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NN Basics X X X

Supervised Applications
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Beyond 2D X X X X

Outlook X X X X X X X



Introduction to Neural Networks
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Examples:

: function parameters,

these are learned

: source domain : target domain

Image Classification:
: image dimensions : class count

Image Synthesis:
: image dimensions: latent variable count

Goal: Learn a Parametric Function
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Feature coordinate 
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Each data point has a class label:

Machine Learning 101: Linear Classifier
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Sec. 15.2.3

Nonlinear decision boundaries
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Given a library of simple functions

Compose into a

complicated function

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Building A Complicated Function
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Given a library of simple functions

Compose into a

complicated function

Idea 1: Linear Combinations

• Boosting

• Kernels

• …

Building A Complicated Function
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Given a library of simple functions

Compose into a

complicated function

Idea 2: Compositions

• Decision Trees

• Deep Learning

Building A Complicated Function
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Given a library of simple functions

Compose into a

complicated function

Idea 2: Compositions

• Decision Trees

• Grammar models

• Deep Learning  

Building A Complicated Function
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Sigmoidal activation 

basic building block

‘Neuron’: Cascade of Linear and Nonlinear Function
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Sigmoidal (“logistic”)Step (“perceptron”) Hyperbolic tangent Rectified Linear Unit
(RELU)

function

derivative

Image Credit: Olivier Grisel and Charles Ollion

Activation functions
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non-adaptive

hand-coded

features

output units  e.g. 

class labels

input units 

e.g. pixels

Apple Orange

Fixed 

mapping

Slide credit: G. Hinton

Perceptrons (60’s)

XOR: perceptron killer
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input vector

hidden 

layers

outputs

Slide credit: G. Hinton

Multi-Layer Perceptrons (~1985)
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Sec. 15.2.3

This is what the hidden layers

should be doing! 

Reminder: Non-linear decision boundaries
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Evolution of isocontours as parameters change

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Nonlinear mapping
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Non-linearly 

separable data
Data mapped to

learned space 
Decision function

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

From non-separable to linearly separable
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http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linearizing a 2D classification task (4 hidden layers)
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Points in 1D, 

Decision in 2D

Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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Intuition: learn “dictionary” for objects

“Distributed representation”:
represent (and classify) objects by mixing & mashing reusable parts 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Hidden Layers: intuitively, what do they do?
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“car”

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Deep Learning = Hierarchical Compositionality
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Trainable 

Classifier

Low-Level

Feature

Mid-Level

Feature

High-Level

Feature

“car”

Deep Learning = Hierarchical Compositionality
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MLP Demo: playground.tensorflow.org

http://playground.tensorflow.org/
http://playground.tensorflow.org/
http://playground.tensorflow.org/


Training and Optimization
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Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Residual Networks

Old: 

New: (last 5-6 years)

Back-propagation algorithm

Neural Network Training: Old & New Tricks
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Our network implements a parametric function:

During training, we search for parameters that minimize a loss:

Example: L2 regression loss given target                pairs :

Training Goal
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Initialize:

Update:

We can always make it converge for a convex function

Gradient Descent Minimization Method
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Empirically all are almost equally good

Central research topic: how can this happen?

On to the gradients!

Multiple Local Minima, based on initialization
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Forward

Backward

All you need is gradients
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Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Chain Rule
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Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Chain Rule
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Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

‘Another Brick in the Wall’
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Composition of differentiable blocks: 

Toy example: single sigmoidal unit 
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Computation graph & automatic differentiation

Slide Credit: Justin Johnson
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input vector

hidden 

layers

outputs

Multi-Layer Perceptrons

Slide Credit: G. Hinton
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input vector

hidden 

layers

outputs

Back-propagate                

error signal to get 

derivatives for 

learning

Compare outputs 

with correct answer

to get error signal

Multi-Layer Perceptrons

Slide Credit: G. Hinton
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Back-propagation Algorithm
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Our network implements a parametric function:

During training, we search for parameters that minimize a loss:

Example: L2 regression loss given target                pairs :

Training Goal
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Inputs Outputs

Hidden layer

Parameters:

A Neural Network for Multi-way Classification 
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Inputs Outputs

Hidden layer

A Neural Network in Forward Mode
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Inputs Outputs

Hidden layer

A Neural Network in Forward Mode
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Inputs

Hidden layer

Outputs

A Neural Network in Forward Mode
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Inputs

Hidden layer

Outputs

A Neural Network in Forward Mode
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Outputs
Ground

truth

Objective for linear regression
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Outputs

Softmax unit

Ground

truth

`Cross-entropy’ loss

Objective for multi-class classification
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Network output:

Loss (prediction error):  

What we need to compute for gradient descent: 

Neural network in forward mode: recap
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Outputs

A Neural Network in Backward Mode
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Hidden layer

Outputs

This we want

?

