Computational Fabrication
Guided by
Function and Material Usage

Bongjin Koo

This thesis is submitted for the degree of
Doctor of Philosophy

UCL

Department of Computer Science

University College London

2016

Declaration

I, Bongjin Koo confirm that the work presented in this thesis is my own. Where infor-
mation has been derived from other sources, I confirm that this has been indicated in

the thesis.

Bongjin Koo

iii

To my parents.

Acknowledgements

I would like to thank my supervisor, Niloy J. Mitra, for providing great advices and
ideas during my study. His approach on how to come up with new research ideas, tackle
difficult problems and collaborate with other researchers is one of the most valuable
things I learned from him, which will be a biggest asset for my future research (only if
I can do them like him).

My gratitude to the colleagues in the Smart Geometry Processing Group at Uni-
versity College London: Melinos Averkiou, Aron Monszpart, Moos Hueting, James
Hennessey, Tuanfeng Yang Wang, Paul Guerrero, Martin Kilian, Nicolas Mellado and
Chi-Han Peng. It was a privilege to be able to work with these bright and hard-working
people. Also, I owe much to the members of the VECG group for the seminars, discus-
sions, jokes, and having coffee and lunch together.

Many thanks to my collaborators: Wilmot Li, JiaXian Yao, Maneesh Agrawala,
Jean Hergel, Sylvain Lefebvre. Without their contributions and advices, this thesis
would not have been completed.

I would like to thank my cousin, Jeongho, and my friends for supporting and
encouraging me for the last three and a half years: Heesu, Inki, Jiho, Seung-ho, Kwang
Hoon, Guillaume, Oscar, and especially, Aydan.

Lastly, I am very grateful to my parents for helping me get through the difficult

times.

The work in this thesis was funded by the Marie Curie Career Integration Grant
303541, the ERC Starting Grant SmartGeometry (StG-2013-335373), and gifts from
Adobe Research.

vii

Abstract

This thesis introduces novel computational design paradigms for digital fabrication
guided by function and material usage. With these approaches, the users can design
prototypes of mechanical objects by specifying high-level functions of the objects, in-
stead of manipulating low-level geometric details. These methods also provide the
users with design suggestions which minimise material wastage during the design pro-
cess.

The benefit of these approaches is that the users can focus on the exploration of the
design space without worrying about the realisability of the design or efficient material
usage. The shallow exploration of the design space due to the lack of guidance of the
users in terms of function and material usage has been one of the most critical obstacles
to achieving good designs using existing design tools. We verify this hypothesis by
designing and fabricating a variety of objects using our computational tools.

The main contributions of the thesis are (i) clearly defined sets of constraints re-
garding function and material usage in the design and fabrication process, (ii) novel
optimisation methods for generating designs subject to the constraints and (iii) compu-

tational tools which guide the users to design objects that satisfy the constraints.

ix

Contents

[Declaration|

[Acknowledgements|

[_Abstract

[List of Figures|

[_List of Tables|

| List of Algorithms|

[2.3 Computational Fabrication|
23.1 3DPrinting| o
2.3.1.1 Typesof 3D Printing|.

2.3.2 LaserCutting|,

[2.4 Fabrication-aware Design| 0L,

X1

iii

vii

ix

XV

xvii

Xix

Xii

Contents

Literature Revi

3.1 Analysing Designs|

3.2 Guided Design|

[3.3 Constraint-based Modellingf.

[3.4 Fabrication-aware Design|. o0,
[(3.4.1 Fabricability] o L

Guidance by Function|

“.2.3 Support]
424 Flushlo
4.3 Specifying Functional Relationships|

4.3.1 Specitying Cover Relationships|

4.3.2 Specifying Fit Inside Relationships|

“4.3.3 Specifying Support Relationships|

4.3.4 Specifying Flush Relationships|

4.3.5 Specifying Additional Geometric Constraints|

4.4 Computing Part and Joint Parameters|.

4.5 Generating Fabricable Geometry|

7 onclusions and Future Work|.

K

Guidance by Material Usage|

[5.1 Design Workflow|,
[5.2 Algorithm Overview|

19
19
20
21
22
22
24

27
30
30
30
31
31
33
35
36
37
37
39
39
40
40
40
41
41
43
45
45
45
45
45
48
48
49

Contents

[5.2.1 Parameterised Designs| o000
[3.2.2 Matertal Space| o L.
[5.2.3 Properties of a Good Design Layout
[5.3 Interactive Design Layout Optimisation|
[5.3.1 Imtial Design Layout|
[5.3.2 Dynamic Material Usage Constraints|
0.3.2.1 Dimension Violation Detection

[5.3.2.2 Snapping|.

[.3.23 Shdingl oo

0324 Termmation|

[5.3.3 Suggestions Based on Design Layout,
[3.3.4 Handling Coplanar Parts|
[5.3.5 Furniture Design with Constraints|
[5.3.5.1 Design Effectiveness Constraints Enforcement|

[5.3.5.2 Design Constraints Enforcement|

0353 FallureCasesl

[5.4 Automatic Design Layout Optimisation|
[5.4.1 Bitmaps
[5.4.2 Design Optimisation for Wastage Minimisation|
[5.4.2.1 Overall Strategy|

[5.4.2.2 Changing Part Sizes|

[5.4.2.3 Updating Layouts by Shding|

[5.42.4 GrowStep|

[5.4.2.5 Shrink Step| 0L,

[3.4.3 Exploring Orderings|
[5.4.3.1 Docking Algorithm|

[5.4.3.2 Docking Criterion|

B3 Resulls. . . . o o oo e e
[5.5.1 Design Examples| 0.,
[3.5.2 Comparison|.
[5.5.3 DesignSessions|

5.5.4 Limitationsl e

5.6 Conclusions and Future Workl.

Xiii

57
58
59
59
60
60
61
62
63
63
65
65
67
67
69
71
72
73
73
74
74
75
77
77
79
79
80
81
82
87
88
89
&9

91
92
92

95

Contents

97

List of Figures

(1. Computational fabrication.| 1
(1.2 Functional relationship between parts in an object|. 4
(L3__Hard-to-reuse materialll 6
2.1 Elementsofdesign.|., 9
2.2 Typical design process.| o oL 10
2.3 Conceptsketches.| 12
2.4 Prototyping.| 13
2.5 3Dwprinter|. 15
2.6 Tasercutterinaction)., . 17
4.1 Creating works-like prototypes.|. 27
4.2 Works-like prototype.| L L 28
4.3 Different types of joints and their parameters.| 30
4.4 Example cover relationships. 00000, 32
4.5 Example packing constraints.|. 0000000 33
4.6 Example fit inside relationships.] 000, 34
.7 Example non-overlapping constraints.| 35
4.8 Example support relationship,|00 36
4.9 Example flush relationship,|o 00000 36
#4.10 Specifying functional relationships, 37
4.11 Plane-sweep.| 38
4.12 Double pivotjoints.| 40
.13 Positionconstraint] 41
H14 Motionconstraint]o 42
“.15 Variations of sofa bunk and cratebed 44
.16 Various works-like prototypes created using our system.|. 47
/.17 Hand-built prototype.|o 48
[5.1 Waste-minimising furniture design.f. 51
[5.2 Systempipeline.|. 53
[5.3 Systeminterface.| oo oo 55

XV

Xvi

List of Figures

[5.4 Multiple copiesof adesign.|. L. 56
[5.5 Design variations in shape space.| 57
[5.6 Shape variations.| oL 58
[5.7 Layoutrefinement.| 60
[5.8 Transitive neighbouring relationships.| 62

0 ding.| 64
[5.10 Coplanarparts.| 66
[5.11T Design effectiveness constraints.| 67
[5.12 Specitying design effectiveness constraints.| 68
5.13 Shiding.| 75
[5.14 Height-fields.| 80
[5.15 Docking.|. 82
[5.16 Curveddesigns. L 83
[5.17 Fabricated examples.| 84
[5.18 Multipledesigns.| L 85
5.19 Fabricated furniture inuse.| 86
[5.20 Comparison.|. 87

[5.21 Example by an art student.| L oL, 88

List of Tables

.1 Statistics for fabricated prototypes.| oL 46

.1 Statistics for cutdesigns.| L oo oL 85

Xvii

List of Algorithms

Xix

Chapter 1

Introduction

Figure 1.1: Computational fabrication. Recently, computational fabrication methods such as
3D printing and laser cutting have been adopted widely for creating physical objects as they are
becoming cheaper and easier to use. However, there are still challenges which prevent the users
from fabricating objects from their own designs easily (top image by Coros et al. [CTN T 13|] and
bottom image by Umetani et al. [UIMI2]]).

