
Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel

UCL UCL/Facebook UCL Adobe Research U Washington UCL

Deep Learning for Graphics

EG Course Deep Learning for Graphics

Neural Network Basics

EG Course Deep Learning for Graphics

Timetable

Niloy Iasonas Paul Vova Kostas Tobias Ersin

Introduction X X X X

Theory X

NN Basics X X X

Supervised Applications

Data X

Unsupervised Applications X

Beyond 2D X X X X

Outlook X X X X X X X

Introduction to Neural Networks

EG Course Deep Learning for Graphics

Examples:

: function parameters,

these are learned

: source domain : target domain

Image Classification:
: image dimensions : class count

Image Synthesis:
: image dimensions: latent variable count

Goal: Learn a Parametric Function

EG Course Deep Learning for Graphics

Feature coordinate

Fe
at

u
re

 c
o

o
rd

in
at

e

Each data point has a class label:

Machine Learning 101: Linear Classifier

EG Course Deep Learning for Graphics

Sec. 15.2.3

Nonlinear decision boundaries

EG Course Deep Learning for Graphics

Given a library of simple functions

Compose into a

complicated function

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Building A Complicated Function

EG Course Deep Learning for Graphics

Given a library of simple functions

Compose into a

complicated function

Idea 1: Linear Combinations

• Boosting

• Kernels

• …

Building A Complicated Function

EG Course Deep Learning for Graphics

Given a library of simple functions

Compose into a

complicated function

Idea 2: Compositions

• Decision Trees

• Deep Learning

Building A Complicated Function

EG Course Deep Learning for Graphics

Given a library of simple functions

Compose into a

complicated function

Idea 2: Compositions

• Decision Trees

• Grammar models

• Deep Learning

Building A Complicated Function

EG Course Deep Learning for Graphics

Sigmoidal activation

basic building block

‘Neuron’: Cascade of Linear and Nonlinear Function

EG Course Deep Learning for Graphics

Sigmoidal (“logistic”)Step (“perceptron”) Hyperbolic tangent Rectified Linear Unit
(RELU)

function

derivative

Image Credit: Olivier Grisel and Charles Ollion

Activation functions

EG Course Deep Learning for Graphics

non-adaptive

hand-coded

features

output units e.g.

class labels

input units

e.g. pixels

Apple Orange

Fixed

mapping

Slide credit: G. Hinton

Perceptrons (60’s)

XOR: perceptron killer

EG Course Deep Learning for Graphics

input vector

hidden

layers

outputs

Slide credit: G. Hinton

Multi-Layer Perceptrons (~1985)

EG Course Deep Learning for Graphics

Sec. 15.2.3

This is what the hidden layers

should be doing!

Reminder: Non-linear decision boundaries

EG Course Deep Learning for Graphics

Evolution of isocontours as parameters change

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Nonlinear mapping

EG Course Deep Learning for Graphics

Non-linearly

separable data
Data mapped to

learned space
Decision function

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

From non-separable to linearly separable

EG Course Deep Learning for Graphics

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linearizing a 2D classification task (4 hidden layers)

EG Course Deep Learning for Graphics

Points in 1D,

Decision in 2D

Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

EG Course Deep Learning for Graphics

Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

EG Course Deep Learning for Graphics

Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

EG Course Deep Learning for Graphics

Intuition: learn “dictionary” for objects

“Distributed representation”:
represent (and classify) objects by mixing & mashing reusable parts

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Hidden Layers: intuitively, what do they do?

EG Course Deep Learning for Graphics

“car”

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Deep Learning = Hierarchical Compositionality

EG Course Deep Learning for Graphics

Trainable

Classifier

Low-Level

Feature

Mid-Level

Feature

High-Level

Feature

“car”

Deep Learning = Hierarchical Compositionality

EG Course Deep Learning for Graphics

MLP Demo: playground.tensorflow.org

http://playground.tensorflow.org/
http://playground.tensorflow.org/
http://playground.tensorflow.org/

Training and Optimization

EG Course Deep Learning for Graphics

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Residual Networks

Old:

New: (last 5-6 years)

Back-propagation algorithm

Neural Network Training: Old & New Tricks

EG Course Deep Learning for Graphics

Our network implements a parametric function:

During training, we search for parameters that minimize a loss:

Example: L2 regression loss given target pairs :

Training Goal

EG Course Deep Learning for Graphics

Initialize:

Update:

We can always make it converge for a convex function

Gradient Descent Minimization Method

EG Course Deep Learning for Graphics

Empirically all are almost equally good

Central research topic: how can this happen?