A Neural Network in Backward Mode
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Hidden layer

Outputs

This we want

?

A Neural Network in Backward Mode



EG Course Deep Learning for Graphics

Linear Layer in Forward Mode: All For One
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Linear Layer in Backward Mode: One From All
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Linear Layer Parameters in Backward: 1-to-1
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Outputs

This we want

Hidden layer

This we have
This we computed

A Neural Network in Backward Mode
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Hidden layer

Outputs

This we want This we have
This we computed

A Neural Network in Backward Mode
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Hidden layer

Outputs

A Neural Network in Backward Mode
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Hidden layer

Outputs

A Neural Network in Backward Mode
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Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: 

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

Back-propagation algorithm
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Back-prop for 

i-th example

If N=106 , we will need to run back-prop 106  times to update W once!

Gradient descent:

(l,k,m) element of gradient vector:

Per-sample loss
Per-layer regularization

Training Objective for N training samples
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Gradient:

Noisy (‘Stochastic’) Gradient: b(1), b(2),…, b(B): sampled from [1,N]Minibatch: B elements

Epoch: N samples, N/B batches

Batch: [1..N]

Stochastic Gradient Descent (SGD)
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Code example 

Gradient Descent 

vs

Stochastic Gradient Descent

62
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Back-prop on minibatch ‘’Weight decay’’

Gradient:

Noisy (‘Stochastic’) Gradient: b(1), b(2),…, b(B): sampled from [1,N]Minibatch: B elements

Epoch: N samples, N/B batches

Batch: [1..N]

Regularization in SGD: Weight Decay
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Learning rate
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Gradient Descent
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e.g.

(S)GD with adaptable stepsize
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Main idea: retain long-term trend of updates, drop oscillations

(S)GD

(S)GD + momentum

(S)GD with momentum
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Code example 

68

Multi-layer perceptron classification
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• Nesterov’s Accelerated Gradient (NAG)

• R-prop 

• AdaGrad

• RMSProp

• AdaDelta

• Adam

• …

Step-size Selection & Optimizers: research problem
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Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks
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Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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Reminder: Overfitting, in images
Classification

Regression

just right
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Per-sample loss Per-layer regularization

Previously: l2 Regularization
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Each sample is processed by a ‘decimated’ neural net

Decimated nets: distinct classifiers

But: they should all do the same job

Dropout
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‘Feature noising’

Dropout block
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Test time: Deterministic Approximation
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Dropout Performance
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Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks



EG Course Deep Learning for Graphics

Sigmoidal (“logistic”) Rectified Linear Unit (RELU)

‘Neuron’: Cascade of Linear and Nonlinear Function
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Outputs

Gradient signal 

from above
scaling: <1  (actually <0.25)

Reminder: a network in backward mode
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Gradient signal 

from above scaling: <1  (actually <0.25)

Do this 10 times: updates in the first layers get minimal

Top layer knows what to do, lower layers “don’t get it”

Sigmoidal Unit: Signal is not getting through! 

Vanishing Gradients Problem
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Scaling: {0,1}Gradient signal 

from above

Vanishing Gradients Problem: ReLU Solves It
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Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks



EG Course Deep Learning for Graphics

10 am 2pm 7pm

External Covariate Shift: your input changes
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• Make each patch have zero mean:

• Then make it have unit variance:

Photometric  transformation:   I  a I + b

“Whitening”: Set Mean = 0, Variance = 1
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Neural network activations during training: moving target

Internal Covariate Shift
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Whiten-as-you-go: 

Batch Normalization
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Batch Normalization: used in all current systems



Convolutional Neural Networks
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Example:  200x200 image

40K hidden units

~2B parameters!!!

- Spatial correlation is local

- Waste of resources 

- we have not enough training samples anyway..

Fully-connected Layer
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Example: 200x200 image

40K hidden units

Filter size: 10x10

4M parameters

Locally-connected Layer

Note: This parameterization is good 

when input image is registered (e.g., 

face recognition).
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Note: This parameterization is good 

when input image is registered (e.g., 

face recognition).

Example: 200x200 image

40K hidden units

Filter size: 10x10

4M parameters

Locally-connected Layer
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Share the same parameters across 

different locations (assuming input is 

stationary):

Convolutions with learned kernels

Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer



EG Course Deep Learning for Graphics

Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer



EG Course Deep Learning for Graphics

Fully-connected layer

#of parameters: K2
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#of parameters: size of window 

Convolutional layer
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*        
-1  0  1

-1  0  1

-1  0  1
=        

Convolutional layer
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Code example 

Learning an edge filter

113
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Learn multiple filters.