2 Chapter 1. Introduction

Mass production significantly lowered the cost of numerous products that are es-
sential for our lives while improved their quality in general. It also helped to populate
the market with many different products of various usage. There are many distinct
products which we can choose in the market that one might think that we can always
find the products that suit our purposes and tastes. However, this is not the case be-
cause there are large variations in our purposes and tastes to be accommodated in the

standardised mass production process.

1.1 Motivation

It is very difficult, if not impossible, to make changes or customise some features of
a product that is manufactured by mass production. This is due to the nature of mass
production, which lowers the cost and increases the quality of products by limiting the
tasks performed in one production line. As the machines in a production line are built
for certain tasks, as well as the human workers are trained to do only particular jobs in
the line, all products from the production line are identical or very similar in terms of
appearance and function. This means that we might not be able to find products that
fit our purposes and tastes though there are a vast number of products available in the
market. For example, it could be impossible to find a bookcase whose dimension fits
with the empty space in your living room. Or, you may be able to find a bookcase
that has the correct dimensions but you do not like its style. Then, the only option is
to make a bookcase from your own design which perfectly fits your purpose and taste.

However, until recently, making your own physical objects was not an easy task.

You could ask a factory to manufacture objects from your designs but it would be
significantly expensive because the factory should create a production line, with neces-
sary machines and workers, just for one or a few custom objects. Also, this process will
take much time to build the production line and train the workers if necessary. There-
fore, this is not a viable option for a hobbyist to take. You may do woodworking to
make the objects yourself but it requires significant time and effort to master the skills

needed.

Computational fabrication methods such as 3D printing and laser cutting, how-
ever, have potential to address this problem. Computational fabrication refers to a set
of technologies that can be used to create physical objects instructed by computer sys-
tems (see Section for more detail). They have recently gained popularity among
novices in design and fabrication, who are interested in building objects from their own
designs as well as among professional designers or companies making products. This
popularity stems mainly from the fact that these fabrication technologies have become
more accessible thanks to the decrease in cost and to advances in design tools for fab-

rication, which make the technologies easier to use. Therefore, some might think that

1.1. Motivation 3

it is now easy to create physical objects from their own ideas.

However, this is not very true. To create an object using the computational fab-
rication methods, we need a design of the object that can be fed into the computer
systems. In general, this design is created using modelling tools such as SketchUp,
AutoCAD, SoildWorks, etc. These tools have become easier and more intuitive to use
but still creating a design is very challenging. A design does not mean just the shape
or geometry of an object that is pleasing to look at. A design is a solution to the prob-
lems we have or a goal that we would like to achieve with the realisation of the design
(see Section [2.1). Therefore, a design should satisfy all the constraints related to the
problems. The problems or goals can be creating an object that functions in a certain
way, e.g., drawers or doors. Also, they can be fabricating an object while minimising
the amount of wasted material during the fabrication process. Creating such a design is
not trivial. Even though there are many available design tools for fabrication and they
are becoming easier to use, it is not a simple task for novices to design and fabricate
objects with the existing tools. This is mainly because the tools usually require prior
experience and domain knowledge to create designs.

The main reasons why prior experience and domain knowledge play an important

role in creating a design are:

e We need to manipulate low-level geometric features such as vertices, edges or
faces in order to achieve high-level design goals related to function or material
usage. And, it takes experience/knowledge to model by manipulating geometric
features.

e [t is not trivial to imagine the effect of the low-level changes on the high-level
goals before actually fabricating and testing the design and the available design

tools do not inform the user of the effect of the changes during the design process.

Even for professional designers with prior experience and domain knowledge,
making a design that satisfies the constraints with respect to the problems to be solved
by the design is a challenging and time-consuming task. This is because we cannot
verify if all the constraints are satisfied until the actual object is fabricated and tested.
This difficulty can severely slow down the product development or fabrication process
because a typical process for making products or customised objects requires many it-
erations of analysis, ideation, prototyping and evaluation until a satisfactory design is
achieved (see Section [2.2] for more detail). However, there are few tools available that
directly address this problem by taking the relationship between the function and the
design (or between the material usage and the design) into account so that we do not
have to fabricate and test the design to verify that the constraints are satisfied.

One recent development to mitigate this difficulty in creating designs is a group

4 Chapter 1. Introduction

interior volume

fitting volume == sliding vector

s

Figure 1.2: Functional relationship between parts in an object. There are functional relation-
ships to be satisfied for an object to function properly. For instance, the fitting volume must be
smaller than the interior volume for the drawer to be closed completely as well as the cavity
in the interior volume should not be too larger than the fitting volume. Low-level geometric
features should be manipulated to achieve this high-level goal, i.e., a properly working drawer.

of online design communities such as Thingiverse, where people can upload and share
their designs for fabrication. Designs in these communities are fabricable and func-
tional. As more people join the communities, the number of designs available and the
quality of them are becoming higher. Therefore, we can just download a design, and
3D print or laser cut it. This is, however, only if there is a design that exactly matches
our needs, i.e., with exact dimension, appearance and functions. If the design does not
satisfy all of these, and usually it does not, we need to modify the design or create our
own design from scratch. Thus, the difficulty still remains.

This is where our research intervenes. This thesis is an attempt to find ways for
helping users, including professionals as well as novices, easily design and fabricate
what they have in their minds via computational guidance with respect to function
and material usage. By computational guidance, we mean the suggestions provided
by computational tools which optimise and update the design and other parameters
algorithmically, so that all the necessary constraints regarding function and material
usage are automatically satisfied. We seek to minimise the laborious manipulation and
specification of low-level geometric features by the user through allowing her to specify

and achieve the high-level goals, i.e., functions and minimal material usage, directly.

1.1.1 Function

In this thesis, function refers to the functional relationships between parts in an object
to achieve certain goals and to operate properly (Chapter [d)). The relationships include
cover, fit inside, support and flush. Joints such as hinges are usually needed between

the parts that have a dynamic relationship. Depending on the function, there can be

1.1. Motivation 5

various constraints with respect to the shape of the parts and parameters of the joints.
For example, the depth of a drawer should be smaller than that of the chest of drawers
in which the drawer can fit as shown in Figure[I.2] Also, the cavity on the chest must be
large enough for the drawer to fit in but not too big because there might be an unneces-
sary gap between the chest and drawer. The drawer cannot slide in, on the other hand,
if the cavity is too small. This is a very simple example with a trivial mechanism but
there are more complicated types of functional relationships between parts as discussed
in Chapter] Considering these constraints on functional relationships during the de-
sign process and changing the design accordingly for the fabricated object to function
properly, require time and expertise. This is because the user must manually specify all
necessary low-level geometric details satisfying the high-level constraints. Moreover,
the design process loop should be repeated if the fabricated object does not function as
intended. Given that there are few modelling tools that address this difficulty, users are

left to the trial-and-error approach, which requires much time and cost.

