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Ergonomics-inspired Reshaping and
Exploration of Collections of Models

Youyi Zheng Han Liu Julie Dorsey Niloy J. Mitra

Abstract—This paper examines the following question: given a collection of man-made shapes, e.g., chairs, can we effectively
explore and rank the shapes with respect to a given human body – in terms of how well a candidate shape fits the specified
human body? Answering this question requires identifying which shapes are more suitable for a prescribed body, and how to
alter the input geometry to better fit the shapes to a given human body. The problem links physical proportions of the human
body and its interaction with object geometry, which is often expressed as ergonomics guidelines. We present an interactive
system that allows users to explore shapes using different avatar poses, while, at the same time providing interactive previews
of how to alter the shapes to fit the user-specified body and pose. We achieve this by first constructing a fuzzy shape-to-body
map from the ergonomic guidelines to multi-contacts geometric constraints; and then, proposing a novel contact-preserving
deformation paradigm to realize a reshaping to adapt the input shape. We evaluate our method on collections of models from
different categories and validate the results through a user study.

Index Terms—geometric deformation, ergonomics, shape analysis, reshaping
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1 INTRODUCTION
Humans come in various shapes and sizes. The field
of ergonomics focuses on accommodating such hu-
man variations with design goals applied to func-
tional objects. Various objects in everyday use are
shaped and given form based on their intended use
and target user. Guidelines on ergonomics (e.g., [1]
and [2]) summarize years of such research, prototyp-
ing, product reviews, design experiences, and user
feedback to provide recommendations for geometric
shapes based on their target usage (see Figure 1). For
example, Panero and Zelnik [1] summarize multiple
design studies to prescribe good dimensions for typi-
cal household objects calibrated to human body size.

In computer graphics, object geometries are either
acquired directly from, or modeled after real objects.
Hence, such objects often inherit or mimic real world
object specifications. In this work, we first investigate
if one can classify and rank objects directly based
on their target functions and associated ergonomic
considerations specified in the form of target avatar
poses. In contrast to typical classification strategies
based on geometric descriptors, we present a novel
view on ergonomics-inspired categorization, ordering,
and exploration of unorganized shape collections.

Moreover, recent advances in digital fabrication
have expanded the range of affordable, custom de-
sign possibilities. As geometric models can now be
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easily fabricated, incorporating their target use is an
important consideration. Since robust solutions exist
to digitally capture high quality rigged avatars in
a matter of minutes [3], as a second question, we
investigate how to use such human avatars specified
in intended-use poses to reshape the geometry of
virtual objects. This leads to an ergonomics-inspired
geometric reshaping of existing shapes. By reshaping,
we refer to adapting both the part proportions and
their relative arrangements so the new shape better
conforms to the target usage. For example, Figure 2
shows results of classifying and reshaping a set of
chair models based on different human avatar poses.

Fig. 1. Ergonomic guidelines linking human posture to
geometry of a chair (left) and a bike (right).



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX 2

(a) input pose and models (b) deformed models w.r.t. the poses (c) ranking + clustering

Fig. 2. Starting from (a) a collection of shapes and a few user-specified human shapes, (b) our method
automatically deforms the models to fit the human shapes, and ranks the models using their deformation costs
to produce a categorization of the input models with respect to their suitability to different human shapes (c).

We address both questions using a novel contact-
based deformation paradigm. First, we map er-
gonomic guidelines to a set of contact specifications
between the human avatar and input shape. Such
guidelines often come in the form of multiple spec-
ifications, making it nearly impossible for lay users
to satisfy by manual adjustment. For example, crafts-
men [4] may make as many as twelve adjustments
to a basic chair design (e.g., adjusting the headboard,
lumbar support, or the angle between seat and back);
while, naive users can struggle to appropriately adjust
even three degrees of manual controls [5]. We propose
algorithms to automate these steps. Starting from
part-based input shapes, we first map the ergonomic
specifications to a set of multi-contact constraints. We
then, in absence of parameterized model templates,
propose a novel reshaping algorithm to computation-
ally adapt an input shape to simultaneously satisfy
these constraints. We propose an iterative optimiza-
tion that alternately deforms the input shape and re-
validates the target contact specifications.

Our work makes the following contributions: first,
we link human body and poses to shape deformation
with the goal to facilitate personal customization;
second, we provide a pose-driven shape exploration
tool that subsequently enables a novel shape clas-
sification setup; third, we design a novel contact-
based edit propagation algorithm to simultaneously
accommodate ergonomics constraints for reshaping
multiple objects according to a target human body. We
evaluate our algorithm in the context of chairs, bikes,
beds, and gym equipments and validate the results
through a user study.

2 RELATED WORK

Our work is closely related to prior work on shape
exploration, geometric classification, and research in
human factors.

