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Abstract
RGBD images with high quality annotations, both in the form of geometric (i.e., segmentation) and structural (i.e.,
how do the segments mutually relate in 3D) information, provide valuable priors for a diverse range of applica-
tions in scene understanding and image manipulation. While it is now simple to acquire RGBD images, annotating
them, automatically or manually, remains challenging. We present SMARTANNOTATOR, an interactive system to
facilitate annotating raw RGBD images. The system performs the tedious tasks of grouping pixels, creating poten-
tial abstracted cuboids, inferring object interactions in 3D, and generates an ordered list of hypotheses. The user
simply has to flip through the suggestions for segment labels, finalize a selection, and the system updates the re-
maining hypotheses. As annotations are finalized, the process becomes simpler with fewer ambiguities to resolve.
Moreover, as more scenes are annotated, the system makes better suggestions based on the structural and geomet-
ric priors learned from previous annotation sessions. We test the system on a large number of indoor scenes across
different users and experimental settings, validate the results on existing benchmark datasets, and report signifi-
cant improvements over low-level annotation alternatives. (Code and benchmark datasets are publicly available
on the project page.)

1. Introduction

Images with high quality semantic annotations provide rich
training data for a variety of supervised and semi-supervised
learning algorithms, both in computer graphics and com-
puter vision. For example, in scene understanding, algo-
rithms extract cues from the annotated datasets to learn dom-
inant relationships between object labels and image features.
The trained models can then used as priors for segmentation,
recognition, manipulation, synthesis, etc. Beyond usage for
learning models, such annotated datasets also provide quali-
tative and quantitative groundtruth for evaluating segmenta-
tion and labeling algorithms.

Users can generate such high quality semantic annota-
tions by carefully annotate images one at a time. The
process is tedious, time-consuming, and prone to errors.
State-of-the-art web-based image annotation tools (e.g., La-
belMe [RTMF08]) simplify the process by offering easy-
to-draw interfaces and facilitating collaborative annota-
tion. Alternately, semi-automatic segmentation (e.g., Grab-
Cut [RKB04]) can potentially ease the burden on the users.
Such methods, however, produce only 2D segmentation and
object labels, and fail to reveal important 3D relations com-
mon across manmade scenes.

Affordable RGBD sensors (e.g., Microsoft Kinect) by pro-
viding synchronized color and depth data can resolve the
problem. Unfortunately, annotating such images not only in-
herits the problems of the image setting, but is further com-
plicated by the depth information being noisy. Directly in-
vestigating such RGBD images in 3D is frustrating given the
partial nature of the data and can be confusing to the user.
Not surprisingly, manually annotating such images requires
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Figure 1: Given an RGBD image and its image-level seg-
mentations (left), object labels, 3D cuboid abstractions and
structure of the scene (right) can be effectively annotated us-
ing the SMARTANNOTATOR with only a few user selections.
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significant efforts from the user, who has to flip across mul-
tiple viewpoints to indicate dimension of each object while
imagining missing regions due to occlusion. For example,
given a moderate scene with properly annotated object seg-
ments and labels, an average time of 5 minutes is reported to
annotate only 3D cuboids (see [GH13]). Thus, while prop-
erly annotated depth data is valuable, the manual annotation
process itself is difficult, and poses a major bottleneck.

In this work, we present SMARTANNOTATOR, an assisted
interactive tool to annotate indoor RGBD images. Starting
from raw RGBD images and a few user selections, the sys-
tem outputs both image and scene level segmentation, object
labels, 3D cuboid abstraction and structural relationships
(e.g., contact, on-top, etc.) of the objects (see Figure 1). This
is achieved by combining a novel 2D/3D inference scheme
with object annotation such that they mutually assist each
other. The system, in the background, generates multiple hy-
potheses involving computing segmentation, predicting the
object labels, and inferring the 3D structure of scene. The
user simply supervises the process by providing initial scrib-
bles, progressively accepting suggestions, and in rare cases
refining the predicted 3D structures. Thus, the user only se-
lects among the ordered suggestions (e.g., if a shown box
is ‘bed’ versus ‘cabinet’), while the system updates its un-
derstanding of the scene and proposes refined suggestions,
both in terms of labels and 3D structures for the remaining
objects. At any point the user can ‘approve all’ to finalize
the result. To the best of our knowledge, this is the first sys-
tem that simultaneously annotates scene level segmentation,
infers object labels and discovers 3D structure, all in an in-
teractive setup.

The system works in two phases: a learning phase to boot-
strap the system using a small set of labeled RGBD im-
ages (40 scenes) with properly annotated 3D structures from
where the algorithm learns geometric and structural prob-
ability models; and, the key annotating phase to parse the
input RGBD image into a 3D structure followed by reason-
ing possible support relationships and predicting the labels
using the cuboids and learned models, respectively. Both ge-
ometric and structural models are exploited in the process,
and progressively integrated over different annotation ses-
sions. Hence, the models are progressively enriched as ear-
lier scenes get assimilated as training data, which in turn
simplifies the annotation of subsequent RGBD images (see
supplementary material and video).

We evaluated our system on a benchmark RGBD dataset
(762 indoor scenes with groundtruth annotation) across mul-
tiple users. Our system achieves label prediction accuracy of
70+% and 90+% in their frequencies where the target label
appears among the top 3 and top 6 suggestions, respectively.
The system is faster and more accurate compared to naive
low-level tools, and produces high quality abstraction and
structure in 3D with very simple user guidance.

