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Introduction X X X X
Theory X
NN Basics X X
Supervised Applications
Data X

Unsupervised Applications
Beyond 2D X X X
Outlook X X X X X X
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Modalities

* 2D images

* 3D datasets

* Data augmentation

e Synthetic image training data




2D image data sets




Image Datasets

* MNIST

* Handwritten digits

* 28x28 images
e 10 classes
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Image Datasets

* CIFAR10

* Object images

* 10 classes

* 32 x 32 pixels

* 50k train/10k test

S5 EROGRAPHICS
£ 5018 EG Cour

se “Dee

airplane

=B o~ B~

swomonne 2 5 0 B S

bird
cat
deer
dog
frog
horse
ship

truck

Sl NE
S e L
P B R
R e B
LEERRDSANE
ERED PP EEEE
=R Mo
<

p Learning for Graphics”



Image Datasets

* PASCAL VOC
* Multiple objects per image
* 20 classes

EG Course “Deep Learning for Graphics” 7



Image Datasets

* [mageNet
* The main "fuel” for deep learning
* 1000 classes .
* Classification/Detection (200 classes) K T G e S5 57
e Structure from WordNet
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Synset: car, elevator car

Definition: where passengers ride up and down; "the car was on the top floor".
Popularity percentile:: 97%

Depth in WordNet: 8

Synset: cable car, car

Definition: a conveyance for passengers or freight on a cable railway; "they took a cable car to the top of the
mountain".

Popularity percentile:: 95%

Depth in WordNet: 8

Synset: sports car, sport car

Definition: a small low car with a high-powered engine; usually seats two persons.
Popularity percentile:: 93%

Depth in WordNet: 10

Synset: car, auto, automobile, machine, motorcar

Definition: a motor vehicle with four wheels; usually propelled by an internal combustion engine; "he needs a car to
get to work".

Popularity percentile:: 92%

Depth in WordNet: 9
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Image Datasets

* MS COCO

* Boost to DL class/instance segmentation and
keypoint detection

80 classes

200k images

* Instance segmentation masks (>1 mil)
 Human keypoints (250k)
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LDR 2 HDR

* http://hdrv.org/hdrcnn/material/testset/index.html
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3D data sets




3D Datasets

e ShapeNet

e Similar to ImageNet but for CAD
models

* 55 common categories
e 10k+ models

* ShapeNetCore
* 12k models

* Additional annotations (real world
dimensions, materials,...)
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airplane,aeroplane,plane
an aircraft that has a fixed wing and is powered by propellers or jets; ‘the flight was delayed due to trouble with the airplane’
ImageNet MetaData

Choose taxonomy:
ShapeNetCore

<«

bathtub,bathing tub,bath,tub(0,856)

- bed(13,233)

! bench(5,1813)

} bicycle,bike,wheel,cycle(0,59)

I birdhouse(0,73)

' bookshelf(0,452)

. bottle(6,498)

*—bowl(1,186)
bus,autobus,coach,charabanc,double-decker,jitr
- cabinet(9,1571)

! camera,photographic camera(4,113)

can,tin,tin can(2,108)

¢ cap(4,56)
car,auto,automobile,machine,motorcar(18,3533)
! chair(23,6778)

! clock(3,651)

computer keyboard,keypad(0,65)
dishwasher,dish washer,dishwashing machine(0,
display,video display(5,1093)
earphone,earpiece,headphone,phone(0,73)
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Synset Models

TreeMap

Displaying 1 to 160 of 4045

Stats Measures
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3D Datasets

* SMPL

* Parametric human shape model

e 72 parameters control pose and
human shape

 Fully differentiable

» Useful for human shape estimation,
motion capture etc
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Data Augmentation




Data Augmentation

* Augment existing data with image operations to reduce overfitting

* Much larger dataset

* Learn expected transformations

f'..s T -EUROGRAPHICS EG Course “Deep Learning for Graphics”

15



Data Augmentation

* Mirror
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Data Augmentation

* Mirror
* Rotation
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Data Augmentation

* Mirror
* Rotation
* Translation
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Data Augmentation

* Mirror
* Rotation
* Translation

e /JOOM
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Data Augmentation

* Mirror

* Rotation

* Translation
e Zoom

e Blur
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Data Augmentation

* Mirror

* Rotation

* Translation
e ZoOm

* Blur

* Noise
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Data Augmentation

* Mirror

* Rotation

* Translation

e ZoOm

* Blur

* Noise

* Color transforms

,"'_fi-l‘i-_ggj]%gawfﬂlhttps://github.com/codebox/ image..augmentor: for Graphics”
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Creating Your Own




Material/lllumination
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Material/lllumination
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Decomposition
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Synthetic data




Synthetic Data
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Synthetic Data for DL

* 3D models + renderer = unlimited data
* Suitable for data hungry approaches such as deep networks
* Higher fidelity -> smaller discrepancy between synthetic and real




How To Generate Synthetic Data

* What you need
* 3D models with task-specific annotation
* Renderer

* Example: Indoor depth estimation (McCormac et al)

7> 79 P -

3D Room with furniture NVIDIA OptiX renderer
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How To Generate Synthetic Data

* How much fidelity?

OpenGL Natural lllumination + AO Path tracer, global lllumination (VRay)
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Selecting viewpoint

* Object in the center
e Sample from the hemisphere
* Multiple FOV, Target, Up, etc

* Scene
* Simulate human camera path

* Optimize camera position for a particular
objective (eg segmentation)
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Selecting Appearance

 Materials

e Capture the variability of real world
objects

* BRDF, textures (MERL DB)

* lllumination
* Capture the effect of environment
* Increase realism

e Laval indoor DB
http://indoor.hdrdb.com/
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Thank you!
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http://geometry.cs.ucl.ac.uk/dl4g/
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