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Unsupervised Learning

• There is no direct ground truth for the quantity of interest

• Autoencoders

• Variational Autoencoders (VAEs)

• Generative Adversarial Networks (GANs)
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Autoencoders

Encoder

Input data

Goal: Meaningful features that capture the main 
factors of variation in the dataset
• These are good for classification, clustering, 

exploration, generation, …
• We have no ground truth for them 

Features

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Autoencoders

Encoder

Input data

Features
(Latent variables)

Decoder

Goal: Meaningful features that capture the main 
factors of variation
Features that can be used to reconstruct the image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

L2 Loss function: 
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Autoencoders

Autoencoder

Original

PCA

Linear Transformation for Encoder and Decoder
give result close to PCA

Deeper networks give better reconstructions,
since basis can be non-linear

Image Credit: Reducing the Dimensionality of Data with Neural 

Networks, . Hinton and Salakhutdinov
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Example: Document Word Prob. → 2D Code

LSA (based on PCA) Autoencoder

Image Credit: Reducing the Dimensionality of Data with 

Neural Networks, Hinton and Salakhutdinov
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Example: Semi-Supervised Classification

• Many images, but few ground truth labels

Encoder

Input data

Features
(Latent Variables)

Decoder
L2 Loss function: 

start unsupervised
train autoencoder on many images

supervised fine-tuning
train classification network on labeled images

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Features

Classifier

Predicted Label

Loss function 
(Softmax, etc)

GT Label



Code example
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Autoencoder

(autoencoder.ipynb)



EG Course “Deep Learning for Graphics”

Generative Models

• Assumption: the dataset are samples from an unknown distribution

• Goal: create a new sample from that is not in the dataset

… ?
Dataset Generated

Image credit: Progressive Growing of GANs for Improved 
Quality, Stability, and Variation, Karras et al.
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Generative Models

• Assumption: the dataset are samples from an unknown distribution

• Goal: create a new sample from that is not in the dataset

…

Dataset Generated

Image credit: Progressive Growing of GANs for Improved 
Quality, Stability, and Variation, Karras et al.
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Generative Models

Generator with
parameters

known and
easy to sample from
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Generative Models

Generator with
parameters

known and
easy to sample from

1) Likelihood of data in 

2) Adversarial game:
Discriminator distinguishes

and
Generator makes it
hard to distinguish

vs

How to measure similarity of               and                     ?

Generative Adversarial Networks (GANs)

Variational Autoencoders (VAEs)
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Autoencoders as Generative Models?

• A trained decoder transforms some features    
to approximate samples from

• What happens if we pick a random   ?

• We do not know the distribution          of 
features that decode to likely samples

Decoder = Generator?

Image Credit: Reducing the Dimensionality of Data with Neural 

Networks, Hinton and Salakhutdinov

ra
n

d
o

m

Feature space / latent space
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Variational Autoencoders (VAEs)

• Pick a parametric distribution           for features

• The generator maps           to an image 
distribution             (where    are parameters)

• Train the generator to maximize the likelihood 
of the data in            :

Generator with
parameters

sa
m

p
le
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Outputting a Distribution

Generator with
parameters

sa
m

p
le

Generator with
parameters

sa
m

p
le

Normal distribution Bernoulli distribution
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Variational Autoencoders (VAEs):
Naïve Sampling (Monte-Carlo)

• SGD approximates the expected values over              samples

• In each training iteration, sample    from          …

• … and      randomly from the dataset, and maximize:
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Variational Autoencoders (VAEs):
Naïve Sampling (Monte-Carlo)

• In each training iteration, sample    from          …

• … and      randomly from the dataset

• SGD approximates the expected values over
samples

sa
m

p
le

Generator with
parameters

Loss function: 

Random from dataset
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Variational Autoencoders (VAEs):
Naïve Sampling (Monte-Carlo)

• In each training iteration, sample    from          …

• … and      randomly from the dataset

• SGD approximates the expected values over
samples

• Few              pairs have non-zero gradients

sa
m

p
le

Generator with
parameters

Loss function: 

Random from dataset

with non-zero
loss gradient for 
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Variational Autoencoders (VAEs):
The Encoder

• During training, another network can guess a 
good    for a given

• should be much smaller than 

• This also gives us the data point 

Generator with
parameters

sa
m

p
le

Encoder with
parameters 

Loss function: 
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Variational Autoencoders (VAEs):
The Encoder

• Can we still easily sample a new   ?

