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Figure 1: Starting from a heavily occluded single view RGBD image (left), we extract a coarse scene structure as an arrangement of cuboids
along with their inter-cuboid relations (middle) using physical stability considerations to hypothesize the missing regions/relations. The
coarse structure can then be used for scene understanding and manipulation. This result was generated in the automatic mode.

Abstract

Missing data due to occlusion is a key challenge in 3D acquisition,
particularly in cluttered man-made scenes. Such partial informa-
tion about the scenes limits our ability to analyze and understand
them. In this work we abstract such environments as collections of
cuboids and hallucinate geometry in the occluded regions by glob-
ally analyzing the physical stability of the resultant arrangements
of the cuboids. Our algorithm extrapolates the cuboids into the un-
seen regions to infer both their corresponding geometric attributes
(e.g., size, orientation) and how the cuboids topologically interact
with each other (e.g., touch or fixed). The resultant arrangemen-
t provides an abstraction for the underlying structure of the scene
that can then be used for a range of common geometry processing
tasks. We evaluate our algorithm on a large number of test scenes
with varying complexity, validate the results on existing benchmark
datasets, and demonstrate the use of the recovered cuboid-based
structures towards object retrieval, scene completion, etc.
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1 Introduction

Acquisition devices for 3D geometry are now ubiquitous. While
this has vastly simplified the data gathering process, the raw data

⇤Joint first authors.

still remains difficult to use. A fundamental problem for single view
acquisition and even for multi-view consolidated scans is missing
observations due to scene occlusion. This problem is particularly
acute in busy and cluttered scenes (e.g., indoor environments). This
limits how such raw scans can actually be used as existing shape
analysis tools fail due to missing information.

Various approaches have been proposed to address the ill-posed
problem of hypothesizing data in the occluded scene regions. For
isolated objects, one can use local context [Sharf et al. 2004; Harary
et al. 2013] or deform class-specific template shapes to recover the
missing parts [Pauly et al. 2005; Bao et al. 2013]; for multiple ob-
jects, one can employ search-and-classify approaches [Nan et al.
2012], require multi-view acquisition [Kim et al. 2013b; Mattausch
et al. 2014], or interactively capture template models using targeted
acquisition [Kim et al. 2012] or modeling sessions [Arikan et al.
2013]. Such methods, however, assume access to suitable database
models, or rely on much more detailed and complete scene data to
reliably perform geometric matching.

Figure 2: Even for scenes with significant occlusion, we as humans,
can reason about the actual arrangement (image source: [Gibson
1986]). We develop an algorithm to mimic this based on physical
stability of the inferred arrangement (see also Figure 16).
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In this paper, we use physical stability considerations of static scene
objects to hallucinate missing structure information from incom-
plete 3D acquisitions. Moreover, by considering possible geometry
in the unseen part, we can better reason about the visible parts of
the scans (e.g., if two objects just touch, or are fused to each oth-
er). This is similar to how we as humans regularly extrapolate seen
object parts to reason about the unseen scene regions based on the
physical plausibility of the resultant object stack, for example see
Figure 2. Note that by avoiding the surface reconstruction or partial
shape matching problems, our algorithm does not reply on avail-
ability of model templates or predefined priors (see Figure 1).

Starting from raw scans, our goal is to abstract indoor scenes as a
collection of simple cuboids. We abstract indoor scenes as collec-
tions of cuboids as the ‘box world’ well captures the intra- and inter-
object constraints common in man-made environments (c.f., [Blum
et al. 1970; Gupta et al. 2010; Zheng et al. 2012]). Creating such
an abstraction requires addressing the following: (i) segmenting the
scan into groups of points; (ii) fitting a cuboid to each such group;
(iii) hypothesizing missing cuboid geometry in the occluded region-
s; and (iv) determining how the cuboids are mutually arranged and
connected to each other. Essentially, our goal is to determine what
the cuboids are, what their spatial and geometric parameters are,
and how they are relatively arranged (e.g., stacked or fixed to each
other) such that they best explain the (incomplete) input data.

The algorithm starts by creating a set of initial cuboids. Based on
their pairwise configurations, we extrapolate the initial cuboids to
spawn a set of candidate cuboid extensions to hypothesize possible
completions in the occluded regions. The algorithm then proceeds
in two stages: a discrete stage to extract inter-cuboid connection-
s by selecting the cuboid arrangement from a subset of candidate
cuboids arrangements that best explains the input; and a continu-
ous stage to refine the cuboid parameters to improve the stability of
the current arrangement, while preserving the current cuboid con-
nections to obtain a final cuboid arrangement. Goodness of any
cuboid arrangement is assessed based on the physical stability of
the configuration and how well the arrangement agrees with the in-
put observation.

We evaluated our algorithm on synthetically scanned scenes with
known groundtruth data, on typical indoor scenes obtained from
benchmark datasets (about 700+ scenes from the NYU depth
dataset with available groundtruth structure data), and on complex
office environments with significant occlusions. The tests demon-
strate that our algorithm produces high quality structure abstrac-
tions of the occluded regions. Moreover, the improvements are sig-
nificant even in case of scans consolidated using multiple acquisi-
tions (e.g., Kinect fusion). Finally, we demonstrate the use of the
recovered coarse structure in object retrieval and scene completion.

2 Related Works

Indoor scene capture. Acquiring and understanding indoor scenes
are valuable for various applications. A common approach is to
design a classifier to label scene objects [Schlecht and Barnard
2009; Xiong and Huber 2010; Anand et al. 2011; Koppula et al.
2011]. Siberman et al. [2011; 2012] reported good performance
accuracy in indoor scene labeling using learned probabilistic dis-
criminative models for data and compatibility terms from RGBD
image dataset and by considering support relationships. In another
research thread, interactive methods have been developed for 3D
modeling and content-aware image editing. Shao et al. [2012] seg-
mented RGBD images with semantic labels, and retrieve 3D mod-
els corresponding to the labels from a database using a random re-
gression forest with the depth data. In concurrent efforts, Kim et
al. [2012] developed model-based algorithm to group the extracted

geometric primitives from depth data into individual models, while
Nan et al. [2012] interleaved segmentation and classification in re-
gion growing to extract objects from depth data. More recently
Mattausch et al. [2014] propose an unsupervised algorithm to iden-
tify and consolidate repeated objects across large office scenes.