Contributions. In summary, our main contributions include:

• an interactive indoor RGBD images annotation tool that
combines incremental learning-based label prediction, 3D
structure inference and refinements, and user assistance to
facilitate annotation process;

• a label prediction algorithm that exploits geometric and
structural models learned from the 3D structures of indoor
scenes; and

• a context-driven structure refinement that utilizes the
learned models and user hints to automatically adjust
the dimensions and support relationships of cuboids, and
solve occlusion.

2. Related Work

Image annotation. The ability to collect a large amount
of annotated images is crucial for applications in com-
puter vision. Russell et al. [RTMF08] develop a web-based
image annotation tool, called LabelMe, to collect a large
dataset of labeled images via an easy-to-use drawing in-
terface. Xiao et al. [XOT13] extend the idea to propose a
semi-automatic tool for annotating RGBD stream. Guo and
Hoiem [GH13] present an interactive tool for annotating
RGBD images with 3D structures using cuboids. While such
systems expect intensive manual effort and focus on either
pixel-level segmentation and their labels, or 3D geometry
alone, SMARTANNOTATOR allows the user to accurately an-
notate not only image-level segmentation and labels, but also
object-level 3D geometry and structural relationships. Our
system also bears resemblance to the work of Boyko and
Funkhouser [BF14], which combines the automatic group-
ing of similar objects with human intervention to facilitate
labeling objects in 3D point cloud of urban landscape.

Incremental learning. Although crowdsourcing is a
promising way to collect annotated data, annotations are ex-
pensive and error prone due to its labor-intensive nature. To
minimize human efforts, active learning aims at requesting
manual labeling only on images that are most informative to
the classifier [KGUD07,VG11]. Other approaches bootstrap
the learning algorithm using a small set of labeled images
and automatically crawl data from the Internet to improve
the classifiers [LFF10, CSG13]. Instead of minimizing the
amount of requested images in annotation, we gather knowl-
edge from previously annotated data to facilitate subsequent
annotation sessions.

Indoor scene understanding. Indoor scene understanding
can broadly be classified into two categories, namely, scene
labeling and modeling. In the context of scene labeling, a
large body of work focuses on extracting novel 2D image
(e.g., SIFT and HOG) and 3D (e.g., depth image) features
for the model learning. Algorithms that combine rich RGBD
features from image level segmentation and contextual mod-
els have achieved dramatic performance gains in label pre-
diction [KAJS11, SF11, RBF12]. Our scene labeling algo-
rithm reasons on the 3D structure of the scene inferred from
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Figure 2: System overview: Input to the learning phase is a small set of RGBD images with properly annotated labels and
3D structures (highlighted cuboids), based on which the algorithm learns the probability models. In the annotating phase, the
system (a) builds the initial 3D structure of an input RGBD image, and predicts object labels using the learned models. (b-
d) The user supervises the system by selecting among suggestions (e.g., re-order from ‘pillow’ to ‘nightstand’) while the system
automatically refines the 3D structure to resolve ambiguity due to occlusion (e.g., the nightstand is refined to stand against the
floor and wall) and re-predicts object labels (e.g., object on top of the ‘nightstand’ is more likely to be a ‘lamp’ than a ‘pillow’).
The process iterates until the user approving all the annotated data. The annotated image is shown on the rightmost side and is
used to augment the training data.

the indoor RGBD image. This goes beyond the scope of tra-
ditional scene labeling (c.f., [MWZ∗13]).

Modeling indoor scene from monocular images has been
extensively studied both in computer graphics and com-
puter vision. Most approaches rely on detecting image fea-
tures or high-level annotation to infer the 3D structure in
a simplified setting such as planar popup segments [RT09,
SSN09] and cuboids aligned with the dominant axes of
the room [GEH10, HHF10]. Recent advancement incorpo-
rates geometric and contextual priors learned from 3D mod-
els or online furniture catalogs to boost the performance
of appearance-based models [DPBF∗12, CCPS13, ZZ13].
Zhang et al. [ZSTX14] present PanoContext, a system to
model a full 3D context model from a panorama, and achieve
impressive performance in the task of object detection.

Motivated by the availability of low-cost depth sensors, sig-
nificant progress has been made in inferring 3D structures
from RGBD images. Silberman et al. [SHKF12] propose to
reason the support surfaces and identify structural classes
(e.g., ‘Ground’, ‘Furniture’ and ‘Prop’) for image regions.
The work has been extended by Guo and Hoiem [GH13]
to infer full 3D extent of support surfaces. However, these
methods produce only support hypotheses either at segment
level or using planar surfaces. Our approach focuses on pre-
dicting labels and inferring 3D geometry and support rela-
tionships at the level of full objects, represented as cuboids.

Our system partially overlaps with state-of-the-art methods
in label prediction [LFU13] and 3D abstraction [JGSC13,
SMZ∗14] using RGBD images. Lin et al. [LFU13] base the
contextual model learned from the detected cuboids to rec-

ognize the scene type and object labels. The system per-
formance is sensitive to the quality of initial cuboids, and
bad cuboids due to imperfect segmentation and occlusion
are simply ignored in their evaluation. They achieve label
prediction accuracy of 60%. While our system reports lower
prediction accuracy of 47% in the first hit, the performance
is dramatically improved to 70+% and 90+% in the top 3 and
top 6 hits, respectively, under the interactive setup.