• Need to make sure                  approximates

• Regularize with KL-divergence

• Negative loss can be shown to be a lower bound 
for the likelihood, and equivalent if 

Generator with
parameters

sa
m

p
le

Encoder with
parameters 

Loss function: 
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Example when                                                              :

Reparameterization Trick

Generator with
parameters

sa
m

p
le

Encoder with
parameters 

Backprop? Backprop
sa

m
p

le

, where

Encoder with
parameters 

Does not depend on
parameters
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Generating Data
sa

m
p

le

Generator with
parameters

sa
m

p
le

MNIST Frey Faces

Image Credit: Auto-Encoding Variational Bayes, Kingma and Welling



Demos

VAE on MNIST

http://dpkingma.com/sgvb_mnist_demo/demo.html

VAE on Faces

http://vdumoulin.github.io/morphing_faces/online_demo.html

24

http://dpkingma.com/sgvb_mnist_demo/demo.html
http://vdumoulin.github.io/morphing_faces/online_demo.html


Code example
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Variational Autoencoder

(variational_autoencoder.ipynb)
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Generative Adversarial Networks

Player 1: generator
Scores if discriminator
can’t distinguish output
from real image

Player 2: discriminator
Scores if it can distinguish
between real and fake

real/fake

from dataset
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Naïve Sampling Revisited

• Few              pairs have non-zero gradients

• This is a problem of the maximum likelihood

• Use a different loss: Train a discriminator 
network to measure similarity

sa
m

p
le

Generator with
parameters

Loss function: 

Random from dataset

with non-zero
loss gradient for 
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Why Adversarial?

• If discriminator approximates                  :

• at maximum of                   has lowest loss

• Optimal             has single mode at     , small variance

sa
m

p
le

Image Credit: How (not) to Train your Generative Model: Scheduled 

Sampling, Likelihood, Adversary?, Ferenc Huszár

: generator
with parameters

: discriminator
with parameters
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Why Adversarial?

• For GANs, the discriminator instead approximates:

sa
m

p
le

depends on the generator

Image Credit: How (not) to Train your Generative Model: Scheduled 

Sampling, Likelihood, Adversary?, Ferenc Huszár

: generator
with parameters

: discriminator
with parameters
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Why Adversarial?

VAEs:
Maximize likelihood of
data samples in

Maximize likelihood of
generator samples in
approximate

GANs:
Adversarial game

Image Credit: How (not) to Train your Generative Model: Scheduled 

Sampling, Likelihood, Adversary?, Ferenc Huszár
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Why Adversarial?

VAEs:
Maximize likelihood of
data samples in

Maximize likelihood of
generator samples in
approximate

GANs:
Adversarial game

Image Credit: How (not) to Train your Generative Model: Scheduled 

Sampling, Likelihood, Adversary?, Ferenc Huszár
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GAN Objective

sa
m

p
le

:generator

:discriminator

probability that    
is not fake

fake/real classification loss (BCE):

Discriminator objective:

Generator objective:
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Non-saturating Heuristic

Generator loss is negative binary cross-entropy:

poor convergence

Negative BCE

Image Credit: NIPS 2016 Tutorial: Generative Adversarial 

Networks, Ian Goodfellow
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Non-saturating Heuristic

Negative BCE
BCE with flipped target

Flip target class instead of flipping the sign for generator loss:
good convergence – like BCE

Generator loss is negative binary cross-entropy:

poor convergence

Image Credit: NIPS 2016 Tutorial: Generative Adversarial 

Networks, Ian Goodfellow



EG Course “Deep Learning for Graphics”

GAN Training

from dataset

Loss:

D
is

cr
im

in
at

o
r 

tr
ai

n
in

g

sa
m

p
le

:generator

:discriminator

Loss:

G
en

er
at

o
r 

tr
ai

n
in

g

:discriminator

Interleave in each training step
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DCGAN

• First paper to successfully use CNNs with GANs

• Due to using novel components (at that time) like batch norm., ReLUs, etc.

Image Credit: Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks, Radford et al.
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InfoGAN

sa
m

p
le

:generator

:discriminator

maximize
mutual information

varying

Image Credit: InfoGAN: Interpretable Representation Learning by

Information Maximizing Generative Adversarial Nets, Chen et al.



Code example
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Generative Adversarial Network

(gan.ipynb)
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Conditional GANs (CGANs)
• ≈ learn a mapping between images from example pairs

• Approximate sampling from a conditional distribution                

Image Credit: Image-to-Image Translation with Conditional 

Adversarial Nets, Isola et al.
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Conditional GANs

from dataset

Loss:

D
is

cr
im

in
at
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tr
ai

n
in
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:discrim.

sa
m

p
le

:generator

Loss:

:discriminator

G
en
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at

o
r 

tr
ai

n
in

g

Image Credit: Image-to-Image Translation with Conditional 

Adversarial Nets, Isola et al.
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is often omitted
in favor of dropout
in the generator

Conditional GANs: Low Variation per Condition

from dataset

Loss:

D
is

cr
im
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at
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r 

tr
ai

n
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:discrim.