Proxy-based scene understanding. Instead of assuming access
to all possible scene objects, an alternative approach is to ex-
plain the input in terms of ensembles of simple proxies. Li et
al. [2011] and Lafarge et al. [2013] consider relations among ini-
tial RANSAC-based proxies to produce structured outputs; while,
Arikan et al. [2013] combine user annotations with prior relations to
create abstracted geometry. Other approaches involve encoding in-
put scenes as collections of planes, boxes, cylinders, etc. and study-
ing their spatial layout [Gupta et al. 2010; Lee et al. 2010; Hartley
et al. 2012]. In the context of image manipulation of indoor man-
made environments, Zheng et al. [2012] abstract scenes with cuboid
primitives to facilitate simple yet intuitive edits. These methods,
however, do not yield information about the occluded scene parts,
which is the focus of this work.

Gupta et al. [2011] reason about object layouts based on human in-
teractions in typical workspaces. In order to improve accuracy of
cuboid proxy detection, a statistical deformable cuboid model has
also been learned [Fidler et al. 2012], or a cuboid corner point mod-
el is learned to better detect corners in images, eventually leading
to better cuboid models [Xiao et al. 2012]. Hedau et al. [2012] de-
sign a set of image space contrast-based features to better fit proxy
boxes to explain scenes from single views. Physical constraints,
such as penetration-free, etc. are also adopted in reasoning the
position of proxies in an indoor scene [Hedau et al. 2010], while
Umetani et al. [2012] use physical stability and torque limits for
guided furniture design in a modeling and synthesis setting. In par-
allel efforts, physical validity constraints [Jia et al. 2013; Jiang and
Xiao 2013; Zheng et al. 2013] have also been used for voxel-based
scene parsing. The methods mostly use local reasoning on physical
stability, which by itself is not sufficient to ensure global stabili-
ty (e.g., all the 3 blocks in Figure 10a have to be simultaneously
optimized to produce a stable stack). Kim et al. [2013a] jointly
estimate a voxel-based 3D reconstruction along with voxel label-
ings using a voxel-CRF formulation. We also focus on proxy-based
scene understanding, particularly considering global physical sta-
bility to reason about large scale missing geometry, but without ac-
cess to rule-based priors or any training data.

Shape completion. Occlusion naturally results in missed data. Var-
ious approaches have been proposed to plausibly complete such
missing regions: diffusion-based smooth surface completion [Davis
et al. 2002]; example-based completion based on existing database
models [Sharf et al. 2004; Pauly et al. 2005]; local context-based
completion [Harary et al. 2013]; consolidating information across
multiple scans and by factoring out symmetry based redundan-
cies [Zheng et al. 2010]. Since finding an appropriate shape from
model repositories is often ill-posed especially in absence of suffi-
cient data, Shen et al. [2012] introduce a structure-based approach
to extract suitable model parts and fuse them together to form high-
quality models. Note that in these cases the resultant model, re-
trieved as a whole or as an assembly of parts, remains plausibly
connected based on the connectivity inherited from the source mod-
els. The methods begin to fail in presence of significant clutter and
occlusion.

3 Overview

Our goal is to create an arrangement of cuboids as a structural proxy
for an incomplete scan of a cluttered scene. By arrangement of
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Figure 3: Based on incomplete scene observation (left), we can
imagine multiple completions. Top-right shows invalid completion-
s: an unstable stack of three cuboids, or a stable stack of three
cuboids that violates the visibility constraint. Bottom-right shows
valid completions: two fused cuboids and a small cuboid, or a stack
of three cuboids consistent with the visibility constraint.

cuboids, we refer to a set of cuboids with their explicit pairwise
contact relations, e.g., two cuboids touch, or are fused to each other,
along with geometric attributes for each cuboid.

Starting from the raw data (e.g., single view RGBD data, or Kinect
fusion data), we first create a set of initial cuboids (see Section 4.1).
These initial cuboids, however, provide little information about the
occluded scene regions. We make the important observation that
pairs of such cuboids that intersect when extrapolated into the oc-
cluded regions provide potential geometry hypotheses for the oc-
cluded regions (see Figure 3). Hence, we generate multiple hy-
potheses for missing geometry by extending the initial cuboids into
the occluded regions. We refer to such extrapolations as cuboid
extensions. Note that each cuboid can have multiple potential ex-
tensions based on its contact types to the other cuboids. In this
work, we consider no-contact, fixed contact, and touching as con-
tact type relations. In Section 4.2, we describe how we enumerate
possible cuboid arrangements {A1, A2, . . . } where, each arrange-
ment A

i

:= {B1, B2, . . . } consists of a set of (extended) cuboids.

Working under the assumption that the scanned scenes consist of
static objects, we expect any valid cuboid arrangement to be phys-
ically stable, or nearly-stable to account for errors due to coarse-
ness of the initial cuboid estimates. Hence, we measure stabili-
ty of any candidate cuboid arrangement A

i

under the respective
inter-cuboid contact types and discard the unstable arrangements
(see Figure 3). We propose a branch-and-bound algorithm to avoid
explicitly checking the exponential set of possible cuboid arrange-
ments.

Finally, we refine the cuboid parameters of the stable arrangemen-
t(s) while retaining current contact constraints using a quadratic
programming formulation (see Section 4.3). We prefer the physi-
cally stable cuboid arrangement that requires fewer fixed joints and
necessitate minimal volume extension as the simplest solution in
terms of geometry that is hypothesized. In the end, we recover a
physically valid arrangement of cuboids with both the inter-cuboids
interaction types and the respective cuboid parameters.

