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Timetable

Niloy Paul Nils
Introduction 2:15 pm X X X
. Machine Learning Basics ~ 2:25 pm X
g E? Neural Network Basics ~ 2:55 pm X
=g Feature Visualization ~ 3:25 pm X
N Alternatives to Direct Supervision ~ 3:35pm X
15 min. break
. E Image Domains 4:15 pm X
g % 3D Domains ~ 4:45 pm X
e Motion and Physics ~ 5:15 pm X
Discussion ~ 5:45 pm X X X




Overview

Examples of deep learning techniques that are commonly used in the image
domain:

e Common Architecture Elements
(Dilated Convolution, Grouped Convolutions)

* Deep Features
(Autoencoders, Transfer Learning, One-shot Learning, Style Transfer)

e Adversarial Image Generation
(GANs, CGANs)

* Interesting Trends
(Attention, “Gray Box” Learning)
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Common Architecture Elements
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Classification, Segmentation, Detection

ImageNet classification performance
(for up-to-date top-performers see leaderboards of datasets like ImageNet or COCO)
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Images from: Canziani et al., An Analysis of Deep Neural Network Models for Practlcal Applications, arXiv 2017
Blog: https://towardsdatascience.com/neural-network-architectures-156e5bad51ba
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Architecture Elements

Some notable architecture elements shared by many successful architectures:

Residual Blocks
and Dense Blocks

Skip Connections
(UNet)

-~

Dilated
Convolutions

Grouped
Convolutions

~

Attention
(Spatial and over Channels)
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Dilated (Atrous) Convolutions

Problem: increasing the receptive field costs a lots of parameters.

ldea: spread out the samples used in each convolution.

| | 15t layer: not dilated 2" Jayer: 1-dilated 3" [ayer: 2-dilated
dilated convolution 3x3 recep. field 7x7 recep. field 15x15 recep. field

Images from: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, arXiv 2016
!A Yu and Koltun, Multi-scale Context Aggregation by Dilated Convolutions, ICLR 2016
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Dilated (Atrous) Convolutions

Problem: increasing the receptive field costs a lots of parameters.
ldea: spread out the samples used for a convolution.

dilated convolution O O O O O O O . 3" Jayer: 2-dilated
15x15 recep. field

2"d Jayer: 1-dilated
~ 7x7 recep. field

15t layer: not dilated
3x3 recep. field

Input image

Dumoulin and Visin, A guide to convolution arithmetic for deep learning, arXiv 2016
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Grouped Convolutions (Inception Modules)

Problem: conv. parameters grow quadratically in the number of channels

ldea: split channels into groups, remove connections between different groups
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Image from: Xie et al., Aggregated Residual Transformations for Deep Neural Networks, CVPR 2017
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Example: Sketch Simplification

Up-convolution HxW

Flat-convolution

AN 4 [\
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Example: Sketch Simplification

* Loss for thin edges saturates easily
e Authors take extra steps to align input and ground truth edges

Red: ground truth

/,< Pencil: input

12



Image Decomposition

A selection of methods:
Direct Instrinsics, Narihira et al., 2015

Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition, Zhou et al.,

2015
Decomposing Single Images for Layered Photo Retouching, Innamorati et al. 2017

uuuuuuuuuuuuuuuuuuuu
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Image Decomposition: Decomposing
Single Images for Layered Photo Retouching

22222
22222
22222
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=) Stride-2 Convolution Stride-1 Convolution =) Resize-convolution

Albedo

Irradiance

Specular

L
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Example Application: Denoising

Renderer

-

Diffuse components

-

Specular components

albedo irradiance
$—+ albedo |
| duide | Dlﬁuse CNN
B 22 Direct B
normalization & 3 s i or i albedo
gradient extraction : ot Weighted multuply
reconstruction -
Spenular CNN
Ingarithmic Zz Direct
transform & - ar e.xp-nnentual
normalization & Weighted transrnrrn
gradient extraction | i i
Preprocessing Filtering Postprocessing
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Deep Features
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Autoencoders

* Features learned by deep networks are useful for a large range of tasks.
* An autoencoder is a simple way to obtain these features.
* Does not require additional supervision.

