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Timetable

Theory
and Basics

State
of the Art

Niloy Paul Nils
Introduction 2:15 pm X X X
Machine Learning Basics ~ 2:25 pm X
Neural Network Basics ~ 2:55 pm X
Feature Visualization ~ 3:25 pm X
Alternatives to Direct Supervision ~ 3:35pm X
15 min. break
Image Domains 4:15 pm X
3D Domains ~ 4:45 pm X
Motion and Physics ~ 5:15 pm X
Discussion ~ 5:45 pm X X X




Unsupervised Learning

* There is no direct ground truth for the quantity of interest

e Autoencoders
* Variational Autoencoders (VAEs)
e Generative Adversarial Networks (GANSs)




Autoencoders

Goal: Meaningful features that capture the main

factors of variation in the dataset

* These are good for classification, clustering,
exploration, generation, ...

* We have no ground truth for them

A
T Encoder
€T

Features

Input data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders

Goal: Meaningful features that capture the main

factors of variation
Features that can be used to reconstruct the image

T D
T Decoder
Features Z L2 LosAs f2unction:
(Latent variables) |z — 2|
T Encoder
Input data T <«

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders A - """"""""" TSo——

Linear Transformation for Encoder and Decoder ful
give result close to PCA 000_

Deeper networks give better reconstructions,
since basis can be non-linear

_________________
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Example: Document Word Prob. - 2D Code

PCA-based Autoencoder

European Community
. Interbank markets monetary/economic

Disasters and
accidents

z . n l ‘_‘. 1 e g ‘X = .'%'-:J : g A
Leading economic” . - T ’h it - ':-:h Legal/judicial
indicators ’ ,? i adl” LU M '

. 23" %o Government
e ,r'~-l' :'L-_F.‘ :
Accounts/ . “SiyaE borrowings
eamings s‘i’

Image Credit: Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov



Example: Semi-Supervised Classification

* Many images, but few ground truth labels

start unsupervised supervised fine-tuning
train autoencoder on many images train classification network on labeled images

Loss function

7 I | ] (Softmax, etc)
Predicted Label | Y | < > | Y
GT Label
T Decoder : Classifier abe
Foat _ L2 Loss function:
e < — z||? Features
(Latent Variables) |z — 2| <
Encoder T Encoder
Input data S
L i
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Code example

Autoencoder

geometry.cs.ucl.ac.uk/creativeai




Generative Models

e Assumption: the dataset are samples from an unknown distribution pdata(a?)
* Goal: create a new sample from Ddata () that is not in the dataset

|

Generated




Generative Models

e Assumption: the dataset are samples from an unknown distribution pdata(at)
* Goal: create a new sample from Ddata () that is not in the dataset

Generated




Generative Models

Po (CE) ~ pdata(aj)

Generator with
parameters §

p(2)

known and
easy to sample from




Generative Models

How to measure similarity of Dg (:c) and Pdata (:E) ?

pQA(x) ~ pdata(x) 1) Likelihood of data in pg (:E)

Generator with

parameters ) Variational Autoencoders (VAEs)

p(z) 2) Adversarial game:
) ; Discriminator distinguishes Ve Generator makes it
NOwWnN an . L. .
easy to sample from Po (33) and pdata(iv) hard to distinguish

Generative Adversarial Networks (GANSs)




Autoencoders as Generative Models?

e A trained decoder transforms some features 2
to approximate samples from pdata(x)

X
T Decoder = Generator?
> * What happens if we pick a random z?

