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Figure 1: We present SUPER 4PCS, an optimal linear time output-sensitive global alignment algorithm that registers a pair
of raw pointclouds in arbitrary initial poses. This example is particularly challenging as no distinctive geometric features are
available (see right inset) and color cues (not used) are confusing due to object shininess. SUPER 4PCS works even with
low overlap (∼25%), and 20% outlier margin. Results are shown without ICP refinement. The proposed method has linear
complexity over the state-of-the-art 4PCS, which has a quadratic time complexity.

Abstract

Data acquisition in large-scale scenes regularly involves accumulating information across multiple scans. A com-
mon approach is to locally align scan pairs using Iterative Closest Point (ICP) algorithm (or its variants), but
requires static scenes and small motion between scan pairs. This prevents accumulating data across multiple scan
sessions and/or different acquisition modalities (e.g., stereo, depth scans). Alternatively, one can use a global
registration algorithm allowing scans to be in arbitrary initial poses. The state-of-the-art global registration al-
gorithm, 4PCS, however has a quadratic time complexity in the number of data points. This vastly limits its
applicability to acquisition of large environments. We present S UPER 4PCS for global pointcloud registration that
is optimal, i.e., runs in linear time (in the number of data points) and is also output sensitive in the complexity of
the alignment problem based on the (unknown) overlap across scan pairs. Technically, we map the algorithm as an
âĂŸinstance problemâĂŹ and solve it efficiently using a smart indexing data organization. The algorithm is simple,
memory-efficient, and fast. We demonstrate that S UPER 4PCS results in significant speedup over alternative ap-
proaches and allows unstructured efficient acquisition of scenes at scales previously not possible. Complete source
code and datasets are available for research use at http://geometry.cs.ucl.ac.uk/projects/2014/super4PCS/.

1. Introduction

With rapid advances in sensor technologies, it is now easy to
capture depth data at high-frame rates. This opens new op-
portunities in a range of topics including scene understand-
ing, data collection, autonomous navigation, etc. High acqui-
sition rate, however, comes at the cost of lower data quality.
The scans are often sparse, noisy, and incomplete, and ne-
cessitate a data consolidation stage.

A common solution is to accumulate multiple scans across
time (e.g., using Kinect Fusion). Such an approach performs
local alignment using ICP (Iterative Closest Points) and as-
sumes the scene to be static and the subsequent scans to
be nearly aligned. Hence, for predictable accumulation re-
sults the acquisition device has to be moved slowly, or rigged
with reliable GPS tracking to assist in initial positioning of
the scans. Unfortunately, such a local registration approach
inherently discourages data collection across multiple ses-
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Top: Input SUPER 4PCS, no ICP
Top: 0.5 sec

Bottom: 11 sec

ICP
Top: 16 sec

Bottom: 28 sec

Sparse-ICP (p = 1)
Top: 12 sec

Bottom: 43 sec

Sparse-ICP (p = 0.5)
Top: 71 sec

Bottom: 60 sec
Bottom: initial pose

Figure 2: SUPER PCS, being a global registration algorithm, is oblivious to initial model poses. In contrast, in case of low
overlap and high outlier volumes, local alignment algorithms such as ICP or more advanced versions Sparse ICP [BTP13] can
get caught in local minima, even when starting from nearly aligned initial poses.

sions, or different acquisition modalities (e.g., stereo recon-
struction, laser scan, SfM reconstruction).

Hence, in many scenarios global registration is desirable.
Specifically, given a pair of scans, a source pointcloud P and
a target pointcloud Q, in arbitrary initial poses, the problem
is to find the best aligning rigid transformation T , such that
T (P)≈Q under suitable distance measure. The state-of-the-
art algorithm is 4PCS [AMCO08] that utilizes particular sets
of congruent points for global registration. The algorithm,
however, has a complexity of O(n2 +k) where n denotes the
size of the pointclouds and k the set of candidate congruent
4-points. For large to very large point sets with low overlap
the quadratic complexity quickly becomes a bottleneck (see
Figure 1). This can be particularly limiting when multiple
scans are to be stitched, e.g., reconstructing an indoor scene.