Shape exploration. A number of approaches have
been described on shape exploration. While such tools
allow users to quickly browse large data collections,
a primary goal is to find effective embeddings where
interactive exploration is made possible [6], [7], [8],
[9]. These methods normally start from object ge-
ometry alone and extract commonalities among a
family of shapes using mechanisms such as geometric
descriptors or functional maps. Our method couples
ergonomic guidelines with geometric deformation to
measure inter- and intra- shape similarity.

Shape functional analysis. Our method is re-
lated to shape functionality analysis. Functionality is
often related to shape semantics. While such cues
are challenging to infer only from geometry, taking
advantage of some prior knowledge would make the
problem tractable. For example, previous methods
leverage extrinsic shape structure (e.g., meaningful
shape segmentation) to relate intra- component level
interactions with functional partitions [10], [11], [12].
Notably, in a parallel work, Kim et al. [13] leverage
pre-defined skeleton shapes to search for body-to-
shape contacts and deformations and use such con-
nections to reveal shape functionality. Our approach
is complementary as we study the problem of shape-
to-body deformation for reshaping an object, and
subsequently use the deformation cues for geometric
exploration and classification.

Geometry and human factor. In computer vision,
geometry reasoning has been studied and used for
human workspace reasoning [14] or indoor scene un-
derstanding [15]. These methods often use extensive
training of existing image data to reason about an
input image, and the process of human measurements
is typically performed offline. Coupling geometric
modeling with physical simulation has also been stud-
ied in recent research work of interactive chair mod-
eling [16]. For an extensive discussion of history and
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development of ergonomics in the context of chairs
we recommend Cranz’s book [17], especially Chapters
3 and 5. As examples of linking geometric form
with function, Shen et al. [18] utilize object structure
for effective object assembly, while the AttribIt [19]
system links semantic tags to object parts and their
coupled variations.

Shape deformation. Shape deformation is a long-
standing topic in geometry processing [20]. The shape
deformation methods mainly fall into two classes:
those that aim to preserve the shape’s local properties,
such as curvature, differential coordinates [21], [22],
[23], and those that aim to preserve global structures,
such as symmetry and inter-part relations [24], [25],
[26]. Li et al. [27] deform input man-made objects to
make them amenable to stacking. In contrast, we focus
on ergonomics guidelines for customizing man-made
objects to target specific human body sizes and poses.

3 ERGONOMICS GUIDELINES

Decades of meticulous user studies along with infor-
mation gleaned from direct observations are available
in the form of qualitative ergonomics guidelines. In
the following, we focus on chairs for a clear descrip-
tion. Although there is still some debate regarding
the relative importance of the various guidelines, we
summarize here those commonly described across the
different reference works we consulted [28], [17], [29].
For a more general reference, please see [1].
• Chair seats should have correct height to allow both

feet to be fully supported (e.g., by the ground).
A chair that is too high creates undue pressure at
the knee/thigh; while if it is too short, forces the
knee to be higher than the hip sockets.

• Width and depth of chair seats should conform
to the user’s dimensions. Specifically, while the
width is dictated by the avatar’s waistline, the
depth is dictated by the length of the avatar’s
thigh bones.

• Flat uncontoured seats are preferred to discourage
a slouched or C-shaped posture.

• Lumbar support by providing low- or mid-back
support can help hold good posture and prevent
pain to the spine and neck.

• Head support, if provided, can help ease stress for
the neck muscles and provide support for seating
over extended periods and should be positioned
based on the length of the user’s upper body.

• Arm rests, if provided, lend support for reading,
typing, painting, and similar activities.

A seemingly obvious solution is to design ad-
justable chairs. Besides being more expensive, such
chairs, paradoxically, encourage worse user postures.
For example, as observed in an early anthropometric
study [5], with more than two dimensions to (man-
ually) adjust, a person regularly forgets the previous

(comfortable) setting among the large space of pos-
sible adjustments. Thus, with increased freedom, the
user ends up adjusting their own posture to fit an
inappropriately dimensioned object. Such considera-
tions also extend to other functional objects, however,
they are somewhat less systematically studied in the
literature we consulted.

4 ALGORITHM OVERVIEW

We now describe our framework. Our system operates
in three steps. First, given a user-specified skeleton
body, a set of geometric constraints are extracted from
ergonomics guidelines (Section 3 and 5.3) by ana-
lyzing contact regions of body and shape geometry.
Second, the geometric constraints are integrated into a
contact-preserving deformation algorithm to reshape
the input model to fit the skeleton body. Finally, the
shape-to-body deformation costs are analyzed, and
used for ranking and clustering the shapes.

Fig. 3. Modifying human body’s shape attributes (e.g.,
leg length, body length) and poses leads to different
styles of chairs. Our method provides a quick view
of how a shape can be altered to accommodate a
specified avatar pose that abstracts both the human
shape and desired configuration.