4 Algorithm

Our goal is to infer a physically valid arrangement of cuboids to
hypothesize geometry in the missing-data regions in an incomplete
3D point cloud P (e.g., a single view RGBD image). By physical
stability, we require the cuboid arrangement to be globally stable.
This is achieved by creating arrangements of cuboids with suitable
cuboid geometry and inter-cuboid contact relations (see Figure 4).
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fixed

initial cuboids
cuboid arrangement 
+ recovered structure

Figure 4: Starting from incomplete scans (left), our algorithm s-
tarts by creating a set of initial cuboids (middle) that are optimized,
both in their geometric parameters and the inter-cuboid contac-
t types to propose a physically-valid arrangement of cuboids (right)
that is consistent with the input data.

4.1 Generating Initial Cuboids

We detect and remove the points in P associated with the ground
and wall planes, group the remaining points into separate clusters
of point sets, and create initial cuboids for each such point cluster.
For simple scenes, the initialization proceeds automatically, while
for more complex scenes, user assistance is required. The generated
cuboids are then refined to better align with the image space edges,
where available. We now provide further details.

Ground/wall planes: We scale the input point set P to fit inside a
unit sphere and align the z-axis to the input up-direction. We use
RANSAC to detect the dominant planes [Schnabel et al. 2007] in
the input scene and sort the planes based on their size (i.e., area of
extent). We mark the planar segment with upward normal and low-
est z-value as the ground plane, and the other significant (based on
an area threshold) planes that are orthogonal to the ground as walls
(see [Kim et al. 2012]). Optionally, the user can mark the ground
and wall planes. We remove the points associated with the ground
and the wall planes, and group the remaining ones using a connect-
ed component analysis (using spatial proximity) as object clusters,
say {C1, C2, . . . }. Note that each object cluster C

i

denotes a set of
points.

Notation: We fit initial cuboids to each object cluster C
i

. First we
introduce some notations. A cuboid is an oriented box associated
with a local coordinate frame. We represent a cuboid B by its center
c, a local coordinate frame F, and (s

x

, s

y

, s

z

) as the three size
parameters along the three local coordinate axes. Note that along
any axis a cuboid can be extended differently in the positive and/or
the negative directions.

Automatic cuboid creation: For each object cluster C

i

, we fit a
bounding box aligned to the ground plane (see Figure 5-top). We
orient the bounding box based on the best fitting rectangle to the
points p

j

2 C

i

projected to the ground plane. We voxelize (using
0.005 as cell size) and identify the occupied cells. Our goal is to
fuse these voxels to form a set of non-overlapping rectangular slabs,
each of which is nearly fully occupied. We take a greedy approach
by fusing the occupied cells to form rectangular slabs if they contain
more than 70% occupied cells (wrt. to the respective slab volumes).
In the figure, the cuboids are marked as 1, 2, . . . based on their
order of appearance. In case of multiple candidates we prefer the
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Figure 5: (Top) In the automatic mode, cuboids are progressive-
ly fitted to an object cluster C

i

using a greedy approach. (Bot-
tom) Based on user scribbles, a mask is produced from the RGBD
data using depth-augmented grab-cut, and a cuboid is fitted to the
corresponding points.

one with the highest occupancy, and recurse over the remaining
cells. In the end we have a set of cuboids for each object cluster.

User interaction: Optionally, the user can scribble strokes on the in-
put image to guide segmentation (see Figure 5-bottom). This mode
is used in scenes where objects come too close and fail to be sep-
arated using connected component analysis. Based on the strokes,
we use a depth-augmented version of the original grab-cut segmen-
tation [Rother et al. 2004] to select a group of points or mask. We
run RANSAC on the selected points to generate candidate planes.
The largest of the planes is selected as the primary plane, and the
second largest plane is made orthogonal to the primary one. We ex-
tract the bounding box determined by these orthogonal directions
(third direction is the cross product of the two plane normals). In
our tests, such interactions were only necessary in regions of clutter
and/or with slanted objects.

Figure 6: The initial cuboids (middle) are adjusted to better align
the original image edges in the RGDB data (left) to produce refined
cuboid candidates (right).

Image-guided cuboid improvement of initial cuboids: The cuboids
generated, either automatically or semi-automatically, are based on
the noisy point sets and hence are often misaligned to the image
space edges. We refine the cuboids based on available image edge
information (see Figure 6). Visible corner edges of the cuboids are
mapped to the sufficiently close image edges, which are detected
using Canny edge-detector (small edges and outliers are discarded).
Given a group of cuboids {B1, B2, . . . }, we minimize:

min

{B
i

,T

i

}

X

i

X

j

kP(T

i

(vs

j

))� t
j

k2, (1)

where P is the known camera projection, vs

j

is a sampled point
on the visible corner edges, t

j

is the closest point of vs

j

on the
corresponding image edge, and T

i

is the unknown rigid transfor-
mation applied to the cuboid B

i

. We update the closest points t
j

Algorithm 1 Inferring Inter-cuboid Contact Types
Input: N initial cuboids (B1, ..., BN

)
Output: N optimized cuboids (B⇤

1 , ..., B
⇤
N

) and their
contact relations (J⇤

1 , ..., J
⇤
M

)

