

CreativeAI: Deep Learning for Graphics

Alternatives to Direct Supervision

Niloy Mitra

UCL

Iasonas Kokkinos

UCL

Paul Guerrero

UCL

Nils Thuerey

TUM

Tobias Ritschel

UCL

Timetable

_			Niloy	Paul	Nils
Theory and Basics	Introduction	2:15 pm	X	X	X
	Machine Learning Basics	~ 2:25 pm	Χ		
	Neural Network Basics	~ 2:55 pm			X
	Feature Visualization	~ 3:25 pm		X	
	Alternatives to Direct Supervision	~ 3:35 pm		X	
State of the Art		15 min. br	eak ———		
	Image Domains	4:15 pm		X	
	3D Domains	~ 4:45 pm	X		
	Motion and Physics	~ 5:15 pm			X
	Discussion	~ 5:45 pm	X	X	X

Unsupervised Learning

There is no direct ground truth for the quantity of interest

- Autoencoders
- Variational Autoencoders (VAEs)
- Generative Adversarial Networks (GANs)

Autoencoders

Goal: Meaningful features that capture the main factors of variation in the dataset

- These are good for classification, clustering, exploration, generation, ...
- We have no ground truth for them

Autoencoders

Goal: Meaningful features that capture the main factors of variation

Features that can be used to reconstruct the image

Autoencoders

Linear Transformation for Encoder and Decoder give result close to PCA

Deeper networks give better reconstructions, since basis can be non-linear

Original
Autoencoder
PCA

Example: Document Word Prob. → **2D Code**

PCA-based Autoencoder **European Community** monetary/economic Interbank markets Energy markets Disasters and accidents Leading economic Legal/judicial indicators Government borrowings Accounts

earnings

Example: Semi-Supervised Classification

Many images, but few ground truth labels

start unsupervised train autoencoder on many images

supervised fine-tuning train classification network on labeled images

Code example

Autoencoder

geometry.cs.ucl.ac.uk/creativeai

- Assumption: the dataset are samples from an unknown distribution $p_{\mathrm{data}}(x)$
- Goal: create a new sample from $p_{\mathrm{data}}(x)$ that is not in the dataset

Dataset

Generated

- Assumption: the dataset are samples from an unknown distribution $p_{\mathrm{data}}(x)$
- Goal: create a new sample from $p_{\mathrm{data}}(x)$ that is not in the dataset

Generated

Dataset

How to measure similarity of $p_{ heta}(x)$ and $p_{ ext{data}}(x)$?

1) Likelihood of data in $p_{ heta}(x)$

Variational Autoencoders (VAEs)

2) Adversarial game:

Discriminator distinguishes $p_{\theta}(x)$ and $p_{\mathrm{data}}(x)$ vs Generator makes it hard to distinguish

Generative Adversarial Networks (GANs)

Autoencoders as Generative Models?

- A trained decoder transforms some features z to approximate samples from $p_{\mathrm{data}}(x)$
- What happens if we pick a random z?
- We do not know the distribution p(z) of features that decode to likely samples

Feature space / latent space

Variational Autoencoders (VAEs)

- ullet Pick a parametric distribution $\,p(z)$ for features
- The generator maps p(z) to an image distribution $p_{\theta}(x)$ (where θ are parameters)

$$p_{\theta}(x) = \int p_{\theta}(x|z) \ p(z) \ dz$$

• Train the generator to maximize the likelihood of the data in $p_{\theta}(x)$:

$$\max_{\theta} \sum_{x_i \in \text{data}} \log p_{\theta}(x_i)$$

Outputting a Distribution

Normal distribution

$$p_{\theta}(x|z) = N(x; \mu(z), \Sigma(z))$$

Bernoulli distribution

$$p_{\theta}(x|z) = Bern(x; r(z))$$

Variational Autoencoders (VAEs)

- ullet Pick a parametric distribution $\,p(z)$ for features
- The generator maps p(z) to an image distribution $p_{\theta}(x)$ (where θ are parameters)

$$p_{\theta}(x) = \int p_{\theta}(x|z) \ p(z) \ dz$$

• Train the generator to maximize the likelihood of the data in $p_{\theta}(x)$:

$$\max_{\theta} \sum_{x_i \in \text{data}} \log p_{\theta}(x_i)$$

Variational Autoencoders (VAEs): Naïve Sampling (Monte-Carlo)