Our reshaping algorithm takes a geometric model
with multiple components as input. We represent the
model with a spatial relation graph where graph
nodes denote shape components and graph edges
their spatial relations. Given a specified human skele-
ton, we first map a set of ergonomic guidelines as
contact constraints between the human skeleton and
the shape. For example, in a sitting pose, a contact
constraint between the hip of the skeleton and the top
face of the chair seat is established. Such a constraint
requires deforming the underlying seat to a specific
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size, width, and height according to the skeleton pose
and attributes. We formulate the reshaping as an
optimization process and design an edit propagation
algorithm to deform the shape according to these
constraints in the regards that the shape structure is
preserved. When the skeleton pose and attributes are
modified, the contact constraints continue to induce
new edits to the shape. This allows the user to interac-
tively design new shapes for a human with particular
characteristics (e.g., design a beach chair for a kid).
Figures 3 and 6 show that different human shapes
and poses lead to different reshaped chairs.

Once a model is deformed, we examine the de-
formation cost of the model compared to its original
configuration. Such measurements of the deformation
cost enable us to effectively rank and classify objects
based on human poses (e.g., bench chair versus din-
ning chair). Classification is then done by comparing
the shape-to-body deformation costs embedded in a
low-dimensional subspace.

5 THE APPROACH

5.1 Shape representation

The input to our algorithm is a family of man-made
objects that interact with our human body (e.g., chairs,
bed, bikes, etc.). We assume that the collection of
shapes belong to the same category and are pre-
aligned with consistent orientations [30]. Further, each
shape is composed of multiple components that are
tagged (such as seat, back, arm, legs). Note that
one semantic part (e.g., a chair back) might contain
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Fig. 4. We represent a chair and a bike model with
their respective spatial graphs, where nodes denote
individual shape components and the edges denote
the connection between components (in our implemen-
tation, contact and symmetry relations are used).

multiple components [11]. We refer to existing co-
segmentation methods [31], [32] for references.

We encode each shape with a spatial relation graph
[30]. Each node in the graph corresponds to a com-
ponent, while each edge denotes a contact or sym-
metry relation (see Figure 4). We fit each component
with a primitive (in our system cuboid and cylin-
der, computed via PCA); we call such a primitive a
proxy, which is later used to guide the deformation
of the underlying component [26]. We compute the
contact information between adjacent components by
considering their point-to-point distances. In practice,
two components are in contact if their closest point-
to-point distance is smaller than 1% of the diagonal
length of their smaller bounding boxes (see also [33]).

To account for preservation of shape structure, we
need to preserve both the spatial relations among
the components (or proxies) and the individual com-
ponent characteristics. We show in the subsequent
sections how such a representation enables a simple
and robust contact-preserving deformation paradigm.

5.2 User-specific avatar shapes
Our system exposes to the user a predefined human
shape with pose, which is represented as a rigid skele-
ton (Figure 5). We use a tree structure representation
of the skeleton whose root node lies at the chest
and each skeleton edge is enclosed with an ellipsoid
denoting a body part. Each skeleton edge is also
associated with attributes such as length, width, and
thickness. As shown in Figure 5, there are a total of
20 nodes and 19 bones in a skeleton.

upper arm

lower leg

body

sitting lying

Fig. 5. Human avatar used in our system consists
of a skeleton whose bones represent body parts. The
user can modify the shape and poses of the avatar by
simple mouse operations. The middle and right column
show two representative poses used in our system.

We tag each bone and each node with semantic
attributes. For example, the skeleton bone which cor-
responds to the body part is tagged as “body-bone.”
The user can use these semantic tags to alter the
length, width, and thickness of individual body parts
in a small panel (see also in accompanying video).

Besides the pre-specified poses, we allow the user
to design their own poses and shape attributes. The
user can drag a skeleton node to move it in 3D, the
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normal sitting

bench sitting

bar sitting

lying

Fig. 6. In out system, we design four types of avatar
poses (sitting, lying, bench sitting, bar sitting) for chairs.
Here, each pose induces a modification to the original
chair (shown in blue) to be fit to the skeleton shape.

screen mouse movement is mapped as translation in
the corresponding skeletal bone plane (defined by its
consecutive skeleton bones, multiplied by the current
viewpoint transformation). We restrict all transforma-
tions to be rigid to preserve the body rigidity. The
user can also move the entire body by translating the
root node, again with mouse dragging.

5.3 Mapping poses to shape constraints
In this section, we explain how to map the ergonomic
guidelines into geometric constraints between the
user-specified human shape and a man-made model.
For clear exposition, we will primarily focus on chairs,
given their widespread use. Other examples (e.g.,
beds, bikes, etc.) are similarly handled.

We first allow the user to indicate a target pose by
either loading a pre-defined pose skeleton or to design
her/his own shape (by modifying an existing one).
Next, our system provides restrictions to a specified
pose based on ergonomic guidances, i.e., the upper
leg and lower leg should be roughly orthogonal in
a normal sitting pose, while being roughly parallel
when seated on a beach chair. We do not allow
extreme sitting poses such as hands over head, hips
on legs, etc.