We propose SUPER 4PCS, a fast global registration for
pointsets, which runs in optimal linear time and is output
sensitive. The key insight is to remove the quadratic com-
plexity in the original 4PCS algorithm by using an effi-
cient yet practical data structure to solve the core instance
problem, i.e., finding all point pairs that are within a dis-
tance range (r− ε,r + ε). Specifically, SUPER 4PCS runs
in O(n+ k1 + k2) time where k1 is the number of pairs in
Q at a given distance r and k2 is the number of congruent
sets. The proposed datastructure naturally extends to higher
dimensions and allows a unified treatment of spatial and an-
gular proximity queries. Hence, when auxiliary local surface
information (e.g., normals, color) are available, then SUPER

4PCS can directly integrate the information. The proposed
construction is adaptive and can be efficiently constructed at
run-time with very low memory overheard.

We evaluate SUPER 4PCS on a range of real scans with
varying amounts of noise, missing data, and overlap across
scan pairs. We report significant speedups over the original
4PCS algorithm (3-10x in most cases). Finally, as an end ap-

plication, we use SUPER 4PCS for large scale acquisition
of indoor environments by simply waving a Kinect scanner
at scenes without requiring smooth/slow motion paths (see
Figure 15 and supplementary video). We believe this is the
first demonstration of such large scale unstructured acquisi-
tion without specific scene assumptions.

2. Related Work

Scan registration is a fundamental task in geometry pro-
cessing. Various surveys have explored aspects of the prob-
lem including surface descriptors [TM08], local registra-
tion [RL01], rigid and non-rigid registration [TCL∗13].
Here, we summarize the papers most relevant to our method.

Local registration. When scan pairs start in close align-
ment, local registration algorithms are used to refine their
alignment. The most popular local approach is Iterative
Closest Points (ICP), both point-to-point [BM92] and point-
to-plane [CM92] along with their many variants [RL01], and
optimization using distance field formulation [MGPG04].
Recently, [SG07] analyze local minima of multiple ICP runs
to find the best overall match between a known object and a
range image, [BTP13] propose a sparse ICP formulation to
robustly handle data with large amounts of outlier, or Kinect
fusion [IKH∗11] uses ICP with GPU optimization for real
time scanning. These methods have convergence guarantees
only when the scans pairs are roughly aligned to start with.

Global registration. When scan pairs start in arbitrary ini-
tial poses, then registration amounts to solving a global prob-
lem to find the best aligning rigid transform over the 6DOF
space of all possible rigid transforms comprising of trans-
lations and rotations. Since aligning rigid transforms are
uniquely determined by 3 pairs of (non-degenerate) corre-
sponding points, one popular strategy is to invoke RANSAC
to find such aligning triplets of point pairs [FB81, IR96,
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CHC99]. The approach, however, regularly degrades to its
worst case O(n3) complexity in the number n of data sam-
ples in presence of partial matching with low overlap.

Various alternatives have been proposed to encounter the
cubic complexity: branch-and-bound using pairwise dis-
tance invariants [GMGP05]; hierarchical representation in
the normal space [DMS12]; stochastic non-linear optimiza-
tion to reduce distance between scan pairs [PB09, PB11];
super-symmetric tensors to represent the constraints be-
tween the tuples [CCM∗13]; or evolutionary game theoretic
matching [ART10, RABT13] as an alternative to RANSAC.

Earlier, the 4PCS algorithm [AMCO08], proposed a
O(n2) algorithm using special four point basis instead of
triplets as basis in RANSAC (see Section 3). Until this work,
4PCS remained the global registration algorithm of choice
with the best time complexity.

Local descriptors. In presence of auxiliary information
(e.g., unique feature points, color, texture, etc.) the Eu-
clidean points can be appended with shape descriptors. A
very large volume of such methods exists using local poly-
nomial fits [TG11], local volume estimators in the form of
integral features [PWHY09,ART10], multi-scale feature es-
timates [LG05, MGB∗12], etc. Note that such descriptors
are complementary to any registration algorithm and pro-
vide improvements only in objects with distinctive features
or robust estimates, which are hard to compute under noise,
missing data, color variations, reflections and highlights, etc.

3. The 4PCS Algorithm

The 4PCS algorithm is a global registration method for 3D
point sets even with small overlap. The method makes no
assumption about their starting scan poses. The approach is
based on a novel technique to extract all sets of coplanar 4-
points from a 3D point set that are approximately congruent,
i.e., related by rigid transforms, to a given planar 4-points
in O(n2 + k) time, where n is the number of points and k
is the number of reported 4-points sets. The 4PCS is widely
used and has been also extended to take into account uniform
scale variations [CDG∗13].