// Initialization of interaction graph G := (V,E)
G ?
for i = 1 to N do

V

i

 B

i

end for
for each node pair (V

i

, V

j

) do
// build multi-edges ek

ij

e

0
ij

 (B
i

, B

j

) // edge corresponding to initial geometry of B
i

and B

j

if B
i

, B

j

can potentially touch then
for k = 1 to 3 do

e

k

ij

 (Bij,k

i

, B

ij,k

j

) //different extensions as in Figure 7
end for

end if
end for

// Optimization of cuboid geometry and their relation types
N

f

 N

2 // fixed joint number
�V  ⇡ // extended volume
while 1 do

Gather a new combination of potential cuboid extensions (ek
ij

, ..., e

l

mn

)
if no more edge combination then

break
end if
Update cuboids (B0

1, ..., B
0
N

) based on the extensions on potential edges
if cuboids penetrate then

continue
end if
Calculate current relations (J 0

1, ..., J
0
M

), count of fixed joints N 0
f

, and volume
extension �V

0 after interaction type pruning based on physics stablity
if unstable according to Equation 3 then

continue
end if
if N 0

f

 N

f

and �V

0
< �V, then

N

f

 N

0
f

�V  �V

0

(B⇤
1 , ..., B

⇤
N

) (B0
1, ..., B

0
N

)
(J⇤

1 , ..., JM

⇤) (J 0
1, ..., J

0
M

)
end if

end while

at each iteration and use Matlab fmincon function to solve the non-
linear optimization in Equation 1. Note that if the offsets between
cuboids and the point cluster degrade after refinement (due to spu-
rious edges), we abandon the refinement.

4.2 Inferring Inter-cuboid Contact Types

The initial cuboids do not occupy the occluded regions. In the key
stage of the algorithm, we extend these cuboids into the occlud-
ed regions with the constraint that the arrangement (configuration)
of the extended cuboids is physically stable. However, there are
many ways of extending the cuboids into the occluded region. We
first create candidate extensions and then pose the problem of se-
lecting extensions such that the resultant arrangement of extended
cuboids is physically stable. We use the formulation by Whiting
et al. [2009] to assess physical stability in terms of the (unknown)
cuboid dimensions. We now explain the individual steps (see Algo-
rithm 1).

Representing contact types: We encode the discrete interaction a-
mong the cuboids as a contact graph G := (V,E), where each
cuboid B

i

becomes a node in V and each pair of cuboids (B
i

, B

j

)

forms multiple candidate edges in E, one for each possible contact
type (e.g., touch, fixed).
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Figure 7: 2D Illustration of candidate cuboids generation cases
for different contact types. Starting from the initial cuboids (a), we
generate different candidate extensions: no extension (a), touching
cuboids (b,c), and fused cuboids (d).

We make an important observation that the rough geometry of the
cuboids is largely determined by how they interact with each other
and provide good extension candidates for the respective cuboid pa-
rameters. Each candidate cuboid pair amounts to possible contacts
corresponding to different extensions for no-contact (i.e., disjoin-
t), touching, or fixed (i.e., cuboids are fused together). Each such
contact edge implicitly suggests cuboid geometries based on the re-
spective cuboid extensions (see Figure 7). Say, any pair of cuboids
(B

i

, B

j

) is extended to be (B

ij,k

i

, B

ij,k

j

), where k indicates the
joint type. For example, edge type with no extension (k = 0)
amounts to retaining the original cuboids, i.e., Bij,0

i

= B

i

. Note
that a cuboid B

i

can have multiple extensions proposed by different
cuboids.

Potential contact-based cuboid extensions: For any candidate pair
(B

i

, B

j

), we extend the cuboids. Without loss of generality, as-
sume B

i

is extended to be in contact with B

j

. We first deter-
mine the extension direction through space partition. The extension
length is initialized with the largest corner point to plane distance,
i.e., the corner points of B

j

to the cube plane of B
i

attached to the
overlapped half space. Figure 7 shows the different extension cas-
es. Note that the type of extension also determines the force bearing
faces, when applicable, which is later used during evaluating phys-
ical stability.

Optimization formulation : Let �ij,k

i

= 1 denote the corresponding
extensions are selected (�ij,k

i

= 0 otherwise), which means, the
k-th contact type for the cuboid pair (B

i

, B

j

). A trivial solution is
to select fixed contact types for all the cuboid pair relations to pro-
pose a physically stable solution. However, this is overly conserva-
tive. Instead, our goal is to propose a physically stable arrangement
of (extended) cuboids with minimal number of fixed contacts, i.e.,
min

P
i,j,k

#(�

ij,k

i

= fixed joint).

Further, the selected edges should also respect the following con-
ditions: (i) �ij,k

i

= �

ij,k

j

and (ii)
P

k

�

ij,k

i

= 1 for all the edges
in e

k

ij

2 E. The first constraint ensures that compatible cuboids
are extended, while the second one ensures that only one type of
interaction is selected for each cuboid pair relation.

The combination of all possible contact relation candidates is very
large. An exhaustive search can take a prohibitive large amount of
time to find the optimal solution, which is not acceptable in inter-
active applications. First, we prune the possible pairs of cuboids
if their extensions violate the visibility constraint, i.e., if the ex-
tended proxies fall in the visible regions as informed by the source
depth data. Then, we prune extensions using a branch-and-bound
approach as described next.

Pruning the solution space: We prune contact relation types based
on an important observation: If a candidate cuboid arrangement is
unstable even with some of its contact relations marked as fixed, it
cannot be made stable by changing the marked fixed type relations
to touching or no-contact. Therefore, starting with root node where
all the interaction types are set to be fixed, we expand the node as

(a) (b) (c)

Figure 8: A single view RGBD scan (top-left) can result in a physi-
cally implausible arrangement of initial cuboids (top-right), which
can have multiple explanations in terms of arrangements of ex-
tended cuboids (bottom). Our formulation favors the one with the
fewest number of fixed joints; and the smallest overall extension
volume (c).

a search tree by changing relations at one edge from fixed to other
types. If an expansion results in an unstable arrangement, the whole
subtree is pruned to save unnecessary computation (see Figure 9).