We identify a set of contact regions between the
body and the chair according to the ergonomic guide-
lines. For example, the hip and the back part of the
legs should contact the top face of the seat, the lower
arm will be in touch with chair arms around the cen-
ter regions, the chair back should be approximately
supporting the neck, etc. Please see the appendix for
a complete list of ergonomic constraints between hu-
man body and various objects used in this paper. All

these types of ergonomic constraints are pre-specified
in our system and automatically included when a new
pose is created by the user.

The ergonomic relations between the skeleton and
the chair are computationally converted into geomet-
ric constraints. In particular, for chairs we derive the
following types of geometric constraints based on
the user-specified poses. The constraints and their
specifications are:
• seat width: wseat = (

∑n
j w

j
hip)×1.2, where n is the

number of bodies and wj
hip is the width of the

hip of body j;
• seat height: hseat = hhip, where hhip is the height

of the hip (Figure 7);
• seat length: lseat = lu leg , where lu leg the length

of the upper legs;
• arm height: harm = hl arm, where hl arm is the

height of the lower arms (Figure 7 right);
• back length: lback = hb top − hseat is the top height

of the body minus the height of the seat (Figure
7 left), and

• seat back angle: θ = angle(u leg, body) − 20◦,
angle(u leg, body) is the angle between the upper
legs and the body spine (Figure 7 left).

These geometric constraints are directly discretized
in our system. For example, the contact relation be-
tween the hip and the chair seat will lead to a
constraint in the height of the seat top face to be a
specific value h. Other types of constraints, e.g., the
angle between the body and the leg, will lead to a
sliding angle constraint between the seat and the back,
and so on. For those types of constraints, we allow for
a 5− 15% range of sliding among the exact values to
account for the subsequent deformation stiffness. For
example, the seat width is allowed to be 1.1×–1.2×
the width of the hips. Figure 7 shows an illustrative
mapping of ergonomics to geometric constraints.

Since our aim is not dealing with precise physical

angle

width

length

height

height

seat seat

arm

back

Fig. 7. Mapping of ergonomic guidelines to geometric
constraints. For chairs, we derive four types of con-
straints, namely, height, width, length, and angle, as
shown here in the figure. The dotted arrows indicate
the specifications from the skeleton shape/pose.
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(a) (b)                            (c)                            (d)                               (e)                            (f)                            (g)                            (h)

heights angle

Fig. 8. The contact-preserving deformation paradigm. Starting from a grouped set of geometric constraints (e.g.,
height, length, angle, etc.), our propagation method iteratively deforms the shape components to fulfill the sets
of constraints, while preserving the shape’s structure and connectivity (contacts).

fabrication but instead the deformation and explo-
ration of shapes based on the human ergonomics
guidelines, we do not enforce any hard constraints.
Once the geometric constraints are derived, we at-
tach them to the model components for subsequent
contact-preserving deformation, as explained next.
Note that these constraints are edit constraints that
are used for shape deformation, while conforming to
the subsequent structure optimization.

5.4 Contact-preserving deformation
Given the set of edit constraints derived from the
human body and the input model, we now deform
the model to meet the constraints while preserving
the underlying shape structure. Shape deformation
methods, either implicit or explicit, aim to optimize
a given shape to fulfill the edit constraints while
preserving the shape’s intrinsic properties, or more
importantly, the structure. Recently, advanced tech-
niques have been exploited [25], [26], which either
use identifying shape features (e.g., feature curves) or
high-level deformation delegators (e.g., controllers) to
induce the underlying structural optimization, which
typically involves complicated strategies to transfer
the edits progressively or hierarchically. These meth-
ods often proceed one edit at a time, thus it is not
clear whether their methods could handle cases when
multiple edit constraints are in dependence.

We introduce a simpler and more efficient contact-
based edit propagation mechanism to address the
problem. The key observation of our approach is
that, shape structure is largely encoded in the spatial
relations among components [30], while the spatial
relations are often linked in the form of spatial con-
nectors, i.e., contacts. Thus, preserving the contact
and symmetrical relations can in turn preserve spa-
tial shape structure. Please note that if parametric
models are available (e.g., telescopic joints for bike
seat into the frame, etc.), then they can be used in-
stead of contact-based deformation model. However,
we found such parametric models to be much less
prevalent in repositories.

The algorithm: The input to our algorithm is a set
of components, denoted as {P1, P2, ..., Pn} (sorted by
the decreasing number of associated geometric con-
straints), and groups of constraints {C1, C2, ..., Ck}
distinguished by names, i.e., heights, length, width,
angle, etc. Our goal is to deform the components
with respect to the constraints while maintaining all
the intra-shape contact relations. A simple approach
is to apply these constraints at an initial step and
then optimize the remaining components. However,
since the constraints can be dependent (e.g., the angle
between the back and seat depends on the position of
the seat), simply fixing one component according to a
set of constraints may lead to a dead-lock. Also, the
contact relations may not be explicitly expressed as
parameters of transformations, which makes a global
optimization difficult to formulate.