* We do not know the distribution p(z) of
features that decode to likely samples

random

i U Feature space / latent space

Image Credit: Reducing the Dimensionality of Data with Neural
Networks, Hinton and Salakhutdinov



Variational Autoencoders (VAEs)

po(z|2)

sample

|

Generator with
parameters 6

* Pick a parametric distribution p(z) for features

* The generator maps P(2) to an image
distribution pg () (where 0 are parameters)

po(z) = / po(2]2) p(z) dz

* Train the generator to maximize the likelihood
of the data inpg(x):

max > logpy(z;)

x; Edata



Outputting a Distribution

Normal distribution Bernoulli distribution
po(x|z) = N(z;1(2), X(2)) po(z|z) = Bern(x;r(2))
p > ;
Generator with Generator with
parameters ) parameters )
z z
e o
o o
: p(2) 5

s, P(Z)




Variational Autoencoders (VAEs)

po(z|2)

sample

|

Generator with
parameters 6

* Pick a parametric distribution p(z) for features

* The generator maps P(2) to an image
distribution pg () (where 0 are parameters)

po(z) = / po(2]2) p(z) dz

* Train the generator to maximize the likelihood
of the data inpg(x):

max > logpy(z;)

x; Edata



Variational Autoencoders (VAES):
Naive Sampling (Monte-Carlo)

Maximum likelihood of data in generated distribution:

0* = argmax Z log/pg x|z ) dz

x; Edata

0" ~ arg ;nax ]qu:fvpdata(ﬂ&‘) log Ezmp(z) pg(:cz-\z)

* Approximate Integral with Monte-Carlo in each iteration
* SGD approximates the sum over data
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Variational Autoencoders (VAES):
Naive Sampling (Monte-Carlo)

Loss function:
—log > pa(wilz))
po(z|z;) < = X
Generator with Random from dataset
parameters (

* Approximate Integral with Monte-Carlo in each
p(z) iteration

<
o
£
©
(%]

* SGD approximates the expectancy over data




Variational Autoencoders (VAES):
Naive Sampling (Monte-Carlo)

Loss function:
—log > pa(wilz))
po(z|z;) < = X
Generator with Random from dataset
parameters (

* Approximate Integral with Monte-Carlo in each
p(2) iteration

sample

* SGD approximates the expectancy over data
* Only few z map close to a given x;

 \Very expensive, or very inaccurate (depending on
sample count)

Z -with non-zero
po(i|2)




Variational Autoencoders (VAEs):
The Encoder

Loss function:
Tene) poe) = [ poalz) p(z) d:
pe(x|2) ‘

T Generator with

* During training, another network can learn a
distribution of good z for a given x;

Z
< » q¢(2|7;) should be much smaller than p(z)
99(z12i) e A single sample is good enough

Encoder with
parameters

parameters (@

sample




Variational Autoencoders (VAEs):
The Encoder

Loss function:

—log po(zi|2) + K L( qp(z|z:) || p(2) )

po(z|2)

<

|

Generator with
parameters 6

sample

< 7
e (2|;)

|

Encoder with
parameters gb

* Can we still easily sample a new z?
* Need to make sure g, (2|x;) approximates p(2)
* Regularize with KL-divergence

* Negative loss can be shown to be a lower bound
for the likelihood, and equivalent if

qo(2|z) = po(z|x)



Reparameterization Trick

Example when Q¢(Z|£Ci) = N(z; M(xi)a U(xi))i
z=0+p-€,where e ~ N(0,1)
T Generator with op Op 0o ‘

parameters (@

< A
< ----------------- lBackprop? /Z P A N S BaCka‘Op

€ H o
< Encoder with
N(0,1) parameters ¢

Does not depend on L
parameters

sample

sample

Encoder with
parameters (/5




Feature Space of Autoencoders vs. VAEs

Autoencoder VAE
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Generating Data

Frey Faces

MNIST
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Image Credit: Auto-Encoding Variational Bayes, Kingma and Welling



Demos
VAE on MNIST


https://www.siarez.com/projects/variational-autoencoder

Code example

Variational Autoencoder

geometry.cs.ucl.ac.uk/creativeai




Generative Adversarial Networks

Player 2: discriminator — real/fake
Scores if it can distinguish
between real and fake

Scores if discriminator
can’t distinguish output
from real image

AN ar

from dataset




Generative Models

How to measure similarity of Dg (:c) and Pdata (:E) ?

pQA(x) ~ pdata(x) 1) Likelihood of data in pg (:E)

Generator with

parameters ) Variational Autoencoders (VAEs)

p(z) 2) Adversarial game:
) ; Discriminator distinguishes Ve Generator makes it
NOwWnN an . L. .
easy to sample from Po (33) and pdata(iv) hard to distinguish

Generative Adversarial Networks (GANSs)




Why Adversarial?