Maximum likelihood of data in generated distribution:

$$\theta^* = \underset{\theta}{\operatorname{arg max}} \sum_{x_i \in \operatorname{data}} \log \int p_{\theta}(x_i|z) \ p(z) \ dz$$
$$\theta^* \approx \underset{\theta}{\operatorname{arg max}} \mathbb{E}_{x_i \sim p_{\operatorname{data}}(x)} \log \mathbb{E}_{z \sim p(z)} \ p_{\theta}(x_i|z)$$

- Approximate Integral with Monte-Carlo in each iteration
- SGD approximates the sum over data

Variational Autoencoders (VAEs): Naïve Sampling (Monte-Carlo)

- Approximate Integral with Monte-Carlo in each iteration
- SGD approximates the expectancy over data

Variational Autoencoders (VAEs): Naïve Sampling (Monte-Carlo)

Approximate Integral with Monte-Carlo in each iteration

- SGD approximates the expectancy over data
- Only few z map close to a given x_i

 x_i

Random from dataset

 Very expensive, or very inaccurate (depending on sample count)

Variational Autoencoders (VAEs): The Encoder

$$p_{\theta}(x) = \int p_{\theta}(x|z) \ p(z) \ dz$$

- During training, another network can learn a distribution of good z for a given x_i
- $q_{\phi}(z|x_i)$ should be much smaller than p(z)
- A single sample is good enough

Variational Autoencoders (VAEs): The Encoder

Loss function: $-\log p_{\theta}(x_i|z) + KL(|q_{\phi}(z|x_i)||p(z)|)$

- Can we still easily sample a new z?
- Need to make sure $q_{\phi}(z|x_i)$ approximates p(z)
- Regularize with KL-divergence
- Negative loss can be shown to be a lower bound for the likelihood, and equivalent if

$$q_{\phi}(z|x) = p_{\theta}(z|x)$$

Reparameterization Trick

Example when $q_\phi(z|x_i)=N(z;\mu(x_i),\sigma(x_i))$: $z=\sigma+\mu\cdot\epsilon \text{ , where }\epsilon\sim N(0,1)$ $\frac{\partial z}{\partial \phi}=\frac{\partial \mu}{\partial \phi}+\frac{\partial \sigma}{\partial \phi}\cdot\epsilon$

Feature Space of Autoencoders vs. VAEs

Autoencoder

VAE

Generating Data

Demos

VAE on MNIST

https://www.siarez.com/projects/variationalautoencoder

Code example

Variational Autoencoder

geometry.cs.ucl.ac.uk/creativeai

Generative Adversarial Networks

➤ Player 1: generator

Scores if discriminator can't distinguish output from real image

from dataset

Player 2: discriminator → real/fake Scores if it can distinguish between real and fake

How to measure similarity of $p_{ heta}(x)$ and $p_{ ext{data}}(x)$?

1) Likelihood of data in $p_{ heta}(x)$

Variational Autoencoders (VAEs)

2) Adversarial game:

Discriminator distinguishes $p_{\theta}(x)$ and $p_{\mathrm{data}}(x)$ vs Generator makes it hard to distinguish

Generative Adversarial Networks (GANs)

- If discriminator approximates $p_{\text{data}}(x)$:
- $ullet x^*$ at maximum of $p_{\mathrm{data}}(x)$ has lowest loss
- Optimal $p_{\theta}(x)$ has single mode at x^* , small variance

$$D_{\psi} \approx p_{\rm data}(\hat{x})$$

• For GANs, the discriminator instead approximates:

$$\frac{p_{\mathrm{data}}(x)}{p_{\mathrm{data}}(x) + p_{\theta}(x)} \longrightarrow \text{depends on the generator}$$

Image Credit: How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?, Ferenc Huszár

