

CreativeAl Deep Learning for Graphics

Niloy Mitra

UCL

lasonas Kokkinos

UCL

Paul Guerrero

UCL

Nils Thuerey

TUM

Tobias Ritschel

UCL

http://geometry.cs.ucl.ac.uk/creativeai/

Niloy Mitra

Niloy Mitra

lasonas Kokkinos

lasonas Kokkinos

Paul Guerrero

lasonas Kokkinos

Paul Guerrero

Nils Thuerey

lasonas Kokkinos

Paul Guerrero

Nils Thuerey

Tobias Ritschel

lasonas Kokkinos

Paul Guerrero

Nils Thuerey

Tobias Ritschel

Timetable

			Niloy	Paul	Nils
	Introduction	2:15 pm	X	X	X
Basics	Machine Learning Basics	~ 2:25 pm	X		
+ Ba	Neural Network Basics	~ 2:55 pm			X
Ory	Feature Visualization	~ 3:25 pm		X	
Theor	Alternatives to Direct Supervision	~ 3:35 pm		X	
		15 min. br	eak —		
Art	Image Domains	4:15 pm		X	
f the	3D Domains	~ 4:45 pm	X		
te of	Motion and Physics	~ 5:15 pm			X
State	Discussion	~ 5:45 pm	X	X	X

Code Examples

```
PCA/SVD basis
Linear Regression
Polynomial Regression
Stochastic Gradient Descent vs. Gradient Descent
Multi-layer Perceptron
Edge Filter 'Network'
Convolutional Network
Filter Visualization
Weight Initialization Strategies
Colorization Network
Autoencoder
Variational Autoencoder
Generative Adversarial Network
```


Provide an overview of the popular ML algorithms used in CG

- Provide an overview of the popular ML algorithms used in CG
- Provide a quick overview of theory and CG applications
 - Many extra slides in the course notes + example code

- Provide an overview of the popular ML algorithms used in CG
- Provide a quick overview of theory and CG applications
 - Many extra slides in the course notes + example code
- Progress in the last 3-5 years has been dramatic
 - We have organized them to help newcomers
 - Discuss the main challenges and opportunities specific to CG

Our aim is to convey what we found to be relevant so far

You are invited/encouraged to give feedback

- Our aim is to convey what we found to be relevant so far
- You are invited/encouraged to give feedback
 - Speakup. Please send us your criticism/comments/suggestions

- Our aim is to convey what we found to be relevant so far
- You are invited/encouraged to give feedback
 - Speakup. Please send us your criticism/comments/suggestions
 - Ask questions, please!
- Thanks to many people who helped so far with slides/comments

• Images (e.g., pixel grid)

Volume (e.g., voxel grid)

• Images (e.g., pixel grid)

Volume (e.g., voxel grid)

Meshes (e.g., vertices/edges/faces)

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)
- Meshes (e.g., vertices/edges/faces)
- Animation (e.g., skeletal positions over time; cloth dynamics over time)

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)
- Meshes (e.g., vertices/edges/faces)
- Animation (e.g., skeletal positions over time; cloth dynamics over time)
- Pointclouds (e.g., point arrays)

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)
- Meshes (e.g., vertices/edges/faces)
- Animation (e.g., skeletal positions over time; cloth dynamics over time)
- Pointclouds (e.g., point arrays)
- Physics simulations (e.g., fluid flow over space/time, object-body interaction)

Problems in Computer Graphics

• Feature detection (image features, point features)

$$\mathbb{R}^{m \times m} \to \mathbb{Z}$$

• Denoising, Smoothing, etc.

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

• Embedding, Distance computation

$$\mathbb{R}^{m \times m, m \times m} \to \mathbb{R}^d$$

Rendering

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

Animation

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

Physical simulation

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

Generative models

$$\mathbb{R}^d \to \mathbb{R}^{m \times m}$$

Problems in Computer Graphics

• Feature detection (image features, point features)

$$\mathbb{R}^{m \times m} \to \mathbb{Z}$$

• Denoising, Smoothing, etc.

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

analysis

• Embedding, Distance computation

$$\mathbb{R}^{m \times m, m \times m} \to \mathbb{R}^d$$

Rendering

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

Animation

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

Physical simulation

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

Generative models

$$\mathbb{R}^d \to \mathbb{R}^{m \times m}$$

Problems in Computer Graphics

• Feature detection (image features, point features)

$$\mathbb{R}^{m \times m} \to \mathbb{Z}$$

• Denoising, Smoothing, etc.

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

analysis

• Embedding, Distance computation

$$\mathbb{R}^{m \times m, m \times m} \to \mathbb{R}^d$$

Rendering

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

Animation

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

Physical simulation

$$\mathbb{R}^{3m \times t} \longrightarrow \mathbb{R}^{3m}$$

Generative models

$$\mathbb{R}^d \to \mathbb{R}^{m \times m}$$

synthesis

$$f_{\theta}: \mathbb{X} \longrightarrow \mathbb{Y}$$

 θ : function parameters, \mathbb{X} : source domain \mathbb{Y} : target domain these are learned

$$f_{ heta}: \mathbb{X} \longrightarrow \mathbb{Y}$$

 θ : function parameters, \mathbb{X} : source domain \mathbb{Y} : target domain these are learned

Examples:

$$f_{\theta}: \mathbb{X} \longrightarrow \mathbb{Y}$$

 θ : function parameters, \mathbb{X} : source domain \mathbb{Y} : target domain these are learned

Examples:

Image Classification: $f_{\theta}: \mathbb{R}^{w \times h \times c} \longrightarrow \{0, 1, \dots, k-1\}$ $w \times h \times c : \text{image dimensions} \quad k: \text{class count}$

$$f_{\theta}: \mathbb{X} \longrightarrow \mathbb{Y}$$

 θ : function parameters, \mathbb{X} : source domain \mathbb{Y} : target domain these are learned