~ Pdata ('%)

Dwz discriminator
with parameters?) o OQptimal Z) h ingl de atz™ |l .
ptima pe dS Singlie moae atxr , smadll variance

g

p : generator
ith parameters

Z
Z

p(2)

* If discriminator approximates pdata(flf) ;
e 2*at maximum of Pdata () has lowest loss

D?,D ~ pdata(i‘)

Image Credit: How (not) to Train your Generative Model: Scheduled
Sampling, Likelihood, Adversary?, Ferenc Huszar



Why Adversarial?

Pdata (5%)
Pdata(T) + pa(Z)

T D¢: discriminator

with parametersq))

ith parameters

g

0
T p : generator
<

p(2)

* For GANs, the discriminator instead approximates:
pdata(m)
Pdata () + po()

— (epends on the generator

pdata(x)

D?,D ~ pdata(i) D%b ~ Pdata(x)+po ()

Image Credit: How (not) to Train your Generative Model: Scheduled
Sampling, Likelihood, Adversary?, Ferenc Huszar



Why Adversarial?

VAEs: GANs: Maximize likelihood of
Maximize likelihood of Adversarial game generator samples in
data samples inpg () approximate Pdata ()

Image Credit: How (not) to Train your Generative Model: Scheduled
Sampling, Likelihood, Adversary?, Ferenc Huszar



Why Adversarial?

~ KL(pdata H p@) ~ JS(pdata || p@) ~ KL(p9 || pdata)

VAEs: GANs: Maximize likelihood of
Maximize likelihood of Adversarial game generator samples in
data samples inpg () approximate Pdata ()

Image Credit: How (not) to Train your Generative Model: Scheduled
Sampling, Likelihood, Adversary?, Ferenc Huszar



GAN Objective

probability that &
Dy, () | is not fake

T Dw :discriminator

fake/real classification loss (BCE):
L(O,v)= —05E;p,... logDy(x)

— 0.5 Epp, log(l — Dy (x))

Discriminator objective:

(= g :generator lein L(@, w)

Generator objective:

max L(6, )
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Non-saturating Heuristic L(O,4) = — 0.5 By, 108 Dy(r)

— 0.5 Egp, log(l — Dy (z))

Generator loss is negative binary cross-entropy:
La(0,1)=0.5E;,, log(l — Dy(xz)) poor convergence

Lg(0,v)°| \
—— Negative BCE _'

| | ] |
0.0 0.2 0.4 0.6 0.8 1.0

D?p Image Credit: NIPS 2016 Tutorial: Generative Adversarial
Networks, lan Goodfellow




Non-saturating Heuristic

Generator loss is negative binary cross-entropy:
La(0,19)=0.5E;,, log(l — Dy(xz)) poor convergence

Flip target class instead of flipping the sign for generator loss:
La(0,1¢)=—0.5Eyp, log Dy (x) good convergence — like BCE

N

LG(Ha w)(’: ﬁ
| Negative BCE

— BCE with flipped target

| | I |
0.0 0.2 0.4 0.6 0.8 1.0

D?p Image Credit: NIPS 2016 Tutorial: Generative Adversarial
Networks, lan Goodfellow




GAN Training

Loss: Loss:
La(0,v) = —log Dy (2) Lp(0,¢) = —0.5log(1 — Dy(2)) — 0.5log Dy (z;)

Dy () Dy(2) Dy (z;)
T D¢ :discriminator T D¢ :discriminator T

from dataset

Generator training
Discriminator training

Interleave in each training step



DCGAN

* First paper to successfully use CNNs with GANs
* Due to using novel components (at that time) like batch norm., RelLUs, etc.

man man woman
with glasses without glasses without glasses

woman with glasses

Image Credit: Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, Radford et al.




Code example

Generative Adversarial Network

geometry.cs.ucl.ac.uk/creativeai




Conditional GANs (CGANSs)

* = |earn a mapping between images from example pairs

* Approximate sampling from a conditional distribution pqata( | ¢)

Image Credit: Image-to-Image Translation with Conditional
Adversarial Nets, Isola et al.