E.g.: 200x200 image

100 Filters

Filter size: 10x10

10K parameters

Convolutional layer
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Conv.

layer
h1

n− 1

h2

n− 1

h3

n− 1

h1
n

h2
n

output 

feature map

input feature 

map

kernel

Convolutional layer
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h1

n− 1

h2

n− 1

h3

n− 1

h1
n

h2
n

output 

feature map

input feature 

map

kernel

Convolutional layer



EG Course Deep Learning for Graphics

h1

n− 1

h2

n− 1

h3

n− 1

h1
n

h2
n

output 

feature map

input feature 

map

kernel

Convolutional layer
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Pooling layer
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Pooling layer
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Pooling layer: receptive field size
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Pooling layer: receptive field size
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Receptive field
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Receptive field: layer 1
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Receptive field: layer 2
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Receptive field: layer 3
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Receptive field: layer 4
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Receptive field: layer 5
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Receptive field: layer 6
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Receptive field: layer 7
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Receptive field: layer 8



Modern Architectures
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INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

Gradient-based learning applied to document recognition. 
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998

https://www.youtube.com/watch?v=FwFduRA_L6Q

CNNs, late 1980’s: LeNet
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deep learning = neural networks (+ big data  + GPUs) + a few more recent tricks!

What happened in between?
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Code example 

Convolutional Network

and

Filter Visualizations

134
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Parameter Initialization

• All zero initialization: All parameters get the same gradient and same 
updates

• Random initialization: Is sometimes used in practice, but variance of output 
depends on number of inputs, which may cause instability early on

• Kaiming initialization: divide standard deviation by number of inputs

135

: number of inputs (fan-in)



Code examples

Parameter initialization

136
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AlexNet
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton:
ImageNet classification with deep convolutional neural 
networks. Commun. ACM 60(6): 84-90 (2017)

CNNs, 2012
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Karen Simonyan, Andrew Zisserman (=Visual Geometry Group)
Very Deep Convolutional Networks for Large-Scale Image Recognition, 
arxiv, 2014.

CNNs, 2014: VGG
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Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, 
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
Going Deeper with Convolutions, CVPR 2015

CNNs, 2014: GoogLeNet
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ResNet
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,
Deep Residual Learning for Image Recognition 
CVPR 2016

CNNs, 2015: ResNet
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• Deeper networks can cover more complex problems
– Increasingly large receptive field size & rich patterns 

The Deeper, the Better
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• From 2 to 10: 2010-2012
– ReLUs

– Dropout

– …

Going Deeper
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• From 10 to 20: 2015
– Batch Normalization

Going Deeper



EG Course Deep Learning for Graphics

• From 20 to 100/1000
– Residual networks

Going Deeper
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• Plain nets: stacking 3x3 conv layers

• 56-layer net has higher training error and test error than 20-layer net

Plain network: deeper is not necessarily better
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• Naïve solution
– If extra layers are an identity mapping, then  

training errors can not increase

Residual Network
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• Goal: estimate update between an original image and a changed image 

Some 

Network
residual

Preserving base information

can treat 

perturbation 

Residual Modelling: Basic Idea in Image Processing
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• Plain block
– Difficult to make identity mapping 

because of multiple non-linear layers

Residual Network
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• Residual block
– If identity were optimal, easy to set weights as 0

– If optimal mapping is closer to identity, easier to 
find small fluctuations

Appropriate for treating perturbation as keeping a 
base information

Residual Network
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• Deeper ResNets have lower training error

Residual Network: deeper is better
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Residual Network: deeper is better
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CNNs, 2017: DenseNet

Densely Connected Convolutional Networks, CVPR 2017
Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

Recently proposed, better performance/parameter ratio



Image-to-Image 
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Image-to-image

• So far we mapped an image image to a number or label

• In graphics, output often is “richer”:
– An image

– A volume

– A 3D mesh

– …

• Architectures
– Encoder-Decoder

– Skip connections
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FCNN

Fully-convolutional Neural Networks
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FCNN

Fully-convolutional Neural Networks
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FCNN

Fully-convolutional Neural Networks
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FCNN

Fully-convolutional Neural Networks
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FCNN

Fast     (shared convolutions) 

Simple (dense)

Fully-convolutional Neural Networks
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FCNN

Fast (shared convolutions) 

Simple (dense)

Low resolution

32-fold decimation 

224x224 to 7x7

Fully Convolutional Neural Networks in Practice
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https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807

