starting with R and

TSMPL, we iteratively expand R with new shapes from the unregistered scans U that

are automatically brought into correspondence with TSMPL and learn an enhanced

3.3. Approach 54

PCA

NJF

shape space
projection

non-linear
deformation

select and add
(X , DCD (X , SU))

Figure 3.2: Given a sparse set of scans SR, and their registrations R to a common tem-
plate, we learn a linear shape space BPCA using RPCA and train a non-linear
NJF-based deformation model using RDEFORM. Then, given a scan SU from a
set of unregistered scans U , we project it to the PCA basis to obtain Xo and
utilize NJF-based deformation to recover its registration to the template X → in
the canonical pose. To enhance our shape space, we calculate the Chamfer Dis-
tance (DCD) of registrations to target scans. We add all registrations where the
distance falls within one standard deviation of the minimum distance to RPCA.
We repeat this process to jointly register raw scans and enrich our shape space.

shape space. Note that we always have S = SR ⇔U .

Our method takes as input a set of raw scans U (approximately in A-pose) and

a set of manually registered scans R (in T-pose). Using the latter, we construct an

initial shape space, which is then used to iteratively register the shapes in U to this

space, aligning them to the T-pose. After several iterations, the process yields an

expanded shape space that captures a wider range of body shapes, all in T-pose.

Our method works by deforming the template TSMPL to closely match a new

raw scan SU ↔ U . This deformation model consists of two parts: (i) a PCA-based

shape space BPCA that provides a search space for shapes; and (ii) a neural defor-

mation model f that maps shapes obtained by searching BPCA to targets that better

capture the shape details of the raw scan. The two deformation models work in

tandem to jointly register scans and yield correspondence with TSMPL, resulting in

registered scans based on the current shape space. We then ‘close the loop’ by se-

lecting a few new registrations based on their distance to the scan and adding them

to recompute a PCA basis BPCA, thus enriching the shape space further. We repeat

this process for multiple iterations, with each pass progressively learning a richer

3.3. Approach 55

Algorithm 2
1: procedure BLISS(R,SR,U, f ,n)

ω R = Registered Set, SR = Corresponding set of scans
ω U = Unregistered set of scans
ω f = Deformation Model, n = Number of rounds

2: for Round ↔ [1,n]: do
3: RPCA,RDEFORM ⇑ R
4: BPCA,g(·)⇑ PCA(RPCA) ω build shape sp.
5: for X ,SX ↔ (R,SR): do ω build deform mod.
6: {∃ε

i },∋ ε = g(SX) ω Fit using basis
7: Xo = S̄+∀k

i=1 ∃ε
i vsi ω init. canon. shape

8: X → = f (Xo,SX) ω Register with NJF
9: Lvertex = ≃X → ↓X≃2 ω Vertex Loss

10: LJacobian = ≃J→ ↓ J≃2 ω Jacobian Loss
11: f (...;&i) = f (...;&i↓1) ω Backprop
12: end for
13: C = /0 ω New Candidate Registrations
14: for SU ↔ U : do
15: {∃ε

i },∋ ε = g(SU)
16: Xo = S̄+∀k

i=1 ∃ε
i vsi

17: X → = f (Xo,SU)
18: C ⇑C⇔X →

19: end for
20: D ⇑ ChamferDist(C,U)
21: th ⇑ min(D)+∀(D)
22: Cprune ⇑ {c|c ↔C, ChamferDist(c,U)< th}
23: R ⇑ R⇔Cprune ω Update Basis
24: end for
25: return R
26: end procedure

shape space and using it to register raw scans. Figure 3.2 illustrates the pipeline of

BLISS.

3.3.2 PCA-based Shape Space

We use a subset of the shapes in R, RPCA to compute a PCA basis in a similar fash-

ion to classical works like SMPL [4] and STAR [7]. Note that we use only a subset

of the R and save the rest for the data-driven deformation model (see Section 3.3.3).

Our shape space BPCA, similar to others, is composed of a pose-corrective deforma-

tion basis allowing for pose-conditioned deformations and a shape basis that enables

body-shape deformations. In our work, since we are primarily interested in learning

a space of body shapes, we borrow the pose corrective directly from SMPL, which

is denoted as BP(∋) : R≃pose≃ ↑ R3N as well as a rigged skeleton to pose TSMPL,

where ≃pose≃ = 24↗ 3, corresponding to 3 axis-angles for each of the 24 joints.

3.3. Approach 56

We represent the shape basis BPCA with k shape eigenvectors BPCA := {vsi}, where

k is selected such that the shape variation in the dataset is explained using the k

basis vectors. In this computed space, we define a new shape Sc in any particular

pose ∋ as,

Sc({∃i},∋) := S̄+
k

∀
i=1

∃ivsi +BP(∋)Sp({∃i},∋) :=W (Sc({∃i},∋),J,∋ ,Ws) , (3.1)

where S̄ is the mean shape, Sp({∃i},∋) is the posed shape before applying pose

correctives, J is the joint regressor that provides the joint locations given the vertex

positions in the shape, Ws is a fixed set of skinning weights, and finally, W is the

skinning function as defined in [4].

Now, given a target scan SU and a current set of shape basis vectors vsi , we

optimize for the pose parameters and shape coefficients:

g(SU) := ({∃ε
i },∋ ε) = arg min

{∃i},∋
DCD(W (Sc,J,∋ ,Ws),SU), (3.2)

where DCD is the Chamfer Distance and SU is an unregistered raw scan.

We optimize Eq. 3.2 to find the shape in BPCA that best matches the scan SU

while also optimizing for the pose parameters ∋ . In other words, the function g

“projects” the raw scan SU onto the shape space BPCA. After optimization, we

obtain the canonical shape that corresponds to the scan as Xo := S̄ +∀k
i=1 ∃ε

i vsi .

Note that due to the limited expressivity of the linear basis, Xo may not accurately

represent SU . We now seek a deformation model that can further enrich Xo with the

details from SU . This shape space optimization also provides a good initial point to

seed our subsequent nonlinear deformation model, as explained next.

3.3.3 Neural Deformation with NJF

In our work, a nonlinear deformation is simply an assignment of new 3D positions

to the vertices of the given (template) mesh. We adopt Neural Jacobian Fields (NJF)

[9] as our nonlinear deformation model f . NJF trains an MLP to map triangles on

a source mesh to a corresponding deformed triangle on a target mesh using only

3.3. Approach 57

local information. The key step is to have this training receive gradients through a

differentiable global Poisson Solve layer to then directly predict the positions of the

vertices.

We consider another subset of shapes in R, RDEFORM where RDEFORM ∝ R \

RPCA, and their corresponding raw scans to train NJF. For each shape X ↔ RDEFORM,

we first optimize for parameters g(SX) where SX is the raw scan corresponding to

X , giving us a shape space projection Xo. We then train NJF to map the canonical

Xo to the canonical X , conditioned on the scan SX that can be in any pose. Essen-

tially, we ask our deformation model f to deform the result of our (current) shape

space projection Xo to the target registration X that contains richer details. The de-

formation function f is conditioned on the raw scan representing the target, and can

fix any residues not covered by the optimization step. Specifically, we train f with

per-vertex L2 loss,

Lvertex := ≃ f (Xo,SX ;&)↓X≃2, (3.3)

where & represents learnable parameters, and a per-triangle Jacobian loss LJacobian

which supervises the ground-truth Jacobians J (see [9]), with our total training sig-

nal being,

Ltotal = 10 ·Lvertex +LJacobian. (3.4)

We slightly abuse notation in Equation 3.3 – in practice, Xo and SX are represented

as features and not by vertex locations themselves. Specifically, we use Pointnet en-

codings [123] of both shapes. Details of the network architectures and the features

used are in Appendix B.

With our initial shape space defined by RPCA and a nonlinear deformation

model trained with RDEFORM, we can now use these in tandem to register new scans.

3.3.4 Closing the Loop

For each unregistered scan SU ↔ U , we first fit the template TSMPL to it by op-

timizing parameters g(SU) in Equation 3.2, to obtain the shape projection Xo in

canonical pose. We then use the trained NJF to predict the final registration as

f (Xo,SU ;&)↑ X →. The model X → is then “posed” to match the pose of SU by using

3.4. Evaluation 58

Table 3.3: Evaluating ours against alternatives. (i) Learning a one-time static shape space
from 400 available registrations provides an upper bound; (ii) and (iii) provide
baselines replacing our non-linear deformation model with classical non-rigid
registration. Errors are in cm.

Method |REVAL | initial |RPCA | |RDEFORM | regularizations # shapes ↔U v2v (′)

(i) FULLANNOTATION- PCA+NJF 29 400 400 ✁ ✁ 0.87

(ii) BASELINE1- PCA + non-rigid 229 100 ✁ small ≃∃v≃ 800 3.11
(iii) BASELINE2- PCA + non-rigid 229 100 ✁ edge-preserving 800 3.26

BLISS (PCA only) 229 100 100 ✁ 800 1.31
BLISS (PCA+NJF) 229 100 100 ✁ 800 0.90

iteration 0 iteration 6 iteration 12 iteration 26

0.03 m

0.005

error error error error

co
un

t

co
un

t

co
un

t

co
un

t

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60
80

0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

Figure 3.3: We show the histogram of the v2v error of the scans in our test set at different
iterations of our method. We also color code the per-vertex error for an example
scan. As our method progresses, the error decreases, and we observe a slight
left shift in the histogram as the shape space improves. Insets show residue
error on one scan over iterations.

the optimized pose parameters ∋ ε. We compute the Chamfer Distance to their cor-

responding scans, if the error falls within one standard deviation from the minimum

error, we augment RPCA with the new shapes X → in T-pose. Following a common

statistical convention, we set the threshold at one standard deviation above the min-

imum error, which yields a reasonable number of new shapes (typically 30–50)

while maintaining acceptable registration accuracy.

In the next iteration, the shape space will be updated by computing PCA with

the augmented set RPCA. The updated basis also provides new initial states for

training our deformation model f . Note that we do not add the PCA projections Xo

to RPCA as it does not carry “fresh” information like X →.

We repeat the steps of constructing a PCA basis, learning an NJF based de-

formation model, and registering new scans for several rounds, with each round

expanding the shape space (see Algorithm 2).

3.4. Evaluation 59

3.4 Evaluation

3.4.1 Dataset and Protocols

Dataset. We picked 429 full-body scans from the CAESAR dataset and had them

registered by a professional artist, i.e., |R|= 429. Note that the artist took 40-60 min

per scan using a combination of landmark point specification, running nonrigid ICP,

and then manually fine-tuning dense correspondence correction/specification (e.g.,

around fingers, armpit, etc.), costing around $25 for each scan. We consider these

artist-registered meshes as Ground Truth for evaluation, training, and, in the case

of some baselines, as targets. Specifically, we first randomly sample two mutually

exclusive sets RPCA and RDEFORM from R to train the initial PCA space and NJF

respectively, where |RPCA| = 100 and |RDEFORM| = 100. We use all the remaining

229 registrations as REVAL for evaluation purposes unless noted otherwise. Given

the limited size of the dataset (only 429 shapes), we select 100 samples each for the

PCA and deformation sets. This provides a sufficient number of examples to train

our deformation MLP, while reserving a substantial portion for evaluation.

Since the original CAESAR dataset consists of around 4000 scans, 429 of

which we have registrations from the artist, we consider the rest 3.5k scans as un-

registered scans U . In Algorithm 2 Ln. 14-18, scans in U are brought to corre-

spondence, added to RPCA, and contribute to the new shape space BPCA, whereas

RDEFORM is kept fixed to the initial 100 artist registrations. Throughout the experi-

ment, we always use k=11 basis for any PCA-based shape space, denoted as PCA.

Note that despite RDEFORM being fixed, in each round, since the basis of the shape

space BPCA changes, Xo changes, and consequently, the amount of details that NJF

needs to compensate also changes. Hence, our NJF is rebuilt in each iteration (Al-

gorithm 2 Ln. 5-11). At test time, since BLISS consists of a PCA shape space and

an NJF network, whenever we evaluate only the learned PCA space, we denote it as

“PCA only” to distinguish from running the full pipeline.

Metrics. For each registration in REVAL, we take the corresponding raw scan

and obtain a registered shape using either our method or the baselines below. We

measure the vertex-to-vertex (v2v) distance (since they share the same topology)

3.4. Evaluation 60

between the ground truth and the estimated canonical shapes, using the artist-

annotated scan-to-template correspondences. When comparing shape spaces with

different topology, such as GHUM, we start by non-linearly registering the target

and our mean body shape models in the same pose. Then, we use barycentric co-

ordinates on the corresponding face to map each point on our template to the target

body model. Additionally, we calculate the vertex-to-plane error (v2p), which does

not require meshes to have the same topology. We choose vertex-to-point (v2p)

distance over alternatives like Chamfer Distance, as it more accurately captures dif-

ferences between surfaces (as opposed to point wise distances) —making it better

suited for evaluating how well the underlying identity has been predicted.

(i) FULLANNOTATION: We spare 29 registered shapes for evaluation and use

all the remaining 400 annotated meshes to train a PCA model. We further train an

NJF with the same 400 scans to add the missing details not covered by the PCA

model, denoted as “FULLANNOTATION- PCA+NJF”. This baseline represents sce-

narios where one trains the model in one go with all available registrations, without

any bootstrapping schemes that leverage the unregistered scans. Hence, this can be

seen as an upper bound. Since the goal of this baseline is to set the upper bound

we chose the split such that a significant proportion is used for training, while still

reserving some for evaluation.