Reconstructed Reconstructed

] ]
Reconstruction 10 - 10
— > ,’i‘ 20 i_' 20
A 0 30
0 20

Decoder o 2
L2 Loss function: 2 ——» useful features (latent vectors)
lz — (2 i
BN X
Input data

0 20 ] 20
Manash Kumar Mandal, Implementing PCA, Feedforward and Convolutional Autoencoders and using it for Image Reconstruction, Retrieval & Compression,

< SIGERAPH https://blog.manash.me/
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Shared Feature Space: Interactive Garments

representation 1 useful features (latent vectors) representatlon 2

T

DenséN D latent space
A" //‘

. > sketch ﬁEL ﬁEP
input sketch (S) \descriptor (S),

body shape ‘i j E[ garment
\parameters stretch bend shear} para meters ( )

!J_ Wang et al., Learning a Shared Shape Space for Multimodal Garment DE’SIgn Siggraph Asia 2018

representation 3
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Transfer Learning

Features extracted by well-trained CNNs often generalize beyond the task
they were trained on

useful features
(latent vectors)

original task
(normals)

input image encoder [

new task
(edges)

* Images from: Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018
ﬁ SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 19




Taxonomy of Tasks: Taskonomy
http://taskonomy.stanford.edu/api/

Choose task dictionary ~
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Images from: Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018
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Few-shot, One-shot Learning

. Feature training: One-shot:
* With a good feature space, tasks lots of examples from train regressor with
class subset A one example of each class

become easier

in class subset B

* In classification, for example, nearest | |
neighbors might already be good e regressor (e.g. NN)

enough A ?

e Often trained with a Siamese network,
to optimize the metric in feature space U NN R feature

Weights computation

o

https://hackernoon.com/one-shot-learning-with-siamese-networks-in-pytorch-8ddaab10340e




Style Transfer

 Combine content from image A with style from

Images from: Gatys et al., Image Style Transfer using Convolutional Neural Networks, CVPR 2016
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What is Style and Content?

Remember that features in a CNN often generalize well.

Define style and content using the layers of a CNN (VGG19 for example):

P B e T R e B |

|
v
// u,rlu,r 28

{r") fﬁf/ ;}Ei/ﬁ’jrj“ o
I | rﬂf/%' ] L.tlu%%l ’ l-\ L = 4096 1x1x 1000
J_,-__{-':;r | ﬂ convolution+ RelLT
s i~ max poaling
S 7 fully connected+ReLU
))f# | softmax

shallow layers deeper layers
describe style describe content

- ]
ﬁ %@ﬁ@&g SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
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Optimize for Style A

and Content B

same pre-trained networks, fix weights

same style features

optimize to have same style/content features

same content features

i

SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
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Style Transfer: Follow-Ups

more control over the result feed-forward networks

Style Target gprelul2 ppreluz2 pprelus3 érelud3

(C) Sty|e Il e i Sfyle“ Stzﬂle sfylﬁ style
1 .fW : S R N T | S —— ] = =
"‘; 57 w}'}-)_-"‘ : 1 : — L — I R :
e 3 : ik -
T |- LY |- ;
: ;
Input :Ima e Transform Net | y U U :
Image =S SEEEEE [y | iLoss Networkvae-te) [ | @
gQB,rc‘;luB 3
Content Target feat

Images from: Gatys, et al., Controlling Perceptual Factors in Neural Style Transfer, CVPR 2017
!,. Johnson et al., Perceptual Losses for Real-Time Style Transfer and Super-Resolution, ECCV 2016
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Style Transfer for Videos

= CIRERAPH Ruder et al., Artistic Style Transfer for Videos, German Conference on Pattern Recognition 2016
SIA 2618 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 27







Adversarial Image Generation
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Generative Adversarial Networks

- — Player 1: generatorf ’

| | Player 2: discriminator — real/fake
N Scores if it can distinguish
g between real and fake

N ar

from dataset

Scores if discriminator
can’t distinguish output
from real image



GANSs to CGANSs (Conditional GANs)

GAN CGAN

increasingly determined by the condition

aoa

z P C Z C < C

Karras et al., Progressive Growing of GANSs for Improved Quality, Stability, and Variation, ICLR 2018
Kelly and Guerrero et al., FrankenGAN: Guided Detail Synthesis for Building Mass Models using Style-Synchonized GANSs, Siggraph Asia 2018

GAN Isola et al., Image-to-Image Translation with Conditional Adversarial Nets, CVPR 2017
= S'EERAPH Image Credit: Zhu et al. , Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks , ICCV 2017
ASIA 2618 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 30
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Image-to-image Translation

* = |earn a mapping between images from example pairs

* Approximate sampling from a conditional distribution pqata( | ¢)

/W ////
SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 31

Image Credit: Image-to-Image Translation with Conditional Adversarial Nets, Isola et al.



