

CreativeAI: Deep Learning for Graphics

Image Domains

Niloy Mitra

UCL

Iasonas Kokkinos

UCL

Paul Guerrero

UCL

Nils Thuerey

TUM

Tobias Ritschel

UCL

Timetable

_			Niloy	Paul	Nils
Theory and Basics	Introduction	2:15 pm	Χ	Χ	X
	Machine Learning Basics	~ 2:25 pm	X		
	Neural Network Basics	~ 2:55 pm			X
	Feature Visualization	~ 3:25 pm		X	
	Alternatives to Direct Supervision	~ 3:35 pm		Χ	
_		—— 15 min. br	eak ———		
State of the Art	Image Domains	4:15 pm		X	
	3D Domains	~ 4:45 pm	Χ		
	Motion and Physics	~ 5:15 pm			X
	Discussion	~ 5:45 pm	X	X	X

Overview

Examples of deep learning techniques that are commonly used in the image domain:

- Common Architecture Elements (Dilated Convolution, Grouped Convolutions)
- Deep Features
 (Autoencoders, Transfer Learning, One-shot Learning, Style Transfer)
- Adversarial Image Generation (GANs, CGANs)
- Interesting Trends (Attention, "Gray Box" Learning)

Common Architecture Elements

Classification, Segmentation, Detection

ImageNet classification performance

(for up-to-date top-performers see leaderboards of datasets like ImageNet or COCO)

Architecture Elements

Some notable architecture elements shared by many successful architectures:

Residual Blocks and Dense Blocks

Skip Connections (UNet)

Attention (Spatial and over Channels)

Dilated (Atrous) Convolutions

Problem: increasing the receptive field costs a lots of parameters.

Idea: spread out the samples used in each convolution.

dilated convolution

1st layer: not dilated 3x3 recep. field

2nd layer: 1-dilated 7x7 recep. field

3rd layer: 2-dilated 15x15 recep. field

Images from: Dumoulin and Visin, A guide to convolution arithmetic for deep learning, arXiv 2016 Yu and Koltun, Multi-scale Context Aggregation by Dilated Convolutions, ICLR 2016

Dilated (Atrous) Convolutions

Problem: increasing the receptive field costs a lots of parameters.

Idea: spread out the samples used for a convolution.

dilated convolution

3rd layer: 2-dilated 15x15 recep. field

2nd layer: 1-dilated 7x7 recep. field

1st layer: not dilated 3x3 recep. field

Input image

Dumoulin and Visin, A guide to convolution arithmetic for deep learning, arXiv 2016

Grouped Convolutions (Inception Modules)

Problem: conv. parameters grow quadratically in the number of channels Idea: split channels into groups, remove connections between different groups

Example: Sketch Simplification

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

Example: Sketch Simplification

- Loss for thin edges saturates easily
- Authors take extra steps to align input and ground truth edges

Pencil: input

Red: ground truth

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

Image Decomposition

- A selection of methods:
- Direct Instrinsics, Narihira et al., 2015
- Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition, Zhou et al., 2015
- Decomposing Single Images for Layered Photo Retouching, Innamorati et al. 2017

Image Decomposition: Decomposing Single Images for Layered Photo Retouching

Example Application: Denoising

Deep Features

Autoencoders

- Features learned by deep networks are useful for a large range of tasks.
- An autoencoder is a simple way to obtain these features.
- Does not require additional supervision.

Manash Kumar Mandal, Implementing PCA, Feedforward and Convolutional Autoencoders and using it for Image Reconstruction, Retrieval & Compression, https://blog.manash.me/

Shared Feature Space: Interactive Garments

Transfer Learning

Features extracted by well-trained CNNs often generalize beyond the task

they were trained on

input image

original task (normals)

new task (edges)

Taxonomy of Tasks: Taskonomy

Images from: Zamir et al., Taskonomy: Disentangling Task Transfer Learning, CVPR 2018

Taxonomy of Tasks: Taskonomy

Few-shot, One-shot Learning

- With a good feature space, tasks become easier
- In classification, for example, nearest neighbors might already be good enough
- Often trained with a Siamese network, to optimize the metric in feature space

Feature training: lots of examples from class subset A

One-shot: train regressor with one example of each class in class subset B

https://hackernoon.com/one-shot-learning-with-siamese-networks-in-pytorch-8ddaab10340e

Style Transfer

Combine content from image A with style from image B

Images from: Gatys et al., Image Style Transfer using Convolutional Neural Networks, CVPR 2016

What is Style and Content?