Conditional GANSs

Loss: Loss:
Lo (0,v) = —log Dy(&, c) Lp(0,v) = —0.5log(1 — Dy(Z,c)) — 0.51log Dy (24, c)
o0 Dy (%) o0 Dy (2) Dy (z;)
g qu :discriminator § D¢ -discrim.
‘© ~ © ‘ ~ | —
- -+ “
": - |
O S
+ (¢
© - £
()] Xz ~
c g £
Q kGQ :generator -
LD @)
— R
ay an
L —
C C

Image Credit: Image-to-Image Translation with Conditional
Adversarial Nets, Isola et al.




Conditional GANs: Low Variation per Condition

Loss: Loss:
La(0,¢) = —log Dy (2, c) Lp(0,v) = —0.5log(1 — Dy(Z,c)) — 0.51log Dy (24, c)
o0 Doy (%) 00 Dy () Dy (x;)
g qu :discriminator § | Dw -discrim. |
© ) 5
": —
O I
= ®
© _ c
) X ‘= S
- S 4 Li
8 KGQ :generator S from dataset
— . D , “
N - N A
zis often omitted /tfﬁ}\\ /’it\\ [ E\N\\
in favor of dropout i — —
in the generator C C C

Image Credit: Image-to-Image Translation with Conditional
Adversarial Nets, Isola et al.




Demos
CGAN


https://affinelayer.com/pixsrv/index.html

Unstable Training

GAN training can be unstable

Three current research problems (may be related):

» Reaching a Nash equilibrium (the gradient for both L and L pis 0)
e Po and Pdata initially don’t overlap

* Mode Collapse

gh= SICORAPH
M ASIA 2618
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Generator and Data Distribution Don’t Overlap

Standard

1.6
1.4
1.2
1.0
0.8
0.6

— po(z)
— Pdata (37)
Dy ()

0.4
0.2
0.0
-0.2

—3 -2 -1 0 1 2 3

- Instance noise: adding noise to generated and real images Wasserstein GANs: EMD as distance between Pg and Pdata
p —po(z) x N(0,0) o — po(x)

12 —Pdata(x) * N(0,0)| 12 — Pdata(T)
o Dy ()] o Dy (x)

: N -/

o < . R [ camiac.

3 ~3 3 - 0 1 2

Roth et aI._ézuggest aﬁlanalytic convolution with a gz—zlussian:
Stabilizing Training of Generative Adversarial Networks
through Reﬁularization, Roth et al. 2017

&smm i

ASIA 2618 Image Credit: Amortised MAP Inference for Image Super-
TOKYO resolution, Senderby et al.



Mode Collapse Pdata(®)

Optimal Dy, (x):
PHITS ¢( ) pdata(x) Po (CC)
Po only covers one or a few modes of Pdata

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

- -
- -
. - - * - - 7

Pdata Do after n training steps

Image Credit: Wasserstein GAN, Arjovsky et al.
Unrolled Generative Adversarial Networks, Metz et al.




Mode Collapse

Solution attempts:

* Minibatch comparisons: Discriminator can compare instances in a
minibatch (Improved Techniques for Training GANs, Salimans et al.)

* Unrolled GANs: Take k steps with the discriminator in each iteration, and
backpropagate through all of them to update the generator

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

- -
5 . - . - - -
Pdata Standard GAN Do after n training steps
Unrolled GAN with k=5
- -

Do after n training steps

Image Credit: Wasserstein GAN, Arjovsky et al.
Unrolled Generative Adversarial Networks, Metz et al.




Summary

e Autoencoders
e Can infer useful latent representation for a dataset
* Bad generators

* VAEs

e Caninfer a useful latent representation for a dataset
* Better generators due to latent space regularization
* Lower quality reconstructions and generated samples (usually blurry)

* GANSs

e Can not find a latent representation for a given sample (no encoder)
* Usually better generators than VAEs
e Currently unstable training (active research)
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Course Information (slides/code/comments)
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