 $p_{\text{data}}(x)$

VAEs: Maximize likelihood of data samples in $p_{\theta}(x)$

GANs: Adversarial game

Maximize likelihood of generator samples in approximate $p_{\rm data}(x)$

 $p_{\text{data}}(x)$

VAEs: Maximize likelihood of data samples in $p_{\theta}(x)$

GANs: Adversarial game

Maximize likelihood of generator samples in approximate $p_{\rm data}(x)$

GAN Objective

fake/real classification loss (BCE):

$$L(\theta, \psi) = -0.5 \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\psi}(x)$$
$$-0.5 \mathbb{E}_{x \sim p_{\theta}} \log(1 - D_{\psi}(x))$$

Discriminator objective:

$$\min_{\psi} L(\theta, \psi)$$

Generator objective:

$$\max_{\theta} L(\theta, \psi)$$

Non-saturating Heuristic

$$L(\theta, \psi) = -0.5 \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\psi}(x)$$
$$-0.5 \mathbb{E}_{x \sim p_{\theta}} \log(1 - D_{\psi}(x))$$

Generator loss is negative binary cross-entropy:

$$L_G(\theta, \psi) = 0.5 \, \mathbb{E}_{x \sim p_{\theta}} \, \log(1 - D_{\psi}(x))$$
 poor convergence

Non-saturating Heuristic

Generator loss is negative binary cross-entropy:

$$L_G(\theta, \psi) = 0.5 \, \mathbb{E}_{x \sim p_{\theta}} \, \log(1 - D_{\psi}(x))$$
 poor convergence

Flip target class instead of flipping the sign for generator loss:

$$L_G(\theta, \psi) = -0.5 \, \mathbb{E}_{x \sim p_\theta} \, \log D_{\psi}(x)$$
 good convergence – like BCE

Image Credit: NIPS 2016 Tutorial: Generative Adversarial Networks, Ian Goodfellow

GAN Training

Generator training

Interleave in each training step

DCGAN

- First paper to successfully use CNNs with GANs
- Due to using novel components (at that time) like batch norm., ReLUs, etc.

Image Credit: *Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks*, Radford et al.

Code example

Generative Adversarial Network

geometry.cs.ucl.ac.uk/creativeai

Conditional GANs (CGANs)

• ≈ learn a mapping between images from example pairs

• Approximate sampling from a conditional distribution $p_{\mathrm{data}}(x \mid c)$

Image Credit: *Image-to-Image Translation with Conditional Adversarial Nets*, Isola et al.

Conditional GANs

Conditional GANs: Low Variation per Condition

Generator training

z is often omitted in favor of dropout in the generator

Loss:

$$L_D(\theta, \psi) = -0.5 \log(1 - D_{\psi}(\hat{x}, c)) - 0.5 \log D_{\psi}(x_i, c)$$

Discriminator training

Demos

CGAN

https://affinelayer.com/pixsrv/index.html

Unstable Training

GAN training can be unstable

Three current research problems (may be related):

- ullet Reaching a Nash equilibrium (the gradient for both L_G and L_D is 0)
- p_{θ} and p_{data} initially don't overlap
- Mode Collapse

Generator and Data Distribution Don't Overlap

T.O

1.4

Roth et al. suggest an analytic convolution with a gaussian:

Stabilizing Training of Generative Adversarial Networks through Regularization, Roth et al. 2017

Image Credit: Amortised MAP Inference for Image Superresolution, Sønderby et al.

Mode Collapse

Optimal
$$D_{\psi}(x)$$
:
$$\frac{p_{\mathrm{data}}(x)}{p_{\mathrm{data}}(x) + p_{\theta}(x)}$$

 p_{θ} only covers one or a few modes of p_{data}

Mode Collapse

Solution attempts:

- Minibatch comparisons: Discriminator can compare instances in a minibatch (*Improved Techniques for Training GANs*, Salimans et al.)
- Unrolled GANs: Take k steps with the discriminator in each iteration, and backpropagate through all of them to update the generator

Summary

- Autoencoders
 - Can infer useful latent representation for a dataset
 - Bad generators
- VAEs
 - Can infer a useful latent representation for a dataset
 - Better generators due to latent space regularization
 - Lower quality reconstructions and generated samples (usually blurry)
- GANs
 - Can not find a latent representation for a given sample (no encoder)
 - Usually better generators than VAEs
 - Currently unstable training (active research)

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/