On to the gradients!

Multiple Local Minima, based on initialization

EG Course Deep Learning for Graphics

Forward

Backward

All you need is gradients

EG Course Deep Learning for Graphics

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Chain Rule

EG Course Deep Learning for Graphics

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Chain Rule

EG Course Deep Learning for Graphics

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

‘Another Brick in the Wall’

EG Course Deep Learning for Graphics

Composition of differentiable blocks:

Toy example: single sigmoidal unit

EG Course Deep Learning for Graphics

Computation graph & automatic differentiation

Slide Credit: Justin Johnson

EG Course Deep Learning for Graphics

input vector

hidden

layers

outputs

Multi-Layer Perceptrons

Slide Credit: G. Hinton

EG Course Deep Learning for Graphics

input vector

hidden

layers

outputs

Back-propagate

error signal to get

derivatives for

learning

Compare outputs

with correct answer

to get error signal

Multi-Layer Perceptrons

Slide Credit: G. Hinton

EG Course Deep Learning for Graphics

Back-propagation Algorithm

EG Course Deep Learning for Graphics

Our network implements a parametric function:

During training, we search for parameters that minimize a loss:

Example: L2 regression loss given target pairs :

Training Goal

EG Course Deep Learning for Graphics

Inputs Outputs

Hidden layer

Parameters:

A Neural Network for Multi-way Classification

EG Course Deep Learning for Graphics

Inputs Outputs

Hidden layer

A Neural Network in Forward Mode

EG Course Deep Learning for Graphics

Inputs Outputs

Hidden layer

A Neural Network in Forward Mode

EG Course Deep Learning for Graphics

Inputs

Hidden layer

Outputs

A Neural Network in Forward Mode

EG Course Deep Learning for Graphics

Inputs

Hidden layer

Outputs

A Neural Network in Forward Mode

EG Course Deep Learning for Graphics

Outputs
Ground

truth

Objective for linear regression

EG Course Deep Learning for Graphics

Outputs

Softmax unit

Ground

truth

`Cross-entropy’ loss

Objective for multi-class classification

EG Course Deep Learning for Graphics

Network output:

Loss (prediction error):

What we need to compute for gradient descent:

Neural network in forward mode: recap

EG Course Deep Learning for Graphics

Outputs

A Neural Network in Backward Mode

EG Course Deep Learning for Graphics

Hidden layer

Outputs

This we want

?

A Neural Network in Backward Mode

EG Course Deep Learning for Graphics

Hidden layer

Outputs

This we want

?

A Neural Network in Backward Mode

EG Course Deep Learning for Graphics

Linear Layer in Forward Mode: All For One

EG Course Deep Learning for Graphics

Linear Layer in Backward Mode: One From All

EG Course Deep Learning for Graphics

Linear Layer Parameters in Backward: 1-to-1

EG Course Deep Learning for Graphics

Outputs

This we want

Hidden layer

This we have
This we computed

A Neural Network in Backward Mode

EG Course Deep Learning for Graphics

Hidden layer

Outputs

This we want This we have
This we computed

A Neural Network in Backward Mode

EG Course Deep Learning for Graphics

Hidden layer

Outputs

A Neural Network in Backward Mode

EG Course Deep Learning for Graphics

Hidden layer

Outputs

A Neural Network in Backward Mode

EG Course Deep Learning for Graphics

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old:

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

Back-propagation algorithm

EG Course Deep Learning for Graphics

Back-prop for

i-th example

If N=106 , we will need to run back-prop 106 times to update W once!

