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Deep	Learning	for	Graphics

Beyond	Image	Data



Course:	“Deep	Learning	for	Graphics”

Course	Overview
• Part	I:	Introduction	and	ML	Basics 

• Part	II:	Supervised	Neural	Networks:	Theory	and	Applications 

• Part	III:	Unsupervised	Neural	Networks:	Theory	and	Applications 

• Part	IV:	Beyond	Image	Data
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Course:	“Deep	Learning	for	Graphics”

Motivating	Applications
• 3D	modeling,	retrieval,	classification	for	AR	and	VR 

• Joint	multi-modal	understanding 

• Semantic	3D	reconstruction  

• Animation,	rendering,	…
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the	next	best	part	to	add	and		

its	position	to	enable	non-expert	
users	to	create	novel	shapes.
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[Zhang et al. 2017]

understanding	3D	shapes	can	benefit	image	understanding
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Motivating	Applications:	Semantic	Scene	Understanding
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regular	image	analysis	networks

[Kalogerakis et al. 2015]
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Segmentation	
Correspondence	
Feature	matching	
Predicting	semantic	functions

[Huang et al. 2018]localized	renderings	for	point-wise	features
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• PROS: directly use image networks, good performance 
• CONS: rendering is slow and memory-heavy, not very geometric 
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[Xiao et al. 2014]
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Efficient	Volumetric	Datastructures

�19[Hane et al. 2018]
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Efficient	Volumetric	Datastructures
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Input	Partial	Scan Completed	Scan Predicted	Semantics

(slide	credit:	Matthias	Niessner)

[Dai et al. 2018]
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State-of-the-art	3D	Reconstructions

!22
TOG’17	[Dai	et	al.]:	BundleFusion

(slide	credit:	Matthias	Niessner)
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Dependent	Predictions:	Autoregressive	Neural	Networks

• PixelCNN	[van	den	Oord	2015,	van	den	Oord	2016,	Reed	2017] 
 
 
 
 
 

• WaveNet	[van	den	Oord	2016]
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Dependent	Predictions:	Autoregressive	Neural	Networks
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[Dai	et	al.	2018]



Course:	“Deep	Learning	for	Graphics”

Representation	for	3D
• Image-based  

• Volumetric	
• PROS: modify image networks 
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Representation	for	3D
• Common	representation  

• Easy	to	obtain	from	meshes,	depth	scans,	laser	scans 

• Unstructured	(e.g.,	any	permutation	of	points	gives	same	shape!)

�35[Su et al. 2017]
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permutation-invariant	functions

[Su et al. 2017]
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Use	MLPs	(h)	and	max-pooling	(g)	as	simple	symmetric	functions

[Su et al. 2017]
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PointNet	for	Point	Cloud	Analysis:	PointNet++

�39[Qi et al. 2018]
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PointNet	for	Local	Point	Cloud	Analysis

�40[Guerrero et al. 2018]
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PointNet	for	Point	Cloud	Synthesis

�41[Su et al. 2017]

Earth	Mover	Distance	as	loss	function	

generated	output	needs	to	be	compare	to	some	true	shape
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Representation	for	3D
• Image-based  

• Volumetric 

• Point-based  

• Surface-based
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Image Generated	Volume Generated	Points Generated	Surface

Surface	models	used	in	engineering	(i.e.,	CAD)	
and	computer	graphics	(i.e.,	meshes)
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Latent	representation	can	be		
inferred	from	images	or	point	clouds

condition	decoded	points	on	2D	patches
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AtlasNet	for	Surface	Generation
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Latent	representation	can	be		
inferred	from	images	or	point	clouds

Quad	Mesh	is	generated	by		
mapping	a	regular	grid	in		
2D	domain	to	3D	points

[Groueix et al. 2018]
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AtlasNet	for	Surface	Generation
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Latent	representation	can	be		
inferred	from	images	or	point	clouds

BONUS:	natural	space	to	store	
textures	for	CG
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Texture	Transfer

�47[Wang et al. 2016]
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Parameterization	for	Surface	Analysis
• Map	3D	surface	to	2D	domain	

• One	such	mapping:	flat	torus	(seamless	=>	translation-invariant)  

• Many	mappings	exists:	sample	a	few	and	average	result 

• Which	functions	to	map?	 
									XYZ,	normals,	curvature,	…

�50[Maron et al. 2017]
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[Sinha et al. 2017]

Geometry	Image
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[Sinha et al. 2017]

Geometry	Image Metric	Alignment

[Ezuz et al. 2017]
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parameterize	in	spectral	domaingeodesic	discs
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Other	Parameterizations

�54[Masci et al. 2015]
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Transferring	Correspondence

!56[Monti et al. 2016]
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Spectral	Methods
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(slide	credit:	Michael	Bronstein)
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SyncSpecCNN

�58[Yi et al. 2017]
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Siamese	Networks
• Used	to	estimate	quantities	that	depend	on	pairs	of	representations	

• Two	networks	that	merge	at	the	end	and	that	share	parameters	

• Triplet	networks	are	used	in	practice	as	well

!59
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t-SNE	(think	MDS)
• Technique	for	dimensionality	
reduction	of	high-dimensional	data 

• focuses	on	preserving	local	structure	
(keeps	similar	points	close	together),	
at	the	expense	of	global	structure 

• Works	well	for	visualizations

!60

Image	Credit:	Visualizing	Data	using t-SNE,	Maaten	and	Hinton
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Deep	Learning	for	Fluids
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Long	et.	al	2017 Schenck	et.	al	2017Tompson	et.	al	2017

(slide	credit:	Nils	Thuerey)
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Latent-space encoding

Temporal prediction

Volumetric decoding

[Latent-space	Physics:	Towards	Learning	the	Temporal	Evolution	of	Fluid	Flow,	arXiv	2018]

(slide	credit:	Nils	Thuerey)
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High Resolution Simulation of Liquids
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Further Examples, 1283

[Latent-space	Physics:	Towards	Learning	the	Temporal	Evolution	of	Fluid	Flow,	arXiv	2018]

(slide	credit:	Nils	Thuerey)
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Further Examples, 1283

[Latent-space	Physics:	Towards	Learning	the	Temporal	Evolution	of	Fluid	Flow,	arXiv	2018]

(slide	credit:	Nils	Thuerey)



Course:	“Deep	Learning	for	Graphics”  65

Goal: Infer high-resolution configuration from low-resolution data

Example input Example target (4x)

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]

(slide	credit:	Nils	Thuerey)
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Goal: Infer high-resolution configuration from low-resolution data

Example input Example target (4x)

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]

Down-sample

(slide	credit:	Nils	Thuerey)
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(slide	credit:	Nils	Thuerey)



Course:	“Deep	Learning	for	Graphics”

Three	Dimensional	Examples

�70

tempoGANInput Target



Course:	“Deep	Learning	for	Graphics”

Three	Dimensional	Examples

�70

tempoGANInput Target
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Image resolution: 128x128

Nicholas Watters, Andrea Tacchetti, Theophane Weber, Razvan Pascanu, Peter 
Battaglia, Daniel Zoran (DeepMind): Visual Interaction Networks, NIPS 2017

ours
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Course	Information	(slides/code/comments)

http://geometry.cs.ucl.ac.uk/dl4g/
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