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Timetable

Niloy Paul Nils
Introduction 2:15 pm X X X
. Machine Learning Basics ~ 2:25 pm X
g E? Neural Network Basics ~ 2:55 pm X
=g Feature Visualization ~ 3:25 pm X
N Alternatives to Direct Supervision ~ 3:35pm X
15 min. break
. E Image Domains 4:15 pm X
g % 3D Domains ~ 4:45 pm X
e Motion and Physics ~ 5:15 pm X
Discussion ~ 5:45 pm X X X




What to Visualize

* Features (activations)

* Weights (filter kernels in a CNN)

 Attribution: input parts that contribute to a given activation

* Inputs that maximally activate some class probabilities or features
* Inputs that maximize the error (adversarial examples)

gh= SICORAPH
M ASIA 2618
TOKYO




feature channels
Feature Samples
* In good training, features are usually sparse spatial height
* Can find “dead” features that never activate '
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Images from: http://cs231n.github.io/understanding-cnn/




Feature Distribution using t-SNE

* Low-dimensional embedding of the features for visualization

>~ '— Dot ,"

class: 5 class: 5 class: 3
prediction: 5 prediction: 5 prediction: 5

e N~

..
8.
TR correctl
’ ":’""' classifiteﬂ {
o ™
TS PSR 3
:....: "‘u.. L P-&‘it%"{?-f?'-{—rr R;:.\‘\\::i";:_? ‘_‘,_
. " T = P
<. Wo L ey 1
=; Lt :‘%‘5’:‘: g:::? visual
i H:3 i %_ 3 & outliers I:‘.:»:;._:_'.f.
m P .
s LAty i "y
[ }‘2"{} o . ~
HT ‘{:ﬁ-" %;i\\ i Y k|
s e ) D)
< s X Dg
LB % K ¢ Bl e e
t-SNE embedding of image features before training after training
in a CNN layer t-SNE embedding of MNIST (images of digits) features in a CNN layer, colored by class

Images from: https://cs.stanford.edu/people/karpathy/cnnembed/ and
Rauber et al. Visualizing the Hidden Activity of Artificial Neural Networks. TVCG 2017
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Feature Distribution using t-SNE

* Low-dimensional embedding of the features for visualization

training epochs
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t-SNE embedding of image features evolution during training
in a CNN layer t-SNE embedding of MNIST (images of digits) features in a CNN layer, colored by class

Images from: https://cs.stanford.edu/people/karpathy/cnnembed/ and
Rauber et al. Visualizing the Hidden Activity of Artificial Neural Networks. TVCG 2017
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Weights (Filter Kernels)

» Useful for CNN kernels, not useful for fully connected layers
* Kernels are typically smooth and diverse after a successful training
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input channels * output channels

first layer filters of AlexNet

Images from: http://cs231n.github.io/understanding-cnn/
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Code Examples

Filter Visualization

http://geometry.cs.ucl.ac.uk/creativeai




Attribution by Approximate Inversion

* Reconstruct Input from a given feature channel
e What information does the feature channel focus on?
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Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014
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Perturbation-based Attribution

Probability for correct classification when centering the box at each pixel.

Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014
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Gradient-based Attribution

* Derivative of class probability w.r.t input pixels
* Which parts of the input is the class probability sensitive to?

Smilkov et al., SmoothGrad: removing noise by adding noise, arXiv 2017
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Inputs that Maximize Feature Response

Local maxima of the response for class:
Indian Cobra Pelican Ground Beetle

Images from: Yosinski et al. Understanding Neural Networks Through Deep Visualization. ICML 2015
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Inputs that Maximize the Error
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“Panda” 55.7% conf. “Gibbon” 99.3% conf.

Images from: Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR 2015
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Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/
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