Gradient descent:

(l,k,m) element of gradient vector:

Per-sample loss
Per-layer regularization

Training Objective for N training samples

EG Course Deep Learning for Graphics

Gradient:

Noisy (‘Stochastic’) Gradient: b(1), b(2),…, b(B): sampled from [1,N]Minibatch: B elements

Epoch: N samples, N/B batches

Batch: [1..N]

Stochastic Gradient Descent (SGD)

EG Course Deep Learning for Graphics

Code example

Gradient Descent

vs

Stochastic Gradient Descent

62

EG Course Deep Learning for Graphics

Back-prop on minibatch ‘’Weight decay’’

Gradient:

Noisy (‘Stochastic’) Gradient: b(1), b(2),…, b(B): sampled from [1,N]Minibatch: B elements

Epoch: N samples, N/B batches

Batch: [1..N]

Regularization in SGD: Weight Decay

EG Course Deep Learning for Graphics

Learning rate

EG Course Deep Learning for Graphics

Gradient Descent

EG Course Deep Learning for Graphics

e.g.

(S)GD with adaptable stepsize

EG Course Deep Learning for Graphics

Main idea: retain long-term trend of updates, drop oscillations

(S)GD

(S)GD + momentum

(S)GD with momentum

EG Course Deep Learning for Graphics

Code example

68

Multi-layer perceptron classification

EG Course Deep Learning for Graphics

• Nesterov’s Accelerated Gradient (NAG)

• R-prop

• AdaGrad

• RMSProp

• AdaDelta

• Adam

• …

Step-size Selection & Optimizers: research problem

EG Course Deep Learning for Graphics

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

EG Course Deep Learning for Graphics

Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

EG Course Deep Learning for Graphics

Reminder: Overfitting, in images
Classification

Regression

just right

EG Course Deep Learning for Graphics

Per-sample loss Per-layer regularization

Previously: l2 Regularization

EG Course Deep Learning for Graphics

Each sample is processed by a ‘decimated’ neural net

Decimated nets: distinct classifiers

But: they should all do the same job

Dropout

EG Course Deep Learning for Graphics

‘Feature noising’

Dropout block

EG Course Deep Learning for Graphics

Test time: Deterministic Approximation

EG Course Deep Learning for Graphics

Dropout Performance

EG Course Deep Learning for Graphics

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

EG Course Deep Learning for Graphics

Sigmoidal (“logistic”) Rectified Linear Unit (RELU)

‘Neuron’: Cascade of Linear and Nonlinear Function

EG Course Deep Learning for Graphics

Outputs

Gradient signal

from above
scaling: <1 (actually <0.25)

Reminder: a network in backward mode

EG Course Deep Learning for Graphics

Gradient signal

from above scaling: <1 (actually <0.25)

Do this 10 times: updates in the first layers get minimal

Top layer knows what to do, lower layers “don’t get it”

Sigmoidal Unit: Signal is not getting through!

Vanishing Gradients Problem

EG Course Deep Learning for Graphics

Scaling: {0,1}Gradient signal

from above

Vanishing Gradients Problem: ReLU Solves It

EG Course Deep Learning for Graphics

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

EG Course Deep Learning for Graphics

10 am 2pm 7pm

External Covariate Shift: your input changes

EG Course Deep Learning for Graphics

• Make each patch have zero mean:

• Then make it have unit variance:

Photometric transformation: I a I + b

“Whitening”: Set Mean = 0, Variance = 1

EG Course Deep Learning for Graphics

Neural network activations during training: moving target

Internal Covariate Shift

EG Course Deep Learning for Graphics

Whiten-as-you-go:

Batch Normalization

EG Course Deep Learning for Graphics

Batch Normalization: used in all current systems

Convolutional Neural Networks

EG Course Deep Learning for Graphics

Example: 200x200 image

40K hidden units

~2B parameters!!!

- Spatial correlation is local

- Waste of resources

- we have not enough training samples anyway..

Fully-connected Layer

EG Course Deep Learning for Graphics

Example: 200x200 image

40K hidden units

Filter size: 10x10

4M parameters

Locally-connected Layer

Note: This parameterization is good

when input image is registered (e.g.,

face recognition).

EG Course Deep Learning for Graphics

Note: This parameterization is good

when input image is registered (e.g.,

face recognition).