Jia et al. [JGSC13] and Shao et al. [SMZ∗14] focus on
the problem of abstracting occluded regions using physi-
cal stability. Labeling and in-class priors are not consid-
ered. For example, Jia et al. [JGSC13] incorporate sup-
port and stability inference into the segmentation pipeline
to obtain plausible cuboid configuration. Their approach
is based on merging segments to improve configuration
and does not deal with scenes suffering object occlusion
(see Figure 13 in [JGSC13] and Figure 15 in [SMZ∗14]).
Shao et al. [SMZ∗14] optimize the arrangement of cuboids
by analyzing physical stability to hallucinate the geome-
try of occluded regions. The system takes 10-20 seconds
to converge and produces medium quality 3D structures. In
contrast to these automatic methods, our interactive system
solves occlusion among objects and produces high quality
3D structures with very simple user guidance.

3. Overview

Annotating an indoor RGBD image using the SMARTAN-
NOTATOR involves two phases. The system first learns and
reasons on RGBD data (learning phase) followed by utiliz-
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(a) (b) (c) (d)
Figure 3: Given an input RGBD image, our system generates the 3D abstraction by (a) computing the over-segmentation using
color and depth cues; (b) requesting the user to provide rough scribbles on the regions of floor (red), wall (blue) and objects;
(c) automatically inferring the image segments via the user’s input; and (d) fitting 3D planes and cuboids to the segments of
room layout and objects, respectively.

ing the learned models to assist the user in annotation (anno-
tating phase), as illustrated in Figure 2.

In the learning phase, the system takes a small set of anno-
tated indoor RGBD images (40 scenes) as input. These im-
ages contain detailed annotation including object segmenta-
tion and labels, and a 3D abstraction of the scene comprising
of a room layout (e.g., floor and walls) and cuboids, based on
which we encode the geometry and structural relationships
of objects in a structure graph (see Section 4.2). The learn-
ing algorithm bootstraps by reasoning on structure graphs of
the training images to learn probability models that capture
the geometry and structure of the objects. (see Section 5).

In the annotating phase, the system takes a novel RGBD im-
age and generates an over-segmentation based on the color
and depth cues. With the aid of the user who provides few
scribbles on the image, the system automatically groups su-
perpixels into object segments and generates a 3D abstrac-
tion of the scene (see Section 4.1). Based on the estimated
room layout and cuboids, the geometry and structural rela-
tionships of objects are encoded in an initial structure graph
(see Section 4.2).

The system then infers a list of suggestions (i.e., labels) for
each object by reasoning on the initial structure graph us-
ing a joint probabilistic function based on the learned mod-
els (see Section 6.1). The control is then passed to the user
who is responsible for supervising the system. The user is
able to select an object and perform one of the two actions:
i) confirm, reorder or override (e.g., typing) the suggestions
proposed by the system through a context menu; and ii) mod-
ify the support relationships between objects via a drag-and-
drop mouse interface (see Section 6.2). In response to every
user’s action, the system, in background, automatically re-
fines the structure graph to resolve ambiguity and occlusion
(see Section 6.3), re-predicts object labels based on the up-
dated structure graph, and then waits for the next user ses-
sion. The process iterates until the user approves all the an-
notated data. The user can optionally adjust the dimension of
cuboids to improve the fitting accuracy. Then, we progres-
sively get richer models by augmenting the existing dataset
with the newly annotated images and perform retraining.

4. Modeling the 3D Structure of Scene

We propose a semi-automatic algorithm that exploits the
depth and color cues from RGBD image to model the 3D
structure of the scene. Specifically, we model the 3D abstrac-
tion of scene using 3D planes and cuboids to represent the
room layout (e.g., floor and walls) and objects, respectively.
By estimating the relationships among the cuboids and room
layout, we encode the geometry and structural relationships
of objects in a structure graph, which is further used in mod-
els learning and labels prediction algorithms.

4.1. 3D Abstraction

Given a RGBD image, the system starts by computing the
surface normal at each pixel and applying a graph-based im-
age segmentation [FH04] to obtain image over-segmentation
based on the color and normal cues [SHKF12] (see Fig-
ure 3(a)). The user is requested to manually specify the im-
age segments for room layout and objects by scribbling on
the regions of floor, walls, and objects. Then the system au-
tomatically groups the superpixels that are covered by the
scribbles to form the segments for floor, walls, and objects
(see Figure 3(b)-(c)).