1.1.2 Material Usage

Material usage refers to the efficiency of the material that is used to fabricate an object.
The material is wasted when part of the material is left after fabrication and it cannot be
reused for another fabrication process. Though additive manufacturing methods such
as 3D printing generally do not suffer from the material being wasted during fabrica-
tion, subtractive manufacturing methods, e.g., laser cutting and milling, can produce
wasted material. This is due to the difference in their fabrication methods. Additive
manufacturing methods add material only where needed and the materials used for the
methods are usually in a powder, liquid or filament form, which can be easily sepa-
rated or combined to obtain a desirable amount. Therefore, additive methods produce
zero or minimal material waste in general if the user plans carefully. Subtractive man-
ufacturing methods, however, remove material where necessary. The methods cut out
necessary pieces from material, which leaves part of the material unused. Also, the
materials used are usually in a sheet form (of wood, plastics, etc.), which is not useful
when it is segmented into many pieces. For instance, we would not be able to cut a
tabletop if we only had a set of small pieces of wood. Therefore, these small pieces of
material should probably be thrown away.

Wasted material during the fabrication process might seem unimportant but it has
a negative effect economically as well as environmentally. The leftover materials that
cannot be reused for another fabrication process will be thrown away, which incurs
waste and the material cost. This wasted cost can add up drastically if we consider
fabricating a large amount of objects. Also, the materials that are disposed generally
end up being landfilled, which can produce noxious gases and liquid [BEMO3]]. All or

part of the remaining material after fabrication should be thrown away if the geometry

6 Chapter 1. Introduction

Figure 1.3: Hard-to-reuse material. This figure shows the material after laser cutting. The
space between the cut-out regions is either too small or narrow to use for another cutting. It
seems easy to reduce the material wastage by changing the layout of the parts in the design
in this case. However; it is not very trivial to reduce the wastage due to constraints related to
the design when the shape of each part has to be changed as well as the layout (Figure [5.16).
Leftover materials are disposed, which leads to economical and environmental cost. The cut-out
pieces are taken out and placed on the right.

of the remaining material makes it hard to reuse as shown in Figure [[.3] It might
seem easy to minimise this wastage by changing the layout, in this case by moving
the cut-out parts towards any corner of the material space (e.g., to the left-top corner
of the material sheet in the figure). However, this is not trivial when there are many
parts and various constraints in the design as discussed in Chapter [5] In many cases
with complex designs and many constraints, the shapes of the parts should also change
along with their layouts (Figure[5.16). Also, there are few computational tools available
which consider material usage directly during the design process. Therefore, designers
usually model with 3D modelling tools such as SketchUp or SolidWorks, and create a
layout of the parts in the design using Illustrator, which means that they have to switch
between different tools for 3D modelling and 2D layout. This can severely slow down

the design process and result in the shallow exploration of the design space.

1.1.3 Computational Guidance

As mentioned above, the difficulty that novices, even professionals, face when they
design and fabricate objects often comes from the functions or material usage not being
taken into account or integrated well during the design process in currently available
design tools. This leads to numerous iterations of the design process loop (i.e., refining

the design, fabricating prototypes and evaluating them). This can deter novices from

1.2. Contributions 7

enjoying fabricating objects from their own designs. Also, it will prevent professionals
from focusing on the aesthetics of an object itself while they are trying to optimise the
design with respect to the constraints based on their experience and knowledge, which
leads to the shallow exploration of the design space.

We hence hypothesise that computational guidance, i.e., informing the user of the
quality of her design in terms of function and material usage, and suggesting optimal
designs with respect to these constraints during the design process will help her create

good designs more easily and quickly.

1.2 Contributions

Our goal, therefore, is to equip anyone who would like to design and fabricate ob-
jects from her own imagination with adequate computational tools that can guide her
to achieve it. We believe that this thesis is timely and relevant as the customised fabri-
cation is becoming more prevalent among hobbyists and professionals. To the best of
our knowledge, guiding the user to have optimal design with respect to function and
material usage directly during the design process has not been explored yet. We pro-
pose novel methods addressing the challenges and computational tools implementing
the methods were built. Finally, various objects designed using the tools have been
fabricated to verify the hypothesis.

The main outcomes of this thesis are:

e Clearly defined sets of constraints regarding function and material usage in the

design and fabrication process.
e Novel algorithms for generating designs subject to the defined constraints.

e Computational tools which guide the users to design objects that satisfy the con-

straints.

There has been one publication [KLY *14] from the project discussed in Chapter 4]

and a paper from the project in Chapter [5]is under review for publication in a journal.

1.3 This Thesis

The rest of the thesis proceeds as follows:

e Chapter 2)introduces background information useful to understand the later chap-

ters.

e Chapter 3| reviews previous research efforts related to this thesis and shows how

our approaches differ from them to address the challenges better.

Chapter 1. Introduction

e Chapter [] proposes an interactive system with which the user can design and
create works-like mechanical prototypes by annotating high-level functional re-
lationships between moving parts in the design instead of manipulating low-level

geometric features laboriously.

e Chapter [5]introduces a computational design tool taking material usage into ac-
count directly in the form finding process. The tool provides users with design
suggestions by analysing and optimising material space design layout while sat-

isfying various constraints set by the users.

e Chapter|[6|discusses the conclusions drawn from this research and proposes some

possible future research directions based on the limitations of our methods.

Chapter 2

Background

form

design

function fabricability

Figure 2.1: Elements of design. A design is an interplay between form, function and fabrica-
bility. These three elements are highly correlated, thus need to be carefully adjusted together
for a good design.

This chapter is to provide prerequisite information that will be helpful to under-
stand the later chapters in the thesis. It is important to know what a design is and
which steps should be taken when we design and fabricate a physical object, in order to
identify and appreciate the challenges existing in computational fabrication. Also, in-
formation on the computational fabrication technologies that are widely used recently,
and also used for the fabrication of the examples appearing in the thesis, is provided. Fi-
nally, recent developments in a new research direction, fabrication-aware design, which
shares the same goal with this thesis, i.e., helping the user create designs that satisfy

the constraints related to fabrication, will be discussed.

2.1 Design

A design is a solution to a certain problem. The problem can be a need for a table
at which five people can dine, for a chest of drawers that fits an empty space in the
bedroom or for predicting tomorrow’s weather. A product or object built from a design
is a physical realisation of the solution to the problem (N.B. in this thesis, we only
consider designs for physical objects, not abstract ones such as software). Therefore,
a design must satisfy various constraints regarding form, function and fabricability on

which the solution is based.

10 Chapter 2. Background

" " "
analysis ideation prototyping evaluation
R— R—

Figure 2.2: Typical design process. In most cases, many iterations of the subset of the pro-
cess may be necessary until a good solution is found. Therefore, there is a need for faster
prototyping, which is a main bottleneck of the process.

Form is the shape or geometry representing the appearance of an object. Usually,
form only refers to the aesthetic aspect of an object such as styles (modern, Victorian,
etc.). Function refers to the tasks that the object is supposed to perform in order to
solve the problem. For example, a chair should be stable enough for a person to sit
on or the lid of a clamshell mobile phone must be large enough to cover the main
body of the phone. Fabricability stipulates requirements for the object to be realised
in a physical form. It includes physical stability (a fabricated bookcase should stand
stably), durability (the bookcase should endure the weights of the books), and gaps
between moving parts.