Example: 200x200 image

40K hidden units

Filter size: 10x10

4M parameters

Locally-connected Layer

EG Course Deep Learning for Graphics

Share the same parameters across

different locations (assuming input is

stationary):

Convolutions with learned kernels

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Convolutional Layer

EG Course Deep Learning for Graphics

Fully-connected layer

#of parameters: K2

EG Course Deep Learning for Graphics

#of parameters: size of window

Convolutional layer

EG Course Deep Learning for Graphics

*
-1 0 1

-1 0 1

-1 0 1
=

Convolutional layer

EG Course Deep Learning for Graphics

Code example

Learning an edge filter

113

EG Course Deep Learning for Graphics

Learn multiple filters.

E.g.: 200x200 image

100 Filters

Filter size: 10x10

10K parameters

Convolutional layer

EG Course Deep Learning for Graphics

Conv.

layer
h1

n− 1

h2

n− 1

h3

n− 1

h1
n

h2
n

output

feature map

input feature

map

kernel

Convolutional layer

EG Course Deep Learning for Graphics

h1

n− 1

h2

n− 1

h3

n− 1

h1
n

h2
n

output

feature map

input feature

map

kernel

Convolutional layer

EG Course Deep Learning for Graphics

h1

n− 1

h2

n− 1

h3

n− 1

h1
n

h2
n

output

feature map

input feature

map

kernel

Convolutional layer

EG Course Deep Learning for Graphics

Pooling layer

EG Course Deep Learning for Graphics

Pooling layer

EG Course Deep Learning for Graphics

Pooling layer: receptive field size

EG Course Deep Learning for Graphics

Pooling layer: receptive field size

EG Course Deep Learning for Graphics

Receptive field

EG Course Deep Learning for Graphics

Receptive field: layer 1

EG Course Deep Learning for Graphics

Receptive field: layer 2

EG Course Deep Learning for Graphics

Receptive field: layer 3

EG Course Deep Learning for Graphics

Receptive field: layer 4

EG Course Deep Learning for Graphics

Receptive field: layer 5

EG Course Deep Learning for Graphics

Receptive field: layer 6

EG Course Deep Learning for Graphics

Receptive field: layer 7

EG Course Deep Learning for Graphics

Receptive field: layer 8

Modern Architectures

EG Course Deep Learning for Graphics

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

Gradient-based learning applied to document recognition.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998

https://www.youtube.com/watch?v=FwFduRA_L6Q

CNNs, late 1980’s: LeNet

EG Course Deep Learning for Graphics

deep learning = neural networks (+ big data + GPUs) + a few more recent tricks!

What happened in between?

EG Course Deep Learning for Graphics

Code example

Convolutional Network

and

Filter Visualizations

134

EG Course Deep Learning for Graphics

Parameter Initialization

• All zero initialization: All parameters get the same gradient and same
updates

• Random initialization: Is sometimes used in practice, but variance of output
depends on number of inputs, which may cause instability early on

• Kaiming initialization: divide standard deviation by number of inputs

135

: number of inputs (fan-in)

Code examples

Parameter initialization

136

EG Course Deep Learning for Graphics

AlexNet
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton:
ImageNet classification with deep convolutional neural
networks. Commun. ACM 60(6): 84-90 (2017)

CNNs, 2012

EG Course Deep Learning for Graphics

Karen Simonyan, Andrew Zisserman (=Visual Geometry Group)
Very Deep Convolutional Networks for Large-Scale Image Recognition,
arxiv, 2014.

CNNs, 2014: VGG

EG Course Deep Learning for Graphics

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
Going Deeper with Convolutions, CVPR 2015

CNNs, 2014: GoogLeNet

EG Course Deep Learning for Graphics

ResNet
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,
Deep Residual Learning for Image Recognition
CVPR 2016

CNNs, 2015: ResNet

EG Course Deep Learning for Graphics

• Deeper networks can cover more complex problems
– Increasingly large receptive field size & rich patterns