To extract the geometry of room layout, we fit a 3D plane to
each of ‘floor’ and ‘wall’ segments by applying a RANSAC
method on the corresponding 3D points. To generate 3D
cuboids for objects, we assume that all the cuboids are stand-
ing up-right against the floor or stacked on top of other
cuboids. Thus, we project the 3D points of object segment
to the floor as 2D points, calculate a convex hull of 2D pro-
jection and fit a line to boundary points using RANSAC. The
orientation of 3D cube is determined by two vectors: the di-
rection orthogonal to the line and the normal to the floor. The
dimension (or size) of 3D cube is determined by calculating
a minimum bounding box that extends to the boundaries of
3D points. Note that we include only 95% of the 3D points in
the bounding volume to improve the robustness. An example
is shown in Figure 3(d).
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4.2. Structure Graph

To facilitate both the learning and annotating processes, we
introduce the structure graph, a data structure that encodes
geometric and structural information of the estimated 3D ab-
straction. We define a structure graph as a directed graph
G := (V,E), where two special nodes, v f ,vw ∈ V , denot-
ing respectively the floor and wall, and each node vi ∈
V −{v f ,vw} representing an object. For each object vi, we
denote ci as its 3D cuboid and ri as the 2D projection of ci
on the floor. Each directed edge ei j ∈ E describes a support
relationship between node vi and v j and is associated to one
of the support relationships listed below:

• Supported by floor: An object vi is supported by the floor
v f if the the distance from bottom face of ci to floor is within
a threshold.
• Supported by wall: To examine the relationships between
a cuboid and wall, we define the ‘back’ face of a cuboid as
the face, excluding top and bottom ones, that is closest to
any wall in the room. An object vi is supported by the wall
vw if the distance and angle between its back face and the
nearest wall are within a threshold.
• Supported by object: An object v j is supported by an-
other object vi if one of the following criteria is met: (i) The
distance between the top face of ci and bottom face of c j is
within a threshold, and the centroid of r j falls inside ri or
30% of r j is contained within ri; or (ii) c j is completely con-
tained within ci. The latter criterion is used to account for
the scenario where an object is supported by a non-convex
object (e.g., ‘pillow’ on a ‘sofa’). For simplicity, we assume
that each object is supported at most by one object. If there
are more than one supporting objects, we choose the most
probable one that better meets the above criteria.

According to the estimated support relationships, the objects
are further classified into four sets, which are V f (supported
by floor), Vw (supported by wall), Vo (supported by object),
and Vq (floating objects). Note that estimating the support
relationships from the geometric point of view will intro-
duce ambiguity such that two support relationships are met
simultaneously (e.g., bed is supported by floor and wall).
We currently resolve such ambiguity based on the predefined
precedence that the relationship “supported by floor” is over
“supported by object,” which is over “supported by wall.”
We use the same distance and angular thresholds across the
paper with the default setting of 15 cm and 30◦, respectively.

5. Learning Phase

Learning models from informative features plays the key
role to assist the user in annotation task. Inspired by pre-
vious efforts that extensively exploit geometry and contex-
tual information in scene understanding [HHF10,DPBF∗12,
SHKF12, LFU13, ZZ13] and synthesis [MSL∗11, YYT∗11,
FSH11, FRS∗12], we learn from the training data the prob-

ability models that capture geometry, spatial configuration,
and support relationships of objects.

5.1. Learning Probability Models

Dataset. The learning process is bootstrapped using 40 in-
door RGBD images. These images contain detailed anno-
tation including the object segments and labels, which are
manually annotated by the user (e.g., via LabelMe). We ex-
tract the 3D abstraction of input scene based on the pro-
posed algorithm (see Section 4.1), and manually refine the
3D structure (i.e., cuboid dimensions and support relation-
ships) to build a baseline training data. Note that such a train-
ing data can be as well obtained from any existing dataset
where the ground truth structure data are available. Then we
convert the 3D abstractions into structure graphs and learn
the geometric and structural models via reasoning on the
structure graphs with respect to a list of object classes de-
noted as L = {l1, ...lk}. We further enrich the samples for
each object class by randomly selecting 50 samples with
text-based information from online furniture and appliances
catalogs (e.g., IKEA).

Geometric model. The design of indoor objects is closely
related to their functionality for supporting human activities.
For example, the bed for sleeping is often large in base and
flat, while the bookshelf for storing is typically taller. Hence,
the 3D size of object can be a discriminative feature to dis-
tinguish different object classes [ZZ13]. We capture the geo-
metric properties of an object using a 2-tuple vector describ-
ing the height and area of its 3D cuboid and 2D projection.

According to the presence of contextual relationships, we
train two kinds of models using multi-class probability
SVM [CL11]. The first one learns a probability model re-
garding all the object classes using the whole training data.
We denote this model as Pg(l|v), which represents a likeli-
hood of an object v is belong to the class label l. The sec-
ond model takes into account the contextual relationships
of objects. We examine support relationships among object
classes based on the input structure graphs and classify the
object classes into three categories of being supported by
the floor (L f ), supported by walls (Lw), and supported by
the object (Lo). Then, we train a probability model for each
category, and denote it as P i

g(l|v), i ∈ {L f ,Lw,Lo}.

Support model. Support relationship has been proved to
be a strong cue describing the local structure of an indoor
scene [YYT∗11, FRS∗12, SMZ∗14]. For example, pillow
and lamp tend to be supported respectively by bed and desk,
which are typically placed on the ground. In this work, we
are interested in modeling three kinds of support relation-
ships among the objects. Specifically, we define the support
model,Ps(l|l′), as the normalized frequency by counting the
relationship an object class, l ∈ L, is supported by another
object class (or room layout), l′ ∈ L∪{ f loor,wall}, among
all the occurrence of (l, l′) in the training data.
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Spatial model. In interior design, the arrangement of most
furniture is dominated by the geometry of room layout. For
example, large furniture (e.g., bed and sofa) is usually placed
against to wall. To model such a spatial configuration, we
consider two configurations of close-to-wall and parallel-to-
wall, and define respectively two probability models, Pcw(l)
and Ppw(l), as the normalized frequencies of specific con-
figurations that appear in the training data. We define object
is close to or parallel to wall if the distance or angle between
its back face and the nearest wall is within threshold.