Baselines. We consider several baselines, where NJF is replaced in our

pipeline with classical non-rigid registration methods. Given an unregistered scan

SU , we first obtain the projection in the PCA space Xo and then optimize the lo-

cation of each vertex on Xo, such that when posed with ∋ ε, the shape yields low

Chamfer Distance to the scan SU . This “free-form deformation” scheme can fall

into local minimum easily even if we provide Xo as close initialization. Therefore

we define new baselines where we constrain it with standard regularization terms:

(ii) BASELINE1: vertices should not be deviating too far from the canonical shapes

Xo, i.e., ≃∃v≃ should be small favoring smooth surfaces; (iii) BASELINE2: defor-

mation should preserve edge lengths, i.e., favor near-isometric deformations.

Finally, we also compare to existing shape spaces including SMPL [4],

3.4. Evaluation 61

STAR [7], and GHUM [5].

3.4.2 Results and Discussions

Progressive improvement of the shape space. First, we illustrate how our shape

space is progressively improved, i.e., becomes more expressive. In Figure 3.3, we

show the histograms of the v2v residue error at different iterations of our method

as it consumes new scans from U and visualize the error as heat maps in each inset

image. One can observe that the error gets reduced as we have more rounds, i.e.,

the correspondence quality improves progressively.

Further, we compare with a method that simultaneously burns all available

400 scans into model training – FULLANNOTATION. As shown in Table 3.3 upper

part, it attains the lowest v2v error of 0.87cm on a smaller evaluation set of 29.

In the bottom part, we can observe that, despite being trained initially with only

100 registrations, BLISS yields v2v error that is on par with the upper bound by

automatically extending the set of registered scans to 800.

Effect of NJF as a non-linear registration module. In BASELINE1-2, we run

Algo. 2 but estimate detailed shapes X → at Ln. 16 by non-rigid registration methods

instead of NJF f . We then evaluate how well the resulting PCA shape space explains

the test set REVAL and compare with our PCA shape space. In Table 3.3 bottom part,

we observe that after consuming 800 unregistered scans, our shape space explains

scans in REVAL with 1.31cm v2v error (PCA only), while NJF further reduces it

to 0.90cm. Consuming the same amount of scans, shape spaces enriched with X →

from non-rigid registration yield errors of 3.11cm and 3.26cm, respectively. This

suggests using a data-driven NJF in the loop recovers better correspondence than

optimization-based registration methods, and when included in RPCA, it leads to a

new PCA space BPCA with richer information.

Figure 3.3 shows how the model improves over iterations/rounds (from left to

right). While NJF helps add lost details, it is still limited by the sparse set of training

pairs (100 in our case) and may not recover all the details.

Comparison to other shape spaces. We compare BLISS with the following

existing shape spaces: (i) the classical SMPL [4] shape space trained with the regis-

3.4. Evaluation 62

trations of 3800 CAESAR scans, (ii) its follow-up STAR [7] which uses additional

11000 registrations of the SizeUSA dataset [115], (iii) GHUM which uses registra-

tions for an additional proprietary dataset of 64000 scans (where a majority consists

of body, hand, and, facial pose variations) along with CAESAR. GHUM presents

a linear shape space as well as a VAE-based non-linear shape space, both of which

we include in our comparisons. For each corresponding scan in REVAL, we optimize

for the pose and shape parameters of each body model and report both the v2v and

v2p errors in Table 3.4. We also show qualitative comparison in Figure 3.4 where

we color code each optimized body model using the v2p error with respect to the

ground truth artist provided registration.

Table 3.4: Ours, after absorbing 800 shapes from CEASER, outperformed SMPL, STAR,
and GHUM even though we only used 200 registered scans, compared to their
much larger number of scans.

Method # shapes ↔ R v2v (′) (cm) v2p (′) (cm)

SMPL (PCA) 3800 1.72 0.62
STAR (PCA) 15000 2.15 0.58
GHUM-PCA 64000 6.74 3.01
GHUM-VAE 64000 5.89 2.63

BLISS 200 0.90 0.65

We observe that BLISS yields consistently lower v2v error than other shape

spaces. We use 11 PCA components for SMPL, STAR, and BLISS while all the

PCA components for GHUM. Our Ground Truth are artist-annotated registrations,

which can still potentially contain errors which might have an effect on this gap.

Nevertheless, our method performs on par with SMPL and STAR based on the v2p

error and better than GHUM. Hence, the primary observation in Table 3.4 is that,

despite starting from only a small amount of registrations (100+100), BLISS yields

on-par expressivity compared to a model trained with an order of magnitude more

registrations. We attribute this to the novel combination of linear PCA and non-

linear NJF deformation model, as well as the progressive scheme leveraging such a

hybrid deformation model for better correspondence.

Diversity of body shape spaces. We qualitatively show the diversity of body

shapes represented by our shape space by randomly sampling our final PCA space

3.4. Evaluation 63

using farthest sampling in terms of vertex differences. Sampled shapes are shown in

Figure 3.1. In Figure 3.5, we show shape variations captured by our shape space’s

top three PCA modes. Note that while gender is represented as a binary attribute

in the dataset we trained on, the geometric features associated with gender (e.g.,

shoulder width) are continuous and can be interpolated smoothly.

In order to compare the diversity of our and existing shape spaces, we sample

Scan SMPL STAR GHUM-PCA GHUM-VAE BLiSS

Figure 3.4: For a given raw scan, we register each body model by predicting pose and body
shape parameters. (Top) Each result is color coded based on the v2p error in
meters w.r.t. the ground truth registration provided by the artist.

Table 3.5: Left: We use Farthest Sampling to gather 500 shapes from each space. To de-
termine the similarity between the different spaces, we calculate the distance
between each shape in one space and its closest counterpart in all other spaces,
including off-diagonal entries. We then report the average distance (in centime-
ters) for each possible pairing of spaces in both directions. Low values for (A, B)
and (B, A) suggest the two spaces are similar. Right: We compute the diversity
of samples inside each space, with higher values indicating more diversity.

Space Ours GHUM STAR SMPL

Ours 0 3.57 1.38 1.46
GHUM 4.03 0 3.65 3.71

STAR 1.79 3.74 0 1.37
SMPL 1.90 3.75 1.36 0

Space Ours GHUM STAR SMPL

Diversity 4.10 4.48 3.96 4.14

3.4. Evaluation 64

Figure 3.5: We show shapes along the top three principal directions in different rows, and
observe variations in gender, height, and weight along the respective PCA
modes.

Figure 3.6: Left: Registration (pink) of noisy scans (blue) with our final shape space. Since
our model does not capture finger-level details, after optimization, the joints
corresponding to the greyed-out regions are reset to default poses. Right: We
show sampled faces from our final face-shape space after growing it from 20 ↑
800 shapes. We observe a variety of face changes in the cheek and nose regions.
(Bottom) We take the test scans from the COMA dataset (in blue) and register
them in our final face-shape space, which is shown in pink.

500 body shapes in each shape space by furthest point sampling. For each sam-

pled body shape, we compute is nearest sample within the same shape space by

measuring the v2v error. We report the average of such pairwise sample error on

the right in Table 3.5 where higher pairwise distance means a diverse shape space.

As shown quantitatively, the diversity of our shape space is on par with existing

3.4. Evaluation 65

shape spaces. We also compute, for each sample in a given shape space, its nearest

neighbor among all samples in the other shape spaces (by Chamfer distance instead

of v2v or v2p, as GHUM is higher resolution and follows a different topology).

For each shape space in each row, we then compute the pairwise sample distance

to each shape space in the columns. Smaller numbers indicate higher similarity

between shape spaces. We observe that our shape space is closer to the SMPL and

STAR shape spaces. We observe higher distances for GHUM, indicating lower sim-

ilarity to the other three shape spaces. This is likely because GHUM was not trained

on CAESAR shapes or scans.

Number of PCA components. While we use k=11 basis consistently for all

PCA-bsaed methods, we also analyze the effect of using more bases with k=30,

50, 100. Using higher number of basis increases the expressivity of PCA, but em-

pirically we observe very little change in our metrics – to the order of 10↓5 – by

considering more PCA components, and thus stick to using just k=11 in all experi-

ments.

Compute. Our method takes approximately 6 hours to process 800 CAESAR

scans on a single NVIDIA GTX 1060 Ti. The primary bottleneck is the optimization

step described in Eq. 3.2. In contrast, the PCA computation is relatively fast at our

resolution of 6890 vertices (similar to SMPL), and the neural deformation with NJF

is efficient since it involves a simple feedforward pass through a shallow MLP.

Application. A typical application of a body shape space is to predict a given

raw scan’s shape parameters. We demonstrate the use of BLISS shape space in such

an application in Figures 3.6 and 3.1 (right) . Since our work focuses on capturing

body shape variation, we optimize for pose in SMPL’s pose space. For each raw

scan we use 9 manually annotated landmarks to estimate the initial pose, then we

estimate the body pose (with SMPL) and shape parameters in our shape space. We

observe that our space accurately estimates the body shape despite the scans being

noisy.

Face registration. To demonstrate the generalization of our approach, we

sample 20 faces from FLAME [124] to create an initial face shape space. We then

3.5. Conclusions 66

iteratively register faces from the COMA [125] dataset. Note that we use the NJF

module trained on full-body human scans. Registrations shown in Fig. 3.6. We do

not assume paired data for this task and instead exploit NJF’s invariance to topology

and use the pre-trained NJF to deform the faces. NJF was trained on centroids

and Wave Kernel Signature as input features; these features are computed for the

linearly registered face scans and fed to NJF to add further details. We iteratively

train BLISS until we add 800 face-shapes to ours.

3.5 Conclusions
In this chapter, we presented a framework that takes in a small set of artist-annotated

scans along with a much larger corpus of unregistered scans, and jointly learns a

(linear) shape space while progressively bringing the unregistered scans into corre-

spondence. At the core of our approach is a novel formulation that continuously re-

fines the underlying shape space and a learned nonlinear module that automatically

registers models ‘close’ to the current shape space. The learned module encodes

the artist’s registration and refinement process, thus providing a meaningful prior

to enable learning from sparse guidance. We demonstrate that our approach trained

only with 200 registered scans, can produce competitive performance compared to

established shape space models trained using thousands of registered scans.

One limitation of our method is that it does not capture pose corrective shape

space. Learning a pose-corrective space in conjunction with the shape space would

require all unregistered scans to be available in multiple poses; such a scan dataset

is hard to curate in the first place. Another limitation is that the learned space is

linear. We can explore the use of nonlinear shape spaces, such as AE or VAE, but

it poses a challenge of growing robustly on limited data, especially in the initial

rounds of the approach. It is also worth noting that our method cannot handle hands

in complex poses due to the lack of finger articulation in SMPL’s pose space.

Thus far, this thesis has focused on generating static variations from sparse

datasets. In the final work, we shift our attention to creating dynamic 3D data under

similar sparse data conditions. Unlike GLASS and BLISS, which focus on learning

3.5. Conclusions 67

shape spaces, Temporal Residual Jacobians introduces a novel approach to learn a

spatio-temporal field from sparse guidance, enabling motion transfer to previously

unseen characters.

Chapter 4

Temporal Residual Jacobians for

Rig-free Motion Transfer

In this chapter we extend our exploration of sparsely guided generative models to

the problem of generating dynamic 3D content. To that end, we introduce Tempo-

ral Residual Jacobians as a model to enable sparse-data-driven motion transfer. In

this work, we train our models on 5-10 instances of a motion category and effec-

tively transfer the learned motion to unseen characters. The method presented here

does not assume access to any rigging or intermediate shape keyframes, produces

geometrically and temporally consistent motions, and can be used to transfer long

motion sequences. Central to our approach are two coupled neural networks that

individually predict local geometric and temporal changes that are subsequently in-

tegrated, spatially and temporally, to produce the final animated meshes. The two

networks are jointly trained, complement each other in producing spatial and tem-

poral signals, and are supervised directly with 3D positional information. During

inference, in the absence of keyframes, our method essentially solves a motion ex-

trapolation problem. We test our setup on diverse meshes (synthetic and scanned

shapes) to demonstrate its superiority in generating realistic and natural-looking

animations on unseen body shapes against SoTA alternatives. Since this work gen-

erates dynamic content, the results are best judged by viewing the motion-transfer

videos available at https://temporaljacobians.github.io/.

https://temporaljacobians.github.io/

4.1. Introduction 69

4.1 Introduction
Target Motion

Transferred Motions using Temporal Residual Jacobians

Target Characters

Figure 4.1: Given a stick figure dance motion (top-right), Temporal Residual Jacobians
retarget the animation to unseen, unrigged meshes (top-left) across time, pro-
ducing realistic motion dynamics. Please refer to the webpage for videos.
Our method can be trained on limited data, does not require rigged models
or skinning weights during training or inference, and does not assume paired
sequences or registration to any canonical template mesh. The method was
trained on other bodyshapes: no target characters were seen during training.
All results in the paper and the webpage were obtained with automatic feature
correspondences and without any postprocessing or smoothing applied.

