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Computer Animation

» Feature detection (image features, point features)

Denoising, Smooth

Embedding, Distar

Rendering

Animation

Physical simulation

 Generative models
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e Motion over time
e Loads of data, expensive

e Relationships between spatial
and temporal changes
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Character Animation

» Learn controllers for character rigs

* Powerful and natural

* Beyond the scope of this course...

[A Deep Learning Framework for
Character Motion Synthesis and
Editing, SIGGRAPH 2016]
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[DeepLoco: Dynamic Locomotion Skills
Using Hierarchical Deep Reinforcement
Learning, SIGGRAPH 2017]

[Mode-Adaptive Neural Networks
for Quadruped Motion Control,
SIGGRAPH 2018]

[DeepMimic: Example-Guided Deep
Reinforcement Learning of Physics-Based
Character Skills, SIGGRAPH 2018]
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Physics-Based Animation

» Leverage physical models
« Examples:
* Rigid bodies
* Cloth
» Deformable objects
 Fluids




Physics-Based Animation

Skip Theory with Deep Learning?

[No! More on that later...]
- N
s = "

N
s’ 4

Observations / data Model equations Discrete representation
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Physics-Based Animation

 Better goal: suitable physical models

» Nature = Partial Differential Equations (PDEs)
* Hence we are aiming for solving PDEs with deep learning (DL)
« Requirement: “regularity” of the targeted function

“Bypass the solving of evolution equations when these equations conceptually exist
but are not available or known in closed form.” [Kevrekidis et al.]
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Partial Differential Equations

» Typical problem formulation: unknown
function u(zi,...,7,)

* PDE of the general form:

f( ou ou 0*u  O%*u ) 0

. 8331 T 8£Cn; 82581 ’ ({95171(92172 T
* Solve in domain © , with boundary

conditions on boundary I

 Traditionally: discretize & solve numerically.
Here: also discretize, but solve with DL...

zq@ SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
Y O



Methodology 1

 Viewpoints: holistic or partial
[partial also meaning “coarse graining” or “sub-grid / up-res’]
* Influences complexity and non-linearity of solution space
 Trade off computation vs accuracy:
» Target most costly parts of solving

* Often at the expense of accuracy
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Methodology 2

» Consider dimensionality & structure of discretization

* Fully connected NNs only choice
* Only if necessary...

« Employ convolutional NNs

 Usually well suited
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Solving PDEs with DL

 Practical example: airfoil flow
* Given boundary conditions solve stationary flow problem on grid
 Fully replace traditional solver
» 2D data, no time dimension

* |.e., holistic approach with structured data
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Solving PDEs with DL

* Data generation
 Large number of pairs: input (BCs) - targets (solutions

Inference region

Different free stream
Velocities

Airfoil profile Generated mesh

YTy

Full simulation domain
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Boundary
Conditions

Solving PDEs with DL

* Data generation

Freestream X

« Example pair

128 x 128 x 1

* Note - boundary conditions (i.e.
input fields) are typically
constant

Freestream Y

 Rasterized airfoil shape present
in all three input fields

Mask
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Velocity X Pressure

Velocity Y

Target

128 x 128 x 1
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Solving PDEs with DL

 U-net NN architecture

|nput OUtpUt

128x128x 3

[ Skip connections

64 x 64 x 128

128 x 128 x 3

32 x 32 x 256 4
64 x 64 x 64 _* 16 x 16 x 256

32x32x 128

_* 8x8x512 f

. 16x 16 x 128 ‘ dxsx 10 4 4 x 4 convolution
Reduce Spatlal : 2 x 2 convolution

d " [ Ax4x512 } - _* 2 x 2 resize-convolution
I m e n S I O n S _____ ; f 4 x 4 resize-convolution

2x2x512 XD' el f I ncrease Spatlal Feature-wise concatenation
dimensions
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Solving PDEs with DL

 U-net NN architecture

Input Output

* Unet structure highly suitable for PDE solving

» Makes boundary condition information available throughout
* Crucial for inference of solution
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Solving PDEs with DL

 Training: 80.000 iterations with ADAM optimizer
» Convolutions with enough data - no dropout necessary
 Learning rate decay stabilizes models
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Pressure Velocity X Velocity Y

Results

Target

(A) Regular data

» Use knowledge about
physics to simplify
space of solutions:
make quantities
dimension- less

« Significant gains in
inference accuracy

(B) Dimension less




Validation loss

Solving PDEs with DL

» Validation and test accuracy for different model sizes
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Code example

Solving PDEs with DL



Solving PDEs with DL

 Source code and training data available
« Requirements: numpy / pytorch , OpenFOAM for data generation

* Details at:
https://github.com/thunil/Deep-Flow-Prediction and
http://geometry.cs.ucl.ac.uk/creativeai/
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https://github.com/thunil/Deep-Flow-Prediction
http://geometry.cs.ucl.ac.uk/creativeai/

Additional Examples

» Elasticity: material models

 Fluids: up-res algorithm & dimensionality reduction
* By no means exhaustive...
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Neural Material - Elasticity

 Learn correction of regular FEM simulation for complex materials

NeoHookean Training
GT: NeoHookean, E = 2e4 Nominal: Co-rotational, E = 3.5e4

Ground Truth Initial Result

[Neural Material: Learning Elastic Constitutive Material and Damping Models from Sparse Data, arXiv 2018] 21



Neural Material - Elasticity

 Learn correction of regular FEM simulation for complex materials
 “Partial” approach
* Numerical simulation with flexible NN for material behavior

[Neural Material: Learning Elastic Constitutive Material and Damping Models from Sparse Data, arXiv 2018]



Temporal Data

* tempoGAN: 3D GAN
with temporal
coherence

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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Temporal Data

* tempoGAN: 3D GAN
with temporal
coherence

Xa

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018] 24



Temporal Data

* tempoGAN: 3D GAN
with temporal
coherence

Xa

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018] 25



Te m p O ra l D ata “Loss” for generator

* tempoGAN: 3D GAN
with temporal
coherence

yei Yoo Y

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]
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Temporal Data

* tempoGAN: 3D GAN
with temporal

Xa
coherence

Xt-1

Xt

Xt+1

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018] 27



Temporal Data

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018] 28




Latent Spaces

 Learn flexible reduced representation for physics problems

[Deep Fluids: A Generative Network for Parameterized Fluid Simulations, arXiv 2018]
[Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, arXiv 2018]
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Latent Spaces

 Learn flexible reduced representation for physics problems
« Employ Encoder part (E) of Autoencoder network to reduce dimensions
 Predict future state in latent space with FC network

» Use Decoder (D) of Autoencoder to retrieve volume data

t+1

n N

t-2 t-1 t
FC D
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Latent Spaces

 Learn flexible reduced representation for physics problems

Latent Space Simulation: New Source Motion

Perspective View Front View

[Deep Fluids: A Generative Network for Parameterized Fluid Simulations, arXiv 2018]
[Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, arXiv 2018]
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Summary

* Checklist for solving PDEs with DL:
v Model? (Typically given)
v Data? Can enough training data be generated?
v Which NN Architecture?
v Fine tuning: learning rate, number of layers & features?

v Hyper-parameters, activation functions etc.?

SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics

32



Summary

* Approach PDE solving with DL like solving with traditional
numerical methods:

- Find closest example in literature
- Reproduce & test

- Then vary, adjust, refine ...
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Thank you!

http://geometry.cs.ucl.ac.uk/creativeai/
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