Though these three elements seem unrelated, they are so intertwined that changes
in one aspect of them lead to changes in others. For instance, functions of an object
become different or undesirable if the form changes, and vice versa. Moreover, fab-
ricability can also be affected in those cases. This dependency among form, function
and fabricability makes the design process very challenging. Therefore, much practice,
experiences and experiments are necessary to master the art of designing. To help with

this difficult process, systematic approaches have been devised.

2.2 Design Process

As defined earlier, a design is a practice to find a fabricable form that functions in
an intended way to solve a certain problem. Due to the entanglement among form,
function and fabricability, it is not trivial to create a good, i.e., satisfying all relevant
constraints, design. Therefore, systematic approaches are necessary to facilitate the
process of design.

A design process will typically look as follows (modified from Koberg and Bag-
nall [KB74]]):

e Analysis
e Ideation
e Prototyping

e Evaluation

2.2. Design Process 11

Please note that this is an iterative process. It may be the case that the built pro-
totype does not solve the problem (e.g., it does not function as intended or its shape
is different from the one that was originally designated) when the prototype is tested
in the evaluation stage. Then, a new shape is ideated and another prototype must be
created and evaluated, which means that we have to go back to one of the previous
stages and restart the process. Sometimes it is necessary to go back to the ideation
stage if there are flaws in the solution itself. Or, only the prototyping can be repeated if
something went wrong during the fabrication of the prototype. Therefore, these stages
can, or often must, be repeated many times until an optimal solution or design to the

problem is found (see Figure[2.2). Let us look at these stages in more detail.

2.2.1 Analysis

In this first phase of the design process, the problem to be solved are analysed and
all necessary information helpful to solve the problem is gathered and organised. A
thorough analysis is crucial to a successful design as the design, i.e., solution, is based
solely on the information at hand. Imperfect or partial information on what the problem
is, what constraints the problem has, etc., can lead to an imperfect or partially successful
design. For example, if we do not know the bookcase to be created must hold at least
100 books, the design will be a failure when we decide to make it hold only 50 books
for some reasons.

The information necessary for the design can be obtained from experiments, re-
search or any other methods. Experiments can be used to get the physical properties
of materials to be used for fabrication. Market research might be needed to understand
the need for the product to be created and to predict the revenue by selling the product.
Other methods such as literature review or consulting experts can also be used to gather
the information on various factors of the design.

The constraints related to the problem are then extracted from the information.
Constraints can be anything from colour, dimension, function of an object to price,
material usage and so on (they are the "function" and "material usage" in this thesis).
These constraints become the design specifications, which the design to be created in

the next stage will be based on.

2.2.2 Ideation

Possible solutions, based on the design specifications, are created in this stage. Brain-
storming and drawing concept sketches are usually involved.

Brainstorming [[Osb79] is a process of gathering ideas from a group of people to
find creative solutions to a problem. The members of the group freely suggest ideas.
The ideas can be radical or difficult to realise because the power of brainstorming stems

from increasing the number of ideas. Brainstorming, therefore, is premised on the

12 Chapter 2. Background

Figure 2.3: Concept sketches. Concept sketches are a powerful tool that allows designers to
explore the design space effectively. Many sketches with various specifications of the design
are produced and compared for the effective exploration of the design space (image by Derick
Schweppe).

belief that the quantity of ideas increases the quality of the ideas in the group.

Concept sketches are brief illustrations of a design that focus on representing the
essence of the design goals. Designers draw many different concept sketches which
will potentially solve the problem, as shown in Figure 2.3] so concept sketches can
help exploring various possible designs.

Using brainstorming and concept sketches, candidate designs are generated for

prototyping.

2.2.3 Prototyping

In the prototyping phase, actual objects or products are built out of the designs se-
lected among the candidates from the previous phase (see Figure 2.4). Usually, 3D
models are created from the designs using modelling tools such as AutoCAD, Solid-
Works, SketchUp, etc. As discussed later in more detail, this transition from 2D concept
sketches to 3D models is a time-consuming process which many research efforts have
been made to facilitate (see Section [3.1)).

A prototype is an approximation, in terms of form and function, to the final object.
The purpose of building prototypes is to accelerate the design process by simulating
the final object with a low fidelity model using less expensive materials and fabrication
methods. This is because it will take much time and resources if we were to build the

final object with exact specifications. Hence, it will significantly slow down the design

2.3. Computational Fabrication 13

Figure 2.4: Prototyping. Various designs are fabricated in prototyping phase (image by Flyp-
cap4u). As it usually takes considerable time to create prototypes, designers started to turn to
3D printing, which can accelerate the fabrication of prototypes.

process loop given that we would need many iterations to get a satisfactory design.
This bottleneck leads to a bad design due to the shallow exploration of the design space
because there are always constraints on time and resources.

Still, prototyping can be slow and expensive compared to the other stages in the
design process, which will again lead to the shallow exploration of the design space.
However, recent advancements in computational fabrication such as 3D printing and
laser cutting can help us reduce the time and resources for prototyping. These tech-

nologies that enable quick fabrication of prototypes are called rapid prototyping.

2.2.4 Evaluation

Finally, the fabricated objects are tested and evaluated to measure if they work properly
as intended and how well they solve the problem. Tests can be just to operate the object
to check if it functions, e.g., a drawer opens and closes properly. Or, they can be about
physical stability such as a chair that stands stably when a person is sitting on it. If they
do not solve the problem, the previous stages should be revisited and repeated, from an

appropriate earlier stage to the last one, until an optimal solution is found.

2.3 Computational Fabrication

Computational fabrication refers to making physical objects using methods such as

3D printing and laser cutting, which are instructed to fabricate objects by computer

14 Chapter 2. Background

systems. A file which has a design of a physical object is created generally with a
design tool. Then, the file is sent to a 3D printer or laser cutter for the fabrication of
the object. Due to their ease of use and low cost, these methods are used for fabricating
prototypes to accelerate the product design loop. Also, hobbyists who are passionate
about creating objects from their own designs have adopted these technologies because
of the advantages. One thing to note is that the usage in industrial or commercial
environment used to be rare though 3D printing has been widely adopted by hobbyists.
This is not only because the quality of fabricated objects using 3D printing was not
good enough to be used for final products but also because only a limited number of
material types could be used for fabrication. However, companies are starting to use 3D
printing for making final products or parts as the quality and number of usable materials
increase. For example, Boeing, an aerospace company, uses 3D printed parts in their

aircraft.

2.3.1 3D Printing

3D printing is a set of processes for creating physical 3-dimensional (3D) objects using
materials in various forms. It adds material (which can be in a powder, filament or
liquid form) layer by layer where specified by a computer programme to fabricate an
object. This is the reason why it is also known as additive manufacturing (AM). 3D
printing was first developed in the 1980s but it is only recent, i.e., since 2000s, that the
awareness and use of 3D printing have grown significantly.

A typical process of 3D printing is as follows: 3D models to be fabricated are de-
signed using 3D modelling tools such as AutoCAD or SolidWorks. Also, 3D scanning
can be used to acquire and reconstruct 3D models from physical objects though they
would need an additional step that fixes errors in the data, e.g., being non-manifold, for
being able to be 3D printed. This is because the data obtained using 3D scanning tend
to be noisy. Then, a 3D model designed is usually exported to STL (STereoLithogra-
phy) file format, which is widely used for 3D printers. After that, the 3D model is sliced
into thin layers and the information on the layers and instructions for a 3D printer are
saved in a G-code file. G-code (or RS-274) is a programming language for controlling
automated fabrication tools such as 3D printers or laser cutters. Finally, the G-code file
is sent to the 3D printer to fabricate the object. After printing, if applicable, the support

material used for holding overhanging parts is removed.