A major challenge in character animation is to transfer the motion of a source

(skeletal) system to a diverse range of target characters in a realistic manner. The

traditional approach to achieve this involves using a rig, which connects a skele-

ton to the character’s surface and manages the surface motion through a variety of

constraints and parameters. Target movement is then conveyed from the skeleton

to the surface by either simulating the physics of the muscles and fat or by using

tailored sets of skinning weights. These weights can be manually created by skilled

artists or derived from pre-existing rigged models [126, 127]. Despite its simplicity,

rigging can be time consuming to set up and complicated to transfer to new target

shapes; it may also fail to accurately capture dynamics.

There has been growing interest in developing surface deformation techniques

that are more flexible and efficient than traditional rigging-based approaches and

can utilize available volumes of full-body motion capture data. One possibility is

to train data-driven methods to learn a low-dimensional parameterization, such as a

morphable humanoid template [4] or a neural space deformation [128], to provide

controllable handles for shape and pose-aware manipulations. However, such meth-

4.1. Introduction 70

ods do not capture continuity over time and can overlook subtle motion dynamics

essential for enhancing the realism of the generated motion sequences. To add time-

dependent effects, corrective vertex deformations, similar to DMPLs [4] and Soft-

SMPL [129], have been introduced in multistage workflows. Unfortunately, such

methods do not account for elementwise temporal inter-relations and have limited

generalization to unseen characters.

We aim to transfer a source motion, expressed as joint angles on a stick fig-

ure, onto a target shape, specified as a (rig-free) mesh. We want to do so without

access to any rigging on the target shape, and we also want to avoid any fixed tem-

plate or morphable shapes. A desirable solution should address several challenges:

(i) handle rig-free meshes and/or scans with arbitrary topology; (ii) produce plau-

sible transfers to diverse shapes; (iii) achieve continuity over space and time and

thus avoid artifacts (e.g., broken meshes, jittery motion); and (iv) work with long

motion sequences without significant drift. The first two problems are partially

handled by rig-free pose transfer (i.e., transferring a pose to a target mesh) meth-

ods [9, 130, 131]. While such methods produce plausible single frames, they lead

to jittery motion transfer and motion-induced geometric artifacts like shearing.

We propose a novel approach that learns local spatio-temporal changes to pro-

duce natural-looking motion transfers. Technically, we achieve this via a new rep-

resentation in the form of Temporal Residual Jacobians that temporally links spa-

tial predictions and is directly supervised using example motion sequences. We

jointly train two neural networks to individually predict local spatial and temporal

changes. They are coupled by spatial integration with a differentiable Poisson solve,

and temporal integration with a neural ODE. A key technical insight is that instead

of having the neural ODE predict per-frame mesh deformations, it is more effec-

tive to predict initial deformations independently of time via a base posing model

(we use Neural Jacobian Fields [9]), and then have the neural ODE predict residual

deformations, linked over time, as corrective factors that improve temporal coher-

ence. Figure 4.1 shows how a stick-figure control motion produces target motions

for different characters, without requiring registration to any standard template or

4.2. TRJ: Related Work 71

character rigs.

We evaluate the effectiveness of our method for motion generation to different

character bodies (e.g., humanoids, animals, Mixamo characters, scans) and differ-

ent motions (walk, run, jump, punch, dance). We compare our approach to alter-

natives, when available. We provide qualitative and quantitative results using the

AMASS [122], COP3D [2], and 4DComplete [132] datasets.

In summary, our primary contributions are: (i) a novel method that enables

motion transfer via Temporal Residual Jacobians and can be trained directly using

positional data; (ii) local predictors that can be integrated in space and time to create

natural looking character animations; and (iii) a robust pathway to transfer realistic

character motion without the need for explicit rigging or learning a parameterization

using any canonical template shape.

4.2 TRJ: Related Work

4.2.1 Parametric Shape Deformation.

These methods express 2D or 3D shapes as a known function of a set of com-

mon parameters, and model deformations as variations of these parameters. Such

methods include cages, explicit [38] or neural [128], blendshapes [39], skinned

skeletons [40], Laplacian eigenfunctions [41], and several other variations. Linking

the parameters to the shape’s surface often requires manual annotation of weights

(commonly known as weight painting) in 3D authoring tools. Alternately, given suf-

ficient data (i.e., meshes, rigs, skinning weights), end-to-end training can produce

realistic neural rigs, as demonstrated by Pinocchio [133], RigNet framework [127],

skinning-based human motion retargeting [134], and skeletal articulations with neu-

ral blend shapes [135]. Unsupervised shape and pose disentanglement [136] pro-

poses to learn a disentangled latent representation for shape and pose, which can

be further used to transfer motion using shape codes. This requires meshes to be

registered and have the same connectivity. To animate these parametrized shapes

through time, the parameters are varied over time and the dynamic weights ani-

mate the mesh. These methods require access to body templates and/or rigs and

4.2. TRJ: Related Work 72

can produce results that are jittery due to loose coupling of the individual frame

predictions.

4.2.2 Dynamic Motion.

It is possible to model temporal surface effects by simulating the underlying soft

tissues using finite element methods (FEM) [137, 138]. This direct simulation is

typically slow and requires artists to design the underlying bone and muscle struc-

ture [139]. Approaches have been developed to overcome the stiffness problem

in FEM to accelerate simulating these systems [140] or to solve the problem in a

lower-dimensional subspace [141]. For the specific case of rigged human charac-

ters, Santesteban et al. [129] add soft-tissue deformation as an additive per-vertex

bump map on top of a primary motion model; AMASS [122] imparts secondary mo-

tion using the blending coefficients of the DMPL shape space [4]; and Dyna [142]

learns a data-driven model of soft-tissue deformations using a linear PCA subspace.

These efforts, however, assume access to primary motion via a skeleton rig and

are restricted to humans, registered to a canonical template. Complementary dy-

namics [143, 144] models physically-based secondary motion in the subspace com-

plementary to that spanned by an animation rig. This approach adds automatic

secondary motion to arbitrary animated objects, but requires the target shape to be

rigged, is not designed for deformation transfer (the base animation is part of the

input), and is tied to a specific hand-coded secondary physics model. DeepEmula-

tor [145] achieves a similar effect using a local-patch-based neural network to learn

the secondary behavior, but again requires the primary motion as input and does not

support deformation transfer.

4.2.3 Discrete Time Motion Models.

Given their ability to model time, deep recurrent neural networks have also been

used to model shape sequences. Fragkiadaki et al. [146] use LSTMs to predict

short human joint motions given initial frames. Harvey et al. [147] leverage LSTMs

for in-betweening to predict intermediate joint motions. He et al. [148] learn a mo-

tion field for joints through time. In all these methods, the mesh itself is deformed

via rigging, and since joint motion does not encode bodyshape, they do not suffi-

4.3. Approach 73

ciently represent secondary motion. Also, being discrete time representations, these

approaches must train on large datasets of joint motion. Qiao et al. [149] instead

use mesh convolutions with LSTMs to deform vertices through time. In our work,

we use neural ODEs as they can model time continuously instead of discretizing

time and modeling the sequence using LSTMs. Further, vertex-based deformation

models are susceptible to artifacts like normal-inversion as we demonstrate in our

evaluation section.

4.3 Approach

Given an unrigged, triangulated mesh of a 3D character, we aim to animate it by

motion transfer from an available motion described by relative joint angles (stick

figure motion) at each time step. The relative joint angles are represented as Euler

angles and are defined at each joint with respect to its hierarchy in SMPL’s kine-

matic tree (cf. [148]). We obtain these joint-based motion representations from the

AMASS dataset [122]. Since we aim to animate the mesh itself from the joints’ mo-

tion, we seek to learn a mapping from the joint representation to the positions of the

given mesh’s vertices, and to do so at each time step while ensuring we generate a

smooth and artifact-free mesh animation. We supervise our setup with ground-truth

meshes from the AMASS dataset [122].

We parameterize such a character X ↔ RN↗3 as assigning positions to each

of its N vertices of the underlying mesh. Thus to impart a motion to a mesh, we

perform this assignment at every time step. Given a shape X0 as a triangulated

mesh, in its initial pose configuration, along with per-frame pose configuration Mt

that describes the target pose at time t, we aim to predict the shape Xt at each time

t generating the full motion sequence; essentially learning a mapping from relative

joint orientations (as defined by SMPL’s kinematic tree[4]) to mesh deformations

(typically, from 30-50 joints to 50-100k vertices). We aim for a data-driven method

that generalizes to new characters and does not rely on shape rigging or intermediate

shape keyframes. Another desirable property is to do so with limited data (e.g.,

working with 5-10 motion examples), as obtaining full-body 3D motion data is

4.3. Approach 74

non-trivial.

Our key observation is that we can robustly train neural networks to predict

changes local in both space and time, which can then be integrated across space,

using a differentiable Poisson solve; and across time, using Euler equations to han-

dle an ODE numerically. Integrating across space helps maintain plausibility of the

entire shape, while integrating across time helps model a realistic, time-coherent

motion. Further, local predictions help higher generalization capability to unseen

body shape; while the spatio-temporal integration ensures smoothness of the se-

quence, without jitters or undesirable shearing artifacts. Our end-to-end differen-

tiable formulation allows training the networks directly using example training se-

quences, without requiring factorized spatial and temporal motion signals. For spa-

tial handling, we extend the representation from local deformation encoding [150]

and affine mapping framework Neural Jacobian Fields (NJF) [9], which learns an

affine transformation field that is sampled at each mesh face and integrated into ver-

tex positions via a Poisson solve. For temporal coherence and consistency in these

predicted Jacobians, we couple temporal signals across the character motions using

a neural ODE framework [8] via a novel Temporal Residual Jacobian representa-

tion. Predicting residual deformations that correct the predictions of a base model

for time-coherence turns out to be more effective than trying to make the base model

itself time-coherent.

4.3.1 Overview

Training: Since our goal is to map temporally varying joint angles to full mesh

animation, during training we assume this mapping is available i.e., we have one-to-

one mapping across time between joint orientations and the corresponding meshes.

Thus, we use the motion sequences in AMASS [122] as our training dataset for

humanoid shapes. Thus, during training, our algorithm takes in the joint angles at

each time step, the mesh itself at time t = 0 in its starting pose, and the full mesh

sequence is used for supervising our neural networks.

Inference: At inference time, our algorithm simply takes in an unrigged character

4.3. Approach 75

provided as a triangulated mesh. Our trained method is then used to animate this

mesh from joint-sequences of motions sampled from AMASS. These meshes can

be obtained in-the-wild or from character datasets like Mixamo. For shapes in the

AMASS dataset since we have the ground-truth motions, we evaluate our frame-

work quantiatively. We only show qualitative motion generation for other shapes in

the work, as there is no ground-truth solution.

Motion and Shape parameters: The motion sequences in AMASS were ob-

tained from live captures of subjects performing different motions; these were then

parametrized in SMPL’s [4] shape and pose space, thus providing a mapping from

joint orientations to 3D mesh pose - i.e., vertices of the mesh oriented to match the

pose represented by the provided joint orientations. We use this mapping to super-

vise our framework. Specifically, this data framework allows us to sample motions

across both shapes and poses, by varying the respective low-dimensional parame-

ters ! and ∃ . In our work, the ∃ translate to joint angles at each time step and we

use the source live-capture subject’s ! as is, and pass it as a conditioning variable

to our method.

4.3.2 Preliminaries
Our framework uses two components – one to learn spatial mesh deformations (re-

posing) and the other to learn temporal signals to generate a temporally coherent

mesh motion. We describe these below.

Neural Jacobian fields, as introduced in [9], encode local deformations by defining

a field via map (, defined over space, that can be sampled at the N vertices of

the surface mesh. Specifically, given (, we compute Jacobians in the basis of the

triangles of the surface mesh as,

Ji = (#T
i (4.1)

where #i is defined as the gradient of triangle ti in its basis Bi defined at the tri-

angle’s centroid. Thus, given a learned map, we obtain each triangle’s (estimated)

affine transformations Ji. Recovering the vertex positions from this per-triangle as-

4.3. Approach 76

signment of affine transformations is then done via a least-squares formulation that

reduces to solving a Poisson system given by (cf. [151]),

(↖ = L↓1)#T J (4.2)

where) is the mesh’s mass matrix, L = #T)# is the cotangent Laplacian, and

J is a stack of (estimated) Jacobians Ji. This solution gives a unique mesh up to

a translation, which we fix using X0, the mesh at t = 0. Mesh positions directly

supervise the neural map (via a differentiable Poisson solver [152]. Note that,

by leveraging sparse matrix representations in the Poisson solve, we can efficiently

handle high-resolution meshes (up to 200k vertices) without encountering memory

overflow on standard GPU hardware.

Thus, NJF allows us to learn affine deformations of a given mesh. In our

work, the map (is a trainable neural network that predicts local deformations of the

mesh’s triangles. Given conditioning parameters, the trained map can then be used

to predict the Jacobians of each triangle in the mesh at each time step, generating a

time-coherent animated 3D mesh.

Neural ODEs Chen et al. [8] represent differential equations with neural networks

to model the dynamics of time-varying systems (motion sequences in our setting).

Specifically, given a function f (t;∋) := ∗J
∗ t , where f is a neural network with pa-

rameters ∋ and t being time, the variable J can be integrated out at t as

J(t) =
∫ t

0

∗J
∗ t

dt =
∫ t

0
f (t;∋)dt + J0. (4.3)

The neural network can be directly supervised with J values as the network

output utilizes a black box differential equation solver without explicitly discretiz-

ing the dynamic system. This leads to better estimation, benefits from constant

memory updates (as opposed to explicit hidden states in RNNs, LSTMs, etc.), and

trades numerical precision for speed.