:generator

Loss:

:discriminator

G
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r 

tr
ai

n
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g

Image Credit: Image-to-Image Translation with Conditional 

Adversarial Nets, Isola et al.



Demos

CGAN

https://affinelayer.com/pixsrv/index.html
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https://affinelayer.com/pixsrv/index.html
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CycleGANs

• Less supervision than CGANs: mapping between unpaired datasets

• Two GANs + cycle consistency

Image Credit: Unpaired Image-to-Image Translation using Cycle-

Consistent Adversarial Networks, Zhu et al.
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CycleGAN: Two GANs …
• Not conditional, so this alone does not constrain generator input and output to match

:generator1

:discriminator1

:generator2

:discriminator2

n
o

t 
co

n
st

ra
in

ed
 t

o
 m

at
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 y
et

Image Credit: Unpaired Image-to-Image Translation using Cycle-

Consistent Adversarial Networks, Zhu et al.
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CycleGAN: … and Cycle Consistency

:generator1

:generator2 :generator1

:generator2

L1 Loss function: L1 Loss function: 

Image Credit: Unpaired Image-to-Image Translation using Cycle-

Consistent Adversarial Networks, Zhu et al.
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Unstable Training

GAN training can be unstable

Three current research problems (may be related):

• Reaching a Nash equilibrium (the gradient for both        and         is 0)

• and            initially don’t overlap

• Mode Collapse
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GAN Training

• Vector-valued loss:

• In each iteration, gradient descent approximately follows this vector
over the parameter space            :
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Reaching Nash Equilibrium

Gradient field example Example

Image Credit: GANs are Broken in More than One Way: The 

Numerics of GANs, Ferenc Huszár

Nash
equilib.
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Reaching Nash Equilibrium
Solution attempt: relaxation with term:

full relaxation introduces
bad Nash equilibria

no relaxation has cycles mixture works sometimes

Image Credit: GANs are Broken in More than One Way: The 

Numerics of GANs, Ferenc Huszár
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Generator and Data Distribution Don’t Overlap

Image Credit: Amortised MAP Inference for Image Super-

resolution, Sønderby et al.

Roth et al. suggest an analytic convolution with a gaussian:

Stabilizing Training of Generative Adversarial Networks
through Regularization, Roth et al. 2017

Instance noise: adding noise to generated and real images Wasserstein GANs: EMD as distance between      and 

Standard
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Mode Collapse

after n training steps

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

only covers one or a few modes of 

Optimal                 :

Image Credit: Wasserstein GAN, Arjovsky et al.

Unrolled Generative Adversarial Networks, Metz et al.
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Mode Collapse

Solution attempts:

• Minibatch comparisons:  Discriminator can compare instances in a 
minibatch (Improved Techniques for Training GANs, Salimans et al.)

• Unrolled GANs: Take k steps with the discriminator in each iteration, and 
backpropagate through all of them to update the generator

after n training steps

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Standard GAN

Unrolled GAN with k=5

after n training steps

Image Credit: Wasserstein GAN, Arjovsky et al.

Unrolled Generative Adversarial Networks, Metz et al.
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Progressive GANs

• Resolution is increased progressively during training

• Also other tricks like using minibatch statistics and normalizing feature vectors

53Image Credit: Progressive Growing of GANs for 

Improved Quality, Stability, and Variation, Karras et al.



EG Course “Deep Learning for Graphics”

Disentanglement
Entangled: different properties may be mixed up over all dimensions

Disentangled: different properties are in different dimensions

specified property: number

o
th

er
 p

ro
p

er
ti

es

Image Credit: Disentangling factors of variation in deep 

representations using adversarial training, Mathieu et al.

specified property: character
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Summary

• Autoencoders
• Can infer useful latent representation for a dataset

• Bad generators

• VAEs
• Can infer a useful latent representation for a dataset

• Better generators due to latent space regularization

• Lower quality reconstructions and generated samples (usually blurry)

• GANs
• Can not find a latent representation for a given sample (no encoder)

• Usually better generators than VAEs

• Currently unstable training (active research)
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Thank you!

http://geometry.cs.ucl.ac.uk/dl4g/

56