The method relies on the following key fact: certain ra-
tios defined on a planar congruent set remain invariant under
affine transformations, and hence under rigid motion. Hence
they propose a generate and test paradigm, i.e., pick a base
from source P of minimum number of points. For each po-
tential base from target Q, verify the corresponding aligning
transform, and retain the best transform according to some
similarity score. The efficiency of the algorithm depends on
quickly extracting only a small set of candidates from Q that
have to be verified. See [AMCO08], Sections 3 and 4, for
details of the Algorithm.

The algorithm has two bottlenecks: (i) Finding all points
at a given distance in a pointset in the congruent sets finding
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c

Figure 3: The 4-point set {(p1,p2),(p3,p4)} is congru-
ent to {(q1,q2),(q3,q4)}, but also affine invariant to non-
congruent set {(q′1,q′2),(q3,q4)}. Such affine invariant yet
non-congruent sets result in significant inefficiency and
wasted validation steps in the original 4PCS algorithm.

stage. For a given basis in P and pairs at distance r1,r2, the
goal is to find all pairs in Q in distance r1 and all pairs in Q at
distance r2. (ii) Removing the redundant 4-points candidates
in the set of reported 4-points that arise due to considering
affine invariants, even when the distances are constrained is
a superset of all congruent sets (see Section 4.2).

The 4PCS takes roughly O(n2 + k) time where k is the
number of reported pairs. On one hand, when k is Ω(n2),
there is little motivation to improve the first term (at least
asymptotically). Hence, the original 4PCS exhaustively enu-
merates the options in O(n2). So, if we cannot improve the
n2 term, there is no motivation to remove the redundant 4-
points candidates. In this paper, we simultaneously address
both problems, i.e., propose an efficient algorithm to solve
the pairing problem for the first stage, and a smart indexing
scheme to filter all the redundant pairs in the second stage.
Both algorithms are optimal up to constant factor and take
O(n+ k) time where k is the number of reported sets.

4. Smart Indexing

In this section, we make two key changes to the original
4PCS algorithm: first, lowering the quadratic complexity to
optimal linear complexity; and second, lowering the number
of candidate conjugate pairs generated.

4.1. Reporting incidences of points and spheres in R3

The 4PCS requires to report all point pairs in Q that are
approximately r distance apart, for a given r. This is es-
sentially a classical incidence problem between spheres and
points in 3D (draw a sphere of radius r centered at each
point and report all points intersect it), which has been long
studied in computational geometry [PS04]. Specifically, we
draw a sphere of radius of r centered at each point in Q and
find the (approximate) incidences between all the n spheres
and the n points in Q. The number of such incidences in
the exact case (no approximation) is bounded [AKS05] and
roughly given by the combinatorial bound O(n1.5). Efficient
algorithms to compute all incidences exist, which are based
on cutting [Cha93], but are neither very suited for practi-
cal implementation, nor are output sensitive. Combinatorial
bounds for the approximate case, assuming the minimum
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distance between any two points in the set is bounded, is
given in [GIMV04].

We are, however, interested in an output sensitive algo-
rithm, linear in the number of (unknown) incidences, k. Fur-
ther we relax the distances to be only approximately r, i.e.,
in [r− ε,r + ε] for a given margin ε. As a key enabler we
propose how to efficiently compute such approximate inci-
dences. We propose two algorithms: The simple algorithm
is essentially a rasterization approach (c.f., [GIMV04]). One
puts all the points in a grid, and then simply rasterize (i.e.,
scan convert) a sphere of radius r in this grid and enumerate
all the points in the cells (and their neighbors) encountered
by the sphere. This leads to a runtime of O(n · (∆/ε)2)+ k)
for a point set of diameter ∆ and a grid of cell-size ε. Typi-
cally, for surface captured by a depth sensor n is Ω((∆/ε)2)
and thus the runtime is to O((∆/ε)4). For this kind of data
sets (i.e., for sufficiently large n), we can do better. The sec-
ond algorithm is described next:

Lemma 1 Let ε > 0 be a constant and let Gε be a grid with
cell-size ε. Let C be a set of distinct spheres of radius r, the
center of each coincides with the center of a grid cell, and
let U be a set of distinct grid cells, bounded by a square of
side-length ∆. Then, all incidences (u,c), u ∈U , c ∈ C can
be computed in time O((∆/ε)3 log∆/ε).