Our work seeks to learn how the triangle Jacobians move through time. Thus,

our neural ODE operates in the Jacobian space, with Jacobians being the variables

4.3. Approach 77

Poisson solve

β predictor

β

signatures

X 0 M t

J1P JtP

J1
R JtR

C

X tGT

J2
R

M 1 M 2
Independent Posing

Stitching in Time

f P (J 0P , M t , C)

f R (J 0P , E PW , E RW − 1 , β ,t)

J0
P

{

A A

J1 JtJ2

Euler solve

X t

J GTt

J t

J0
R = 0

+J1
P J2

P JtP

TWTW − 1

LvertexLJacobian

target
body X 1 X 2

{{{J2P

++

Figure 4.2: Method overview. Starting from input stick figure motion ({Mi}) and a target
body shape (X0), Temporal Residual Jacobians makes local predictions, using
primary fP and residual fR MLPs, to predict spatial and temporal changes to
per-triangle Jacobians respectively. fP (middle, top) predicts per-face deforma-
tions independently at each time step. These are attended to in fixed windows
by attention blocks (A) and encoded as previous (EW↓1) and current window
(EW) motion features. These features along with bodyshape signature ! are
input to our temporal residue module fR (middle, bottom) which predicts the
Residual Jacobians to be added to per-frame Jacobians, to make them tempo-
rally coherent. These residuals are then integrated in time, via numerical Euler
stepping to predict the stitched Jacobians at time t, followed by a spatial inte-
gration of these Jacobians via a Poisson Solve.

These two learnable modules - fP and fR - are trained simultaneously with only
direct object-level supervision using a combination of positional and Jacobian

losses. We use the ground-truth meshes from AMASS to supervise the predictions.
The time t input is positionally encoded.

to integrate across time.

4.3.3 Motion Transfer with Space-time Integration

Without keyframes, we have to solve a temporal extrapolation problem. Our goal

is to produce shape-preserving realistic motion sequences, as well as to learn such

a motion model from a very sparse dataset. Not surprisingly, if each frame were

independently predicted, the resulting motion would not be consistent across time,

resulting in a jittery and artifact-ridden sequence (see Section 4.4). We, therefore,

propose a novel framework wherein independent frame predictions are improved by

providing temporal signals from a neural ODE. The two networks work in lockstep,

each boosting the other’s predictions, and are trained together.

4.3. Approach 78

Independent posing: We estimate each frame’s Jacobians independent of temporal

information. Given a shape X0, pose configuration (relative joint angles with respect

to SMPL’s kinematic tree) Mt and features describing each mesh face, we predict

JP
t as the primary Jacobians at time t. Specifically,

∃JP
t = fP(JP

0 ,Mt ,C;∋P) (4.4)

JP
t = JP

0 +∃JP
t (4.5)

where JP
0 is the first frame Jacobian computed from X0, Mt is the pose configuration

given as relative joint angles, and C are per-face features defined at the centroid

of the mesh faces, of the mesh at t = 0. In our tests, as features C, we jointly

learned PointNet features on the centroids and normals of X0 and augmented them

with pre-computed Wave Kernel Signatures [99]. Our feature network (a shallow

PointNet) learns geometric features that enable mapping to an unseen shape via

correspondence in this learned feature space. We note that conditioning the posing

network on JP
0 and adding the predicted delta via a residual connection significantly

improves pose prediction and generalization to unseen pose configurations. We

additionally note that the Jacobians are computed in the local basis defined at each

face’s centroid. Thus, JP
0 is the Jacobian of the identity deformation in the local

basis (a rotation). Henceforth, we do not update the basis in the sequence and

express all Jacobians on this chosen basis.

In practice, we analytically compute the triangle Jacobians of only the first

frame X0 in the sequence. We then predict the Jacobians at each time instance t in

the coordinate frame of X0 and solve Equation 4.2 to obtain the shape Xt at time

t. Importantly, we augment NJF with temporal learning signals, by linking these

independent per-frame predictions via a neural ODE, as described next.

Stitching across time: Our key observation is that learning local changes in time

generalizes better to unseen shapes. Central to our method is a neural ODE that

provides temporal training signals to the primary NJF and integrates across time to

learn a smooth, arbitrary-length motion sequence. We found independent per-frame

4.3. Approach 79

predictions are prone to artifacts and do not generalize well (see Section 4.4). We

also observe that a neural ODE, in isolation, cannot predict the entire sequence due

to the drift problem inherent to estimating functions using numerical ODE methods.

Specifically, given an initial state and per-frame control parameters (in our case,

joint angles), predicting the mesh sequence is an extrapolation problem. As such,

ODEs are prone to drifting away from the underlying function. This problem is

exacerbated as the length of the motion increases – the longer the motion, the larger

the accumulated drift.

As a solution, we propose a novel formulation to address both the incoherence

of per-frame predictions and the drift problem. Specifically, we direct the neural

ODE to learn only Residual Jacobians at each time step conditioned on the predic-

tions from Eq 4.5 and on a window of past Jacobians. The Residual Jacobians are

corrective factors which are directly added to the per-frame Jacobians. We predict

Residual Jacobians local in time as outputs of a Neural ODE to ensure temporal

coherence. This allows us to handle much longer motions, spanning 1-3k frames,

without noticeable drift. We describe our method below.

ODE formulation: To handle arbitrary length sequences, in the interest of memory

and training speed, we train and infer a given sequence in windows of consecutive

frames. A given sequence is broken into fixed window sizes. We initialize J0 in Eq

4.3 as the first frame’s Residual Jacobian. Specifically, J0 is the identity transforma-

tion projected on the local basis of each face of X0 by rotation. Since the first frame

is stationary and given as input, we set the first frame’s Residual Jacobian as,

JR
0 = 0 ↔ R3↗3. (4.6)

We then task the neural ODE to learn Residual Jacobian JR
t at each t, by extrapolat-

ing from JR
0 using Euler’s integration. We then extract the final Jacobians in terms

of the base Jacobians corrected by the Residual Jacobians as

Jt = JP
t + JR

t . (4.7)

4.3. Approach 80

We predict the residuals JR
t by integrating over time the bodyshape-specific local

changes predicted by fR which is defined as,

∗JR
t

∗ t
= fR(JP

0 ,E
P
W ,ER

W↓1,! , t;∋R) (4.8)

where ! is the shape signature that defines the given body shape, and JP
0 , as defined

previously, are the Jacobians of the first frame; EP
W and ER

W↓1are attention encodings

of current-window pose predictions and previous-window residual predictions. We

integrate the local changes (see Eq 4.8) over time using Euler’s method to obtain JR
t

at each t as,

JR
t =

∫ t

0

∗JR
t

∗ t
dt + JR

0 =
∫ t

0
fR(JP

0 ,E
P
W ,ER

W↓1,! , t;∋R)dt. (4.9)

Our jointly trained attention encoders are defined as,

EP
W = AP(JP

W ,TW) (4.10)

ER
W↓1 = AR(JR

W↓1,TW↓1) (4.11)

where AP and AR are multi-head attention networks, JP
W and JR

W↓1 are a block of

sequential Jacobians in the current window W and past window W ↓1, respectively;

TW and TW↓1 are correspondingly blocks of time instances in these windows and are

positionally encoded using time. In all our experiments we use a window size of 32

frames.

Note that we use the attention networks to encode a window of Jacobians to a

single encoding. Since the encoding sizes are thus constant, we can handle arbitrary

window/sequence lengths without overflowing memory. These encoders distill the

current posed Jacobian predictions from Eq 4.5 and previously predicted Residual

Jacobians obtained from Eq 4.9.

We pass the output of the attention networks as conditioning to Eq 4.8 to in-

tegrate and obtain the residuals in Eq 4.9. The predicted residuals are then added

to the posed Jacobians in Eq 4.7. Finally, we spatially integrate the predicted Jaco-

4.4. Evaluation 81

bians Jt using a differentiable Poisson solve [152], in the coordinate frame of the

first frame, to obtain the predicted shape Xt at t.

Loss function: Our pipeline is trained end-to-end using only a shape loss over

vertices of Xt and a Jacobian loss. Thus, our final objective function is simply

Lvertex = ≃Xt ↓XGT
t ≃2 and LJacobian = ≃Jt ↓ JGT

t ≃2, (4.12)

L = Lvertex +∃LJacobian. (4.13)

We use ∃ = 0.05 in our tests.

4.4 Evaluation
Motion datasets. We train and evaluate our method on motion sequences from

three different datasets. First, the AMASS dataset [122] for humanoid motions,

which is based on the SMPL body model [4] that allows us to vary body-shapes by

changing its shape parameter ! , for a given sequence. Thus, we train our model for

a given motion category (like running) to predict the sequences on varying body-

shapes (indicated as the ! -predictor in Figure 4.2). During training, each sequence

in the category is trained with only one body-shape. During inference, given an

unknown test shape X0 and a motion {Mt}, we synthesize the full body motion

for the target shape. Second, we also tested on a synthetic DeformingThings4D

dataset [1], which provides animal 4D meshes as deforming sequences. Finally, we

also present results on motions extracted from video recordings of animals in the

COP3D dataset [2] where our inputs are meshes fitted to the video recordings to

train Temporal Residual Jacobians.

Target shapes. We evaluate our method on various forms of target shapes,

namely sampled SMPL models, scans from the FAUST dataset, characters from the

Mixamo library, various models from online 3D repositories (e.g., wolf, triceratop,

monster, hole-man, etc.). Non-manifold inputs were converted to manifold meshes

before running our algorithm. All correspondences were as inferred by the signature

4.4. Evaluation 82

Figure 4.3: Generalization across bodyshapes. We show results of different motion
transfers on meshes found in-the-wild (blue), FAUST scans (pink) and Mix-
amo characters (green). We observe a smooth motion consistent with the target
geometry in each case. Please see the webpage for the videos.

module (i.e., combination of PointNet features on centroids and normals of faces

along with WaveKernel Signatures, previously defined as C).

Implementation details. All the networks we use are shallow MLPs to aid train-

ing speed. For our independent posing network, we use a 4-layer MLP with ReLU

activation, with the final layer being linear. For the residual Jacobian prediction, we

use a 3-layer MLP similarly with intermediate ReLU activations and a final linear

layer. Both our attention networks follow the same architecture – we use two atten-

4.4. Evaluation 83

tion heads, with a 32-neuron wide feed forward layer and 32-dimensional features

for the keys and values. Our PointNet network from which we obtain per-face fea-

tures similarly has 3 ReLU layers followed by a linear layer at the end. Our method

and the baselines are trained until Lvertex converges to less than 3e-4 or upto 300

iterations. On a 12 GB TitanX our typical training time is 6-8 hours, varying by the

lengths of the sequences.

For the walking and dancing motions, we set the root orientation in AMASS

to zero, so all subjects are front facing, making it easier to train (similar to [148]),

as our Jacobian-based formulation cannot, on its own, infer global rotation and/or

translation. We do not, however, predict global transformations; we obtain the

global transforms from the source AMASS sequences and apply them to our final

outputs at inference after appropriate scaling according to the target’s height.

Qualitative results. We show various examples of deformation transfer by our

method in Figures 4.1, 4.3, 4.4 and 4.5. Please refer to the videos in the web-

Figure 4.4: Generalization across shapes with very sparse training sets. Here, we show
motion transfer from two animal sequences (in yellow) sampled from the De-
formingThings4D dataset [1], to animal meshes found in the wild (in blue).
Our method was trained on only two sequences from this dataset and yet gen-
erates plausible motion transfer to unseen shapes. Rigs were not available to
our algorithm at training and/or test time. (Note: blue sequences have been
slightly globally rotated for visibility.)

4.4. Evaluation 84

page. Our method generalizes to new shapes of varied body types, including non-

humans completely unseen during training, while preserving the source motion.

We show examples on monsters, a 4-armed character, etc. The correspondences in

these cases are implicitly established using our learned per-face features and Wave

Kernel Signatures, and the method works well because the characters are all four-

limbed. Motion transfer to characters with different limb topologies—such as an

eight-limbed spider or octopus—may yield unpredictable results. Additionally, as

different humans perform the same motion in different manners, we capture those

varying dynamics in the deformation of the new shape as well. We can also learn

and apply motions from animals, both from synthetically generated mesh sequences

as well as motions extracted from monocular video recordings.

Figure 4.5: Motion transfer from COP3D dataset. We train on only four sequences of
dogs obtained from the COP3D dataset [2], which are monocular video record-
ings of animal motion, and transfer the observed regressed motion (in yellow)
to creature meshes found in the wild (in blue).

Comparisons. Our method Temporal Residual Jacobians, due to the space-

time coupled formulation, is designed to produce natural-looking motion retarget-

ing. Although we are unaware of any other method that performs the specific mo-

tion extrapolation problem (i.e., without access to keyframes or skeletal rigs), we

compare with possible baseline design variations. First, VertexODE, where an MLP

predicts the rate of change of vertex positions (velocity) at time t, followed by a

Neural ODE [8] that takes numerical steps by Euler’s method to integrate to the

vertex positions at t. This baseline directly displaces the vertices (i.e., without tri-

angle Jacobians). As seen in Figure 4.6, this method produces significant artifacts

and leads to degenerate shapes. It also loses the intended motion after some time,

as seen in the videos. Second, NJF(Mt), where we extend the original NJF frame-

4.4. Evaluation 85

work to be additionally conditioned on per-frame relative joint orientations Mt , to

predict the Jacobians at each time step. Framewise prediction leads this approach

to suffer from jitters (please refer to the videos on the webpage) and a tendency to

overfit to training data. Although the individual frames are mostly plausible, they

occasionally suffer from frame-level artifacts as shown in Figure 4.6. The primary

limitation, however, is jittery output as seen in the video results since the frames are

independently generated. Note that a method without spatial or temporal derivatives

wherein a simple MLP is trained to predict vertex deformations given the initial ge-

ometry and time t performs poorly, with numerous artefacts due to vertex-level

predictions.