Examples:

Image Classification: $f_{\theta}: \mathbb{R}^{w \times h \times c} \longrightarrow \{0, 1, \dots, k-1\}$

 $w \times h \times c$: image dimensions k: class count

Image Synthesis: $f_{\theta}: \mathbb{R}^n \longrightarrow \mathbb{R}^{w \times h \times c}$

n : latent variable count $w \times h \times c$: image dimensions

$$f_{\theta}: \mathbb{R}^n \longrightarrow \{0, 1\}$$

$$y^i = \begin{cases} 1 & (\bullet) \\ 0 & (\bullet) \end{cases}$$

$$f_{\theta}: \mathbb{R}^n \longrightarrow \{0, 1\}$$

$$y^i = \begin{cases} 1 & (\bullet) \\ 0 & (\bullet) \end{cases}$$

$$f_{\theta}: \mathbb{R}^n \longrightarrow \{0, 1\}$$

$$f_{\theta}(x) = \begin{cases} 1 & \text{if } wx + b \ge 0 \\ 0 & \text{if } wx + b < 0 \end{cases}$$

$$y^i = \begin{cases} 1 & (\bullet) \\ 0 & (\bullet) \end{cases}$$

$$f_{\theta}: \mathbb{R}^n \longrightarrow \{0, 1\}$$

$$f_{\theta}(x) = \begin{cases} 1 & \text{if } wx + b \ge 0 \\ 0 & \text{if } wx + b < 0 \end{cases}$$

$$\theta = \{w, b\}$$

$$y^i = \begin{cases} 1 & (\bullet) \\ 0 & (\bullet) \end{cases}$$

Data-driven Algorithms (Supervised)

Labelled data (supervision data)

Data-driven Algorithms (Supervised)

Labelled data (supervision data)

ML algorithm

Trained model

Implementation Practice: Training: 70%; Validation: 15%; Test 15%

Implementation Practice: Training: 70%; Validation: 15%; Test 15%

Rise of Learning

• 1958: Perceptron

• 1974: Backpropagation

• 1981: Hubel & Wiesel wins Nobel prize for 'visual system'

• 1990s: SVM era

• 1998: CNN used for handwriting analysis

2012: AlexNet wins ImageNet

Rise of Machine Learning (in Graphics)

machine learning

neural network

1. Image Processing (image translation tasks)

- 1. Image Processing (image translation tasks)
- 2. Many sources of input data model building (e.g., images, scanners, motion capture)

- 1. Image Processing (image translation tasks)
- 2. Many sources of input data model building (e.g., images, scanners, motion capture)
- 3. Many sources of synthetic data can serve as supervision data (e.g., rendering, animation)

- 1. Image Processing (image translation tasks)
- 2. Many sources of input data model building (e.g., images, scanners, motion capture)
- 3. Many sources of synthetic data can serve as supervision data (e.g., rendering, animation)
- 4. Many problems in generative models

1. Representation: How is the data organised and structured?

- 1. Representation: How is the data organised and structured?
- 2. Training data: Is it synthetic or real, or mixed?

- 1. Representation: How is the data organised and structured?
- 2. Training data: Is it synthetic or real, or mixed?
- 3. User control: End-to-end or in small steps?

- 1. Representation: How is the data organised and structured?
- 2. Training data: Is it synthetic or real, or mixed?
- 3. User control: End-to-end or in small steps?
- 4. Loss functions: Hand-crafted or learned from data?

End-to-end: Learned Features

End-to-end: Learned Features

- Old days
 - Handcrafted feature extraction, e.g., edges or corners (hand-crafted)
 - Mostly with linear models (PCA, etc.)

End-to-end: Learned Features

- Old days
 - Handcrafted feature extraction, e.g., edges or corners (hand-crafted)
 - Mostly with linear models (PCA, etc.)
- Now
 - End-to-end
 - Move away from hand-crafted representations

- Old days
 - Evaluation came after
 - It was a bit optional
 - You might still have a good algorithm without a good way of quantifying it
 - Evaluation helped publishing

Old days

- Evaluation came after
- It was a bit optional
 - You might still have a good algorithm without a good way of quantifying it
 - Evaluation helped publishing

Now

- It is essential and build-in
- If the loss is not good, the result is not good
- (Extensive) Evaluation happens automatically

- Old days
 - Evaluation came after
 - It was a bit optional
 - You might still have a good algorithm without a good way of quantifying it
 - Evaluation helped publishing
- Now
 - It is essential and build-in
 - If the loss is not good, the result is not good
 - (Extensive) Evaluation happens automatically
- While still much is left to do, this makes graphics much more reproducible

End-to-end: Real/Generated Data

End-to-end: Real/Generated Data

- Old days
 - Test with some toy examples
 - Deploy on real stuff
 - Maybe collect some performance data later

End-to-end: Real/Generated Data

Old days

- Test with some toy examples
- Deploy on real stuff
- Maybe collect some performance data later

Now

- Test and deploy need to be as identical (in distribution)
- Need to collect data first
- No two steps

Examples in Graphics

Geometry

Image manipulation

Rendering

Animation

Examples in Graphics

Geometry

Colorization

Image

manipulation

BRDF estimation

Real-time rendering

Sketch

simplification

Rendering

Procedural modelling

Mesh segmentation

Learning deformations

Animation

Boxification Fluid

Animation

Denoising

Facial animation

PCD processing

Examples in Graphics

Sketch simplification

Real-time rendering

Colorization

BRDF estimation

Denoising

Procedural modelling

Fluid

Mesh segmentation

Learning deformations

Animation

Facial animation

Boxification

PCD processing

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/