6. Annotating Phase

Given a novel RGBD image, the system constructs the ini-
tial structure graph with the aid of the user as described in
Section 4, and starts the annotating session by predicting ob-
ject labels based on the initial structure graph and the learned
models. The user then supervises the system by modifying
the label or support relationship of a target object, while
the system in background automatically refines the structure
graph, re-predicts the object labels, and then waits for the
next user feedback. The user can ‘approve all’ to finish the
iterative process at any point of time.

6.1. Label Prediction

Given a structure graph, G, we formulate the problem of pre-
dicting labels for objects {v1, ...vn} as a maximum a poste-
riori (MAP) inference problem that aims at finding the most
probable assignment of object classes L∗ = {l∗1 , ..., l∗n }, l∗i ∈
L and is defined as:

{L∗}= argmax
L

P(L|G)

where, P(L|G) is a joint probability function defined on G,

P(L|G) = ∏
vi∈V

P(vi) · ∏
ei j∈E

P(v j|vi). (1)

By taking Ep(L|G) =− logP(L|G) and factorizing P(vi) us-
ing contextual relationships, finding the MAP is equal to
minimize the energy function,

Ep(L|G) =− ∑
j∈{ f ,w,o}

∑
vi∈Vj

log(PL j
g (li|vi))−

∑
vi∈Vq

log(Pg(li|vi))− ∑
ei j∈E

log(Ps(l j|li)).
(2)

Instead of finding an optimal assignment, we adopt a strategy
similar to N-best algorithm [PR11] to predict 6 high-scoring
labels for each object. Generating multiple hypotheses is
particularly suitable for such annotation task with human in
the loop because it would reduce the frequency of tedious
typing. Thus, for each object, we evaluate object classes us-
ing the potential functions and select class labels with top 6
scores. Objects are processed in a manner that starts from the
first-tier objects in G (V f and Vw), traces down the support
hierarchy, and ends at floating objects (Vq).

Predicting on first-tier objects. For each object v∈V f ∪Vw,
we define a potential function on an object class, l ∈ L, as

ψ f (v, l) =

{
log(PL f

g (l|v))+ log(Ps(l| f loor)) if v ∈V f

log(PLw
g (l|v))+ log(Ps(l|wall)) if v ∈Vw.

The candidate labels are those object classes with top 6
scores among L, evaluated by the potential ψ f .

Predicting on supported objects. For each object v ∈ Vo,
we utilize the 6-best labels from its supporting parent to pre-
dict the candidate labels. We define a potential function on
an object class, l ∈ L, with a parent label, lp, as

ψo(v, l, lp) = log(Po
g (l|v))+ log(Ps(l|lp)),

and the best candidate label is the one with the highest score
among L. The 6-best labels are retrieved by iteratively visit-
ing parent candidate labels and selecting the best candidate
label using the potential ψo.

Predicting on floating objects. After all the objects in sup-
port hierarchy are processed, the remaining objects are float-
ing objects (Vq) that have no supporting parent. To infer 6-
best labels for each floating object, we simply evaluate ob-
ject classes using the geometric model, Pg, and select those
with top 6 scores.

6.2. User Session

After predicting the object labels, the system enters the user
session and waits for the user’s feedbacks. In display, the
system draws contours of object segments and prints the ob-
ject label with the highest score. To avoid confusion, a color-
ing scheme is used to render the contour and label according
to the status of object (e.g., idle, selected, processed, etc).
The user is able to select an object and performs one of the
following operations.

Selecting among suggestions. The user supervises the sug-
gestions from the system by performing the following ac-
tions via a context menu:

• Confirm. The user clicks the ‘Lock’ button in the context
menu to confirm the label with the top score.

• Re-order. The correct label is not on top of the sugges-
tions and the user rectifies the error by selecting a correct
one among other candidate labels.

• Type. The label prediction is failed and none of the sug-
gestions is correct. The user overrides the suggestions by
typing a new label through a dialog.

Modifying the support relationships. The user is able to
modify the support relationships estimated by the system us-
ing an intuitive mouse interface. To specify a support rela-
tionship for an object, the user simply clicks on the object
segment to grab the object, drags the object toward its sup-
porting parent and then drops it.
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(a) (b) (c) (d)
Figure 4: Structure refinements. (a) The initial 3D structure and predicted labels. (b) The user re-orders from ‘nightstand’ to
‘bed’ and the system performs local refinements to improve the dimension and orientation of bed. (c) The user further assists
in resolving the ambiguity of a ‘pillow’ versus ‘dresser’ and approves all the labels. (d) The system then globally infers the
relationships among objects, and expands bed to support two floating pillows.

Ending the annotation and post-processing. Each time the
user performs one of the above actions, the system automati-
cally refines the structure graph, re-predicts the object labels,
and enters the next user session. Such an iterative process
proceeds until the user clicks the ‘Approve all’ button to con-
firm all the annotated data. After that, the user can optionally
adjust the dimension and orientation of cuboids to improve
the overall cuboid approximation errors. We refer the reader
to the supplementary video for such a user session.