Figure 4.6: Observed artifacts in baselines. For each motion, we show results from an
intermediate frame of the motion transfer for our baselines. VertexODE (left,
yellow) completely distorts the shape, while not following the target motion.
NJF (right, brown) suffers from temporal discontinuity resulting in motion-
driven geometric artifacts – extended or shrunken parts as it tends to a linear
path in later time steps – and jitter.

Quantitative comparison: We evaluate our method on several types of se-

quences and compare ours against other baselines in Table 4.1 by computing the

residual error with respect to the ground-truth sequences. We compare five differ-

ent motion categories from the AMASS dataset - running, jumping jacks,

walking, hopping, and punching. We achieve the best on all metrics.

Human motion to non-humanoid characters. We show results on human mo-

tion applied to non-humanoid characters (e.g., 4-armed monster, alien-reptile) in

the webpage videos. Please note the quality of automatic transfer without manual

landmark specification.

Handling long sequences. One advantage of our space-time coupled formula-

tion is the ability to handle long motion sequences. We show examples of motion

transfer from a few hundred to a couple of thousand frames (dance and walk) on the

4.4. Evaluation 86

Table 4.1: Quantitative evaluation. Average vertex-to-vertex error in cm, L2 error of
predicted Jacobians and angular error of normals in degrees, measured against
ground truth sequences, for different motion categories and averaged over multi-
ple sequences within the same target motion category. Here we compare against
neural ODE [8] and an extended version of NJF [9]. Lower values indicate better
generalization.

Method Jump Run Punch Walk Dance
L2-V L2-J L2-N L2-V L2-J L2-N L2-V L2-J L2-N L2-V L2-J L2-N L2-V L2-J L2-N

VertexODE 22.59 1.22 48.21 14.23 0.83 42.11 17.66 0.65 40.04 23.92 1.01 46.12 26.15 1.26 50.17
NJF(Mt) 5.52 0.41 9.66 3.61 0.32 7.38 4.95 0.38 7.42 6.85 0.34 8.12 4.86 0.44 11.24

TRJ (Ours) 2.64 0.28 7.31 1.73 0.24 5.63 2.86 0.26 6.65 1.48 0.22 6.33 3.96 0.37 9.88

webpage.

Error Accumulation. While our method significantly reduces drift from the true

motion, some error still accumulates as the poses deviate more from the initial pose.

This is primarily due to the challenge of accurately predicting the initial Jacobians

using fP when the pose difference is large—for example, between a standing and

a bending human. Our temporal residue module fR is trained to predict small, lo-

cal corrections that help stitch together frame-wise predictions. However, it is not

designed to handle large, global pose transitions, and therefore cannot predict ar-

bitrarily large residues. As a result, error accumulates gradually over time. One

possible solution is to introduce intermediate keyframes as additional inputs to the

initial pose, thus replacing “stale” Jacobians with “fresh” ones closer to the pose be-

ing predicted. We do not explore this direction in the current work, as our method

already yields satisfactory results on long motion sequences such as dance and

walk.

Design variation. A seemingly possible variation of ours is to choose a resid-

ual Jacobian representation, but expressed in terms of the previous predicted frame.

While this seems attractive, we found it very slow to train as we have to backprop-

agate through time, and convergence is very slow (when using moderate computa-

tional resources). Hence, we found this approach to be infeasible with the current

memory requirements for attention (and transformer) modules.

Alternatives to Euler Solve. We experimented with higher-order ODE solvers,

namely Runge-Kutta and Runge-Kutta-Fehlberg. However, we noticed no signifi-

cant improvements, even with the noticeably increased training time. We use the

4.5. Conclusion 87

simpler Euler’s method for temporal integration for our tests.

Metrics & Perceptual Evaluation. The proposed metrics evaluate the accuracy of

predicted motion based on point trajectories (L2-V), joint transformations (L2-J),

and mesh consistency (L2-N). An additional useful metric is L2-Delta-V, which

measures pointwise velocity and captures temporal smoothness. This is particu-

larly relevant because independent per-frame predictions can introduce jitter, and

velocity-based or higher-order metrics can help reveal such artifacts. Our work

could also benefit from a perceptual user study to assess the plausibility of pre-

dicted motions. The same sequence of poses can be executed differently depending

on body shape, making motion inherently shape-dependent. Since this variation

is subjective, a user study focused on motion plausibility would provide valuable

insight into the perceptual quality of the results.

Importance of Initial Shape. In our method, we assume the initial pose to be

a natural rest position—typically close to an A-pose. This assumption aligns with

common practice, as such poses are widely used in artist-designed character meshes

and raw 3D human scans. However, since our model predicts local residuals in both

space and time, it can still generate motion even from different initial poses. That

said, the plausibility of the resulting motion becomes less predictable. For exam-

ple, the model may learn the motion of punching as lifting the arms from a rest

pose in preparation for a punch. If the initial pose instead has both arms extended

straight overhead, the predicted motion may no longer resemble punching, and it

becomes unclear how the model would proceed to lift the arms further or transition

plausibly. This makes the quality of motion less reliable when starting from atypical

poses.

4.5 Conclusion
We have presented Temporal Residual Jacobians, a spatially-coupled, neural ODE-

based, motion transfer framework conditioned on body type and target motion to

produce local Jacobians that are subsequently integrated across space and time to

deform the target geometry. The resultant motions are robust, realistic, and gener-

4.5. Conclusion 88

alize to different body types. We extensively tested our method on both synthetic

and real data captures, and enabled generic motion transfers to an extent which is

not possible using existing methods.

Our method has limitations. (i) We do not impose physics constraints, there-

fore, our animation can have self-intersections (see result videos on the webpage).

An interesting direction is to incorporate constraints for collision detection, e.g.,

via subspace-based contact handling [153]. We want to incorporate such an ap-

proach directly into the method, possibly via an attention mechanism, as motion

dynamics are affected by earlier collisions. (ii) Although our Temporal Residual

Jacobians, along with windowed attention modules, keep drifts low, error still accu-

mulates over long motion sequences. A possible solution is to couple our method

with a keyframe-based workflow [154]. (iii) Finally, our current formulation im-

plicitly establishes correspondences and uses them to infer temporal Jacobians for

surface triangles. Any spurious correspondences can be overridden by artists, pos-

sibly directly by “paintbrushing” correspondences or materials (e.g., indicating that

the ear of the bunny model should be floppy) or using semantic features learned

from untextured meshes [155, 156].

Chapter 5

Discussion

This thesis demonstrates that 3D generative models can indeed be effectively trained

on sparse datasets, achieving competitive generalization by leveraging known or

learned priors to impose additional constraints. We introduced three novel frame-

works: GLASS for pose generation, BLiSS for learning morphable models for body

shape generation, and Temporal Residual Jacobians (TRJ) for rig-free motion trans-

fer. Together, these contributions address key challenges in 3D modeling and ani-

mation, particularly in data-scarce scenarios.

GLASS introduced a deformation-aware latent space that enables the gener-

ation of diverse poses from minimal examples by embedding geometric priors.

BLiSS extended this approach by learning an artist-registration prior from a small

set of registered shapes and iteratively augmenting the shape space with registra-

tions from a large collection of raw scans. Finally, TRJ tackled dynamic motion

generation by embedding motion-consistency priors through a Neural ODE that

predicts corrective temporal residuals.

Despite their strengths, the proposed methods have inherent limitations.

GLASS requires input meshes with consistent triangulation, cannot accommodate

significant shape variation—thereby necessitating datasets with consistent identity

and pose, which are uncommon for many shape categories—and is computation-

ally intensive to scale from small to medium-sized datasets. Recent advances of-

fer promising directions to address these challenges. For example, state-of-the-

art correspondence frameworks such as [156] can be used to re-mesh shapes into

90

a common topology, mitigating the requirement for consistent triangulation. An-

other promising avenue involves defining data-driven energy functions—for in-

stance, capturing a notion of “chairness” from a collection of chairs and using this

as an energy prior to guide the generation of novel, chair-like shapes. While such

approaches are theoretically compatible with GLASS, they introduce new require-

ments: shape deformation across varying topologies and energy functionals that

remain differentiable in the latent space.

A key computational bottleneck in GLASS lies in the calculation of the ana-

lytical Hessian of the mesh-based energy function in latent space. This is currently

done by backpropagating through a dense, mesh-resolution-dependent multi-layer

perceptron (MLP). Higher-resolution meshes necessitate wider MLPs, and the size

of the Hessian grows quadratically with the number of vertices. To alleviate this

bottleneck, future work could explore data-driven, classification-based energy func-

tions, topology-agnostic deformation methods, and numerical approximations of

latent-space Hessians—each of which could help decouple performance from mesh

resolution and improve scalability.

BLiSS relies on accurate initial correspondences and registrations—typically

provided by artists—to initialize a shape space. While it can effectively augment

a sparse shape space into a medium-sized one, achieving downstream performance

comparable to established models such as SMPL [4] and GHUM [5], its primary

limitation lies in its dependence on a borrowed pose space supplemented with pose

correctives. One potential solution is to jointly learn both the pose and shape spaces

directly from sparse data.

BLiSS is designed to learn from a limited set of identity shapes in a canonical

pose, whereas joint learning of pose and shape spaces requires datasets in which

each body shape is observed in multiple poses. The availability of such data would

enable the integration of GLASS (for pose exploration) with BLiSS (for shape ex-

ploration), allowing the construction of a complete space from just a few examples.

However, datasets that provide even a sparse matrix of identity-pose combinations

are rare. Addressing this data scarcity is a central motivation behind the contribu-

91

tions of this thesis.

Temporal Residual Jacobians (TRJ) suffers from error accumulation over long

motion sequences, as predicted poses progressively drift from the starting pose. A

potential remedy is the intermittent renewal of Jacobians by introducing additional

keyframes as checkpoints, allowing TRJ to handle arbitrarily long sequences. How-

ever, this approach increases the burden on animation artists, who must manually

provide these keyframes.

Currently, TRJ learns a motion field specific to each motion category, limit-

ing its generalization to unseen motions. For example, transferring a novel motion

such as a yoga sequence would likely yield unpredictable or inaccurate results. This

limitation stems from the use of SMPL pose parameters as the direct input motion

representation, which lacks structure for interpolation or generalization across di-

verse motions.

A promising direction to address this is to learn a motion embedding, similar

to approaches like [148], that provides a continuous, interpolatable, and parameter-

ized motion space. Such a representation could serve as the input to TRJ, enabling

it to generalize to a broader range of motions, including those unseen during train-

ing. This would significantly extend TRJ’s applicability—allowing it to generate

plausible deformations for novel motions on previously unseen characters.

TRJ relies on manifold meshes, and while theoretically adaptable to discon-

nected meshes, this remains untested. Additionally, the ARAP energy used in

GLASS limits scalability to higher-resolution meshes, leading to geometric arti-

facts. Generating production-ready assets may ultimately require leveraging larger

datasets, such as Objaverse, to overcome these barriers.

Moreover, for all three works presented in this thesis, the reliance on mesh

representations presents another limitation, as extending these methods to alter-

native 3D representations like point clouds, voxels, radiance fields, or Gaussian

splats remains non-trivial but holds exciting potential. A more fundamental con-

straint arises from the sparse dataset paradigm itself. Each method proposed in this

thesis reaches a saturation point, beyond which generating novel, high-quality out-

92

puts becomes challenging. For instance, GLASS plateaus after generating approx-

imately 2,500 novel poses, and BLiSS similarly encounters a threshold of 1,000

body shapes. In both GLASS and BLiSS, saturation is detected using metrics that

signal reduced diversity in discovered shapes. Specifically, GLASS employs the

Maximal Marginal Relevance (MMR) metric as a filter to determine whether to in-

clude or discard newly generated shapes. Saturation is identified when this filter

admits only shapes with high similarity—measured as a cosine similarity greater

than 0.8—to those already in the set. In BLiSS, we use a one-standard-deviation

threshold from the minimum reconstruction error to filter shapes, and declare sat-

uration when fewer than 10 shapes fall within this error range. We observe that

saturation is reached more quickly when the initial set of shapes lacks diversity.

Conversely, a more diverse starting set enables the discovery of substantially larger

shape spaces, as both GLASS and BLiSS rely on small deformation steps from the

initial examples to explore new regions of the space.

Addressing the discussed challenges through advancements such as physics-

based constraints, artist-driven refinements, or hybrid approaches integrating

learned and procedural techniques remains a promising direction for future re-

search.

While developed within the context of sparse datasets, the core principle of

integrating prior constraints can also be applied to data-rich training paradigms.

Embedding domain knowledge in the form of constraints into models trained on

extensive datasets could further reduce artifacts and enhance 3D generation quality,

offering an exciting avenue for future exploration.

In conclusion, this thesis highlights the critical role of task-specific priors and

innovative algorithmic designs in advancing 3D generative modeling. By demon-

strating the power of prior-driven approaches, it paves the way for building more

efficient, versatile, and high-quality 3D generation systems—an essential step to-

ward unlocking the full creative potential of 3D content creation.