The Deeper, the Better

EG Course Deep Learning for Graphics

• From 2 to 10: 2010-2012
– ReLUs

– Dropout

– …

Going Deeper

EG Course Deep Learning for Graphics

• From 10 to 20: 2015
– Batch Normalization

Going Deeper

EG Course Deep Learning for Graphics

• From 20 to 100/1000
– Residual networks

Going Deeper

EG Course Deep Learning for Graphics

• Plain nets: stacking 3x3 conv layers

• 56-layer net has higher training error and test error than 20-layer net

Plain network: deeper is not necessarily better

EG Course Deep Learning for Graphics

• Naïve solution
– If extra layers are an identity mapping, then

training errors can not increase

Residual Network

EG Course Deep Learning for Graphics

• Goal: estimate update between an original image and a changed image

Some

Network
residual

Preserving base information

can treat

perturbation

Residual Modelling: Basic Idea in Image Processing

EG Course Deep Learning for Graphics

• Plain block
– Difficult to make identity mapping

because of multiple non-linear layers

Residual Network

EG Course Deep Learning for Graphics

• Residual block
– If identity were optimal, easy to set weights as 0

– If optimal mapping is closer to identity, easier to
find small fluctuations

Appropriate for treating perturbation as keeping a
base information

Residual Network

EG Course Deep Learning for Graphics

• Deeper ResNets have lower training error

Residual Network: deeper is better

EG Course Deep Learning for Graphics

Residual Network: deeper is better

EG Course Deep Learning for Graphics

CNNs, 2017: DenseNet

Densely Connected Convolutional Networks, CVPR 2017
Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

Recently proposed, better performance/parameter ratio

Image-to-Image

EG Course Deep Learning for Graphics

Image-to-image

• So far we mapped an image image to a number or label

• In graphics, output often is “richer”:
– An image

– A volume

– A 3D mesh

– …

• Architectures
– Encoder-Decoder

– Skip connections

EG Course Deep Learning for Graphics

FCNN

Fully-convolutional Neural Networks

EG Course Deep Learning for Graphics

FCNN

Fully-convolutional Neural Networks

EG Course Deep Learning for Graphics

FCNN

Fully-convolutional Neural Networks

EG Course Deep Learning for Graphics

FCNN

Fully-convolutional Neural Networks

EG Course Deep Learning for Graphics

FCNN

Fast (shared convolutions)

Simple (dense)

Fully-convolutional Neural Networks

EG Course Deep Learning for Graphics

FCNN

Fast (shared convolutions)

Simple (dense)

Low resolution

32-fold decimation

224x224 to 7x7

Fully Convolutional Neural Networks in Practice

EG Course Deep Learning for Graphics

https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807

Receptive field arithmetic

EG Course Deep Learning for Graphics

downsample x 2 convolve ‘implant’ in image coordinates

filter ’atrous’

S. Mallat, An introduction to wavelets, 1989

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, Alan L. Yuille

Atrous convolution

EG Course Deep Learning for Graphics

F. Yu, V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016

Atrous convolution = Dilated Convolution

EG Course Deep Learning for Graphics

Graphics: Multiresolution

EG Course Deep Learning for Graphics

Encoder-decoder
S

p
a

c
e

S
p

a
c
e

Features

EG Course Deep Learning for Graphics

Interpretation

• Turns image into vector

• This vector is a very compact and abstract “code”

• Turns code back into image

EG Course Deep Learning for Graphics

Encoder-decoder

Learning to simplify. Simo-Serra et al. 2016

EG Course Deep Learning for Graphics

Code example

Colorization Network

168

EG Course Deep Learning for Graphics

Up-sampling

• We saw
– … how to keep resolution

– … how to reduce it with pooling

• But how to increase it again?

• Options
– Interpolation

– Padding (insert zeros)

– Transpose convolutions

EG Course Deep Learning for Graphics

Encoder-decoder + Skip connections

• 1st: Reduce resolutions as before

• 2nd: Increase resolution

• Transposed convolutions

U-Net: Convolutional Networks for Biomedical Image Segmentatio. Ronneberger et al. 2015

EG Course Deep Learning for Graphics

Encoder-decoder with skip connections

Features

Skip link

S
p

a
c
e

S
p

a
c
e

EG Course Deep Learning for Graphics

Interpretation

• Turns image into vector

• Turns vector back into image

• At every step of increasing the resolution, check back with the input to preserve details

• Familiar trick to graphics people
– (Haar) wavelet

– Residual coding

– Pyramidal schemes (Laplacian pyramid, etc.)