Proof 1 The proof is similar to the one given in [AK10] for
2D. Let B be the bounding box of U . We divide B into 8
identical boxes. Recursively we compute the incidences for
each subdivision with the subset of C that intersects it, us-
ing the cell-size as the minimum box size. For each box of
this size, we report all the spheres that intersect the box.
Since the number of (distinct) spheres that intersect a box
of size Λ is O((Λ/ε)3) (the reason for this is quite involved
and we give the intuition bellow), the runtime T (Λ) for a
box of diameter Λ satisfies, for Λ = ε, T (ε) = O(1). The re-
cursion for T (Λ) becomes T (Λ) = O((Λ/ε)3)+8T (Λ/2) =
O((Λ/ε)3 logΛ/ε), which concludes the proof when Λ = ∆.

NOTE: In order to show that the set of spheres intersecting
a sub box is bounded, we need to use some non trivial anal-
ysis. The key is to note that among the set of all spheres,
some become very close to each other within a small sub
box. This suggests that we can approximate them by a small
(O(Λ/ε)3 for sub box of size Λ) set of other distinct spheres.
Specifically, any circle of sufficiently large radius (relative
to the box size) can be approximated by a sphere defined by
three points on the edges of the box and the fixed radius (for
smaller radius the bound is trivial by the fact that all circles
are centered in grid cells).

We can therefore create a small set of spheres, defined by
points of distance ε on the edges of the box such that every
input sphere is closer than ε to one of them (we quantize the
input spheres). In the algorithm, we first quantize every in-
put sphere to the closest sphere in the small set, record all
input spheres corresponding to each approximate sphere and
give only the approximate set to the recursion applied to any

sub box. We back trace the original spheres once the recur-
sion reports all approximate incidences. During this process,
we accumulate error, therefore we must take care of this by
using actually some smaller ε

′ such that the overall error ac-
cumulation is < ε.

4.2. Eliminating redundant 4-points congruent sets

The 4PCS uses affine invariants to report similar 4-points.
For a given 4-point in P, the algorithm finds all affine equiv-
alent 4-points in Q where the distance between points in two
pairs is (approximately) fixed. Although this results in a set
much smaller than all the affine equivalent 4-points, the set
can still be significantly larger compared to the exact congru-
ent set (rigidly). This is inefficient as the obtained superset
has to be filtered to get the exact congruent sets. By elimi-
nating such redundant candidates as described next, SUPER

4PCS produces significant speeds up compared to 4PCS in
most practical cases.

As shown in Figure 3, the pairs of points (p1,p2) and
(p3,p4), all planar, define a 4-point set with two invariants
(see Figure 5 in [AMCO08]). Exactly the same invariants
correspond to the pairs (q′1,q

′
2) and (q3,q4) by arbitrarily

rotating one line around the intersection point c. This means
that the set of 4-points extracted from Q is a superset of the
set of congruent 4-points. We address this by extracting only
the 4-planar points from Q that correspond to the same angle
between the line segments in addition of being at the same
distance and the same invariants.

The challenge is to extract this set in linear time with the
number of reported set (i.e., without traveling the superset
and filtering). Let B := {p1,p2,p3,p4} be a planar base in P
picked randomly in the RANSAC loop. Let r1 = ‖p1−p2‖
and r2 = ‖p3 − p4‖. Let f1 and f2 be the invariants com-
puted from the pairs. At this stage, we assume that two sets
of pairs, S1 and S2 have already been extracted from the set
Q such that every pair in S1 is of approximately at distance

e

n
v

c

θ

Figure 4: Searching for all (unit) directions v such that
∠(n,v)≈ θ can be considered as an incidence problem, and
solved efficiently. This allows up to generate a set of candi-
date 4-point sets, which are later verified, as a tight approx-
imation to the set of congruent pairs.
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r1 and every pair in S2 is of approximately at distance r2 (see
Section 4.1).

Matching angle queries

We map the angle matching problem into indexing a set of
normals, such that for any given query normal n and some
angle θ, we can report quickly all normals that have an-
gle θ with n. Considering normals as a point on the unit
sphere (Gauss sphere) it is exactly the same incidence prob-
lem as before, namely, to report all the points that lie (ap-
proximately) on a circle, say c, on the unit sphere (Figure 4).
The circle is defined by the angle θ with respect to the query
normal direction n. We use the first algorithm to compute
incidences because the radius of the circles is bounded and
small. Again for approximation parameter ε, we rasterize a
circle on an unit volume for a cell-size ε. The query normal
n, indicted by an arrow, defines the circle on the unit sphere
that contains all points having angle θ with n.