Assessing global stability: Note that we cannot assess physical va-
lidity simply based on local reasoning. For example, in Figure 10a,
all the pairs of touching cuboids by themselves are physically un-
stable, but the arrangement as a whole is still stable; while in Fig-
ure 10b, it is the other way round. Such scenes were common in
the complex scenarios scanned and analyzed in Section 5.3. See al-
so, Figure 15. Hence, in order to evenly quantify stability for such
arrangements, we have to simultaneously consider the effects of all
the cuboids.

Assessing physical stability: The stability of a cuboid arrangement
is judged through its static equilibrium. This amounts to the set of
contact forces between the cuboids to balance the arrangement un-
der self load. Similar to [Whiting et al. 2009], we treat each cuboid
as a rigid block, and position a contact force at each contact point
on the interface. The number of contact points on the interface can
vary according to the contact cases (1 for point contact, 2 for edge
contact, and 4 for face contact). The contact forces are then pa-
rameterized at each interface face between two touching cuboids as
the normal force f

n

, and the friction forces f
u

and f
v

(aligned to
the normalized face directions e

n

, e
u

, e
v

, respectively). Since the
interface forces are encoded in the local coordinate system, only 3
scalars are required in the final computation to capture their respec-
tive magnitudes. If two cuboids are fused to each other, we treat

Expand Prune

stable unstable unstable 

Prune

Fixed
Touching

Figure 9: Branch-and-bound approach to prune infeasible contact
relation type assignments.
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Figure 10: In order to evaluate physical stability, simply investi-
gating pairwise proxy interactions is insufficient. (Left) Although
each pair of touching boxes is by itself unstable, the arrangement
of all the boxes is stable. (Right) Although each pair of touching
boxes is stable, the arrangement of all the boxes is unstable.

them as a single rigid body and ignore their contact forces.

In static equilibrium, the net force and torque acting on the assem-
bly should be zero. Gathering the constraints at each cuboid yields
a linear system of the form,

Df +w = 0, (2)

where w captures the self weights of the cuboids (no external force
is considered), D captures the coefficients of the force/torque equi-
librium equations, and f captures the stack of (unknown) forces at
the interface faces (see Figure 11).

w
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z
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x

e
n
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v

e
u

Figure 11: For physical stability an arrangement of cuboids should
satisfy zero force and zero torque conditions. The condition can be
expressed in terms of the (unknown) forces at the interface faces
and the weight w of each cuboid expressed in terms of its (unknown)
dimensions. In this figure, we highlight one interface face in blue.
Note that the cuboid weight at its center of mass is given by w =

⇢s

x

s

y

s

z

for a fixed density ⇢.

In order for a cuboid arrangement A to be physically stable, each i-
th interface face forces f i

n

should be non-zero to act as compression
force, and f i

u

, f i
v

should satisfy the static friction law (c.f., Section 3
in [Whiting et al. 2009]). Note that the cuboid weights are param-
eterized in terms of the cuboid dimensions. In order to account for
inaccuracies, we seek a least norm solution to Equation 2 as:

E
s

(A) := min

f
kDf +wk2 s.t. f i

n

� 0 and |f i
u

|, |f i
v

| < µf i
n

, (3)

where f i
n

� 0 indicates the compression force constraint, and µ is
the static friction coefficient, default 0.7 in our system. If the mini-
mized energy E

s

of Equation 3 is below a certain threshold (1e-3 in
our tests), we deem the cuboid arrangement with the assigned inter-
action type information to be potentially stable, and further refine
the cuboid dimensions as described next.

4.3 Refining Cuboid Parameters under Contact Con-
straints

Finally, we refine the cuboid parameters to improve the stability
score of the arrangement A, while preserving the connectivity in-
formation encoded by the contact graph extracted in the Section 4.2.
We improve the current stability score using gradient descent. We
numerically estimate gradient of the energy with respect to each

current cuboid B

i

, and greedily select the direction with the maxi-
mum norm, i.e., argmax

i

krE
s

(A)|
�

B

i

k evaluated at the current
configuration �

B

i

of the cuboids B

i

. Note that we only vary pa-
rameters for one cuboid at a time. We take a small step along the
negative of the normalized direction with all the refinements for
the other cuboid parameters set to zero. We denote this full con-
figuration vector as �A. We project the solution to preserve the
active interactions as specified by the corresponding contact graph.
Specifically,

↵

⇤
:= argmin

↵

kE
s

(A� ↵�A)k2 s.t. f
i

(X) = 0 8e
i

2 ˜

E, (4)

where ˜

E denotes the active edge set in the current contact graph
G, and f

i

denotes the contact constraints (e.g., the corresponding
cuboids touch) as indicated by the corresponding contact type thus
resulting in a QP formulation. For example, if two cuboids touch,
we add a constraint to ensure that the corresponding interface faces
remain touching. At the end of each iteration, we update the cuboid
parameters as A A� ↵

⇤
�A. We refine the parameters for each

plausibly stable arrangement. In case of multiple solutions having
same number of fixed contacts, we pick the one with the smallest
overall extension volume. For example, in Figure 8 the bottom-
right solution is selected.

5 Evaluation and Results

We processed synthetic and real scenes from recorded and public
datasets in order to measure the quality of the optimized proxy ap-
proximation. Both the connectivity and geometry of their arrange-
ments were evaluated (when suitable groundtruth was available).
We calculated precision, recall, and f-measure for the connectiv-
ity validation, and used an L1 norm based metric to evaluate the
improvement of the proxy dimensions.

Datasets: We tested our algorithm on four categories of scenes:
(i) synthetic scan simulations allowed us to evaluate robustness
against sampling variations, initialization quality, and increasing
amount of occlusion due to changing view-points; (ii) 700+ scenes
(with available groundtruth) were evaluated from the NYU2 dataset
[Silberman et al. 2012]; (iii) a variety of indoor scenes with differ-
ent levels of occlusion and complexity were recorded to evaluate
retrieval capabilities in increasingly occluded environments; and
(iv) Kinect Fusion type scenes were recorded to show the increas-
ing importance of our solution when the scene complexity increas-
es. We also assessed the suitability of the recovered cuboid-based
structures for scene completion and manipulation tasks (see Sec-
tion 6).