Adversarial Loss vs. Manual Loss

Problem: A good loss function is often hard to find
ldea: Train a network to discriminate between network output and ground truth

‘L’\ ey b T N /
lﬁ/“"’}’j R l-_ (i /z§ P
2s VO
i Z"Z;‘/ /f o ‘%l:\ !J s

&\7’\\ \)i \1 "ﬁ?ﬂ;fﬁ; (
g ANSE
'i‘",tL ‘)t j

Simplification | | Discriminator Target
Network Network Label

= SIEERARH Images from: Simo-Serra, lizuka and Ishikawa, Mastering Sketching, Siggraph 2018
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CycleGANs

* Less supervision than CGANs: mapping between unpaired datasets
* Two GANSs + cycle consistency

Monet Z_  Photos

Paired | Unpaired
L Yi f

oo 0 -9

Image Credit: Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks, Zhu et al.




CycleGAN: Two GAN:Ss ...

* Not conditional, so this alone does not constrain generator input and output to match

D1P1 (j) C¢2 (:&)
T le:discriminatorl T C¢2 :discriminator2

Y
G91 :generatorl T F92 :generator2

Image Credit: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, Zhu et al.



CycleGAN: ... and Cycle Consistency

= -~

":rj’- Ad S

& ~ L

e

LR

S dkARsa S, A
L e

: SO

¥
o
L

L1 Loss function:
ly — 3l

L1 Loss function:
|z — 2|1

.‘"H’;.R“l!

Image Credit: Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks, Zhu et al.




The Conditional Distribution in CGANSs

A - p(B|A)

(a) Input night image

Image from: Zhu et al., Toward Multimodal Image-to-Image Translation, NIPS 2017
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The Conditional Distribution in CGANSs

Pix2|?ix |

~ SIRERARH Zhu et al., Toward Multimodal Image-to- Image Translation, NIPS 2017
A 8 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 37




BicycleGAN

KL-divergence
loss

_.Hﬂ

encoder

10

’
*
*
.
.
.
.
.
.
.
.
.
e®
““““
anun®
----------

L2 loss
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BicycleGAN

. L2 loss
KL-divergence ... a3, -
loss . ] .
| =3
encoder
—
~ p(B|A)
generator' -

cyclel .. HH adversarial loss
L2 loss discriminator

9 SIGERAPH . . , ,
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FrankenGAN

input: 1%t step: 29 step: 3" step:
facade shapewindow/door  taxtyre  sem. labels

separate
training sets:

¢,S\ [ 291@ SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 40
TOKYO




Progressive GAN

e Resolution is increased progressively during training
* Also other tricks like using minibatch statistics and normalizing feature vectors

G Latent Latent Latent

v 4
b
| 8)‘(8 | | | ] |
: l |
| ]
| | [ ]
i i [ ]
i : l ]
| ! 1024x1024 |
E. B. - B
i ! Reals . iReals . iReaIs
D = = 1024x1024 |
! ! [ I I ]
[ ]
| ]
. v v I ]
i | 8x8 | = B
4x4 ax4
Training progresses >

SlEERAPH Karras et al., Progressive Growing of GANs for Improved Quality, Stab///ty and Variation, ICLR 2018
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StackGAN

Condition does not have to be an image

condition low-res generator low-res disc. This flower has white petals
: B ] B with a yellow tip and a yellow pistil

H H

A large bird has large thighs and large wings that
= have white wingbars

/
high-res generator high-res disc.

Zhang et al., StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks, ICCV 2017
SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 42




Disentanglement

specified property: number

|10\ 23561 F,9
olo /23456789
"0\ 234567 %9
[ 2|10 1 23456789
3|0 A34S5678¢%
|0/ R2 ¥Ys 7 #¢<
AS|IO 1 L3Y 5 b7 8 ¢
[lelo 1 234567 8¢
1101 234S 67¢%¢
FIO/ 23 Y5678 F¢
Q|0 | 23465 67 % 9

b= SICERAPH

A ASIA 2015
TOKY

% Entangled: different properties may be mixed up over all dimensions
ZallZp - - Disentangled: different properties are in different dimensions

specified property: character

other properties
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e
LR
$
..T.
aa
L
-
e
sl
*
fwt
e
..