Receptive field arithmetic
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downsample x 2 convolve ‘implant’ in image coordinates

filter ’atrous’

S. Mallat, An introduction to wavelets, 1989

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, Alan L. Yuille

Atrous convolution
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F. Yu, V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016

Atrous convolution = Dilated Convolution
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Graphics: Multiresolution
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Encoder-decoder
S

p
a

c
e

S
p

a
c
e

Features
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Interpretation

• Turns image into vector

• This vector is a very compact and abstract “code”

• Turns code back into image
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Encoder-decoder

Learning to simplify. Simo-Serra et al. 2016
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Code example 

Colorization Network

168
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Up-sampling

• We saw
– … how to keep resolution

– … how to reduce it with pooling

• But how to increase it again?

• Options
– Interpolation

– Padding (insert zeros)

– Transpose convolutions
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Encoder-decoder + Skip connections

• 1st: Reduce resolutions as before

• 2nd: Increase resolution

• Transposed convolutions

U-Net: Convolutional Networks for Biomedical Image Segmentatio. Ronneberger et al. 2015
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Encoder-decoder with skip connections

Features

Skip link

S
p

a
c
e

S
p

a
c
e



EG Course Deep Learning for Graphics

Interpretation

• Turns image into vector

• Turns vector back into image

• At every step of increasing the resolution, check back with the input to preserve details

• Familiar trick to graphics people
– (Haar) wavelet

– Residual coding

– Pyramidal schemes (Laplacian pyramid, etc.)



Deep Learning Frameworks
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…

(Python)

(Python, C++, Java)

(C++, Python, Matlab)

(Python, backends support other languages)

Main frameworks

Currently less frequently used

(Python,
C++, C#)

(Python, C++,
and others)

(Matlab) (Python, Java,
Scala)

(Python) (Python, C++)(Python)
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Popularity

Google Trends for search terms: “[name] tutorial”

Google Trends for search terms: “[name] github”
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Typical Training Steps

for i = 1 .. max_iterations

input, ground_truth = load_minibatch(data, i)

output = network_evaluate(input, parameters)

loss = compute_loss(output, ground_truth)

# gradients of loss with respect to parameters
gradients = network_backpropagate(loss, parameters)

parameters = optimizer_step(parameters, gradients)
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Tensors

• Frameworks typically represent data as tensors

• Examples:

feature channels C

spatial width W

spatial height H

batches B

4D convolution kernel: OC x IC x KH x KW4D input data: B x C x H x W

input channels IC

kernel height KH

kernel width KW

output channels OC
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What Does a Deep Learning Framework Do?

• Tensor math

• Common network operations/layers

• Gradients of common operations

• Backpropagation

• Optimizers

• GPU implementations of the above

• usually: data loading, network parameter saving/loading

• sometimes: distributed computing
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Automatic Differentiation & the Computation Graph

parameters = (weight, bias)

output = σ(weight * input + bias)

loss = (output - ground_truth)^2

# gradients of loss with respect to parameters
gradients = backpropagate(loss, parameters)

weight

input

bias +

*

ground_truth

-

^

2

loss

output
σ

𝑜1

𝑜2

𝑜3

+

*
𝜕 loss

𝜕 weight

-

^

loss

σ

𝜕 loss

𝜕 bias

𝜕 loss

𝜕 𝑜1

𝜕 loss

𝜕 𝑜2

𝜕 loss

𝜕 output

𝜕 loss

𝜕 𝑜3

forward pass backward pass

Since loss is a scalar, the gradients
are the same size as the parameters
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Automatic Differentiation & the Computation Graph

𝑓

inputs

outputs

𝑓

outputs = forward(inputs, parameters)

𝜕 loss

𝜕 parameters

𝜕 loss

𝜕 inputs

𝜕 loss

𝜕 outputs

parameters

𝜕 loss
𝜕 inputs

, 𝜕 loss
𝜕 parameters

= backward( 𝜕 loss
𝜕 outputs

)
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Static vs Dynamic Computation Graphs

• Static analysis allows optimizations and distributing workload

• Dynamic graphs make data-driven control flow easier

• In static graphs, the graph is usually defined in a separate ‘language’

• Static graphs have less support for debugging

Static Dynamic

define once,
evaluate during training

define implicitly by running operations,
a new graph is created in each evaluation

x = Variable()
loss = if_node(x < parameter[0],

x + parameter[0],
x - parameter[1])

for i = 1 .. max_iterations
x = data()
run(loss)
backpropagate(loss, parameters)

for i = 1 .. max_iterations
x = data()
if x < parameter[0]

loss = x + parameter[0]
else

loss = x – parameter[1]
backpropagate(loss, parameters)
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Tensorflow