2.3.1.1 Types of 3D Printing

There are many different types of 3D printers using various printing methods. Some of
widely used technologies include fused deposition modelling (FDM), stereolithography
apparatus (SLA) and selective laser sintering (SLS) [PG98].

FDM printers deposit a string of molten material from a nozzle attached to the

2.3. Computational Fabrication 15

Figure 2.5: 3D printer. The price of 3D printers has decreased significantly over the last few
years, which made the technology available to wider audience. Also, the size of the printers has
been reduced to enable desktop 3D printers (image by MakerBot).

moving head, on a building platform. The material, which includes PLA (polylactic
acid), ABS (acrylonitrile butadiene styrene), etc., is provided in the form of filament
and melt by the heated nozzle. A separate material used for supporting overhanging
parts can be used along with the material for building the object. This supporting ma-
terial can be easily removed after the fabrication. FDM has the advantages that the
materials used are generally cheap and a variety of materials and colours are avail-
able while it has a disadvantage that the quality of the fabricated object surface is bad

compared to other 3D printing methods due to the low precision.

SLA technologies use an ultraviolet (UV) light to solidify a photopolymer resin.
The UV laser draws a layer of the input 3D model on a vat of the photopolymer resin
and a layer of the resin is solidified. A building platform placed in the resin vat is then
lowered to the bottom of the vat to coat the solidified part completely with the resin.
The platform moves upwards until the top of the part is level with the surface of the
resin and a blade sweeps across the top of the part so that it leaves just one layer of
the resin. Finally, the building platform is lowered again exactly by the thickness of
one layer of the resin and this process is repeated until the object is built. After that,

16 Chapter 2. Background

the object is taken out of the vat and drained to remove any excessive resin. Then,
it is placed in a UV oven to make sure that there remains no resin that is not cured.
The advantages of SLA are the quality of the fabricated object surface and fabrication

speed. However, the materials used for SLA are generally expensive.

SLS methods use a carbon dioxide laser to sinter a fine powder of materials, such
as metals, nylon, polycarbonates, etc. Before starting the actual printing, the whole bed
containing the material powder is heated up to the point just before the powder melts.
This is to minimise the distortion due to large temperature changes and to help the
fusion between layers. Similar to SLA, one layer of the input object design is projected
on the powder bed by the laser to sinter the material powder. Then, the power bed
descends exactly by the thickness of one layer and a new layer of the powder is applied
over the bed. This process is repeated until the whole object is built. One advantage
of SLS over other technologies is that it does not need separate supporting structures
for overhanging parts. This is thanks to the part during fabrication being surrounded
by the unsintered powder. Another advantage is that it does not affect the fabrication
cost much even if more parts are fabricated as long as all of the parts can be fitted
in the powder bed. This is because the powder bed is filled with the powder all the
time during printing even if there is only one part to be printed. However, SLS cannot
fabricate objects which are hollow but watertight because unsintered powder cannot be
drained in this case. Also, it can be slow for the fabricated part to be cooled before

being able to be removed from the printer.

2.3.2 Laser Cutting

Laser cutting is a method to cut materials using a laser, e.g., carbon dioxide (CO,)
laser. A sheet of material is placed on the work table, and a laser beam follows the
pattern given from a G-code and cuts the material as shown in Figure [2.6] The pattern
represents a 2D layout of pieces of a design and the final object is built by assembling

the cut pieces.

Engraving, which does not cut through the material completely, is also possible.
Other types of lasers than one using CO, use neodymium (Nd) or neodymium yttrium-
aluminium-garnet (Nd-YAG). Also, there are three common types of laser cutters based
on which part is moving during fabrication, i.e., only a head that projects a laser beam
moves, only the work table on which the sheet of material is placed moves, or both the

head and work table move.

Laser cutters were developed in 1960s and had been used mainly in industry but
the use among hobbyists has largely increased recently due to the price drop. Various
types of materials, e.g., wood, plastics, glasses, metals, etc., can be used depending on

the cutting method adopted by the laser cutter.

2.4. Fabrication-aware Design 17

Figure 2.6: Laser cutter in action. Laser cutters use a laser beam to cut pieces from a sheet of
material placed on the work table. As with 3D printing, laser cutting is a popular option among
fabrication enthusiasts.

2.4 Fabrication-aware Design

Building a physical object from one’s own design can still be very time-consuming and
difficult though the computational fabrication methods became easier to use, i.e., you
only need to send a design file to a 3D printer or laser cutter via computer systems.
As discussed earlier, the main challenge for creating an object using computational
fabrication methods lies in how to create a functioning and fabricable design. This
is chiefly because there are many constraints that must be satisfied for a design to be
fabricated and to function properly. Moreover, it is not easy to satisty these constraints
using most of available design tools because the tools do not consider or integrate the
constraints into the design process well. Therefore, a new research branch, fabrication-
aware design, emerged to address this problem. This discipline deals with various
challenges regarding constraints imposed by the fabrication process and seeks to find

ways to provide better tools for the users to design fabricable objects.

Some researches try to devise ways to automatically convert the input design,
which is usually not fabricable as it is, into a fabricable one. For example, an input
3D model is approximated with a set of planes so that it can be fabricated [MSM11,,
HBA12, SP13, (CPMS14]]. Furthermore, some methods aim at fabricating objects with
mechanisms such as hinges [BBJP12, CCA™12,ZXS"12,ICLM"13,/ICTN"13].

Others concern how to reduce the material wastage and/or building time when

fabricating with 3D printers. Some achieves them by hollowing the interior of an ob-
ject [SVB™12,[PWLSHI3| ILSZ" 14] or using frames or scaffolds [WWY ™13, DHL14].

18 Chapter 2. Background

Regarding the efficient material usage when fabricating with laser cutters, an interac-
tive system that allows the user to move the cut-out parts for compact 2D layouts was
proposed [SCMI13]]. More generally, achieving efficient material use for laser cutting
is a 2D bin packing problem, which has been widely investigated [Jyl10].

These related researches to the thesis will be reviewed in the Chapter [3] in more
detail. As we will see, however, creating a design and changing the design for satisfying
the constraints are separate in most of the existing methods, which often makes the
user switch between different tools several times and slows down the whole fabrication

process. This problem is what this thesis tries to address.

Chapter 3

Literature Review

There has been an increasing amount of work on computational fabrication recently as
the popularity of the fabrication methods grows. However, design and fabrication are
considered separate and sequential steps in most of the previous work, as opposed to
our approach where constraints related to fabrication are automatically satisfied when
the design changes. In particular, considering functions that the design can exhibit
and material usage for fabrication directly during the design process, to the best of our
knowledge, has not been explored.