Evaluation metrics and ground truth. We evaluated how well
we can recover the structure information in the scenes, and how
much this improves the approximation accuracy of the recorded ob-
jects. The structure information was encoded in a support graph
similar to [Silberman et al. 2012]. We compared the initial and
optimized structure graph to a ground truth graph. Our optimized
graph, as described in Algorithm 1, contains edges between two
proxies labelled “touch” and “fixed.” The ground truth graph was
created manually (or automatically in case of scenes from NYU2)
to encode the correct relationships using these labels. Walls, floors,
ceilings were assumed to be objects with zero mass. Hanging re-
lationships were labelled “fixed.” The initial graph was assumed
to contain solely “touching” edges. Finally, we calculated initial
and optimized precision-recall (PR) ratios, and converted them to
f-measure (F1 =

200PR

P+R

). A summary of our results can be found
in Table 1.

For those scenes where we have access in the real world (to perform
measurements by removing occlusion), we evaluated the accuracy



Table 1: Quality evaluation for structure graphs.

INITIAL OPTIMIZED
TYPE #Scenes PR (%) F1 PR (%) F1

Synthetic 12 42.1 / 26.7 32.2 96.2 / 84.7 87.2
NYU2 700 34.7 / 47.3 40.0 55.3 / 70.8 60.5
Recorded 20 70.1 / 49.5 56.5 95.7 / 96.6 95.9
Kinfu 2 37.2 / 28.2 32.1 96.4 / 84.0 89.7

gain of the proxy approximation. We compared the L1 norms of the
proxy extents compared to the ground truth both in the initial and
optimized scenes (Equation 6). The threshold ✏ = 5% was used to
filter changes that could have been induced by sensor noise. The
error improvements were summed weighted by the ground truth
proxies’ proportion in the scene as:

e

i

=
|s

i

� s

(GT )
i

|
s

(GT )
i

; c

i

=

(
s

(GT )
i

, if |einit

i

� e

optimized

i

| > ✏.

0, otherwise.
(5)

Error(scene
k

) =

P#proxies

j=1

P3
i=1 c

i

|einit

i

� e

optimized

i

|
P3j

i=1 c

i

. (6)

To collect the ground truth, we imagined the smallest bound-
ing proxy of the real world objects and physically measured the
three side lengths using measuring tape. We denoted these s

(GT )
i

and compared them to the measured side lengths in each setting
(init, optimized), denoted by s

i

in Equation 5.

5.1 Synthetic Data

We modeled scenes (chair, stacking boxes, table with chairs) to
evaluate the stability of the solution regarding the quality of ini-
tialization, arrangement complexity and change of viewpoint. The
models were then virtually scanned using Kim et al. [2012] and then
initial cuboids estimated as described in Section 4.1. We evaluat-
ed the quality of the structure graph compared to the ground truth
using F1 score (best being 100%).

(i) Robustness to initialization. In order to evaluate the robustness
of our approach towards the quality of initialization, we syntheti-
cally perturbed the parameters of the initial cuboids (within ±5%

of original size, and within 15

� of original orientation). We discard
any perturbation if it results in intersecting cuboids. We then used
such arrangements as input to our core algorithm and got consisten-
t results with respect to ground truth structure graphs over several
runs (about 20) for each of the bookshelf and chair scenes (Table 2).

We also tested the robustness towards random perturbation of proxy
densities. We changed the densities of up to 20% of the cuboids s-
elected randomly, each up to ±5x. We found the desks and sofas to
be more fragile allowing 2-3x changes, while other scenes (aligned
box stacks) to be more robust (5-7x variations) over 20 runs. Note
that we switched off image-based refinement for these experiments
as due to the perturbation the recovered proxies might not be con-
taining their generating points.

(ii) Robustness to change of viewpoint. We evaluated the effect of
varying occlusion due to different view-points by re-sampling the
top-right scene in Figure 12 from different views. The most sig-
nificant challenge was due to the lack of an initial proxy when no

Table 2: F1 scores (initial! optimized) of optimization after per-
turbation of initialization. The initialized proxies were randomly
rotated around their centroids.

scene 0� 5� 10� 15�

chair 01 20.0!100 20.51!100 20.51!97.8 17.14!87.8
chair 02 21.43!100 20.69!100 14.29!97.5 14.29!94.7

(a) (b) (c)

(d)

Figure 12: Synthetic scenes created and sampled to evaluate stabil-
ity. Robustness to perturbation of initialization (a,b), arrangement
complexity (c) and change of view-point (d) were measured.

corresponding point samples was recorded. This occurs when an
object part is entirely occluded in the scene. Some errors are in-
herited from the decaying sensor accuracy when targeting surfaces
from skew view-angles.

In total we simulated 5 different viewpoints, the best F1 score im-
provement was 25.5 ! 90. Our method has two solutions to re-
solve inconsistencies. If enough redundancies were present, some
proxies (legs of chairs and tables) can be hallucinated based on
symmetry. In other cases an existing proxy is extended to make
the scene stable (Figure 8). This minimally resulted in one false
positive and two false negative edges in the structure graph.

(iii) Robustness to arrangement complexity. We evaluated how
well our method handles densely connected structure graphs. Syn-
thetic scenes with 6, 9 and 18 stacking boxes were scanned and
optimized. Additionally the connectivity of real recordings (Fig-
ures 14 and 16) were also compared in Table 3. The 90+ F1 scores
show that our method can successfully handle both densely con-
nected structure graphs (median valence 5 in Figure 13) and large
number of proxies (56 in Figure 14).

initial graph optimized graph groundtruth graph

Figure 13: Robustness to arrangement complexity. A scene with 18
proxies was reconstructed with F1 score 90.24. The structure graph
has 41 edges, median valence is 5. Some of the edges are missed
because of the minimal extension principle in areas of occlusion.