Appendix A

GLASS: Geometric Latent

Augmentation for Shape Spaces

A.1 Additional Generated Samples
Figures A.1, A.2, and A.3 show some example generated deformations starting from

sparse sets of Faust, Centaur, and Horse models, respectively.

A.2 Expression generation using COMA dataset
Despite facial expressions not being perfectly locally rigid, we show below that

GLASS generates plausible novel expressions on the COMA dataset in figures A.4

and A.5

Table A.1: Ablation study. Surface smoothness of extrapolated shapes. All results are
normalized such that Vanilla VAE is 1.0, and lower numbers are better.

Data Vanilla VAE +Interpolation +Interp. +Energy LIMP +ARAP SI [30] GLASS

Faust-3 1.0 0.74 0.79 0.87 1.18 0.69
Faust-5 1.0 0.64 0.6 0.63 1.07 0.59
Faust-7 1.0 0.66 0.66 0.64 0.94 0.63

Faust-10 1.0 0.65 0.6 0.62 0.93 0.6
Centaurs-3 1.0 1.13 1.03 1.11 1.21 0.79
Centaurs-4 1.0 0.88 0.88 0.9 1.09 0.76
Centaurs-6 1.0 0.7 0.69 0.79 1.07 0.69

Horses-3 1.0 1.1 1.06 1.1 1.22 0.75
Horses-4 1.0 0.87 0.82 0.8 1.09 0.71
Horses-8 1.0 0.62 0.62 0.61 1.0 0.59

A.3 Additional Interpolation Examples
Figures A.6, A.7 and A.8 show example interpolated shapes between end

poses (shown in gray), using the discovered latent space revealed by GLASS.

A.4. Network Architecture 94

Figure A.1: We show some of the samples generated by GLASS (gold), from only 10 Faust
poses (gray). Several poses of the limbs are unseen in the training set - crossed
arms, long leg strides, half-lowered arms.

A.4 Network Architecture
Figure A.9 shows the VAE architecture used by GLASS. The main pseudocode for

GLASS is provided in Chapter 2.

A.5 Dataset Images
We include images of the various input datasets we used to highlight the diversity

of pose variations in the input. Note that the datasets are all very sparse, consisting

A.5. Dataset Images 95

Figure A.2: We show some of the samples generated by GLASS (gold), from only 6 Centaur
poses (gray). We see novel poses like bent back legs and torso facing upwards.

of 3-10 models.

A.5. Dataset Images 96

Figure A.3: We show some of the samples generated by GLASS (gold), from only 8 Horse
poses (gray). We see novel poses like front legs raised beyond what’s seen in
the training set, upright torso and back legs stretching farther.

Figure A.4: We show facial expressions generated (gold) by training GLASS on 3 expres-
sions from the COMA dataset (gray)

A.5. Dataset Images 97

Figure A.5: We show facial expressions generated (gold) by training GLASS on 6 expres-
sions from the COMA dataset (gray)

Figure A.6: Interpolated shapes (gold) between 2 Centaurs Poses (gray) inside the latent
space generated using GLASS.

A.5. Dataset Images 98

Figure A.7: Interpolated shapes (gold) between 2 Horse Poses (gray) inside the latent space
generated using GLASS.

A.5. Dataset Images 99

Figure A.8: Interpolated shapes (gold) between 2 Faust Poses (gray) inside the latent space
generated using GLASS.

A.5. Dataset Images 100

Figure A.9: The VAE architecture used by GLASS.

A.5. Dataset Images 101

Figure A.10: The Faust-10 dataset with 10 poses. Please refer to Figure A.11 for the cor-
responding even sparser versions of the dataset used in our experiments.

A.5. Dataset Images 102

Figure A.11: Faust-3 (top left), Faust-5 (top right) and Faust-7 (bottom).

Figure A.12: Centaurs-6 (top), Centaurs-3 (bottom left), Centaurs-4 (bottom right).

Figure A.13: Horses-8 (top), Horses-3 (bottom left), Horses-4 (bottom right).

A.5. Dataset Images 103

Figure A.14: The keypoints of 5 different Dynamic Faust sequences used for training, for
Table 2.2 in Chapter 2

Appendix B

BLiSS: Bootstrapped Linear Shape

Space

Image SMPL SMPLX BLiSSImage SMPL SMPLX BLiSSImage SMPL SMPLX BLiSS

Image SMPL SMPLX BLiSSImage SMPL SMPLX BLiSSImage SMPL SMPLX BLiSS

Figure B.1: Here we use the trained SMPLify-X [3] model to estimate the shape from a
single image. For BLISS, we plugin our shape space as a drop-in replacement
for SMPL’s space, while using SMPL’s pose space.

B.1 Shape Estimation from Single Image
We additionally compare our shape space with SMPL’s by plugging them into an

optimization-based body reconstruction framework SMPLify-X [3]. Since BLISS

doesn’t handle pose, we use SMPL’s pose space. SMPLify-X then searches the

given space to fit the shape to the given image. We observe in Figure B.1, that

BLISS’s estimated shape is comparable with that of SMPL and SMPL-X, despite

having started from only 200 given registrations. Note that unlike SMPL-X, SMPL

B.2. Iterative improvements 105

(and hence BLISS) does not articulate hand poses.

B.2 Iterative improvements
Registrations in the initial rounds of our shape-space are often coarse, lacking de-

tails, as shown in the two pale colored faces in the middle in Figure 2 B.2. As

the space is more densely populated, later registration more closesly capture finer

details of the given scan.

Figure B.2: Iterative Shape Corrections: Lightly colored faces in the middle are our reg-
istrations in earlier iterations of the space, and the pink-colored face on the
right is our registration after five rounds of BLISS. As the rounds progress,
registrations in later rounds more accurately capture the scan (left, in Blue), as
observed by the broadening of the nose and jawline.

B.3 Hand Registration - MANO
We sample 20 hands from MANO to create an initial shape space. We then iter-

atively register scans from the MANO dataset using the pre-trained NJF without

assuming paired data. Since NJF is a topologically invariant mapping module, we

are able to train the network for full body registrations, and use the trained MLP to

register out-of-domain scans. Registrations are shown in Figure B.3.

Figure B.3: Registering Hand scans: We use our final hand-shape space to register hand
scans (blue); registrations in canonical pose (i.e., default) shown in pink.

B.4. Implementation Details 106

B.4 Implementation Details

B.4.1 Features for Neural Jacobian Field
At the core of NJF is a Multi-layer Perceptron (MLP) that processes the input fea-

tures on each triangle of the given mesh to produce a per-triangle Jacobian, which

is used in a differentiable Poisson solve to compute the deformed vertex positions.

We use NJF to deform our PCA projection Xo conditioned on the scan SX , similarly

to the shape morphing experiments proposed in the original paper [9]. In our tests,

we used the following features:

• Since SX is a raw scan, the PointNet encoding of its coordinates represents it.

We use both the global encoding of the scan and its per-point features from

PointNet. Since the scan and Xo are not in correspondence, we choose fea-

tures of those points that are closest to a point on Xo. We note that despite Xo

and SX having different poses, the nearest neighbor feature look-up provides

an indication to the MLP of the kind of shape transformation that is required.

• We associate with each triangle of Xo, the PointNet encoding of SX and SsX ’s

points as obtained above, and of Xo itself. Specifically for Xo as in the original

work, we encode each triangle’s centroids, normals and top 50 Wave Kernel

Signatures [99]. In addition, we also pass the Jacobians of Xo itself as we

observe that it significantly improves the mapping to target. Note that SX and

Xo are processed via different PointNets as their input features are different

We pass the above features to a 4-layer MLP, with each hidden layer being 128 wide

and activated by ReLU. The final Linear layer produces a 9-dimensional vector for

each triangle (as a Jacobian is a 3↗ 3 matrix). Both PointNets - one for Xo and

one for SX - and the MLP are trained jointly to produce the mapping from Xo to the

desired shape.

B.4.2 Summary of the Use of CAESAR data
We have registration information for 429 of all 4000 CAESAR scans. We use 100 of

them for training the initial PCA shape space and another 100 for NJF, withholding

B.5. Nearest Lookup from Others to GHUM 107

the rest 229 for evaluation purposes, i.e., |RPCA| = |RDEFORM| = 100, |RFULL
EVAL| = 229

or |RSMALL
EVAL | = 29. In each round of Algorithm 1, we sample random 100 among the

rest of ↘ 3.5k (=4000-429) unregistered shapes U , bring it into correspondence and

move it to RPCA when selected by our pruning.

B.5 Nearest Lookup from Others to GHUM
In Table 3.4 of Chapter 3, we report a v2p error of 2.63 cms on 229 scans, while

GHUM [5] report 1.91 cms (Chamfer distance) on the entire CAESAR [87] dataset.

This difference may arise from the difference in the evaluation set and the differ-

ent training sets. Further, we observe in Table 3.5 of Chapter 3, that the numbers

reported with respect to GHUM are higher compared to others. In Figure B.4,

we show samples from each of SMPL, STAR and BLISS and their corresponding

nearest sample by vertex-to-vertex L2 in GHUM’s shape space. Each space was

randomly sampled to generate 10000 shapes, and we perform pairwise L2 distance

across shapes in different spaces. We observe significant differences in body-shape

indicating that there are non-overlapping regions between GHUM and other shape

spaces.

B.5. Nearest Lookup from Others to GHUM 108

SMPL GHUM

STAR GHUM

BLiSS GHUM

Figure B.4: For a sample in each of SMPL, STAR and BLISS, we lookup the nearest shape
in GHUM’s space (green). We randomly sampled 10000 shapes in each space.

Bibliography

[1] Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and Matthias

Nießner. 4dcomplete: Non-rigid motion estimation beyond the observable

surface. 2021.

[2] Samarth Sinha, Roman Shapovalov, Jeremy Reizenstein, Ignacio Rocco, Na-

talia Neverova, Andrea Vedaldi, and David Novotny. Common pets in 3d:

Dynamic new-view synthesis of real-life deformable categories. CVPR,

2023.

[3] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart,

Ahmed A. A. Osman, Dimitrios Tzionas, and Michael J. Black. Expres-

sive body capture: 3D hands, face, and body from a single image. In CVPR,

pages 10975–10985, 2019.

[4] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and

Michael J. Black. SMPL: A skinned multi-person linear model. ACM Trans.

Graphics (Proc. SIGGRAPH Asia), 34(6), 2015.

[5] Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir, William T. Freeman,

Rahul Sukthankar, and Cristian Sminchisescu. GHUM & GHUML: Gener-

ative 3D human shape and articulated pose models. In CVPR, pages 6183–

6192, 2020.

[6] Yuanlu Xu, Song-Chun Zhu, and Tony Tung. DenseRaC: Joint 3D pose and

shape estimation by dense render-and-compare. In ICCV, October 2019.

Bibliography 110

[7] Ahmed A A Osman, Timo Bolkart, and Michael J. Black. STAR: A sparse

trained articulated human body regressor. In ECCV, pages 598–613, 2020.

[8] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duve-

naud. Neural ordinary differential equations. In Advances in Neural Infor-

mation Processing Systems, volume 31, 2018.

[9] Noam Aigerman, Kunal Gupta, Vladimir G Kim, Siddhartha Chaudhuri, Jun

Saito, and Thibault Groueix. Neural jacobian fields: Learning intrinsic map-

pings of arbitrary meshes. SIGGRAPH, 2022.

[10] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a sketching

interface for 3d freeform design. In Proceedings of the 26th Annual Con-

ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99,

page 409–416, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[11] Luke Olsen, Faramarz F. Samavati, Mario Costa Sousa, and Joaquim A.

Jorge. Technical section: Sketch-based modeling: A survey. Comput.

Graph., 33(1):85–103, February 2009.

[12] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Brafman, and Scott R.

Klemmer. Designing with interactive example galleries. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10,

page 2257–2266, New York, NY, USA, 2010. Association for Computing

Machinery.

[13] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hod-

gins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and

S. Shieber. Design galleries: a general approach to setting parameters for

computer graphics and animation. In Proceedings of the 24th Annual Con-

ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97,

page 389–400, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

Bibliography 111

[14] Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and

Vladlen Koltun. Probabilistic reasoning for assembly-based 3d modeling.

ACM Trans. Graph., 30(4), July 2011.

[15] R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul

Guerrero, Niloy J. Mitra, and Daniel Ritchie. Shapeassembly: learning to

generate programs for 3d shape structure synthesis. ACM Trans. Graph.,

39(6), November 2020.

[16] Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, and

Thomas Funkhouser. Attribit: content creation with semantic attributes. In

Proceedings of the 26th Annual ACM Symposium on User Interface Software

and Technology, UIST ’13, page 193–202, New York, NY, USA, 2013. As-

sociation for Computing Machinery.

[17] Yassir Saquil, Qun-Ce Xu, Yong-Liang Yang, and Peter Hall. Rank3dgan:

Semantic mesh generation using relative attributes. Proceedings of the AAAI

Conference on Artificial Intelligence, 34(04):5586–5594, Apr. 2020.

[18] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi,

Daniele Sirigatti, Vladislav Rosov, Angela Dai, and Matthias Nießner.

Meshgpt: Generating triangle meshes with decoder-only transformers. arXiv

preprint arXiv:2311.15475, 2023.

[19] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter W. Battaglia.