6.3. Structure Graph Refinement

The initial 3D structure estimated by the automatic algo-
rithm usually presents artifacts and ambiguities due to the
inaccurate object segments, noisy depth data, and occlusion.
While both the fully automatic and manual approaches are
infeasible and impractical to deal with the problem, our in-
sight lies in exploiting the learned models and prior knowl-
edge (e.g., labels) offered by the user to resolve ambiguities
and improve the quality. Thus, our system triggers the au-
tomatic structure refinement under the following scenarios:
(i) when the user confirms the label of an object, the sys-
tem performs a local refinement to adjust the dimension and
orientation of the cuboid; and (ii) when the user approves
all to end the annotation, the system first applies local re-
finement to all the objects, followed by performing a global
refinement to resolve ambiguities for the floating objects and
refine cuboids such that the physical support relationships
among cuboids are consistent with the annotated structure.
Figure 4 shows an example of such structure refinement.
Now we elaborate the algorithm in details.

Local refinement. Given an object v with the label l con-
firmed by the user, the system adjusts the dimension and
orientation of its cuboid based on the learned spatial and

support models. Specifically, we propose three kinds of re-
finements, which are (i) aligning the cuboid to wall, (ii) ex-
truding the back face of cuboid to wall, and (iii) extrud-
ing the bottom face of cuboid to floor, and are associated
to the probability models, Ppw(l), Pcw(l), and Ps(l| f loor),
respectively. To determine whether a refinement should be
carried out on the object, we define a potential function as

ψL(v, l) = f (l)+φ(v),

where f (l) ∈ {Ppw(l),Pcw(l),Ps(l| f loor)}, and φ(v) is a
penalty function to avoid the excessive refinement, which
returns −1 if the refined cuboid introduces extra intersec-
tion with other cuboids and otherwise returns 0. The system
checks each refinement in turn and applies the change to the
object if ψL > 0.5. Then the support hierarchy of structure
graph is re-estimated based on the updated cuboid.

Global refinement. In this step, the system exploits the an-
notation (i.e., labels and 3D structure) approved by the user
to refine the structure of whole scene. The algorithm runs in
two steps: (i) for any pair of objects (vi, v j) with the edge
ei j ∈ E, the system refines the cuboids, ci and c j, in a man-
ner that c j is physically supported by ci; and (ii) inferring the
support hypotheses for the floating objects (Vq) by inspect-
ing the inter-object relationships based on the learned sup-
port model. In step (i), if the supporting parent of object v j
is a floor or wall, we simply extrude the ‘bottom’ or ‘back’
face of c j to the floor or wall, respectively. Otherwise, the
system extrudes or shrinks the bottom face of c j to the top
face of ci, and expands the dimension of ci in the direction
parallel to floor such that the centroid of r j falls inside ri.

To generate support hypotheses for a floating object v ∈ Vq
with label l, the system searches nearby objects that are
likely to support v, and denote them as Vs. Then an object,
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Figure 5: Five annotated scenes in the experiment where the user only supervised on labeling. The top row shows the annotated
object labels, the 3D cuboids and the ground truth segmentation as inset. The inferred structure is shown in the bottom row with
yellow, purple and light blue arrows indicating support relationships of objects with floor, wall and other objects, respectively.

the most probable supporting parent of v, is selected using

v∗ = arg max
vi∈Vs
Ps(l|li),

and the system refines the cuboids of v and v∗ as described
in step (i). We define an object vi is likely to support another
object v j if the distance between two objects in both 3D (i.e.,
the top face of ci and bottom face of c j) and 2D (i.e., the pro-
jected bounding rectangles, ri and r j) are within a threshold.

7. Experiment and Evaluation

We extensively evaluated the performance of the system by
conducting the experimental studying that (i) evaluated the
performance on the learning and label prediction algorithms;
(ii) compared with a naive annotation tool in terms of effi-
ciency and quality of annotation; and (iii) evaluated the sen-
sitivity of the system to different initial segmentation con-
ditions. We compared the quality of annotated 3D structure
with respect to ground truth data by calculating the approxi-
mation of the cuboid dimensions, and validating the support
relationships using the precision, recall and F-measure.

Dataset and ground truth. We tested the system on the
benchmark NYU2 RGBD dataset with images from 7 scene
classes, including ‘bedroom’, ‘kitchen’, ‘living room’, ‘bath-
room’, ‘dining room’, ‘office’, and ‘home office’. Among
these scenes, we manually processed the object classes by
merging similar classes and discarding unfrequent ones. As
a result, we obtained 762 scenes and 24 object classes, ex-
cluding the ‘floor’, ‘wall’ and ‘ceiling’ classes. To collect the
ground truth data, we took the annotated object segments and
labels from the NYU2 RGBD dataset, and extracted the 3D
cuboids and support relationships from the dataset of Guo
and Hoiem [GH13] to serve as the ground truth.