Table 3: Robustness to arrangement complexity.

Fig. 13 Fig. 16 Fig. 14
# proxies 18 17 56
# contacts 41 29 64

max valence 6 11 11
median valence 5 2 2
average valence 4.55 3.35 2.32

min valence 1 1 1

PR(%) init. 85.19 / 56.10 58.82 / 34.48 15.56 / 10.77
PR(%) optim. 90.24 / 90.24 100.0 / 89.66 98.33 / 90.77

F1 init. 67.65 43.48 12.73
F1 optim. 90.24 94.55 94.40

5.2 Performance on NYU2 Dataset

We tested our algorithm on a wide range of scenes (700+) from the
NYU2 dataset. For initialization, we split each depth image into
components based on the available segmentation masks, and fitted
initial cuboids as described in Section 4.1 aligned to the ground
plane. A large fraction of the scenes contain simple relationship
hierarchies, such as object-on-floor or object-on-object-on-floor. A
small ratio of these objects have incorrect structure due to occlu-
sion. Stacked objects, when present, were vertically aligned, mak-
ing the cuboid-based completion rather simple. We left out scenes
with transparent objects.

Ground truth structure graph. We evaluated the correctness of
our scene analysis by comparing the optimized scene graphs to
the ground truth support graphs using updated versions of [Guo
and Hoiem 2013]. These graphs are manually created, and con-
tain semantic information (some proxies are much larger then their
pointclouds, since a certain type of furniture and its size is as-
sumed). Some of the proxies come with the labels “floor,” “wal-
l,” or “ceiling.” Further, several scenes have multiple floor regions
(from NYU2) but only one floor proxy. This produces ambiguous
correspondence. For the remaining scenes we extracted the support
graph from the NYU2 dataset and matched it to the ground truth
proxies. We used the resulting support graphs as ground truth.

Automatic evaluation. The ground truth graphs automatically re-
trievable with the method above contained 40%-85% of the edges
a manual annotator would insert, influencing the scores reported in
Table 1. Our algorithm was designed to resolve proxy intersections,
which assumes a constant approximation scale and no “inclusive”
relationships. We pruned those “touching” edges both from the ini-
tial and optimized structure graphs before evaluation, resulting in
higher precision but lower recall scores. (All the results are provid-
ed as part of supplementary for visual inspection.)

5.3 Cluttered Indoor Scenes

We obtained single view Microsoft Kinect R� scans of several (20+)
test scenes with increasing complexity. These scenes were focused
on situations with larger amount of missing information compared
to the NYU2 dataset. Due to occlusion, recovering the structure
graph and geometry posed a significantly higher challenge. The ob-
jects in these scenes are often locally unstable, but globally stable
requiring a global analysis. For example, see the multiple cuboids
in case of the sofa objects. Recorded scenes contained: vertically
stacked box arrangements, slanted boxes, non-cuboid objects, sin-
gle/multiple pieces of office furniture; and scenes with significan-
t clutter and cyclic support relationships (Figure 16). The scenes
had 2-23 (average 8) objects and 2-29 (average 10) touching and
fixed contacts. In addition to estimating the validity of the structure
graphs (Table 1) we evaluated the correctness of the geometric in-

initial cuboids optimized cuboids + structure

scene #1

scene #2

Figure 14: Initial and optimized cuboids with extracted structure
for two multi-view recordings of cluttered scenes (see supplemen-
tary material for details).

formation recovered by physically examining the scenes and com-
paring them to the optimized outputs. The comparison showed that
our method improved the proxy approximation from 65% to 97%
averaged over all the recorded scenes of varying complexity. This
means that where our method made significant (>5%) changes to
the scene geometry, we reduced the approximation error by 32% on
average (see Figure 17 and supplementary materials for details).

5.4 Multi-view Recordings

In order to investigate, whether the addressed problems of occlu-
sion can be resolved by easily accessible 3D reconstruction sys-
tems, we captured 2 scenes (⇠1000 RGBD frames each) from as
many viewpoints as accessible. We used PCL’s Kinfu LargeScale
implementation. The experiments show that even when such an in-
volved reconstruction system is at hand, the main problems persist.
Parts of a convoluted scene can be occluded from every view-point
or it can be hard, impractical or impossible to make a recording
from view-points that would reveal the necessary structure details
of the scene. Creating the ground truth support graph for a scene
containing 50+ objects takes ⇠1 hour by disassembling the scene
for physical measurements. Our algorithm converged in 20 seconds
up to 98.3% precision and 90.8% recall (F1 : 94.4) (Figure 14).

5.5 Comparison
In a related approach, Jia et al. [2013] proposed a 3D volumetric
reasoning algorithm for parsing RGBD images with 3D block unit-

Figure 15: Output of Jia et al. [2013] on a scene with severe oc-
clusion. Stable cuboids are shown in blue and unstable ones are
shown in red. Given the ground truth segmentation, initial boxes
are fitted after adjusting their orientation based on the supporting
relations (left). In order to reach the physical stability, the algorith-
m merges neighboring segments during the optimization (middle).
The optimized result is to merge all the regions to be stable (right).



scene #1 initial cuboids (#1)

optimized cuboids (#1)with cuboids removed (#1)
+ scene #2 points

with cuboids removed (#1)
+ scene #2 points scene #2

(for reference)

Figure 16: Initial cuboids obtained from scene #1 are optimized to
produce a physically stable cuboid arrangement. To show clear-
ly how well the optimized boxes are aligned to groundtruth, we
progressively remove some cuboids from the optimized cuboid ar-
rangement (virtually) and compare with groundtruth obtained by
physically removing the corresponding wooden blocks from the real
world scene (scene #2) . Last row shows how well the hypothesized
cuboids follow the groundtruth in occluded parts.

s. At a high level, we both use stability considerations, but with
different goals: we for reasoning about unseen parts, and they for
image segmentation and interaction (support and stability). Hence,
under severe occlusions as for heavily occluded parts, their algo-
rithm does not perform very well. For example, see Figure 15. One
interesting future direction is to take their output as an initialization
to our system and hypothesize the missing parts of the scene.