Remember that features in a CNN often generalize well.

Define style and content using the layers of a CNN (VGG19 for example):

Optimize for Style A and Content B

same pre-trained networks, fix weights

Style Transfer: Follow-Ups

more control over the result

(a) Content

(b) Style I

(c) Style II

feed-forward networks

Images from: Gatys, et al., Controlling Perceptual Factors in Neural Style Transfer, CVPR 2017 Johnson et al., Perceptual Losses for Real-Time Style Transfer and Super-Resolution, ECCV 2016

Style Transfer for Videos

Adversarial Image Generation

Generative Adversarial Networks

➤ Player 1: generator

Scores if discriminator can't distinguish output from real image

from dataset

Player 2: discriminator → real/fake Scores if it can distinguish between real and fake

GANs to CGANs (Conditional GANs)

GAN CGAN

Karras et al., Progressive Growing of GANs for Improved Quality, Stability, and Variation, ICLR 2018
Kelly and Guerrero et al., FrankenGAN: Guided Detail Synthesis for Building Mass Models using Style-Synchonized GANs, Siggraph Asia 2018
Isola et al., Image-to-Image Translation with Conditional Adversarial Nets, CVPR 2017

Image Credit: Zhu et al. , *Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks* , ICCV 2017

Image-to-image Translation

• ≈ learn a mapping between images from example pairs

• Approximate sampling from a conditional distribution $p_{\mathrm{data}}(x \mid c)$

Adversarial Loss vs. Manual Loss

Problem: A good loss function is often hard to find

Idea: Train a network to discriminate between network output and ground truth

CycleGANs

- Less supervision than CGANs: mapping between unpaired datasets
- Two GANs + cycle consistency

CycleGAN: Two GANs ...

• Not conditional, so this alone does not constrain generator input and output to match

CycleGAN: ... and Cycle Consistency

Image Credit: *Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks*, Zhu et al.

The Conditional Distribution in CGANs

The Conditional Distribution in CGANs

Zhu et al., Toward Multimodal Image-to-Image Translation, NIPS 2017

BicycleGAN

BicycleGAN

FrankenGAN

Progressive GAN

- Resolution is increased progressively during training
- Also other tricks like using minibatch statistics and normalizing feature vectors

StackGAN

Condition does not have to be an image

This flower has white petals with a yellow tip and a yellow pistil

A large bird has large thighs and large wings that have white wingbars

Disentanglement

z

 $z_a z_b \cdots$

Entangled: different properties may be mixed up over all dimensions

Disentangled: different properties are in different dimensions

specified property: number

specified property: character

Attention and Gray Box Learning

Attention in Deep Learning

target: horizontal mirroring

Why is this hard for the network?

- 1) Locality of convolutions
- Driven only by data from shallower layers (no semantics)

Attention in Deep Learning

Problem: architecture constrains information flow. For example, in a typical CNN, at a given image location (red), information about other image locations (grey) is available in a resolution that depends on the spatial distance.

Attention Based on Semantics

Idea: use higher-level semantics to select relevant information

Spatial Transformer Networks

Jaderberg et al., Spatial Transformer Networks, NIPS 2015

Residual Attention Network for Image Classification

Wang et al., Residual Attention Network for Image Classification, CVPR 2017

Attention to Distant Details

Idea: gather information from distant details based on their features

Non-local Neural Networks

Wang et al., Non-local Neural Networks, CVPR 2018

Attention GAN

Zhang et al., Self-Attention Generative Adversarial Networks, CVPR 2018

Attention to Distant Details

Idea: gather information from distant details based on their features

Zhang et al., Self-Attention Generative Adversarial Networks, CVPR 2018

Squeeze and Excitation: Attention over Channels

Idea: weigh (emphasize and suppress) channels based on global information

Gray Box Learning

Problem: Most networks are black boxes.

Idea: Regress parameters for a small set of well-known operations.

Hu et al., Exposure: A White-Box Photo Post-Processing Framework, Siggraph 2018

Summary

- Common Architecture Elements (Dilated Convolution, Grouped Convolutions)
- Deep Features
 (Autoencoders, Transfer Learning, One-shot Learning, Style Transfer)
- Adversarial Image Generation (GANs, CGANs)
- Interesting Trends
 (Attention, "Gray Box" Learning)

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/

InfoGAN

Image Credit: *InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets*, Chen et al.