Thus, as in iWires [25], we design an algorithm

Data: Input Model M := {P1, . . . Pn} and
ergonomic-inspired constraint groups
C := {C1, . . . CK} obtained from specified
skeleton pose.

Result: Reformed model M .
1. while i < K do

Ci = {c1, c2, ..., cl} ∈ C;
a. while j < l do

i. apply cj → Pr ∈M ;
ii. Φ← Pr ;

end
while Φ 6= M do

i. Find Pm ∈ Φ which has the maximum
number of contacts and whose neighbors
are not all in Φ;
ii. Find a neighbor Pq ∈M/Φ of Pm which
has the maximum number of deformed
contacts;
iii. Deform(Pq) with its deformed contacts;
iii. Φ← Pq ;

end
end

Algorithm 1: Contact-based deformation propaga-
tion.
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Fig. 9. Different skeleton shapes and poses lead to different candidate ranking results. Here only 6 chairs (out
of 45) are shown for illustration purposes. Please see accompanying video for a complete list.

that transfers the edits in a local, progressive manner.
We first organize the constraint into semantic groups
as G = {C1, C2, ..., Ck}, where Cj = {c1j , c2j , ..., clj}
is a set of constraints that have the same type (i.e.,
heights, weights, lengths, etc.). We then greedily pro-
cess them to enforce one type of constraint at a time,
starting from Ci = {c1i , c2i , ..., cli} (for example, the
heights constraints). For each cli ∈ Ci, we compute the
transformation T l

i for the corresponding component
in order to align it to meet cli (e.g., to lift a seat to
a certain height h, the transformation is computed as
a translation that maps the proxy center oi to a new
position, such that the height of the proxy’s top face
meets the height h). Width and length constraints are
similarly treated except for those constraints which
involve multiple components such as angle, wherein
we rotate and deform the proxies in accordance to
the skeleton pose. Once all the cli-s ∈ Ci have been
handled, we propagate deformation to the remaining
(i.e., unedited) components based on contact and sym-
metry relations.

Edit propagation: Figure 8 illustrates the contact-based
propagation. When we deform a component Pi, all
its contact points are transformed accordingly (Figure
8(b)). Let us denote the set of already treated compo-
nents as Φ = {Pk, ..., Pl} and the set of transformed
contacts as Θ = {cp, ..., cq}. The propagation treats
one component at a time. Each time we look for one
component that has the largest number of contacts,
say Pm. We look in the neighbors of Pm based on the
relation graph and find the neighbor that has not been
treated and has the largest number of transformed
contacts ∈ Θ, denoted as χ. Then, χ is selected as
the next component and the process continues (see in
Figure 8(c)). If all neighbors of Pm have been treated,
we proceed to the next P ′m with the largest number
of contacts. In Figure 8(c), the chair seat is selected as
Pm, since it has the largest number of contacts, and
the chair back component is selected as χ, since it has

the largest number of deformed contacts in Θ.

bench sitting E = 2.38 E = 3.10

Fig. 10. We quantify deformation cost in terms of vol-
umetric variations in three dimensions (as the velocity
of a valid transformation). In this example, it is more
expensive to deform an office chair into a bench chair.

To deform a component, given its deformed set of
contacts: {s1, s2, ...} → {s′1, s′2, ...}, we find the best
transformation matrix T ?

4×4 such that the following
energy is minimized:

T ? := arg min
T

∑
i

‖T (si)− s′i‖2. (1)

We solve the minimization using least-squares. The
propagation continues until all components are
treated. Figure 8 illustrates a simple 2D example of
edit propagation. To reduce unnecessary deformations
and preserve the original properties of individual
components, we adjust T as in the method of [26],
i.e., for a cylindrical shape, we retain its cylindrical
property during deformation by enforcing uniform
scales along its two non-principal axes.

Once Ci is enforced and the transformations are
propagated, we proceed to the next constraints group
Ci+1 ∈ G. Note that the constraints are applied one
at a time, it may happen that when a Ci is applied,
it violates a previous applied constraints Cj , (j < i).
To address this issue, we enforce the deformation as
follows: each time when a component Pi is to be
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Our method

Shape distribution

Fig. 11. Embedding of chair models into 2D using
multi-dimensional scaling (MDS). Only representative
shapes are shown. Note that different styles get clus-
tered differently (indicated by different colors). Note
the standard shape distribution produces erroneous re-
sults (such as the green bar stool erroneously assigned
to the cluster of reclining chairs.)

treated, we enforce all the previous constraints that
have been applied to Pi in Cj-s.

