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Timetable
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Niloy Paul Nils
Introduction 2:15 pm X X X
Machine Learning Basics ~2:25 pm X
Neural Network Basics ~ 2:55 pm X
Feature Visualization ~3:25 pm X
Alternatives to Direct Supervision ~ 3:35 pm X
15 min. break
Image Domains 4:15 pm X
3D Domains ~4:45 pm X
Motion and Physics ~5:15 pm X
Discussion ~5:45 pm X X X
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Code Examples

PCA/SVD basis
Linear Regression
Polynomial Regression

Stochastic Gradient Descent vs. Gradient Descent
Multi-layer Perceptron

Edge Filter ‘Network’
Convolutional Network

FFilter Visualization

Weight Initialization Strategies
Colorization Network
Autoencoder

Variational Autoencoder
Generative Adversarial Network

5> http://geometry.cs.ucl.ac.uk/creativeai/
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Course Objectives

* Provide an overview of the popular used in CG

* Provide a quick overview of and
 Many extra slides in the course notes + example code

* Progress in the last 3-5 years has been dramatic
* We have organized them to help newcomers
e Discuss the main specific to CG
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* You are invited/encouraged to give feedback
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Two-way Communication

* Our aim is to convey what we found to be relevant so far

* You are invited/encouraged to give feedback
* Speakup. Please send us your criticism/comments/suggestions
* Ask questions, please!

* Thanks to many people who helped so far with slides/comments
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* Images (e.g., pixel grid)

* Volume (e.g., voxel grid)
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Representations in CG
* Images (e.g., pixel grid)

* Volume (e.g., voxel grid)

* Meshes (e.g., vertices/edges/faces)

* Animation (e.g., skeletal positions over time; cloth dynamics over time)

* Pointclouds (e.g., point arrays)
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Representations in CG

* Images (e.g., pixel grid)

* Volume (e.g., voxel grid)

* Meshes (e.g., vertices/edges/faces)

* Animation (e.g., skeletal positions over time; cloth dynamics over time)
* Pointclouds (e.g., point arrays)

e Physics simulations (e.g., fluid flow over space/time, object-body interaction)
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Problems in Computer Graphics

* Feature detection (image features, point features) R Xm N7

* Denoising, Smoothing, etc. Q1M XM S R™ Xm

* Embedding, Distance computation Qme,me s Qd
* Rendering %TTLXTTL RN %me

* Animation Q?)th N Q?)m

* Physical simulation QSth — ng

* Generative models Qd _y [RM XM
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Problems in Computer Graphics

* Feature detection (image features, point features) R Xm N7

* Denoising, Smoothing, etc. Q1M XM S R™ Xm

* Embedding, Distance computation Qme,me s Qd
* Rendering %me RN %me

* Animation Q?)th N Q?)m

* Physical simulation QSth — ng

* Generative models Qd _y [RM XM
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Goal: Learn a Parametric Function

f@ZXHY

f: function parameters, X : source domain Y : target domain
these are learned
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f@ZXHY

f: function parameters, X : source domain Y : target domain
these are learned

Examples:
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w X h X ¢ : image dimensions k: class count

¥ SIGGRAPH
9" ASIA 2618
TOKYO




Goal: Learn a Parametric Function

f@ZXHY

f: function parameters, X : source domain Y : target domain
these are learned

Examples:

. o . . TwWwXhXc o
Image Classification: Jo - > 10,1,...,k— 1}
w X h X ¢ : image dimensions k: class count

wath

Image Synthesis: fo: R" —»

n : latent variable count w x h x c : image dimensions
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Machine Learning 101: Classifier
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Machine Learning 101: Classifier
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Data-driven Algorithms (Supervised)

Labelled data
(supervision data)

11



Data-driven Algorithms (Supervised)

Labelled data
(supervision data)

ML algorithm |
31‘

11



Data-driven Algorithms (Supervised)

Labelled data ]
- ML algorithm |

.. —
(supervision data)

Test data
(run-time data)

11



Data-driven Algorithms (Supervised)

Labelled data o
- ML algorithm |

. . —_—
(supervision data)

Test data
(run-time data)

—

Prediction

11



Data-driven Algorithms (Supervised)

Labelled data

.. —_—
(supervision data)

. ML algorithm |
w‘

Test data
(run-time data)