3.1 Analysing Designs

In the design process, a 3D model is created usually based on concept sketches. This
means that we need to construct a 3D representation from 2D representations of the
design. This is often a time-consuming and difficult task, which can slow down the
design process. Much research effort, therefore, has been devoted for generating 3D
representations automatically from 2D concept sketches. We employ one of the meth-
ods [SLZ™13] to generate input 3D models for the system introduced in Chapterlé__ll
Bae et al. [BBSO8] introduce a system for creating 3D curves with sketch-like
workflow with better user experience than similar previous approaches. Schmidt et
al. [SKSKO9] propose a method for inferring 3D curves from single-view drawings.
They utilise analytic drawing techniques, which draw 2D lines or scaffolds to con-
straint a 3D shape. Then, 3D lines and curves satisfying the constraints are inferred
from a sketch drawn upon the scaffolds. This method is very effective because one can
create 3D drawings by doing the operations that would be needed to create the drawings
on a paper. Shao et al. [SBSS12]] create 3D-like shadings from 2D concept sketches by
leveraging a convention used by designers in the concept sketches, i.e., cross-sections.
Similar to the scaffolds explained above, cross-sections provide information about 3D
shapes. They formulate the relationships between the cross-sections and 3D geometries
mathematically, and infer normal fields using the formulation. Xu et al. [XCS™14] also

introduce a framework to generate 3D curve networks from 2D drawings by extracting

19

20 Chapter 3. Literature Review

information about 3D shapes. In this case, the authors propose a selective regularisation
method based on insights that designers often use viewpoints that are most represen-
tative of the 3D shapes and curves which convey intrinsic information on the shapes,

€.g., symmetry, curvature, etc.

However, these techniques focus on creating static 3D geometry, whereas we aim
to produce models with moving parts. In this respect, the most relevant previous work
is by Shao et al. [SLZ"13]], who develop a system for creating interactive 3D models
from a set of concept sketches. These sketches depict an object from different view-
points and with different configurations of moving parts. Each part in the sketch is rep-
resented by a proxy and the system automatically infers the correspondences between
the proxies across the different viewpoints. However, their approach does not produce
a single consistent 3D model, which is necessary for creating a physical realisation of

the design.

3.2 Guided Design

The hypothesis of this thesis is that design tools can be more helpful if they guide the
user to achieve optimal designs with respect to constraints regarding high-level goals.

Several methods have been proposed with a similar motivation.

Talton et al. [TGY"09] developed a system that the user can explore a design
space to choose a 3D model from and customise the selected model. The system uses a
parameterised design space for 3D models and approximates the distribution of models
in a design space to suggest desirable model candidates. This distribution is based on
the models created by the users of the system. This system is helpful for novices, as well
as professional designers, because it suggests models that satisfy the parameters and
constraints set by the user. Xu et al. [XZCOCI12] propose a fit-and-diverse framework
which generates novel 3D models from an initial set of models using set evolution.
Set evolution evolves all 3D models in an object class, e.g., tables or bookcases, not
just individual models. This framework allows the user to interactively guide model
suggestions to fit their preferences but to be diverse. These efforts, however, focus on
aspects of digital content creation without fabrication and material considerations.

Among the methods which are more closely related to our motivation, Umetani
et al. [UIM12] introduce an interactive tool that guides the user in terms of physical
validity (e.g., stability or joint bending forces) throughout the modelling process by
suggesting valid designs when the design is physically invalid. More recently, Shugrina
et al. [SSM135] developed a system that allows novices to easily customise parametric
models while maintaining 3D printability of the models. The system precomputes the
design validity and 3D printability by sampling the design space and creates only valid
designs via the parameters set by the user at runtime. We share a similar goal by taking

3.3. Constraint-based Modelling 21

into account the functional relationships of parts in objects or material usage in order
to guide the user to design fabricable objects during the design process. However, we
are unaware of any previous methods that have investigated how material usage can be

analysed to guide the design of shapes.

3.3 Constraint-based Modelling

In the computer graphics and CAD community, constrained-based modelling has long
been demonstrated as a powerful parametric way to design shapes and interact with
them (see [BROg|]). For the work in Chapter @ we adopt the high-level approach
as previous graphics research that tries to automatically determine the relevant ge-
ometric relationships between parts to enable editing and synthesis of 3D models.
iWIRES [GSMCOQ9] analyses 3D models to extract 1D wires which have informa-
tion on the characteristics and global structure of the model shapes. Then, the wires are
used for editing the models while maintaining the characteristic properties and global
structure. Xu et al. [XWY09] perform slippable motion analysis to detect joint con-
straints in models. The components connected by joints in the models can be rigid or
deformable. The joint constraints, which represent high-level semantics between com-
ponents, are then used to deform the models while maintaining the user’s design intent

and the natural behaviour of the joints.

Zheng et al. [ZFCO™11] propose component-wise controllers which capture the
degrees of freedom of components in 3D shapes so that the user can edit the shapes
intuitively. These controllers are inferred by a hierarchical analysis on the shapes
and are therefore adapted to the characteristics of the components. Thus, high-level
characteristics of the shapes, e.g., symmetry and parallelism are maintained during
the editing of the shapes using the controllers. Also, a new algebraic model of shape
structure for high-level shape editing which respects global characteristics was intro-
duced [BWSK12]. In this model, regular translational patterns existing in a 3D shape
are extracted and are used to explain the shape by identifying useful degrees of free-
dom in the shape. Then, these degrees of freedom are presented to the user for intuitive
shape editing. Zheng et al. [ZCC™12] partially reconstruct the scene in images using
cuboid-based proxies by the help of the user and extract non-local relations between
the proxies such as coplanarity and parallelism. The user can then edit the scene in
a plausible way, i.e., as if the objects in the scene are manipulated in real world, by
manipulating the proxies.

Our approach is also similar in spirit to previous mechanical engineering research
that proposes a declarative modelling scheme which enables the user to create an object
by providing a set of abstract specifications of the object regarding geometric or topo-

logical properties [DLO7]]. Yvars [YvaOS8] uses a state graph to model the design space

22 Chapter 3. Literature Review

and solves the model as a constraint satisfaction problem (CSP) for the exploration of
the design space.

However, to our knowledge, we are the first to focus specifically on the design of
articulated, works-like prototypes, and a key part of our contribution is defining a set
of functional relationships that are useful for this design task. We also note that some
professional CAD tools include constraint-based modelling features, but they require
users to manually specify low-level geometric relationships between part and joint pa-
rameters. In contrast, our approach automatically converts high-level user-specified

functional relationships into the relevant low-level constraints (see Chapter [)).

3.4 Fabrication-aware Design

The recent advances in computational fabrication made the fabrication technologies
cheaper and easier to use. However, for novices, or even for professional designers, it
takes time and effort to create a design that can function as intended when fabricated.
Therefore, researchers have started to explore methods for helping the user create de-

signs that satisfy the constraints related to fabrication.

3.4.1 Fabricability

McCrae et al. [MSM11] use planar slices to generate shape abstractions of 3D mod-
els, which can later be fabricated. From a user study, they observe that humans have a
consistent and similar notion for abstracting 3D objects using planar sections and the
planar sections are correlated to the geometric features of the objects. Based on this,
they develop a method that selects planes to capture the geometric features maximally.
Hildebrand et al. [HBA12]] also introduce an algorithm for abstracting 3D shapes with
intersecting planes and generating cardboard sculptures by sliding the planes that are
cut with a laser cutter. As the complexity of the slice insertion ordering and direction
increases exponentially with respect to the number of the planes, it is infeasible to fig-
ure out the order manually. Therefore, they extend a binary space partitioning (BSP)
tree to represent 3D shapes with added information on the plane insertion directions
and efficiently find the ordering of plane insertion using the tree. Schwartzburg and
Pauly [SP13] take a similar approach that abstracts 3D shapes and produces interlock-
ing planar pieces representing the shapes. However, they further consider the physical
stability of the fabricated objects by solving for it with respect to geometric constraints
related to the stability. Mesh joinery method [CPMS14] extends these techniques to
enable fabricating very complex objects using laser cutters. They align the planar el-
ements with a cross-field, which is defined over a 3D model surface, to represent the
global features of the surface well.