Algorithm 1 is an overview of the contact-
preserving deformation pipeline. Unlike the propaga-
tion methods used in [25], [26] which process groups
of elements (wires, controller feature curves) pro-
gressively, we delegate the propagation by enforcing
the contact relations among components to preserve
shape structure. To avoid conflicts, as in [25], we do
not revisit any component once it is propagated. The
typical number of contacts involved in a model is
typically much smaller than the number of feature
curves, which makes our method simpler and faster.
As shown in the accompanying video, our system
supports deforming of dozens of shapes instantly.
Please note that by contacts we refer here to the intra-
shape contacts, i.e., the contacts among shape com-
ponents. The body-to-shape contact relations are pre-
mapped as geometric constraints (Section 5.3) which
serve as edit constraints to the deformation system.

6 APPLICATIONS

User Interface. Figure 12 shows an overview of our
user interface that consists of two panels:
• an interaction panel, which

– allows the user to modify the human shape
(represented as a skeleton) – by modify we
mean making changes to both the shape at-
tributes and the pose;

– displays the original and deformed shapes
(in blue and green respectively);

• a preview panel, which displays the ranked
shapes according to the current human shape.

The user can use the preview panel to browse the
shapes. Once the user clicks a preview shape in the
bottom panel, the shapes displayed in the top panel
are updated to show the new deformed shape which
fits the human body.

Fig. 12. The user interface of our system consists of
two panels: a top interaction panel where users can
modify the human shape and get immediate feedback
of a deformed shape in accordance to the human
shape, and a bottom preview panel to present the
ranked models according to the suitability of the mod-
els to the current avatar shape and pose.

The user can modify the pose of the skeleton by
editing its nodes. This is performed by simple mouse
dragging. The user can also modify the geometry
by changing the semantic attributes of the skeleton,
such as leg length, body width, hip width, etc. When
the user edits the human shape, the system provides
immediate feedback with deformed shapes shown in
the preview windows.

In our current implementation, we provide the user
with default human skeleton shape and poses. For
example, we include avatar poses for chairs such as
normal sitting, bench sitting, beach lying, and bar
sitting, etc. (Figures 3 and 5).

Pose-driven geometric ranking. The deformation
involved in reshaping a given model indicates how
much effort it is required to make a reformed model
for a given skeleton body. This enables an intuitive
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pose-driven
deformation

Fig. 13. Clustering of a set of 45 chairs using 4 annotated poses: lying, bar sitting, bench sitting, and normal
sitting. The color models show the clustering results. Sample deformation results are shown in the bottom row,
black chairs denote original shape. Not all the models are shown.

algorithm for geometric selection. Specifically, we
measure the deformation cost for each deformed chair
based on the induced transformation.

Since a common semantic part may contain multi-
ple components, a direct comparison of deformation
energy can lead to incorrect results. As we recall that
the edits are propagated through all the components,
thus, to measure the deformation cost of a chair model
M , a simple method might be to add up transforma-
tions from all components. However, since a common
semantic part (e.g., chair back) can contain different
number of components and this number varies across
models, thus we compute the average deformation
cost for each semantic part and compare them across
chairs.

We measure for each semantic part pi how much de-
formation is induced during the propagation by com-
puting the scale variation of its axis-aligned bounding
box. Denote the bounding box of pi before and after
deformation as Bi and B′i respectively, the deforma-
tion cost for pi is measured as (see Figure 10):

epi := Πj=x,y,z|1 + |∆sj ||+ Πj=x,y,z|1 + |∆tj ||. (2)

Here ∆sj ,∆tj are the scaling and translational differ-
ences in each dimension (i.e., x, y, z) of Bi and B′i. The

total deformation cost for M is then defined as:

EM =
1

N

∑
pi∈G

epi
, (3)

where G is the set of semantic parts (i.e., seat, back,
base, etc.) and N = |G|. Figure 9 shows a simple
ranking of chairs according to the computed defor-
mation costs, which are ranked in accordance with
the skeleton shapes in the first column.

Pose-based object classification. A direct applica-
tion of our method is pose-based object classification.
For example, given a collection of chairs along with
a set of annotated skeleton poses, we can classify the
chairs as sitting chairs or bench chairs, etc.

We provided different skeleton poses for each fam-
ily of objects, e.g., normal sitting (chair), reclining
(bed), racing (bike), bench press (gym), etc. We com-
pute the deformation costs Ek

Mi
for each chair Mi

according to a particular skeleton k. For a model M ,
its deformation costs form a vector

VM = (E1
M , E

2
M , . . . , E

k
M ), (4)

where k is the total number of skeleton poses. We
then compute the pairwise similarity between each
pair of models (defined as their L2 norm distance) and
embed the resultant similarity matrix into 2D using
multi-dimensional scaling (MDS). Figure 11 shows the
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beach bike
deformation

straight-up&down
riding pose

road bike
deformation

hunched-over
riding pose

Fig. 14. Clustering of a set of 12 bikes using 2 annotated poses: upright bike and road bike riding poses. Cluster
membership resulting from the classification is indicated by corresponding colors. Not all the models are shown.

embedding and clustering results for the chairs (with
k-means). To further evaluate our method, we show
the MDS results of chairs in Figure 11, using shape
distribution [34] signatures for the models. For their
results, we used the k-means algorithm in the 64-
dimensional descriptor space of shape distribution.
Note that different styles of chairs get more clearly
separated with our pose-based embedding method.