—

Validation data
(supervision data)

Prediction

12



Data-driven Algorithms (Supervised)

Labelled data

.. —_—
(supervision data)

ML algorithm |
ﬁ

Test data
(run-time data)

Validation data
(supervision data)

Prediction

12



Data-driven Algorithms (Supervised)
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Data-driven Algorithms (Unsupervised)
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Various ML Approaches (Supervised approaches)
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http://scikit-learn.org/stable/auto_examples/classification/plot_classifier _comparison.html
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Various ML Approaches (Supervised approaches)

Input data Nearest Neighbors
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Input data Nearest Neighbors Linear SVM

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier _comparison.html
14




Various ML Approaches (Supervised approaches)

Input data Neares t Neighbors Linear SVM RBF SVM Gaussian Process Decision Tree Random Forest
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Various ML Approaches (Supervised approaches)
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Rise of Learning

* 1958: Perceptron

*1974: Backpropagation

*1981: Hubel & Wiesel wins Nobel prize for ‘visual system’
*1990s: SVM era

*1998: CNN used for handwriting analysis

«2012: AlexNet wins ImageNet




Rise of Machine Learning

- neural network
- artificial intelligence

machine learning

Note
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- neural network
- artificial intelligence

machine learning
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Rise of Machine Learning (in Graphics)

- machine learning
- neural network

SIG+SA+EG+SGP+EGSR Eurographics
14% 14%
12% 12%
10% 10%

8% 8%

b% B%

49 a%

2% 2%

0% 0%

2013 2017 2013 2017
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What is Special about CG?

1. (image translation tasks)

2. Many sources of input data —
(e.g., images, scanners, motion capture)

3. Many sources of — Can serve as supervision data
(e.g., rendering, animation)

4. Many problems in
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Main Challenges and Scope for Innovation

1. How is the data organised and structured?
2. s it synthetic or real, or mixed?
3. End-to-end or in small steps?

4. Hand-crafted or learned from data?




End-to-end: Learned Features
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End-to-end: Learned Features

e Old days

 Handcrafted feature extraction, e.g., edges or corners (hand-crafted)
* Mostly with linear models (PCA, etc.)

ihput Image  edge image 21f2-D sketch 3-D model
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End-to-end: Learned Features

e Old days

* Handcrafted feature extraction, e.g., edges or corners (hand-crafted)
* Mostly with linear models (PCA, etc.)

* Now
* End-to-end
* Move away from hand-crafted representations

input image  edge image 2112-0 sketch 3-D model
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End-to-end: Learned Loss

Lo
(@




End-to-end: Learned

e Old days

e Evaluation came after

* |t was a bit optional
* You might still have a good algorithm without a good way of quantifying it
* Evaluation helped publishing
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e Evaluation came after

* |t was a bit optional
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* Now
* |t is essential and build-in
* |f the loss is not good, the result is not good
* (Extensive) Evaluation happens automatically
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End-to-end: Learned

e Old days

e Evaluation came after

* |t was a bit optional
* You might still have a good algorithm without a good way of quantifying it
* Evaluation helped publishing

e Now

* |t is essential and build-in
* |f the loss is not good, the result is not good
* (Extensive) Evaluation happens automatically

* While still much is left to do, this makes graphics much more reproducible
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End-to-end: Real/Generated Data

e Old days

* Test with some toy examples
* Deploy on real stuff
* Maybe collect some performance data later




End-to-end: Real/Generated Data

e Old days

* Test with some toy examples
* Deploy on real stuff
* Maybe collect some performance data later

e Now

* Test and deploy need to be as identical
(in distribution)

* Need to collect data first
* No two steps




Examples in Graphics

Geometry
Image
manipulation
Animation
Rendering
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Examples in Graphics

Geometry
Procedural Mesh segmentation Learning
Colorization modelling deformations
Sketch
simplification I m age
manipulation
Animation
BRDF estimation . Boxification
Fluid
Real-time rendering An|mat|0n
Rendering
Denoising Facial animation PCD processing
o SIGGRARH
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Deformed with F1-32 output

procedural Mesh segmentation Learning

modelling deformations

Sketch
simplification

Animation

. Formast analyes aetwork Ancabaive vk Outpet actwork
Fluid /

Vertex positions

Denoising Facial animation PCD processing
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