R A SEE SR DR Cae e e e

Mathieu et al., Disentangling factors of variation in deep representations using adversarial training, NIPS 2016



Attention and Gray Box Learning

OOOOO



Attention in Deep Learning

target: horizontal mirroring
UNet

Why is this hard for the network?

1) Locality of convolutions
2) Driven only by data from shallower layers (no semantics)

SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
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Attention in Deep Learning

Problem: architecture constrains information flow. For example, in a typical
CNN, at a given image location (red), information about other image locations
(grey) is available in a resolution that depends on the spatial distance.

input

input image image
R e— = = = = = layer 1
\features
receptive field layer 2
for high-res features

information layer 3

> featu res
low spatial
/ / resolution

_ : . high spatial
receptive field for low-res information resolution

@ SIGGRAPH . . : :
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Attention Based on Semantics

ldea: use higher-level semantics to select relevant information

Spatial Transformer Networks Residual Attention Network
for Image Classification

[ g

Sampler

Spatial Transformer

Attention
S~ l

L

— I

Jaderberg et al., Spatial Transformer Networks, NIPS 2015 Wang et al., Residual Attention Network for Image Classification, CVPR 2017

% SIGERAPH . : : :
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Attention to Distant Details

ldea: gather information from distant details based on their features

Non-local Neural Networks Attention GAN

Wang et al., Non-local Neural Networks, CVPR 2018 Zhang et al., Self-Attention Generative Adversarial Networks, CVPR 2018

9 SIGGRAPH | . : :
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Attention to Distant Details

ldea: gather information from distant details based on their features

N x M x C4
f(X) .#. : .. N *M N *M
|  transpose " Xt'
convolution “1x1cony 2 5SS attention
e map

feature maps (x) v softmax N x M x Cy
N x M x C4 & ﬂ self-attention
1]l ﬂ g(x) [ .,Il | feature maps (o)

Zhang et al., Self-Attention Generative Adversarial Networks, CVPR 2018

mh SlEElquJH . . N . .
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Squeeze and Excitation: Attention over Channels

ldea: weigh (emphasize and suppress) channels based on global information

F, (,W)

X U F,, () ~ ] ML
/////,/’/' 1x1xC 1x1xC \\\\\\\\\‘
H

K, . H Fscate () A

el

Hu et al., Squeeze-and-Excitation Networks, CVPR 2018

@ SIGGRAPH . : : :
ASIA 2618 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 50
T Y




Gray Box Learning

Problem: Most networks are black boxes.
ldea: Regress parameters for a small set of well-known operations.

Expo.m Tone Expo., Tone m
Gam. Cst. Gam. Cst.
W.B. BW WBE. BW
Satu. Color Satu. Color
Exposure +2.15 Ton
|
Expo. Tone Expa. Tone
Gam. Cst n Gam. mm Cst.
WB. BW WBE. BW
Satu Color Satu. Color
Contrast —0.59 Gamma 1/0.77
|
— User Rating
iy A Average 2.47 3.30 3.37 3.43 3.66 >
Satu. Color mu| e Phﬂtﬂ | | I I I
CycleGAN Human Pix2pix Exposure Human
Color ;
(paired data needed) (ours) (expeﬂ)

Hu et al., Exposure: A White-Box Photo Post-Processing Framework, Siggraph 2018
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Summary

e Common Architecture Elements
(Dilated Convolution, Grouped Convolutions)

* Deep Features
(Autoencoders, Transfer Learning, One-shot Learning, Style Transfer)

* Adversarial Image Generation
(GANs, CGANSs)

* Interesting Trends
(Attention, “Gray Box” Learning)
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Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/
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InfoGAN

varying C;

< >
NIEEXENYEE Dy (%)
Ol 23456783 T D¢ :discriminator
Glo 1 234567819 -
O/ 2R3 4566789
01234567839
"V VLt l 7/
V88 S 86§ & &4 z -
212 3233333323
4999999997 T (g generator | maximize
S5 55555555 mutual information
NN NN I(c;Gy(z,¢))
f ¢ 6666565888 p—
213 333333333 ° x| Z]|C
149499999999 gi
5555555555 & p(2)

Image Credit: InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets, Chen et al.
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