Polygen: An autoregressive generative model of 3d meshes. ICML, 2020.

[20] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin,

Daiqing Li, Or Litany, Zan Gojcic, and Sanja Fidler. Get3d: A generative

model of high quality 3d textured shapes learned from images. In Advances

In Neural Information Processing Systems, 2022.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, ! ukasz Kaiser, and Illia Polosukhin. Attention is all you

Bibliography 112

need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 30. Curran Associates, Inc., 2017.

[22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and

Björn Ommer. High-resolution image synthesis with latent diffusion models,

2021.

[23] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion:

Text-to-3d using 2d diffusion. arXiv, 2022.

[24] Fangzhou Hong, Jiaxiang Tang, Ziang Cao, Min Shi, Tong Wu, Zhaoxi Chen,

Shuai Yang, Tengfei Wang, Liang Pan, Dahua Lin, and Ziwei Liu. 3dtopia:

Large text-to-3d generation model with hybrid diffusion priors, 2024.

[25] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Za-

kharov, and Carl Vondrick. Zero-1-to-3: Zero-shot one image to 3d object,

2023.

[26] Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahendra Kariya, Yanir

Kleiman, Emilien Garreau, Oran Gafni, Natalia Neverova, Andrea Vedaldi,

Roman Shapovalov, and David Novotny. Meta 3d assetgen: Text-to-

mesh generation with high-quality geometry, texture, and pbr materials. In

A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and

C. Zhang, editors, Advances in Neural Information Processing Systems, vol-

ume 37, pages 9532–9564. Curran Associates, Inc., 2024.

[27] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli

VanderBilt, Ludwig Schmidt, Kiana Ehsanit, Aniruddha Kembhavi, and Ali

Farhadi. Objaverse: A universe of annotated 3d objects. In 2023 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages

13142–13153, 2023.

[28] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-

ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,

Bibliography 113

Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich 3d

model repository, 2015. cite arxiv:1512.03012.

[29] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart,

Ahmed A. A. Osman, Dimitrios Tzionas, and Michael J. Black. Expressive

body capture: 3d hands, face, and body from a single image. In Proceedings

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019.

[30] Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-possible shape

interpolation. In SIGGRAPH, 2000.

[31] Martin Kilian, Niloy J. Mitra, and Helmut Pottmann. Geometric modeling in

shape space. ACM Trans. Graph., 26(3), 2007.

[32] Binh Huy Le and Zhigang Deng. Robust and accurate skeletal rigging from

mesh sequences. ACM Trans. Graph., 33(4), July 2014.

[33] Péter Borosán, Ming Jin, Doug DeCarlo, Yotam Gingold, and Andrew

Nealen. Rigmesh: automatic rigging for part-based shape modeling and de-

formation. ACM Trans. Graph., 31(6), November 2012.

[34] Andrew Feng, Dan Casas, and Ari Shapiro. Avatar reshaping and automatic

rigging using a deformable model. In Proceedings of the 8th ACM SIG-

GRAPH Conference on Motion in Games, MIG ’15, page 57–64, New York,

NY, USA, 2015. Association for Computing Machinery.

[35] Luca Cosmo, Antonio Norelli, Oshri Halimi, Ron Kimmel, and Emanuele

Rodolà. LIMP: Learning latent shape representations with metric preserva-

tion priors. ECCV, 2020.

[36] Qixing Huang, Xiangru Huang, Bo Sun, Zaiwei Zhang, Junfeng Jiang, and

Chandrajit Bajaj. ARAPReg: An as-rigid-as possible regularization loss for

learning deformable shape generators. CoRR, abs/2108.09432, 2021.

Bibliography 114

[37] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and

Mathieu Aubry. 3D-CODED: 3D correspondences by deep deformation.

ECCV, 2018.

[38] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed

triangular meshes. In SIGGRAPH, 2005.

[39] J. P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhi-

gang Deng. Practice and theory of blendshape facial models. Eurographics

State of the Art Reports, 2014.

[40] Alec Jacobson, Zhigang Deng, Ladislav Kavan, and J. P. Lewis. Skinning:

Real-time shape deformation. In SIGGRAPH Courses, 2014.

[41] Guodong Rong, Yan Cao, and Xiaohu Guo. Spectral mesh deformation. The

Visual Computer, 24, 2008.

[42] Miroslav Purkrabek and Jiri Matas. Improving 2d human pose estimation

in rare camera views with synthetic data. In 2024 IEEE 18th International

Conference on Automatic Face and Gesture Recognition (FG). IEEE, May

2024.

[43] Frédéric Hélein and John C. Wood. Handbook of Global Analysis, chapter

Harmonic Maps. 2008.

[44] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérôme Maillot. Least

squares conformal maps for automatic texture atlas generation. In SIG-

GRAPH, 2002.

[45] Mario Botsch and Olga Sorkine. On linear variational surface deformation

methods. TVCG, 14(1), 2008.

[46] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In

SGP, 2007.

Bibliography 115

[47] Lin Gao, Yu-Kun Lai, Jie Yang, Ling-Xiao Zhang, Shihong Xia, and Leif

Kobbelt. Sparse data driven mesh deformation. TVCG, 27(3), 2021.

[48] Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. Bounded bi-

harmonic weights for real-time deformation. ACM Trans. Graph., 30(4),

2011.

[49] Hamid Laga. A survey on non-rigid 3D shape analysis. CoRR,

abs/1812.10111, 2018.

[50] Yu-Jie Yuan, Yu-Kun Lai, Tong Wu, Lin Gao, and Ligang Liu. A revisit of

shape editing techniques: from the geometric to the neural viewpoint. CoRR,

abs/2103.01694, 2021.

[51] Qi-Xing Huang, Martin Wicke, Bart Adams, and Leonidas Guibas. Shape de-

composition using modal analysis. Computer Graphics Forum, 28(2), 2009.

[52] Christoph Von-Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus

Hildebrandt. Real-time nonlinear shape interpolation. ACM Trans. Graph.,

34(3), 2015.

[53] Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu, and Hao Zhang.

Learning generative models of 3D structures. Comput. Graph. For. (Euro-

graphics STAR), 2020.

[54] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3D

faces. In SIGGRAPH, 1999.

[55] Brett Allen, Brian Curless, and Zoran Popović. The space of human body

shapes: Reconstruction and parameterization from range scans. In SIG-

GRAPH, 2003.

[56] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun,

Jim Rodgers, and James Davis. SCAPE: Shape completion and animation of

people. In SIGGRAPH, 2005.

Bibliography 116

[57] Mehmet Ersin Yumer and Levent Burak Kara. Co-constrained handles for

deformation in shape collections. ACM Trans. Graph., 33(6), 2014.

[58] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J Black. Gen-

erating 3D faces using convolutional mesh autoencoders. In ECCV, 2018.

[59] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Variational autoen-

coders for deforming 3D mesh models. In CVPR, 2018.

[60] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and

Hao Zhang. SDM-NET: Deep generative network for structured deformable

mesh. ACM Trans. Graph., 38(6), 2019.

[61] Matheus Gadelha, Giorgio Gori, Duygu Ceylan, Radomir Měch, Nathan

Carr, Tamy Boubekeur, Rui Wang, and Subhransu Maji. Learning genera-

tive models of shape handles. In CVPR, 2020.

[62] Yifan Wang, Noam Aigerman, Vladimir G. Kim, Siddhartha Chaudhuri, and

Olga Sorkine-Hornung. Neural cages for detail-preserving 3D deformations.

In CVPR, 2020.

[63] Qingyang Tan, Zherong Pan, Lin Gao, and Dinesh Manocha. Realtime simu-

lation of thin-shell deformable materials using CNN-based mesh embedding.

IEEE Robotics and Automation Letters, 5(2), 2020.

[64] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data aug-

mentation for deep learning. Journal of Big Data, 6(1), 2019.

[65] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue

Wang, and Huan Xu. Time series data augmentation for deep learning: A

survey. CoRR, abs/2002.12478, 2021.

[66] Amit Chaudhary. A visual survey of data augmentation

in NLP, 2020. https://amitness.com/2020/05/

data-augmentation-for-nlp.

https://amitness.com/2020/05/data-augmentation-for-nlp
https://amitness.com/2020/05/data-augmentation-for-nlp

Bibliography 117

[67] Babak Shahbaba, Luis Martinez Lomeli, Tian Chen, and Shiwei Lan. Deep

Markov Chain Monte Carlo. CoRR, abs/1910.05692, 2019.

[68] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. In ICLR, 2015.

[69] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri,

Preethi Jyothi, and Sunita Sarawagi. Generalizing across domains via cross-

gradient training. In ICLR, 2018.

[70] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In

ICLR, 2014.

[71] Matheus Gadelha, Rui Wang, and Subhransu Maji. Multiresolution tree net-

works for 3D point cloud processing. CoRR, abs/1807.03520, 2018.

[72] Jaime Carbonell and Jade Goldstein. The use of MMR, diversity-based

reranking for reordering documents and producing summaries. In SIGIR,

1998.

[73] Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black.

FAUST: Dataset and evaluation for 3D mesh registration. In CVPR, 2014.

[74] Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Numerical

geometry of non-rigid shapes. Springer Science & Business Media, 2008.

[75] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J. Black.

Dynamic FAUST: Registering human bodies in motion. In CVPR, 2017.

[76] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3D

faces. In Proceedings of the 26th annual conference on Computer graphics

and interactive techniques, pages 187–194, 1999.

[77] Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands:

Modeling and capturing hands and bodies together. ACM TOG, 36(6):245:1–

245:17, 2017.

Bibliography 118

[78] Pablo Garrido, Levi Valgaerts, Ole Rehmsen, Thorsten Thormahlen, Patrick

Perez, and Christian Theobalt. Automatic face reenactment. In CVPR, pages

4217–4224, 2014.

[79] Kevin Dale, Kalyan Sunkavalli, Micah K. Johnson, Daniel Vlasic, Woj-

ciech Matusik, and Hanspeter Pfister. Video face replacement. ACM TOG,

30(6):1–10, dec 2011.

[80] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian Dziadzio,

Thomas J. Cashman, and Jamie Shotton. Fake it till you make it: Face

analysis in the wild using synthetic data alone. In ICCV, pages 3681–3691,

October 2021.

[81] Justus Thies, Michael Zollhöfer, Matthias Nießner, Levi Valgaerts, Marc

Stamminger, and Christian Theobalt. Real-time expression transfer for fa-

cial reenactment. ACM TOG, 34(6):183–1, 2015.

[82] Liwen Hu, Shunsuke Saito, Lingyu Wei, Koki Nagano, Jaewoo Seo, Jens

Fursund, Iman Sadeghi, Carrie Sun, Yen-Chun Chen, and Hao Li. Avatar

digitization from a single image for real-time rendering. ACM TOG, 36(6):1–

14, 2017.

[83] Sanjeev Muralikrishnan, Siddhartha Chaudhuri, Noam Aigerman, Vladimir

Kim, Matthew Fisher, and Niloy Mitra. Glass: Geometric latent augmenta-

tion for shape spaces. In CVPR, pages 18552–18561, June 2022.

[84] Federica Bogo, Michael J. Black, Matthew Loper, and Javier Romero. De-

tailed full-body reconstructions of moving people from monocular RGB-D

sequences. In ICCV, pages 2300–2308, December 2015.

[85] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson,

Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhe-

mann, David Kim, Jonathan Taylor, et al. Fusion4D: Real-time performance

capture of challenging scenes. ACM TOG, 35(4):1–13, 2016.

Bibliography 119

[86] Mingsong Dou, Jonathan Taylor, Henry Fuchs, Andrew Fitzgibbon, and

Shahram Izadi. 3D scanning deformable objects with a single rgbd sensor.

In CVPR, pages 493–501, 2015.

[87] Kathleen M. Robinette, Sherri Blackwell, Hein Daanen, Mark Boehmer,

Scott Fleming, Tina Brill, David Hoeferlin, and Dennis Burnsides. Civil-

ian American and European Surface Anthropometry Resource (CAESAR)

final report. Technical Report AFRL-HE-WP-TR-2002-0169, US Air Force

Research Laboratory, 2002.

[88] Ben Bellekens, Vincent Spruyt, Rafael Berkvens, and Maarten Weyn. A

survey of rigid 3D pointcloud registration algorithms. In AMBIENT 2014:

the Fourth International Conference on Ambient Computing, Applications,

Services and Technologies, August 24-28, 2014, Rome, Italy, pages 8–13,

2014.

[89] Bailin Deng, Yuxin Yao, Roberto M Dyke, and Juyong Zhang. A survey

of non-rigid 3D registration. In Comput. Graph. Forum, volume 41, pages

559–589. Wiley Online Library, 2022.

[90] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and

Mathieu Aubry. 3D-CODED : 3D correspondences by deep deformation. In

ECCV, 2018.

[91] D. Hirshberg, M. Loper, E. Rachlin, and M.J. Black. Coregistration: Simul-

taneous alignment and modeling of articulated 3D shape. In ECCV, pages

242–255, October 2012.

[92] Chun-Hao Huang, Cedric Cagniart, Edmond Boyer, and Slobodan Ilic. A

bayesian approach to multi-view 4d modeling. IJCV, 116(2):115–135, 2016.

[93] Hao Li, Robert W Sumner, and Mark Pauly. Global correspondence opti-

mization for non-rigid registration of depth scans. In Comput. Graph. Forum,

volume 27, pages 1421–1430. Wiley Online Library, 2008.