We now proceed with the overall 4-point congruent sets
extraction. We impose a grid of cell-size ε, and in each grid
we store normal indexing as described above. We describe
the process for direction as per the one ordered pair (p1,p2),
while we repeat the same for the other direction. We loop
over all pairs in S1 and compute a new point e, correspond-
ing to the invariant f1. We add e to the cell mapped to the
grid and attach a vector in R3 representing the normalized
direction from p1 → p2. We insert the vector in the aug-
mented normal index. At the end of this stage, all points ei
correspond to the invariant r1 are stored in the grid cells and
their normals are stored in the normal index at every cell.
For a given base B, we have the angle θ between the cross-
ing lines, using which we extract only the pairs in S2 that
agree with this angle, i.e., such that the angle between them
and the corresponding pair in S1 is approximately θ. At the
end of this stage, we have a set of 4-points from Q that are
congruent to the base B and now, it is the real set, not a su-
perset. The efficiency of the indexing is output sensitive (it
has some fixed runtime overhead to render the circles).

5. Implementation Detail

Based on Section 4, we now present two indexing schemes
to achieve linear time output-sensitive global alignment: a
pair extraction procedure (see Section 5.1) and congruent
set extraction procedure (see Section 5.2). We explain the
constructions for n-d spaces, but illustrate only in 2D.

5.1. Extracting approximately r-distant pairs

Overview. Starting from two pointclouds P and Q, and a
planar 4-point set B := {p1,p2,p3,p4} ∈ P, our goal is to
extract congruent sets {qi,q j}∈Q. Let the candidate basis B
define two distances r1 and r2. For any point qi ∈Q, we want
to find and index all the points at distance r1±ε and r2±ε, in
other words all the points close enough to the hyper-spheres

r2

r1

qi

p3

p4

p1

p2

Figure 5: Left: Example of a basis in P (for sake of simplicity
we show only the distances defined by one pair). Right: For
any point qi ∈ Q, pairs are generated by finding the other
points close to the hyperspheres centered in qi and with ra-
dius r1± ε and r2± ε.

Sr
i with radius r = r1 or r = r2 and centered at q j. Effectively,

we perform simultaneous and adaptive rasterization of nD
circles on to a nD grid, as illustrated in Figure 6 in 2D. The
main idea is to subdivide recursively the space enclosing Q,
and compute the intersection between a set of hyper-spheres
and the subdivided volumes. Pairs can then be built between
the points lying in the intersected volumes and the hyper-
sphere centers (see Figure 5).

Hence, we use a regular splitting strategy, like those used
for construction of quadtree and octrees [FB74]. A naive
solution is to build such Q-tree and compute the intersec-
tions with the tree cells, represented as hyper-cubes, and
the hyper-spheres. However, this is suboptimal as potentially
large parts of the tree are unnecessarily subdivided even
when they do not intersect hyper-spheres.

Instead, as shown in Proof 1, we recursively render quan-
tified spheres (aligned on the ε grid with ε-quantified radius)
resulting in optimal complexity to extract cells containing
the potential pairs candidates. In practice, this requires to
store and manipulate information (recursion tree, relations

Figure 6: Illustration of the simultaneous rasterization of
two hyper-spheres of thickness ε and the extraction of points
for pairing (in blue), using the Procedure ExtractPairs. The
size of the final cells is equal to ε. Note that in 3D cells get
split into 8 cells.
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between cells and hyper-spheres) that slow down the process
and makes it inefficient. Next, we provide a tractable practi-
cal approach with low memory footprint without sacrificing
running complexity.

Efficient hyper-sphere rasterization A pseudo-code of
our implementation is presented in Procedure ExtractPairs.
For simplicity, we normalize the data to fit in an unit bound-
ing box. Any point at a distance r± ε from qi lying in that
space is included in one of the cells of size 2ε intersecting the
hyper-sphere Sr

i . Since we work in unit space and we split by
two the cells size between each subdivision level, the num-
ber of recursion levels L can be deduced directly from ε at
the beginning of the process. There are three key aspects of
the procedure we describe next.