Classification results: We evaluate our algorithm on 4
collections of man-made models, namely chairs, bikes,
beds, and gym equipments. We include a data set of
45 chairs, 15 beds, 12 bikes, and 15 gym equipments,
each of which typically consists of multiple styles.
Similarly, for each style, we extract a set of geometric
constraints and attach them to objects during defor-
mation (see the supplemental file).

In Figures 13, 14, and 16, we show corresponding
clustering results of chairs, bikes, beds, and gym
equipments along with some of the sampled de-
formations. Our results clearly show that the er-
gonomic guidelines can largely help the process of
functional classification, which is otherwise challeng-
ing to achieve by traditional approaches.

Human-centric content co-retrieval. The human
workspace is an environment where objects are of-
ten correlated and serve for particular activities. Our
framework can be used for human-centric content
co-retrieval and co-placement. This is implemented
as follows. Given a specified annotated human body

shape, we can retrieve the best suitable objects and
deform them to suit a particular human shape based
on pose and ergonomics guidelines.

In Figure 15, the user annotates an office sitting
pose, and she then retrieves an office sitting chair,
and an office desk along with a monitor which is
placed on the table. The size, placements and orienta-
tion of the three objects are automatically determined
by ergonomic guidelines (Figure 7). In this example,
the avatar links the three objects with ergonomics,
resulting in the modifications of sizes, placements,
and contact relations among the three objects.

We annotate the spatial relation among individual

Fig. 15. With our framework, we can bring multiple
objects into a coherent workplace. In this example, the
size, position and arrangements of the chair, table and
monitor are determined by the ergonomic guidelines
derived with the human skeleton.
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objects (e.g., the monitor should be placed on the
table) and obtain the ergonomic constraints simultane-
ously between the human body and the three objects.
The placements come into place at first, followed
by sizes and orientations (see Figure 1). Since the
three objects share spatial contact constraints with
the human shape while the monitor and the table
also share a placement constraint, we perform the
deformation of the three objects sequentially in a
spanning tree order to resolve conflicts. Please note
that in this setup, we can also navigate through
multiple collections of shapes (in this example, chairs,
tables, and monitors). This allows the user to browse
over best suited configurations for the current human
shape – when the user selects one of the objects, the
other two objects will get automatically re-ranked and
updated in accordance with the human shape.

7 VALIDATION

User study: We evaluated our method with a user
study. The main purpose of the user study is two-
fold. First, we wanted to validate the fidelity of the
deformed shape generated by our algorithm. Second,
we wanted to evaluate how our selective exploration
agrees with human perception. We designed the user
study with two experiments. In the first experiment,
we fixed 9 human avatar shapes, 4 for chair, 2 for
bike, 3 for bed. For each human skeletal shape, we
deformed the corresponding shape set by the er-
gonomics constraints derived. We then designed an
interface which randomly shows one model (either
deformed or original) at a time and we asked the user
to select a best matching human avatar presented in
a side view. This experiment helps validate whether
the generated shapes and classification results agree
with a desired human shape.

In the second experiment, we asked the user to do
suitability selection in a finer granularity. In particular,
for each participant, we randomly select 3-4 models
from each collection. Given a human avatar, users
were asked to rank the selected models (in original
shape) according to the fitness of the model to the
given human avatar. This process is repeated multiple
times for all the prescribed avatars, and finally we
compare the ranking results collected from the partic-
ipants to those generated by our algorithm.

A total of 74 users participated in our experiments.
In the first experiment, we found people to be fairly
good at correctly identifying which models are more
suitable to which human shapes when the functionali-
ties of given models are visibly different. The statistics
are encoded as confusion matrix as shown in Table
1. Our algorithm achieves an accuracy of over 85.4%
for most model type (i.e., normal chairs, racing bikes,
etc.). Interestingly, under some extreme deformation
(e.g., deforming a beach chair to a bar stool), people

TABLE 1
Confusion matrices for chair, bike, and bed classification.

bar stool bench beach chair chair
ine bar stool 73 3 4 0
bench 9 72 8 22
beach chair 1 2 70 4
chair 0 6 8 106

king bed recline bed single bed
ine king bed 43 3 7
recline bed 4 83 12
single bed 0 2 31

road bike racing bike
ine road bike 63 5
racing bike 8 37

often got confused in making judgements whether
from its appearance or actual usability (Table 1 chair).