• Currently the largest community

• Static graphs (dynamic graphs are in development: Eager Execution)

• Good support for deployment

• Good support for distributed computing

• Typically slower than the other three main frameworks on a single GPU
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PyTorch

• Fast growing community

• Dynamic graphs

• Distributed computing is in development (some support is already available)

• Intuitive code, easy to debug and good for experimenting with less traditional 
architectures due to dynamic graphs

• Very Fast
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Keras

• A high-level interface for various backends (Tensorflow, CNTK, Theano)

• Intuitive high-level code

• Focus on optimizing time from idea to code

• Static graphs
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Caffe

• Created earlier than Tensorflow, PyTorch or Keras

• Less flexible and less general than the other three frameworks

• Static graphs

• Legacy - to be replaced by Caffe2: focus is on performance and deployment
– Facebook’s platform for Detectron (Mask-RCNN, DensePose, …)



EG Course Deep Learning for Graphics

Converting Between Frameworks

• Example: develop in one framework, deploy in another

• Currently: a large range of converters, but no clear standard

• Standardized model formats are in development
convertor tensorflow pytorch keras caffe caffe2 CNTK chainer mxnet

tensorflow -
pytorch-tf/

MMdnn

model-converters/

nn_toolsconvert-to-

tensorflow/MMdnn

MMdnn/

nn_tools
None crosstalk/MMdnn None MMdnn

pytorch
pytorch2keras (over 

Keras)
-

Pytorch2keras/

nn-transfer

Pytorch2caffe/pytorch-

caffe-darknet-convert
onnx-caffe2 ONNX None None

keras

nn_tools /convert-to-

tensorflow/keras_to_ten

sorflow/keras_to_tensorf

low/MMdnn

MMdnn/

nn-transfer
- MMdnnnn_tools None MMdnn None MMdnn

caffe
MMdnn/nn_tools/caffe-

tensorflow

MMdnn/ pytorch-

caffe-darknet-

convert/ pytorch-

resnet

caffe_weight_converter/ 

caffe2keras/nn_tools/ 

kerascaffe2keras/ 

Deep_Learning_Model_

Converter/MMdnn

- CaffeToCaffe2
crosstalkcaffe/CaffeCon

verterMMdnn
None

mxnet/tools/caffe_conve

rter/ResNet_caffe2mxne

t/MMdnn

caffe2 None ONNX None None - ONNX None None

CNTK MMdnn ONNX MMdnn MMdnn MMdnn ONNX - None MMdnn

chainer None chainer2pytorch None None None None - None

mxnet MMdnn MMdnn MMdnn
MMdnn/MXNet2Caffe/

Mxnet2Caffe
None MMdnn None -

from https://github.com/ysh329/deep-learning-model-convertor

https://github.com/leonidk/pytorch-tf
https://github.com/Microsoft/MMdnn
https://github.com/triagemd/model-converters
https://github.com/hahnyuan/nn_tools
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalk
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/nerox8664/pytorch2keras
https://github.com/nerox8664/pytorch2keras
https://github.com/gzuidhof/nn-transfer
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/longcw/pytorch2caffe
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/onnx/onnx-caffe2
https://github.com/hahnyuan/nn_tools
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/alanswx/keras_to_tensorflow
https://github.com/amir-abdi/keras_to_tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/gzuidhof/nn-transfer
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/ethereon/caffe-tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/ruotianluo/pytorch-resnet
https://github.com/pierluigiferrari/caffe_weight_converter
https://github.com/qxcv/caffe2keras
https://github.com/hahnyuan/nn_tools
https://github.com/MarcBS/keras
https://github.com/OdinLin/caffe2keras
https://github.com/jamescfli/Deep_Learning_Model_Converter
https://github.com/Microsoft/MMdnn
https://caffe2.ai/docs/caffe-migration.html#caffe-to-caffe2
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalkcaffe
https://github.com/Microsoft/MMdnn
https://github.com/dmlc/mxnet/tree/master/tools/caffe_converter
https://github.com/nicklhy/ResNet_caffe2mxnet
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/vzhong/chainer2pytorch
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/cypw/MXNet2Caffe
https://github.com/wranglerwong/Mxnet2Caffe
https://github.com/Microsoft/MMdnn
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MMdnn

• Standard format for models

• Native support in 
development for Pytorch, 
Caffe2, Chainer, CNTK, and 
MxNet

• Converter in development for 
Tensorflow

• Converters
available for
several
frameworks

• Common intermediate
representation, but no clear standard
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The end