Deep Learning Frameworks

EG Course Deep Learning for Graphics

…

(Python)

(Python, C++, Java)

(C++, Python, Matlab)

(Python, backends support other languages)

Main frameworks

Currently less frequently used

(Python,
C++, C#)

(Python, C++,
and others)

(Matlab) (Python, Java,
Scala)

(Python) (Python, C++)(Python)

EG Course Deep Learning for Graphics

Popularity

Google Trends for search terms: “[name] tutorial”

Google Trends for search terms: “[name] github”

EG Course Deep Learning for Graphics

Typical Training Steps

for i = 1 .. max_iterations

input, ground_truth = load_minibatch(data, i)

output = network_evaluate(input, parameters)

loss = compute_loss(output, ground_truth)

gradients of loss with respect to parameters
gradients = network_backpropagate(loss, parameters)

parameters = optimizer_step(parameters, gradients)

EG Course Deep Learning for Graphics

Tensors

• Frameworks typically represent data as tensors

• Examples:

feature channels C

spatial width W

spatial height H

batches B

4D convolution kernel: OC x IC x KH x KW4D input data: B x C x H x W

input channels IC

kernel height KH

kernel width KW

output channels OC

EG Course Deep Learning for Graphics

What Does a Deep Learning Framework Do?

• Tensor math

• Common network operations/layers

• Gradients of common operations

• Backpropagation

• Optimizers

• GPU implementations of the above

• usually: data loading, network parameter saving/loading

• sometimes: distributed computing

EG Course Deep Learning for Graphics

Automatic Differentiation & the Computation Graph

parameters = (weight, bias)

output = σ(weight * input + bias)

loss = (output - ground_truth)^2

gradients of loss with respect to parameters
gradients = backpropagate(loss, parameters)

weight

input

bias +

*

ground_truth

-

^

2

loss

output
σ

𝑜1

𝑜2

𝑜3

+

*
𝜕 loss

𝜕 weight

-

^

loss

σ

𝜕 loss

𝜕 bias

𝜕 loss

𝜕 𝑜1

𝜕 loss

𝜕 𝑜2

𝜕 loss

𝜕 output

𝜕 loss

𝜕 𝑜3

forward pass backward pass

Since loss is a scalar, the gradients
are the same size as the parameters

EG Course Deep Learning for Graphics

Automatic Differentiation & the Computation Graph

𝑓

inputs

outputs

𝑓

outputs = forward(inputs, parameters)

𝜕 loss

𝜕 parameters

𝜕 loss

𝜕 inputs

𝜕 loss

𝜕 outputs

parameters

𝜕 loss
𝜕 inputs

, 𝜕 loss
𝜕 parameters

= backward(𝜕 loss
𝜕 outputs

)

EG Course Deep Learning for Graphics

Static vs Dynamic Computation Graphs

• Static analysis allows optimizations and distributing workload

• Dynamic graphs make data-driven control flow easier

• In static graphs, the graph is usually defined in a separate ‘language’

• Static graphs have less support for debugging

Static Dynamic

define once,
evaluate during training

define implicitly by running operations,
a new graph is created in each evaluation

x = Variable()
loss = if_node(x < parameter[0],

x + parameter[0],
x - parameter[1])

for i = 1 .. max_iterations
x = data()
run(loss)
backpropagate(loss, parameters)

for i = 1 .. max_iterations
x = data()
if x < parameter[0]

loss = x + parameter[0]
else

loss = x – parameter[1]
backpropagate(loss, parameters)

EG Course Deep Learning for Graphics

Tensorflow

• Currently the largest community

• Static graphs (dynamic graphs are in development: Eager Execution)

• Good support for deployment

• Good support for distributed computing

• Typically slower than the other three main frameworks on a single GPU

EG Course Deep Learning for Graphics

PyTorch

• Fast growing community

• Dynamic graphs

• Distributed computing is in development (some support is already available)

• Intuitive code, easy to debug and good for experimenting with less traditional
architectures due to dynamic graphs

• Very Fast

EG Course Deep Learning for Graphics

Keras

• A high-level interface for various backends (Tensorflow, CNTK, Theano)

• Intuitive high-level code

• Focus on optimizing time from idea to code

• Static graphs

EG Course Deep Learning for Graphics

Caffe

• Created earlier than Tensorflow, PyTorch or Keras

• Less flexible and less general than the other three frameworks

• Static graphs

• Legacy - to be replaced by Caffe2: focus is on performance and deployment
– Facebook’s platform for Detectron (Mask-RCNN, DensePose, …)