There is another line of research focusing on fabricating pop-up structures. A

method for generating 3D paper buildings that are popped up from planar layouts is

3.4. Fabrication-aware Design 23

proposed [LSH™10]. The method is based on the constraints that regions in a planar
layout, comprising cut and fold lines, should remain rigid and non-intersecting when
popped-up as well as the 3D structure should stand stably. Li et al. [LIGHI11] investi-
gate the mechanisms of a more general class of pop-up structures. They provide suffi-
cient conditions to make pop-uppable paper structure, i.e., it should be flat and within
the page border when closed and no extra forces are needed except for holding two
patches of the paper when opening and closing. Using these conditions, they develop a

system that allows the user to design pop-ups interactively.

However, these methods focus on the design of static objects. In the domain of
moving objects, Bicher et al. [BBJP12] propose a method for generating 3D printable
single-material articulated characters with joints from skinned meshes. The charac-
ters generated from the method consist of piecewise rigid parts and approximate the
kinematics of the input skinned meshes. They use ball-and-socket or hinge joints with
friction for the fabricated models to be posable. Cali et al. [CCA™12] achieve a simi-
lar goal with a different approach, and they particularly experiment heavily on finding
a single versatile joint design which can be adapted depending on the limitations or
specifications regarding 3D printers, e.g., precision, use of support material, etc. Con-
structable [MLB12] is an interactive fabrication tool which enables the user to create
functional mechanical devices using a laser cutter. Especially, the tool allows the user
to work directly on the pieces that are fabricated, instead of working via 3D modelling
tools and then, separately, fabricating after designing. Zhu et al. [ZXS™12] introduce
a technique to generate mechanical toys operated by gears and cranks from the motion
of their components specified by the user. They use simulated annealing to optimise
parameters regarding the shapes of parts in a toy for generating the desired motions.
Ceylan et al. [CLM™13]] use motion capture sequences to automatically generate me-
chanical automata which approximate the input motions. They focus on generating
humanoid automata so assume that the motion of the limbs are close to being planar.
Then, the motions are realised using a set of links, revolute joints, gears, etc. in au-
tomata. There is another method that can also create mechanical characters but the
motions are specified by the curves drawn by the user instead of using motion capture
data [CTNT13]. As the solution space is vast, they exploit a database storing a sam-
pling of parameter spaces for mechanical assembly types such as hinge joints or gears.
This database is then used to find the best types of mechanical assembly and initial
parameters given the motion curves specified by the user. Schulz et al. [SSL™14] de-
velop a data-driven interactive system that helps the user design fabricable 3D models.
They create a database of design templates which are parameterised from the designs
created by mechanical engineers. These templates have information on geosemantic re-

lationships between parts of the models as well as on the connection between parts for

24 Chapter 3. Literature Review

fabrication. Then, the user can design new models by selecting parts from the design
template database and further adjusting relevant parameters. To simplify fabrication,
Fu et al. [FSY™15] suggest a method to generate a globally-interlocking furniture as-
sembly, where parts in furniture interlock each other. This global interlocking furniture
enables easy disassembly/reassembly of furniture without using glue, screws, etc.
Although all of these methods produce working and physically realisable models,
they mainly focus on the problem of adding joints, gears or linkages after the models
have been designed. In contrast, our work is to guide the user to refine the designs

based on constraints such as functional relationships between parts or material usage.

3.4.2 Material Considerations

As discussed in Section |1.1.2] wasted materials during fabrication process can have
an economically, either in terms of cost or time, and environmentally negative impli-
cation. Especially, materials used for 3D printing are still not very cheap so various
approaches have been developed to economically and efficiently 3D print designed ob-
jects. For example, a method that adaptively hollows out interiors and adds struts to
create durable yet cost-effective 3D printouts [SVB™12] was proposed. This method
performs a structural analysis with 3D medial axis approximations to detect problems,
1.e., areas having high stress, in the structure of a model. Then, the model is updated
until all stress areas are corrected to have a sound structure by hollowing, thickening
and strut insertion. Prévost et al. [PWLSH13]] hollow the shape interiors in conjunction
with shape deformation to ensure stability of a model while maintaining the original
surface shape of the model. The aim of this method is not about reducing the material
usage but making the model stably stand when fabricated. However, it can help using
less material because the method hollows the interior of objects instead of adding a
large base to the objects for them to be able to stand stably. Lu et al. [LSZ"14] per-
form FEM analysis and Voronoi tessellation to carve out the interior of 3D models into
honeycomb structures. Honeycomb structures can exhibit endurance for stress with
minimal material usage. Therefore, the method proposed finds the maximal hollowing
of the interior given stress on objects, to achieve efficient material usage and durability.

Wang et al. [WWY " 13]] convert input 3D models into skin-frame structures, which
use less material but are still physically stable and fabricable as well as approximate the
input shapes closely. They also address a problem during fabrication using 3D printers
without support materials, which is the inability to fabricate overhanging parts cor-
rectly, by adding extra struts where necessary. Dumas et al. [DHL14]] aim at reducing
material usage and building time needed particularly for generating support structures
for overhanging parts. They build bridges between vertical pillars to create scaffold-
ings for stable fabrication of overhanging parts. Similarly, Hu et al. [HIW15]] propose
to optimise and deform the shape of a 3D model so that the amount of support structures

3.4. Fabrication-aware Design 25

used during 3D printing can be reduced.

Alternatively, methods have been developed to decompose and pack 3D models for
reducing assembly cost, support material, printing time or making big objects printable
on small 3D printers. Luo et al. [LBRM12] break one large 3D model into smaller
pieces so that they can fit and be printed in small 3D printers. The smaller pieces that
are fabricated separately can be assembled to yield the original object. When breaking
the object into pieces, constraints such as the assemblability (the pieces being able
to be assembled into the original object), structural stability (seams being away from
high stress regions), aesthetics (seams being not visually obtrusive), etc. are taken into
account. PackMerger [VGB™14] converts an input 3D model into a set of small shells
that can be tightly packed so that printing time and supporting material usage can be
reduced. The printed shells are glued together to form the original object. Yao et
al. [YCL™15] also seek to find an optimal partitioning of an input 3D model to save
time or enable a large model to be printed in a small 3D printer. They analyse the
partitioning quality using metrics such as stress load, packed size, assembling, etc. and
then the quality is optimised using level set methods. Dapper [CZL™15]] also employs a
decompose-and-pack approach for minimum assembly cost, support material and build
time when using 3D printers. It breaks 3D objects into pyramidal primitives, then finds
good packing configurations to achieve the goal.

Saving material usage in 2D material space, e.g., when we use laser cutting, is a
classical 2D bin packing problem which has been vastly investigated. Though the bin
packing is an NP-hard problem, there are numerous heuristics that can generate optimal
solutions (see [Jyl10] for more detail). Recently, Saakes et al. [SCMI13|] proposed an
interactive system to allow the user to interactively layout parts using 2D rigid body
simulation.

Methods mentioned above, however, do not explicitly modify the original designs

in order to improve material usage in contrast to our approach presented in Chapter [3]

Chapter 4

Guidance by Function

o
it Inside
Fit Inside (Partially)

Fit Inside (Just)
Support
Flush

(a) rough model (b) optimised model (c) works-like prototype

Figure 4.1: Creating works-like prototypes. Users start by creating a rough 3D model of a
design and then specify the desired functional relationships between parts (a). Our system
optimises part and joint parameters to generate a working model (b) that can be fabricated as
a physical prototype (c).