In the second experiment, we used Kendall Tau
rank correlation coefficient [35] to compare the rank-
ings from users and our algorithm. Kendall Tau value
is a measurement of association between two random
variables x, y, defined as:

τ =
nc − nd

1
2 × n× (n− 1)

, (5)

where nc is the number of concordant pairs
(xi, yj), i = 1, ..., n, j = 1, ..., n, while nd discordant
pairs, and n is the number of observations for each
variable x and y. The coefficient is in the range of
[−1, 1] with higher values indicating better agreement
and −1 denoting perfect agreement. In our test, the
Kendall Tau value was 0.717 in the second experi-
ment. The score decreases when the models are within
the same style such as the chair models shown in
the same rows of Figure 9. This is expected as hu-
man judgements purely based on perception could
be imprecise without being able to physically operate
the models. The user study indicates that our pose-
induced shape classification is mostly consistent with
those of the human users.

Timing. Our algorithm runs at interactive rates. The
edit propagation is linear in terms of the number
of components. For the collection of 45 chairs we
tested, it took less than 2s to process them all (see
the accompanying video). All experiments were done
on a desktop with Intel i5-4430 processor (3.2GHZ)
and 8GB memory.

Limitations. Our method has some limitations.
First, although our method uses ergonomic guidelines
to deform the shapes to fit a given human skeleton,
we can not precisely account for ergonomics, which
is a more general and complicated problem. That
means, our method can not be directly used for re-
shaping an object into a production-ready object. This
remains a future direction to investigate. Second, in
our experiments, we practically specified parameters
deduced from ergonomic guidelines and map them
to geometric constraints for different object categories
(we used [1] for reference parameters). Although we
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single bed

double bed

recling bed

riding/running

level lift

bench press

BEDS

GYM Equipments

Fig. 16. Clustering of a set of 15 beds using 3 annotated poses: single bed, double bed, and reclining (top)
and of a set of 15 gym equipments using 3 annotated poses: bench press, riding/running, and level lift. Cluster
membership resulting from the classification is indicated by corresponding colors. Not all the models are shown.
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allow for partial stiffness between the human body
and the underlying shape, the constraints are mostly
empirically defined. An automatic method to learn
such sets of parameters from object categories would
be an interesting future direction. Finally, our method
assumes the input is comprised of multiple, consis-
tent and meaningful components (obtained via co-
segmentation). If this assumption fails, the user needs
to manually segment and tag the input shapes.

8 CONCLUSION

We introduced an algorithm to couple ergonomic
guidelines with geometric reshaping, exploration and
classification. The essential component of our algo-
rithm is a pose-driven contact-preserving deformation
paradigm that quickly adapts multiple shapes to a
given human shape while allowing for fast preview
of deformed shapes. Instead of browsing the shapes
by abstracting them into a common space (e.g., using
templates [6]), we allow the user to use a human
skeleton to explore and classify shape collections by
customizing the attributes and poses of the avatar.

In the future, we plan to further consider er-
gonomics for geometry analysis, for example, au-
tomatic learning of geometric parameters from
ergonomics guidelines for categories of objects,
ergonomic-driven content co-placement, etc. We
would also like to examine physical simulators for the
analysis of fidelity/stability of geometric objects and
also their interaction with soft materials (e.g., leather).
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APPENDIX

Mapping ergonomic constraints. Similar to the map
of ergonomic guidelines to geometric constraints for
chairs in section 6.3, we map human shapes to the
bed, bike and gym models.

For beds:
• seat width: wseat = (

∑n
j w

j
body) × 1.5, wbody =

whip+(warm)×2, where n is the number of bodies
and wj

body is the width of the body j, defined by
the sum of width of the hip and two arms of the
body;

• seat height: hseat = wl leg , where wl leg is the
length of the lower leg, as considering the height
of common beds;

• seat length: lseat = (lbody) × 1.2, where lbody the
length of the body, defined by the sum of length
of the head, neck, spine, upper leg, and lower leg;

• seat back angle: θ = angle(u leg, body) − 20◦,
angle(u leg, body) is the angle between the upper
legs and the body spine, as default, the angle is
90◦, in the case of a lying pose with parallel legs
and the body spine.

For bikes:
• seat width: wseat = whip × 0.5, where whip is the

width of the hip;
• seat height: hseat = hhip, where hhip is the height

of the hip;
• handle position: phandle = (pl hand + pr hand)× 0.5,

where phandle is the center of top face of the proxy
of bikes’ handles, and pl hand, pr hand are the cen-
ter of left and right hand of body respectively;

• pedal height: hpedal = hu foot, where hu foot is the
height of the higher foot.

For gym equipments:
• seat width: wseat = whip, where whip is the width

of the hip;
• seat height: hseat = hhip, where hhip is the height

of the hip;
• arm position: parm = (pl hand + pr hand) × 0.5,

where parm is the center of the proxy of arms,
and pl hand, pr hand are the center of left and right
hand of body respectively;

• seat back angle: θ = angle(u leg, body) − 20◦,
angle(u leg, body) is the angle between the upper
legs and the body spine.
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