First, we use a sequential implementation to avoid un-
bounded recursive runs that could cause instabilities during
the process. For that we need to store two lists of cells (B1
and B2), i.e., the candidates we want to try to intersect at the
current level, and the candidates for the next level, e.g., the
children of cells who actually intersected the hyper-spheres.

Second, we conservatively detect the intersections be-
tween the cells and the spheres, with a varying radius mar-
gin ±ε. One option is to visit the cells that are neighbors
with those intersecting the sphere, but this requires to build
and explore the tree associated to the recursive grid (see Fig-
ure 7a). Another non-efficient option is to intersect explic-

Procedure ExtractPairs Given two point sets P and Q,
extract the set of pairs of points with distance r within
an approximation margin ε > 0.

Normalize P to fit in the Unit Box and transform Q to the same
frame ;
B1← { Unit Box} ;
L←− log2(ε) ;
for l← 0 to L−1 do

B2←∅ ;
forall the cells bi ∈ B1 do

forall the points q j ∈ Q do
if Intersect(bi, ε-alignedSphere(qi, r)) [Arv90]
then

Subdivide(bi) and re-index points contained
in bi for each child node.;
B2← { B2 + childs(bi) } ;
break;

B1← B2 ;

R←∅ ;
forall the points q j ∈ Q do

forall the cells bi ∈ B1 do
if Intersect(bi, ε-alignedSphere(qi, r)) then

Generate pairs Ri between Qi and all points
stored in bi and R← { R, R j}

return R

itly the cells with Sr+ε

i and Sr−ε

i (see Figure 7b). Instead we
grow the cells size by ε for the intersection, leading to the
same amount of intersection test than solution (a), but with-
out requiring to store the recursion tree (see Figure 7c).

1

3

a)

1 2 43

1

4

2

b)

34

2

c)

43

21

Figure 7: Conservative intersection recursion. a) Non-
intersecting cells are retrieved by visiting the neighbor-
ing cells thanks to the recursion tree. b) One can compute
the intersection with the two hyper-spheres Sr+ε

i and Sr−ε

i .
c) Growing cells by ε for intersection test permits selecting
appropriate cells without explicitly storing a recursion tree.

Third, explicitly storing the information “which cell inter-
sects which hyper-sphere” increases the memory footprint,
and manipulating such information reduces the efficiency of
the approach. In practice, we found that iterating over the
cells and selecting them for the next level, if they intersect at
least one hyper-sphere, is largely more efficient, even if the
number of intersection test is globally more important.

From cells to pair extraction. Our objective is to use the
cells to access efficiently input points and create pairs. This
requires to associate each cell to all its enclosed points.

We achieve this efficiently and with a minimal memory
footprint by using an index array shared between all cells and
associated to the input point cloud Q. Each cell also stores a
working range in this array. At the beginning, we have only
one cell, working on the whole array. Each time we split,
we partially reorder the indices in order to have a continuous
range of indices for each of the child cells. Finally, for all
the selected cells, we iterate over the associated index range,
test if the points are valid, and create the validated pairs.

Performance. We tested our approach with increasing
number of input points and compared the processing time to
the reference solution in O(n2) that enumerate all the pairs
and then filter them (see Figure 8a). The quadratic behav-
ior of the naive filtering approach is clearly visible on the
curves. Note that our result is guaranteed to be the same as
the reference solution.

We also compare our method with or without quantifying
the input hyper-spheres. This quantification is required to en-
sure to have a bounded complexity (see Proof 1) and reduce
the number of hyperspheres, and thus the number of inter-
section tests. In practice, the observed gain is usually lower
than the time spent to quantify the spheres, so we work di-
rectly with the original spheres.

We early abort recursions for cells containing a minimum
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number of points. Such cells are stored and used at the end
of the process to create the pairs like the other cells. Sim-
ilarly, we skip over void cells and reject them directly after
the splitting process. Empirically, our approach is faster than
explicit quering even with small point sets (∼20-30).

5.2. Congruent set extraction

Overview. We again use a geometric approach to extract the
congruent set from the previously computed set of points.
This time it is exactly the procedure described in Section 4.2,
the constants in the complexity analysis being practical and
do not require further optimization.

Starting from two set of pairs Pr1 and Pr2 formed by a 4-
points basis P and points qi ∈ Q, our goal is to extract the
set of (planar) quadrilaterals that are congruent to the basis.
A quadrilateral is congruent to the basis if it is composed of
pairs with the right length, and if the angle θ between these
pairs is similar to the angle formed by the two basis pair.

