

Deep Learning for Graphics

Niloy Mitra
UCL

Iasonas Kokkinos
UCL/Facebook

Paul Guerrero
UCL

Vladimir Kim Adobe Research

Kostas Rematas
U Washington

Tobias Ritschel
UCL

Niloy Mitra

lasonas Kokkinos

lasonas Kokkinos

Paul Guerrero

lasonas Kokkinos

Paul Guerrero

Vladimir Kim

lasonas Kokkinos

Paul Guerrero

Vladimir Kim

Kostas Rematas

lasonas Kokkinos

Paul Guerrero

Vladimir Kim

Kostas Rematas

Tobias Ritschel

Part I: Introduction and ML Basics

Part I: Introduction and ML Basics

Part II: Supervised Neural Networks: Theory and Applications

Part I: Introduction and ML Basics

Part II: Supervised Neural Networks: Theory and Applications

Part III: Unsupervised Neural Networks: Theory and Applications

Part I: Introduction and ML Basics

Part II: Supervised Neural Networks: Theory and Applications

Part III: Unsupervised Neural Networks: Theory and Applications

Part IV: Beyond Image Data

- Part I: Introduction and ML Basics
- Part II: Supervised Neural Networks: Theory and Applications
- Part III: Unsupervised Neural Networks: Theory and Applications
- Part IV: Beyond Image Data

Four 1.5hr sessions with breaks as per EG timetable.

Code Examples

```
PCA/SVD basis
Linear Regression
Polynomial Regression
Stochastic Gradient Descent vs. Gradient Descent
Multi-layer Perceptron
Edge Filter 'Network'
Convolutional Network
Filter Visualization
Weight Initialization Strategies
Colorization Network
Autoencoder
Variational Autoencoder
Generative Adversarial Network
```


http://geometry.cs.ucl.ac.uk/dl4g/

• This tutorial is given for the first time!

- This tutorial is given for the first time!
- Our aim is to convey what we found to be relevant so far.

- This tutorial is given for the first time!
- Our aim is to convey what we found to be relevant so far.
- You are invited/encouraged to give feedback
 - On-line form
 - Speakup. Please send us your criticism/comments/suggestions
 - Ask questions, please!

- This tutorial is given for the first time!
- Our aim is to convey what we found to be relevant so far.
- You are invited/encouraged to give feedback
 - On-line form
 - Speakup. Please send us your criticism/comments/suggestions
 - Ask questions, please!
- Thanks to many people who helped so far with slides/comments.

Part I: Introduction and ML Basics

Part II: Supervised Neural Networks: Theory and Applications

Part III: Unsupervised Neural Networks: Theory and Applications

Part IV: Beyond Image Data

• Images (e.g., pixel grid)

• Images (e.g., pixel grid)

Volume (e.g., voxel grid)

• Images (e.g., pixel grid)

Volume (e.g., voxel grid)

Meshes (e.g., vertices/edges/faces)

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)
- Meshes (e.g., vertices/edges/faces)
- Animation (e.g., skeletal positions over time; cloth dynamics over time)

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)
- Meshes (e.g., vertices/edges/faces)
- Animation (e.g., skeletal positions over time; cloth dynamics over time)
- Pointclouds (e.g., point arrays)

- Images (e.g., pixel grid)
- Volume (e.g., voxel grid)
- Meshes (e.g., vertices/edges/faces)
- Animation (e.g., skeletal positions over time; cloth dynamics over time)
- Pointclouds (e.g., point arrays)
- Physics simulations (e.g., fluid flow over space/time)

Problems in Computer Graphics

• Feature detection (image features, point features)

$$\mathbb{R}^{m \times m} \to \mathbb{Z}$$

• Denoising, Smoothing, etc.

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

• Embedding, Distance computation

$$\mathbb{R}^{m \times m, m \times m} \to \mathbb{R}^d$$

Rendering

$$\mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$$

Animation

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

Physical simulation

$$\mathbb{R}^{3m \times t} \to \mathbb{R}^{3m}$$

Generative models

$$\mathbb{R}^d \to \mathbb{R}^{m \times m}$$

Labelled data (supervision data)

Labelled data (supervision data)

ML algorithm

Trained model

Data-driven Algorithms (Supervised)

Data-driven Algorithms (Supervised)

Data-driven Algorithms (Supervised)

Implementation Practice: Training: 70%; Validation: 15%; Test 15%

Data-driven Algorithms (Unsupervised)

Implementation Practice: Training: 70%; Validation: 15%; Test 15%

Rise of Learning

- 1958: Perceptron
- 1974: Backpropagation
- 1981: Hubel & Wiesel wins Nobel prize for 'visual system'
- 1990s: SVM era
- 1998: CNN used for handwriting analysis
- 2012: AlexNet wins ImageNet

Rise of Machine Learning (in Graphics)

machine learning

neural network

• Image Processing (image translation tasks)

• Image Processing (image translation tasks)

 Many sources of input data — model building (e.g., images, scanners, motion capture)

- Image Processing (image translation tasks)
- Many sources of input data model building (e.g., images, scanners, motion capture)
- Many sources of synthetic data can serve as supervision data (e.g., rendering, animation)

- Image Processing (image translation tasks)
- Many sources of input data model building (e.g., images, scanners, motion capture)
- Many sources of synthetic data can serve as supervision data (e.g., rendering, animation)
- Many problems in generative models

End-to-end: Features

End-to-end: Features

- Old days
 - First some handy features were extracted, e.g. edges or corners (hand-crafted)
 - Second, some AI was ran on that features (optimized)

End-to-end: Features

- Old days
 - First some handy features were extracted, e.g. edges or corners (hand-crafted)
 - Second, some AI was ran on that features (optimized)
- Now
 - End-to-end
 - Move away from hand-crafted representations

- Old days
 - Evaluation came after
 - It was a bit optional:
 - You might still have a good algorithm without a good way of quantifying it
 - Evaluation helped publishing

- Old days
 - Evaluation came after
 - It was a bit optional:
 - You might still have a good algorithm without a good way of quantifying it
 - Evaluation helped publishing
- Now
 - It is essential and build-in
 - If the loss is not good, the result is not good
 - Evaluation happens automatically

- Old days
 - Evaluation came after
 - It was a bit optional:
 - You might still have a good algorithm without a good way of quantifying it
 - Evaluation helped publishing
- Now
 - It is essential and build-in
 - If the loss is not good, the result is not good
 - Evaluation happens automatically
- While still much is left to do, this makes graphics much more reproducable

End-to-end: Data

End-to-end: Data

- Old days
 - Test with some toy examples
 - Deploy on real stuff
 - Maybe collect some data later

End-to-end: Data

Old days

- Test with some toy examples
- Deploy on real stuff
- Maybe collect some data later

Now

- Test and deploy need to be as identical as you can
- Need to collect data first
- No two steps

Examples in Graphics

Geometry

Image manipulation

Animation

Rendering

Examples in Graphics

Geometry

Colorization

Procedural modelling

Mesh segmentation

Learning deformations

Sketch simplification

Image

manipulation

Animation

BRDF estimation

Fluid

Boxification

Real-time rendering

Rendering

Animation

Denoising Facial animation PCD processing

Examples in Graphics

Sketch simplification

Real-time rendering

Colorization

BRDF estimation

Denoising

Procedural modelling

Fluid

Mesh segmentation

Learning deformations

Animation

Facial animation

Boxification

PCD processing

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/dl4g/