Evaluation metrics. Given an annotated scene, we com-
pared the quality of structure graph to the corresponding

ground truth by calculating how well the cuboid dimensions
is approximated, and validating how well the support rela-
tionships are recovered. We employed the metric defined
in the work of Shao et al. [SMZ∗14] (see the Equation 6
therein) to calculate weighed L1 norms that compare the ex-
tents of cuboid dimensions to the ground truth. To validate
the quality of inferred structure, we calculated the precision-
recall (PR) ratio, which captures the ratio of correct edges
among respectively the target and ground truth graph, and
converted it to the F-measure (F1 = 200PR/(P+R)).

7.1. Performance of Learning and Labeling

We randomly picked 40 scenes to bootstrap the learning pro-
cess, and designed an incremental learning scheme by or-
ganizing the remaining 722 scenes into 16 trials such that
each trial contains around 280 objects. We recruited 16 users
with no prior knowledge about our system and requested
each user to annotate a trial using the system. Each user was
given a tutorial with 6 scenes to get used to the system in-
terface and the flow of annotation process. To control the
quality of image segments, we assumed that the segments of
floor, walls and objects are given as inputs (e.g., using the
ground truth). Thus the timing starts from inferring the ini-
tial 3D abstraction using the image segments and predicting
object labels. During the annotating phase, the user is only
allowed to perform the ‘Confirm,’ ‘Re-order,’ and ‘Type’
actions through context menu. Figure 5 shows 5 annotated
scenes in the experiment (refer to supplementary material
for a complete annotated dataset).

We evaluated the performance on: (i) the average timing of
annotating a scene; (ii) the frequency of manual ‘Type’ ac-
tion performed by the user; and (iii) the accuracy of label
prediction. We computed the ratio of ‘Top-1-Hit’, ‘Top-3-
Hit’, and ‘Top-6-Hit’, which indicate the frequency of the
correct object label appearing respectively at the top, among
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Figure 6: Performance on learning and labeling. (Left) The
average annotating time using our system, excluding the tim-
ing in specifying the image segments. (Right) The frequency
of the manual action (‘Type’) performed by the user and the
accuracy of label prediction (‘Top-N-Hit’).

the top 3, and the top 6 of suggestions. As shown in Figure 6,
our system achieves high label prediction accuracy in Top-
3-Hit (∼ 70%) and Top-6-Hit (∼ 90%), meaning that only
a small portion of objects (∼ 10%) require to type in the la-
bels. Hence, it takes only 18 seconds in average to annotate a
scene using our system. One thing worth noting is that while
the system bootstraps from weaker models and results in a
lower prediction accuracy and higher ‘Type’ ratio in the ear-
lier trials, the overall performance improves as more scenes
are processed as shown in the climbing ‘Top-N-Hit’ curves.

We also evaluated the performance in a class-specific basis.
In Table 1, we show the top 4 and bottom 4 object classes in
a list sorted by the prediction accuracy in ‘Top-1-Hit’, and
the corresponding class that is most easily confused by the
system. We found that the performance usually drops in the
objects that are frequently occluded in the indoor scene (e.g.,
‘nightstand’ is occluded by ‘bed’). In addition, a ‘television’
is frequently confused as a ‘picture’ due to its features of
being flat in shape and hanging on the wall. Incorporating
extra image-based features (e.g., texture, HOG, etc) might
potentially improve the discriminating power of our models.

User experiences. We asked the user to comment the system
after finishing the trial. In general, most users agreed that it
is quite handy to annotate object labels using the SMARTAN-
NOTATOR. They found it is particular useful and save a lot
of time to identify the label from a short list of suggestions,
especially when the answer frequently appears in the top 3

samples Top-1-Hit (%) Top confusion (%)
picture 576 85.9 chair (3.4)
pillow 505 76.0 picture (17.4)
chair 833 65.2 picture (13.1)
bed 235 43.4 cabinet (18.7)

nightstand 98 0.0 chair (69.4)
television 43 0.0 picture (37.2)

dresser 42 0.0 chair (59.5)
ottoman 28 0.0 chair (57.1)

Table 1: Class-specific performance evaluation.

SMARTANNOTATOR Naive Tool
avg. timing

(sec.)
label 13 17
supp. 4 9

supp. quality
(P/R(%), F1)

init. 86.9 / 76.4, 81.3 50.0 / 78.4, 61.1
label 92.7 / 92.7, 92.7 -

geo. quality
(approx. err.)

init. 0.28 0.44
label 0.26 -

label+supp. 0.25 -

Table 2: Comparing with naive annotation tool.

suggestions. In addition, they also appreciated the favour of-
fered by the system that propagates the change in an object’s
label to correct the labels of other objects.

Performance of probability models. To validate the effec-
tiveness of geometric and support models in label prediction,
we evaluate the performance in prediction accuracy using
two model settings, with and without considering the sup-
port model. We use half of the dataset for training and the
rest for testing. The statistics show that the prediction accu-
racy increases from 35% (using geometric model only) to
40% (using geometry and support models), demonstrating
that using the contextual relationships does improve perfor-
mance.

7.2. Comparing with Naive Annotation Tool

To prove the effectiveness of our system in facilitating the
annotation process, we compared the system with a naive
low-level annotation tool using 50 testing scenes with pre-
annotated image segments (e.g., using the ground truth). We
implemented a naive tool such that the user can type in the
object label via a dialog and specify the support relationships
using the same mouse interface as ours. To generate a base-
line 3D structure in the naive system, we fitted a cuboid to
each object segment a using the principal component anal-
ysis, and inferred the initial support relationships based on
the proximity among cuboids. We used 380 training scenes
in the learning phase of our system. Three out of the 16 users
in Section 7.1 were recruited to annotate scenes using both
systems and were given a similar training process for the
naive tool. The annotation process runs in two stages that (i)
the user first performs the object labeling task, followed by
(ii) manually refining the support relationships.