The idea is to represent a pair by a couple of vectors, i.e.,
the position and the orientation of the pair, considered in the
following as a normalized vector (see Figure 4). The query
can be mapped to another instancing problem with two main
conditions: First, ensure that the retrieved points lie in the
same cell as the query in a grid defined in the n-dimensional
ambient space. We hash a static grid with constant size for
linear time. Second, we rasterize circles formed by the in-
tersection between the unit sphere and a right angular cone
with an aperture of 2θ around direction n.

Data representation and query. Our data structure stores
the pairs indices, indexed with respect to the Euclidean co-
ordinates and then by the normal coordinates (see Figure 9).
We use a sparse representation in Euclidean space, i.e., cells
are built only if we need to store an index or more. Each
such cell contains a spherical map (c.f., [GHB∗05]) where
we store the pair index with respect to its orientation.

qi

f

q j

a) b) c)

e

q j−qi
‖q j−qi‖

Figure 9: Structure used to hash pairs first by their position
in the ambient space, and then by their orientation. a) Start-
ing from a pair and its invariant f , we compute a new point
e and the pair direction, represented as a normalized vector.
b) The position e is used to access cells in a regular grid. c)
The orientation is then hashed and the index of the pair is
stored in orientation space.
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Figure 10: Computation time comparison between SUPER

4PCS and 4PCS for decreasing overlap margin. Notice the
linear versus quadratic complexity for the respective meth-
ods. For visualization, we indicate the overlap regions in
green. The models start in arbitrary initial poses.

One could use a hyper-circle rasterization to extract in-
dices with respect to the normal criterion. In practice, how-
ever, the normal spaces contain only few elements, for sim-
plicity we just sample the hyper-circles in angular space, and
collect points in the cells where the samples are lying in the
normal grid. Another option would be to work with spherical
coordinates, and render the circle in that space.

Performances. In this step, we used an approximated query
based only on hashing functions, and we may miss retrieving
all the pairs. In practice we simply use an increasing factor to
reduce the probability to miss configuration, and did not ob-
serve any significant impact on the quality of the matching.
As shown in Figure 8b, the speed-up obtained is significant
and outperform the filtering previously used.

6. Results

We implemented SUPER 4PCS in C++ (to be released). We
used Eigen [GJ∗10] to for filtering in arbitrary dimensions
n > 2, [Arv90] to efficiently intersect hyper-spheres and
hyper-cubes, and [GHB∗05] to sample orientation space.

We tested our approach on point-clouds from several
datasets [BTP13, CDG∗13], acquired with different tech-
niques (range scans, end-user depth cams, stereo recon-
struction), and with a large variety of geometric proper-
ties: smooth natural shapes, man-made objects, buildings
with flat surfaces, featureless surfaces. The registrations pre-
sented in this paper are between pairs with low overlap
(mostly <30%) and in arbitrary initial poses. Normals are
used only when available in the source data.

We first evaluate our approach in term of computation
time improvement, then compare it to state-of-the-art tech-
niques, and finally show a direct application of our approach
for the large scale registration of unstructured data.
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Figure 8: Timings of SUPER 4PCS to 4PCS to match two point clouds with normals and 30% overlap. Left graph: total time
(sec) needed for matching, with details on the time spend for Pair Generation (PG), Congruent Set Extraction (GSE), and
Congruent Set Verification (CSV). Middle and right graphs: individual timing (msec) for the PG and GSE subroutines. Note
that the timings are in log-scale.

6.1. Evaluation

Since our approach compute the same transformations than
4PCS, we focus on timing improvements in various condi-
tions. Figure 8 shows the impact of the number of samples
by increasing the sampling rate of Q and reports the total
time spent in each subroutine to extract the pairs, build the
congruent set and analyze it, both with 4PCS and SUPER

4PCS. Note that the verification step remains the same in
both approaches. The change from a quadratic to linear be-
havior is clearly visible and allows registering object pairs a
bit faster with 3117 samples using SUPER 4PCS compared
to 2346 samples with 4PCS on that example. Note that our
subroutines are always faster than the naive approaches for
this object, with a significant difference when increasing the
number of samples (we use a log-scale to emphasis improve-
ment at all sampling rates).
We show in Figures 10 and 12 practical examples where the
overlap between P and Q is low and requires to increase the
number of samples, making our approach much faster than
4PCS. Our approach remains robust in such low-overlap
cases as shown in Figure 1 and 13. We also tested our ap-
proach on noisy pointclouds (see Figures 11 and 15).