EG Course Deep Learning for Graphics

Converting Between Frameworks

• Example: develop in one framework, deploy in another

• Currently: a large range of converters, but no clear standard

• Standardized model formats are in development
convertor tensorflow pytorch keras caffe caffe2 CNTK chainer mxnet

tensorflow -
pytorch-tf/

MMdnn

model-converters/

nn_toolsconvert-to-

tensorflow/MMdnn

MMdnn/

nn_tools
None crosstalk/MMdnn None MMdnn

pytorch
pytorch2keras (over

Keras)
-

Pytorch2keras/

nn-transfer

Pytorch2caffe/pytorch-

caffe-darknet-convert
onnx-caffe2 ONNX None None

keras

nn_tools /convert-to-

tensorflow/keras_to_ten

sorflow/keras_to_tensorf

low/MMdnn

MMdnn/

nn-transfer
- MMdnnnn_tools None MMdnn None MMdnn

caffe
MMdnn/nn_tools/caffe-

tensorflow

MMdnn/ pytorch-

caffe-darknet-

convert/ pytorch-

resnet

caffe_weight_converter/

caffe2keras/nn_tools/

kerascaffe2keras/

Deep_Learning_Model_

Converter/MMdnn

- CaffeToCaffe2
crosstalkcaffe/CaffeCon

verterMMdnn
None

mxnet/tools/caffe_conve

rter/ResNet_caffe2mxne

t/MMdnn

caffe2 None ONNX None None - ONNX None None

CNTK MMdnn ONNX MMdnn MMdnn MMdnn ONNX - None MMdnn

chainer None chainer2pytorch None None None None - None

mxnet MMdnn MMdnn MMdnn
MMdnn/MXNet2Caffe/

Mxnet2Caffe
None MMdnn None -

from https://github.com/ysh329/deep-learning-model-convertor

https://github.com/leonidk/pytorch-tf
https://github.com/Microsoft/MMdnn
https://github.com/triagemd/model-converters
https://github.com/hahnyuan/nn_tools
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalk
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/nerox8664/pytorch2keras
https://github.com/nerox8664/pytorch2keras
https://github.com/gzuidhof/nn-transfer
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/longcw/pytorch2caffe
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/onnx/onnx-caffe2
https://github.com/hahnyuan/nn_tools
https://github.com/goranrauker/convert-to-tensorflow
https://github.com/alanswx/keras_to_tensorflow
https://github.com/amir-abdi/keras_to_tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/gzuidhof/nn-transfer
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/hahnyuan/nn_tools
https://github.com/ethereon/caffe-tensorflow
https://github.com/Microsoft/MMdnn
https://github.com/marvis/pytorch-caffe-darknet-convert
https://github.com/ruotianluo/pytorch-resnet
https://github.com/pierluigiferrari/caffe_weight_converter
https://github.com/qxcv/caffe2keras
https://github.com/hahnyuan/nn_tools
https://github.com/MarcBS/keras
https://github.com/OdinLin/caffe2keras
https://github.com/jamescfli/Deep_Learning_Model_Converter
https://github.com/Microsoft/MMdnn
https://caffe2.ai/docs/caffe-migration.html#caffe-to-caffe2
https://github.com/Microsoft/CNTK/tree/master/bindings/python/cntk/contrib/crosstalkcaffe
https://github.com/Microsoft/MMdnn
https://github.com/dmlc/mxnet/tree/master/tools/caffe_converter
https://github.com/nicklhy/ResNet_caffe2mxnet
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/vzhong/chainer2pytorch
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/Microsoft/MMdnn
https://github.com/cypw/MXNet2Caffe
https://github.com/wranglerwong/Mxnet2Caffe
https://github.com/Microsoft/MMdnn

EG Course Deep Learning for Graphics

MMdnn

• Standard format for models

• Native support in
development for Pytorch,
Caffe2, Chainer, CNTK, and
MxNet

• Converter in development for
Tensorflow

• Converters
available for
several
frameworks

• Common intermediate
representation, but no clear standard

EG Course Deep Learning for Graphics

The end