Bibliography 120

[94] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J.

Black. Dyna: A model of dynamic human shape in motion. ACM TOG,

34(4):120:1–120:14, August 2015.

[95] Yang Chen and Gérard Medioni. Object modelling by registration of multiple

range images. Image and vision computing, 10(3):145–155, 1992.

[96] Paul J Besl and Neil D McKay. A method for registration of 3-d shapes.

IEEE TPAMI, 14(2):239–256, 1992.

[97] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian

Rössl, and H-P Seidel. Laplacian surface editing. In Proceedings of the

2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing,

pages 175–184, 2004.

[98] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In

Symposium on Geometry processing, volume 4, pages 109–116, 2007.

[99] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel

signature: A quantum mechanical approach to shape analysis. In 2011 IEEE

international conference on computer vision workshops (ICCV workshops),

pages 1626–1633. IEEE, 2011.

[100] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep

learning on point sets for 3D classification and segmentation. In CVPR, pages

652–660, 2017.

[101] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably

informative multi-scale signature based on heat diffusion. In Comput. Graph.

Forum, volume 28, pages 1383–1392. Wiley Online Library, 2009.

[102] Samuele Salti, Federico Tombari, and Luigi Di Stefano. Shot: Unique signa-

tures of histograms for surface and texture description. Computer Vision and

Image Understanding, 125:251–264, 2014.

Bibliography 121

[103] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein.

Learning shape correspondence with anisotropic convolutional neural net-

works. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,

editors, NeurIPS, volume 29. Curran Associates, Inc., 2016.

[104] Chun-Hao Paul Huang, Benjamin Allain, Edmond Boyer, Jean-Sébastien

Franco, Federico Tombari, Nassir Navab, and Slobodan Ilic. Tracking-by-

detection of 3D human shapes: from surfaces to volumes. IEEE TPAMI,

40(8):1994–2008, 2017.

[105] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan

Svoboda, and Michael M Bronstein. Geometric deep learning on graphs and

manifolds using mixture model cnns. In CVPR, pages 5115–5124, 2017.

[106] Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li.

Dense human body correspondences using convolutional networks. In

CVPR, pages 1544–1553, 2016.

[107] Omri Azencot, Anastasia Dubrovina, and Leonidas Guibas. Consistent shape

matching via coupled optimization. In Comput. Graph. Forum, volume 38,

pages 13–25. Wiley Online Library, 2019.

[108] Qifeng Chen and Vladlen Koltun. Robust nonrigid registration by convex

optimization. In ICCV, pages 2039–2047, 2015.

[109] Jing Ren, Simone Melzi, Peter Wonka, and Maks Ovsjanikov. Discrete op-

timization for shape matching. In Computer Graphics Forum, volume 40,

pages 81–96. Wiley Online Library, 2021.

[110] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models-

their training and application. Computer Vision and Image Understanding,

61(1):38–59, 1995.

[111] Bernhard Egger, William AP Smith, Ayush Tewari, Stefanie Wuhrer, Michael

Zollhoefer, Thabo Beeler, Florian Bernard, Timo Bolkart, Adam Ko-

Bibliography 122

rtylewski, Sami Romdhani, et al. 3D morphable face models—past, present,

and future. ACM TOG, 39(5):1–38, 2020.

[112] Yating Tian, Hongwen Zhang, Yebin Liu, and Limin Wang. Recover-

ing 3D human mesh from monocular images: A survey. arXiv preprint

arXiv:2203.01923, 2022.

[113] Hanbyul Joo, Tomas Simon, and Yaser Sheikh. Total capture: A 3D deforma-

tion model for tracking faces, hands, and bodies. In CVPR, pages 8320–8329,

2018.

[114] Ahmed A A Osman, Timo Bolkart, Dimitrios Tzionas, and Michael J. Black.

SUPR: A sparse unified part-based human body model. In ECCV, 2022.

[115] SizeUSA dataset. https://www.tc2.com/size-usa.html, 2017.

[116] Boyang Deng, JP Lewis, Timothy Jeruzalski, Gerard Pons-Moll, Geoffrey

Hinton, Mohammad Norouzi, and Andrea Tagliasacchi. NASA: Neural ar-

ticulated shape approximation. In ECCV, August 2020.

[117] Marko Mihajlovic, Shunsuke Saito, Aayush Bansal, Michael Zollhoefer, and

Siyu Tang. COAP: Compositional articulated occupancy of people. In CVPR,

pages 13191–13200, 2022.

[118] Marko Mihajlovic, Yan Zhang, Michael J Black, and Siyu Tang. LEAP:

Learning articulated occupancy of people. In CVPR, June 2021.

[119] Garvita Tiwari, Nikolaos Sarafianos, Tony Tung, and Gerard Pons-Moll.

Neural-GIF: Neural generalized implicit functions for animating people in

clothing. In ICCV, October 2021.

[120] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Nu-

mair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, and Sri-

nath Sridhar. Neural fields in visual computing and beyond. Comput. Graph.

Forum, 2022.

Bibliography 123

[121] Saeed Ghorbani, Kimia Mahdaviani, Anne Thaler, Konrad Kording, Dou-

glas James Cook, Gunnar Blohm, and Nikolaus F Troje. Movi: A large

multi-purpose human motion and video dataset. Plos one, 16(6):e0253157,

2021.

[122] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll,

and Michael J. Black. AMASS: Archive of motion capture as surface shapes.

In ICCV, pages 5442–5451, October 2019.

[123] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

Pointnet: Deep learning on point sets for 3d classification and segmentation.

CoRR, abs/1612.00593, 2016.

[124] Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and Javier Romero.

Learning a model of facial shape and expression from 4D scans. ACM Trans-

actions on Graphics, (Proc. SIGGRAPH Asia), 36(6):194:1–194:17, 2017.

[125] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J. Black. Gen-

erating 3D faces using convolutional mesh autoencoders. In European Con-

ference on Computer Vision (ECCV), pages 725–741, 2018.

[126] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, and Karan Singh. Predicting

animation skeletons for 3d articulated models via volumetric nets. In 2019

International Conference on 3D Vision (3DV), 2019.

[127] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan

Singh. Rignet: Neural rigging for articulated characters. ACM Trans. on

Graphics, 39, 2020.

[128] Wang Yifan, Noam Aigerman, Vladimir G. Kim, Siddhartha Chaudhuri, and

Olga Sorkine-Hornung. Neural cages for detail-preserving 3d deformations.

In CVPR, 2020.

Bibliography 124

[129] Igor Santesteban, Elena Garces, Miguel A. Otaduy, and Dan Casas. Soft-

SMPL: Data-driven Modeling of Nonlinear Soft-tissue Dynamics for Para-

metric Humans. Computer Graphics Forum (Proc. Eurographics), 2020.

[130] Zhouyingcheng Liao, Jimei Yang, Jun Saito, Gerard Pons-Moll, and Yang

Zhou. Skeleton-free pose transfer for stylized 3d characters. In European

Conference on Computer Vision (ECCV). Springer, October 2022.

[131] Jiashun Wang, Xueting Li, Sifei Liu, Shalini De Mello, Orazio Gallo, Xiao-

long Wang, and Jan Kautz. Zero-shot pose transfer for unrigged stylized 3d

characters, 2023.

[132] Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and Matthias

Nießner. 4dcomplete: Non-rigid motion estimation beyond the observable

surface. IEEE International Conference on Computer Vision (ICCV), 2021.

[133] Ilya Baran and Jovan Popović. Automatic rigging and animation of 3D char-

acters. ACM Transactions on graphics (TOG), 26(3):72–es, 2007.

[134] Mathieu Marsot, Rim Rekik, Stefanie Wuhrer, Jean-Sébastien Franco, and

Anne-Hélène Olivier. Correspondence-free online human motion retargeting,

2023.

[135] Peizhuo Li, Kfir Aberman, Rana Hanocka, Libin Liu, Olga Sorkine-

Hornung, and Baoquan Chen. Learning skeletal articulations with neural

blend shapes. ACM Transactions on Graphics (TOG), 40(4):1–15, 2021.

[136] Keyang Zhou, Bharat Lal Bhatnagar, and Gerard Pons-Moll. Unsupervised

shape and pose disentanglement for 3d meshes. In Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-

ceedings, Part XXII 16, pages 341–357. Springer, 2020.

[137] John E Chadwick, David R Haumann, and Richard E Parent. Layered con-

struction for deformable animated characters. ACM Siggraph Computer

Graphics, 23(3):243–252, 1989.

Bibliography 125

[138] Ye Fan, Joshua Litven, and Dinesh K Pai. Active volumetric musculoskeletal

systems. ACM Transactions on Graphics (TOG), 33(4):1–9, 2014.

[139] Rinat Abdrashitov, Seungbae Bang, David Levin, Karan Singh, and Alec Ja-

cobson. Interactive modelling of volumetric musculoskeletal anatomy. ACM

Transactions on Graphics, 40(4), 2021.

[140] V. Modi, L. Fulton, A. Jacobson, S. Sueda, and D.I.W. Levin. Emu: Efficient

muscle simulation in deformation space. Computer Graphics Forum, Dec

2020.

[141] Sang Il Park and Jessica K Hodgins. Data-driven modeling of skin and mus-

cle deformation. In ACM SIGGRAPH 2008 papers, pages 1–6. 2008.

[142] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J Black.

Dyna: A model of dynamic human shape in motion. ACM Transactions on

Graphics (TOG), 34(4):1–14, 2015.

[143] Jiayi Eris Zhang, Seungbae Bang, David I. W. Levin, and Alec Jacobson.

Complementary dynamics. In SIGGRAPH Asia, 2020.

[144] Otman Benchekroun, Jiayi Eris Zhang, Siddhartha Chaudhuri, Eitan Grin-

spun, Yi Zhou, and Alec Jacobson. Fast complementary dynamics via skin-

ning eigenmodes. arXiv preprint arXiv:2303.11886, 2023.

[145] Mianlun Zheng, Yi Zhou, Duygu Ceylan, and Jernej Barbic. A deep emulator

for secondary motion of 3d characters. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 5932–5940,

2021.

[146] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik. Recurrent network models

for human dynamics. In ICCV, 2015.

[147] Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal.

Robust motion in-betweening. 39(4), 2020.

Bibliography 126

[148] Chengan He, Jun Saito, James Zachary, Holly Rushmeier, and Yi Zhou.

Nemf: Neural motion fields for kinematic animation. In NeurIPS, 2022.

[149] Yi-Ling Qiao, Lin Gao, Yu-Kun Lai, and Shihong Xia. Learning bidirectional

lstm networks for synthesizing 3d mesh animation sequences, 2018.

[150] Robert W. Sumner and Jovan Popović. Deformation transfer for triangle

meshes. ACM Trans. Graph., 23(3):399–405, 2004.

[151] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo,

and Heung-Yeung Shum. Mesh editing with poisson-based gradient field

manipulation. ACM Trans. Graph., 23(3):644–651, aug 2004.

[152] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large steps in inverse

rendering of geometry. ACM Transactions on Graphics (Proceedings of SIG-

GRAPH Asia), 40(6), December 2021.

[153] Cristian Romero, Dan Casas, Jesús Pérez, and Miguel Otaduy. Learning con-

tact corrections for handle-based subspace dynamics. ACM Trans. Graph.,

40(4), jul 2021.

[154] Yangtuanfeng Wang, Tianjia Shao, Kai Fu, and Niloy Mitra. Learning an

intrinsic garment space for interactive authoring of garment animation. ACM

Trans. Graph., 38(6), 2019.

[155] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-

Or. Texture: Text-guided texturing of 3d shapes. In ACM SIGGRAPH 2023

Conference Proceedings, 2023.

[156] Niladri Shekhar Dutt, Sanjeev Muralikrishnan, and Niloy J. Mitra. Diffusion

3d features (diff3f): Decorating untextured shapes with distilled semantic

features, 2023.

	Introduction
	GLASS: Geometric Latent Augmentation for Shape Spaces
	Introduction
	GLASS: Related Work
	Geometric shape deformation.
	Learned deformation models.
	Unsupervised data augmentation.

	Approach
	Problem Setup
	Deformation-Aware VAE
	Augmenting via Latent Space Exploration

	Implementation Choices
	Evaluation
	Conclusion

	BLiSS: Bootstrapped Linear Shape Space
	Introduction
	BLiSS: Related Work
	Non-rigid registration
	3D Morphable Models for Humans

	Approach
	Overview
	PCA-based Shape Space
	Neural Deformation with NJF
	Closing the Loop

	Evaluation
	Dataset and Protocols
	Results and Discussions

	Conclusions

	Temporal Residual Jacobians for Rig-free Motion Transfer
	Introduction
	TRJ: Related Work
	Parametric Shape Deformation.
	Dynamic Motion.
	Discrete Time Motion Models.

	Approach
	Overview
	Preliminaries
	Motion Transfer with Space-time Integration

	Evaluation
	Conclusion

	Discussion
	Appendices
	GLASS: Geometric Latent Augmentation for Shape Spaces
	Additional Generated Samples
	Expression generation using COMA dataset
	Additional Interpolation Examples
	Network Architecture
	Dataset Images

	BLiSS: Bootstrapped Linear Shape Space
	Shape Estimation from Single Image
	Iterative improvements
	Hand Registration - MANO
	Implementation Details
	Features for Neural Jacobian Field
	Summary of the Use of CAESAR data

	Nearest Lookup from Others to GHUM

	Bibliography