Figure 11: SUPER 4PCS remains robust under effect of in-
creasing noise even under small over without any noticeable
impact on running time.

Input 1.4 sec 15 sec 30 sec

Figure 12: Effect of increasing outliers on SUPER 4PCS
global alignment performance. Note that outliers effectively
amounts to lower overlap between the two input models. For
each result set, top and bottom images, respectively show
result before and after ICP.

6.2. Comparison

We compared our approach with state-of-the-art Sparse-
ICP [BTP13] on two range scans with overlap (>50%) and
artificial outliers. We keep the orientation of the acquired
scans to define the input pose, since the device motion be-
tween the two frames was not too big. Our approach per-
forms well w/ and w/o outliers. In fact, it is faster to first
run SUPER 4PCS and then ICP; instead of running it di-
rectly (even if it converges). Note SUPER 4PCS ignores ini-
tial pose information (see Figure 2).

SUPER 4PCS is very useful for featureless point-clouds
(see Figure 1), where descriptors are not discriminative. In
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Figure 13: SUPER 4PCS results on various models. Note that the bubba model has very little overlap, and for the octopus the
overlap was too thin for ICP to work. In all these cases, overlap ranged from 5-25%.

the right inset we show that given the slippable surface, fea-
ture extraction is ineffective, even using a robust multi-scale
descriptor like Growing Least Squares [MGB∗12]. SUPER

4PCS remains oblivious to such challenges.

6.3. Application

Aligning heterogeneous acquisition data. We aligned two
point-clouds of the Cathedral of Pisa, one acquired using LI-
DAR and the other using Multi-View Stereo (MVS) recon-
struction, and each of them formed by more the 2.5 millions

Table 1: Time taken for aligning various input datasets as
measured on a 3.00GHz Xeon E5-1607 with 8GB RAM. In
all examples, the models start in arbitrary poses, preprocess-
ing times if any are included, and the reported times are av-
erage over a multiple runs of the algorithm.

model #points 4PCS SUPER 4PCS
(in 1000) (in sec) (in sec)

Bird 2.5 48 26
Hippo 32 11 0.5
Phone 32 8.7 4.7
Bubba 10 5 2.5

Buddha 37 63 37
Octopus 50 131 60
Angel 35 2.47 1.4
Pisa 2500 22.6 13

of points. The matching required 15 seconds using the full
MVS point-cloud and 1000 samples on the other one.

Aligning heterogeneous acquisition data. SUPER 4PCS
can also directly align multiple Kinect scans (color infor-
mation ignored) without any volexiation or smoothing. Fig-
ure 15 shows results without any ICP refinement for 3 differ-
ent indoor scenes (see supplementary video).

SUPER PCS after ICP

Figure 14: SUPER 4PCS, being a global alignment algo-
rithm, is well suited to align data from different acquisition
sessions (here LIDAR and structure-from-motion outputs),
where no initial alignment is available.
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Figure 15: SUPER 4PCS based alignment of 5-6 scans for
different scenes captured using Kinect.

7. Conclusion

We presented SUPER 4PCS, an optimal linear time output
sensitive algorithm for global registration, i.e., aligning scan
pairs in arbitrary initial poses. The algorithm is particularly
effective in case of low overlap across scans and/or pres-
ence of outliers. The algorithm, for the first time, allows us
to consolidate data acquired by different devices or across
multiple sessions. Finally, even when the starting scans are
nearly aligned, prior methods (like ICP or sparse ICP) fail in
case of low overlap but SUPER 4PCS continues to work. We
tested the algorithm in various scenarios and compared with
competing alternatives, both in terms of speed and accuracy.

Although SUPER 4PCS is optimal (for single core) with
very practical runtime constants, we believe a parallel im-
plementation is possible. This is particularly attractive for
real-time acquisition in order to remove assumption of
controlled acquisition paths, visual verification to fill in
holes [RHHL02], or integration over voxel volumes (e.g.,
Microsoft Kinect) leading to loss of fine details. In the fu-
ture, we plan to explore this direction along with realtime
integration of color and texture.
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