We compared both systems in terms of the timing and the
quality of initial 3D structure. We also evaluated how well
the initial 3D structure is refined in our system after the
user completing the object labeling task and refining the
support relationships. The results can be found in Table 2.
We can see that our system not only outperforms the naive
one in the quality of initial 3D structure, but also obtains
the performance gains in accuracy of support relationships
(F1 : 81.3→ 92.7) and improvement of cuboid dimensions
(∼ 22%). Thus, in both the object labeling (‘label’) and sup-
port refinement (‘supp.’) stages, the required manual efforts
are only marginal in our system, resulting in the performance

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



Wong, Chu, Mitra / SMARTANNOTATOR: An Interactive Tool for Annotating Indoor RGBD Images

boost in timings when comparing to the naive tool. More-
over, the low quality 3D cuboids generated by the naive sys-
tem indicates that extra manual effort is expected to further
refine the geometry of cuboids, which is a tedious and time
consuming task as reported in [GH13].

7.3. Sensitivity to Object Segmentation

We evaluated how the performance of our system varies un-
der different qualities of object segments. To this end, we
combined the object contours of the ground truth data with
different initial image segmentation. Specifically, we used a
parameter, k, in the image segmentation algorithm [FH04] to
control the size of superpixels. Note that the bigger the value
of k, the larger the size of the superpixels. Then, the object
segments were computed by grouping superpixels that have
more than 60% of the area lying inside the object contours.
We tested different settings of k on 50 scenes and recruited
three out of the 16 users in the Section 7.1 to annotate the
scenes using our system in a two-stage manner as described
in the Section 7.2. As shown in Table 3, the performance
of our system is stable under various object segmentations.
Note that although the quality of initial 3D structure is only
mediocre due to the imperfect object segments, the system
effectively improves the accuracy of support relationships
(F1 : 74.0→ 90.6) and cuboid approximation (∼ 27%) after
the annotating process. As a result, the system generates 3D
structures with comparable quality to those using the ground
truth object segments (see Table 2).

k=5 k=20 k=100
supp. quality (P/R(%), F1)

init. 67.6 / 84.0, 74.9 66.7 / 85.1, 74.8 65.3 / 81.0, 72.3
label 91.1 / 92.1, 91.6 91.1 / 91.6, 91.4 88.6 / 89.1, 88.9

geo. quality (approx. err.)
init. 0.37 0.37 0.36
label 0.29 0.34 0.28

label+supp. 0.29 0.28 0.27

Table 3: Sensitivity to object segmentation.

7.4. Performance

User scribbling. We tested our scribbling interface using a
dataset of 50 scenes, with each scene contains 2-6 objects.
We recruited two users who are given 6 training scenes to
specify the image segments using our scribbling interface.
On the average, users took ∼ 1 minute per scene. This in-
dicates that although our semi-automatic approach prevents
the user from processing at pixel-level, prescribing meaning-
ful image segmentation still poses a bottleneck.

Timings. The automatic algorithm for fitting 3D planes and
cuboids to respectively room layout and objects is efficient.
Once the image segments are generated, it took less than a
second to generate the 3D abstraction of a moderate scene
with 4 objects using the unoptimized codes. Please note that
the timing is proportional to the scene complexity.

8. Conclusion

We present SMARTANNOTATOR, an interactive system to fa-
cilitate annotating indoor RGBD images. The system per-
forms the tedious tasks of predicting labels, inferring 3D
structure, and comes up with various hypotheses, while the
user only has to flip through a list of suggestions for ob-
ject labels and marginally refine the hypotheses. The perfor-
mance of system is validated through an extensive experi-
mental studying, which demonstrates that our system out-
performs a naive low-level tool in both the efficiency and
quality of annotation. We plan to release both the system
and source codes to public in the future.

Limitations and future work: Since we assume all the
cuboids are standing up-right against the floor or stacked on
top of other cuboids, the cuboid fitting algorithm can fail
when the quality of floor segments is poor in a scene (e.g.,
barely visible or occluded). One possible solution is to of-
fer an interface that allows the user to manually specify the
floor orientation and height in 3D. In addition, objects with
complex non-convex shape are only crudely captured using
cuboids. A sophisticated 3D representation (e.g., composing
using multiple cuboids) is necessary to capture more accu-
rate geometric and structural information. While the accu-
racy of label prediction drops in the ‘Top-1-Hit’ ratio us-
ing our simple probabilistic models, we plan to exploit extra
appearance-based features (e.g., SIFT and HOG) and con-
textual relationships (e.g., relative position and orientation
between two objects) to further improve the overall perfor-
mance. One worthy exploring direction is to integrate a repe-
tition detector that detects multiple object instances (e.g., pil-
lows and chairs) in 2D [CZM∗10] or 3D [BF14, GTB14] to
accelerate the annotation. Finally, a natural extension would
be a fully automatic annotator by progressively confirming
the top label of most confident object. For an initial result,
see Figure 7.
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