5.6 Performance

User interaction. While for simple scenes automatic cuboid gen-
eration is sufficient, for more complex scenes the user may be re-
quired to delete spurious boxes or annotate scribbles to guide the
initial cuboid generation. When necessary, user interaction took
10-30 secs, and proved to be simpler than annotating in 3D.

Timing. We tested our algorithm on single view RGBD images
captured by a Microsoft Kinect camera. Once the initial cuboids
were generated, the algorithm took 10-20 seconds to converge de-
pending on the scene complexity (for scenes with <30 cuboids).
All the results are included as supplementary material.

6 Applications

(i) Structure-guided completion. Once we have good-quality scan
of a particular type object and its complete cuboid structure in a
single view RGBD image, the structure-guided completion can help
transfer the scan guided by its structure to complete the missing
information of partial scans of same type objects.

(a)

(b)

(c)

(d)

Figure 17: Algorithm results on various scenes with occlusion and
stacking. Ground planes (or desktop) are shown in gray. Scrib-
bles were used for the slanted objects; rest of the algorithm runs
automatically. Left-to-right: Input RGBD scan; initial cuboids and
optimized cuboids along with extracted contact graphs (back view).

The completion is done by registering the good-quality scan to par-
tial scans assisted by the cuboid structure. Let A1

= {B1
i

, i =

1, . . . n} denote the cuboid structure of the good-quality scan
and A2

= {B2
j

, j = 1, . . .m} the extracted cuboids for the
partial scan. We established a correspondence between the two
cuboid arrangements using a spectral matching approach proposed
in [Leordeanu and Hebert 2005] by comparing cuboid dimension-
s in part-level comparisons. Assuming all the objects are on the
ground plane, we prune the edge pairs when their height and length
differences are larger than 0.05m and 0.1m, respectively. After-
wards, for two candidate corresponding cube edges, we project
them to the ground plane and solve for the aligning rigid transform
by assuming the correspondence of the projected end points of the
two edges. The computed transformation is then refined via ICP
using the 3D points. Figure1-right shows an example of scan com-
pletion using the sofa scan along with its extracted cuboids-based
structure.

(ii) Model retrieval. Completed cuboid structures can also be
used to retrieve high-quality 3D models for the corresponding low-
quality point clouds. Instead of learning a mapping between local
depth patches and 3D model labels [Shao et al. 2012], we directly
employ the completed structure as a global context to assist shape
matching. The model with highest matching score is selected as the
most similar model. We first get an initial alignment between repos-
itory models, retrieved using object keyword search, and the target
structure by aligning their upright orientation [Shen et al. 2012].
We assume repository models to be upright oriented. For the cuboid
structure, the up direction is the same as the ground normal, and the
right direction is selected from any horizontal edges of a randomly
picked cuboid. The model is then translated and scaled to fit in-
to the bounding box of the structure. Finally we sample rotation
angles about the up axis of the scene to roughly estimate an align-
ment. Matching score is estimated based on model vertices that
are covered by the cuboid structure. Specifically, matching score
is defined as the sum of the matching ratio of covered vertices and
the uniformly sampled points inside the cuboid structure, and the
matching ratio of covered vertices and all the model vertices. We



refine the alignment between the point clouds and the 3D model
using ICP, and use the model with the best alignment score. Fig-
ure 18-right shows three retrieval results.

(iii) Image manipulation. RGB images corresponding to the orig-
inal depth scans can be edited using the abstracted structure (i.e.,
ground, wall planes and physically stable cuboid arrangement). In
each case, we created a background image by identifying and delet-
ing image pixels corresponding to the points in P (in 3D) that fal-
l inside or are close to the completed cuboids. We ray-cast the
retrieved object models, which are interactively re-positioned (by
moving on the ground plane), to create the foreground layer includ-
ing the shadow map on the ground plane (default light from above).
Holes in the background layer were completed using PatchMatch
and composited with the rendered foreground layer. Note that the
original camera view is used for such edits. Figure 18-bottom row
shows few examples.

scene #1

scene #2
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retrieved models

scene #3

retrieved models

Figure 18: Based on single view RGBD scans (left), our algorithm
extracts a set of stable arrangement of cuboids (middle). The ar-
rangement is then used to retrieve matching 3D meshes with cuboid
decomposition and used for scene modeling (right). (Bottom row)
Retrieved models can be repositioned, rendered, and combined with
the original RGB to synthesize novel manipulated images.

7 Conclusion

We presented an algorithm to discover coarse structure from par-
tial scans of cluttered scenes with significant occlusion. Structure
is captured in the form of abstracted cuboids and how they are
mutually arranged. Starting from an initial set of cuboids, semi-
automatically created, the algorithm proposes several possible ex-
tensions into the occluded regions and selects the one that is phys-
ically stable and requires minimal extension. We evaluated our
framework on scenarios involving cluttered scenes with stacked and
piled objects, and utilized the recovered structure for applications
including scan completion and scene understanding.

Limitations and future work: Since we assume objects to have a
fixed density, the algorithm can fail when this assumption is vio-
lated by large imbalance among object densities. One possibility
would be to assign different densities based on image-based at-
tribute classification. A natural extension of this work would be

to consider other types of primitives (e.g., cylinders, spheres). Fi-
nally, the output of our algorithm being physically plausible can
directly be integrated with physics-aware image manipulation and
simulation systems resulting in interesting and non-trivial mix of
real/virtual objects and their interactions.
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