Creating physical prototypes is an integral part of the product development pro-
cess (see Section [2.2)). Prototypes help designers evaluate and refine potential de-
signs, explore multiple approaches in parallel, and communicate designs to oth-
ers [Hal12]. Designers create different types of prototypes for different
purposes. Early in the design cycle, they often create works-like prototypes like the one
shown in Figure {f.2] that embody the functional aspects of a design. Such prototypes
typically contain working mechanical joints, e.g., hinges, but simplified part geometry
so that designers can focus on the mechanical “architecture” (i.e., how parts move and
fit together) of the product. Also, this is because it will take much time and resources
if they fabricate the prototypes with exact geometric fidelity and materials, which hin-
ders speedy iterations of the design process. Later in the cycle, however, designers
may create looks-like prototypes that convey the detailed shape and/or colour-material-

finish (CMF) of a design. Such prototypes help designers (and clients) understand the

27

28 Chapter 4. Guidance by Function

Figure 4.2: Works-like prototype. Prototypes are used to check if the design functions correctly
when fabricated.

intended appearance of the product.

In this chapter, we focus on the task of creating works-like prototypes and aim
at introducing a novel method to help the user design and fabricate those prototypes.
Designers are increasingly turning to 3D printing as a tool for fabricating physical pro-
totypes. Moreover, as the precision of the shapes that 3D printers can achieve increases,
designers started to explore fabricating objects with mechanical joints that approximate
the intended functionality of a design, not just static objects. Previously, the quality of
fabricated mechanisms was bad, e.g., hinges can wobble because of the excessive gap
between the moving parts or can be stuck during operation because of the lack of room
between the moving parts, due to the low precision of 3D printers. Now, 3D printers
do not generally suffer from this problem, yet creating working mechanisms requires
expertise and time [UEQ7, Hal12l]. Designers must carefully specify part proportions
and joint parameters to ensure that all moving parts fit together in the intended manner

29

without interference. This task often involves non-trivial geometric calculations, even
when the parts are composed of simple primitives (e.g., cuboids). This difficulty mainly
comes from the fact that we need to manipulate low-level geometric details such as ver-
tices, edges and faces of 3D models in order to achieve high-level goals like functional
relationships between parts in the models. Moreover, designers almost always iterate
and refine prototypes by modifying certain parameters (e.g., size of a part, joint types),
which requires updating the part and joint parameters to ensure a working prototype.
Due to these challenges, designers often have to work with skilled CAD engineers to
help them create physical works-like prototypes. This added friction in the ideation-
prototyping-evaluation cycle significantly limits the number of iterations designers can
make and often leads to shallow exploration of the design space.

To address this problem, we present an interactive system that helps designers cre-
ate functioning works-like prototypes. The user starts by creating a rough 3D model of
all the parts in the design and specifying the types of joints that connect the parts. Then,
instead of tweaking part and joint parameters to produce a working model, our system
allows users to directly specify high-level functional relationships between parts (e.g.,
part A fits inside part B, parts C' and D support part F, etc.). Based on these relation-
ships, our system automatically adjusts part proportions and joint parameters to pro-
duce a physically realisable working model (Figure [d.T). To aid in design exploration,
the system propagates edits (e.g., users may add/remove parts or modify part propor-
tions) throughout the design to ensure that all the specified functional relationships are
preserved. By allowing users to work primarily at the level of functional relationships
(high-level) rather than at that of joint and part geometry (low-level), our system helps
designers create new prototypes more quickly and experiment with variations of exist-
ing designs.

We used our system to fabricate works-like prototypes for a variety of objects,
including articulated devices (folding tablet), appliances (printer), and furniture (kiosk
cabinet, sofa bunk). Figure 4.I] shows the 3D printed prototype of a cabinet design
generated by our system, and Figure shows all of our examples with the moving
parts in different configurations. It took less than 10 minutes of interaction time in our
system to create working 3D models for these results.

Our work makes two main contributions:

e Identifying common functional relationships among many product designs and
defining these relationships as a set of low-level geometric constraints that can

be satisfied by standard constraint solvers.

e Semi-automatic tools for realising the functional relationships with a small

amount of the user annotation.

30 Chapter 4. Guidance by Function

4.1 Overview

To create a works-like prototype in our system, the user starts by producing a rough 3D
model of all the parts in the design and specifying the types of mechanical joints that
connect the appropriate parts. The user then specifies the relevant functional relation-
ships between the parts. Based on these relationships, the system optimises the part

proportions and joint parameters to create a working version of the design.

4.1.1 Parts

In our system, each part consists of one or more axis-aligned connected cuboids as
shown in Figure {.Th. Since works-like prototypes focus on mechanical functionality
rather than detailed appearance, representing parts with sets of cuboids is often suffi-
cient. We provide two part modelling interfaces: (1) users draw 2D boxes from one
of three orthogonal viewpoints (top, front, side) and then extrude them into cuboids;
(2) users annotate an input concept sketch by clicking on feature points (e.g., corners)
to create cuboid parts (we used the method described in Shao et al. [SLZ"13]). In
addition to modelling solid parts, users can also create cuboidal or cylindrical cavities
within a part by placing cuboids or cylinders where the cavities should be created. We
refer to the initial positions and orientations of all the extracted proxies as the base

configuration of the object.

4.1.2 Joints

Our system supports four types of mechanical joints (Figure 4.3). Hinges are attached
between the two edges of the two faces, which are from the two different moving parts,
and enable rotation around an axis. Sliding joints allow two parts to translate linearly
along a sliding vector with respect to one another. Sliding hinges enable both rotation
and translation. Double pivot joints allow rotations around two axes separated by a rigid

link. To add joints, the user first selects two adjacent parts and then does one of the fol-

o—e rotation axis = sliding vector e—e double pivot

0.

(a) hinge (b) sliding joint (c) sliding hinge (d) double pivot

Figure 4.3: Different types of joints and their parameters. We identified common joint types
existing in product designs (e.g., a cabinet, sofa bunk and printer) and incorporated them into
our system.

4.2. Defining Functional Relationships 31

lowing: add a hinge by selecting any cuboid edge that touches both parts; add a sliding
joint by selecting a cuboid face whose normal defines a sliding vector; add a sliding
hinge by selecting both an edge and a face; add a double pivot by clicking points on
two coplanar faces (one on each part) that define the pivot positions. We represent the
pose of a joint j as j(#). For hinges, 6 represents the angle between the pair of attached
faces (Figure 4.3h). For sliding joints, 6 is the signed offset along the sliding vector
between the two connected parts with respect to the base configuration (Figure 4.3p).
For sliding hinges, 6 is a tuple that includes both the rotational and translational pa-
rameters of the joint (Figure 4.3k). For double pivots, 6 is a tuple that includes the
rotations around both pivots (Figure 4.3d). We write the combined pose of a set of
joints J = (41, ja, - - -, jn) With corresponding joint parameters © = (64,0, ...,6,) as
J(O).

4.2 Defining Functional Relationships

To determine the types of functional relationships to include in our system, we exam-
ined many product designs and consulted with three professional product designers:
a former IDEO employee who now works for Proteus, a startup that makes wearable
sensors; and two partners who run Anvil Studios, a Seattle-based product design firm.
Based on this formative research, we identified four functional relationships that sup-
port a wide range of products with rigid mechanical interactions between parts: cover,
fit inside, support and flush. These relationships impose specific geometric depen-
dencies between the relevant parts. The remainder of this section describes how we

formulate these dependencies in terms of constraints on the part dimensions.

4.2.1 Cover

In many products, certain parts are designed to cover either other parts or cavities. For
example, the top half of a clamshell phone must cover the bottom half, and the lid of
a container covers its opening. The relationship stipulates that specific faces of the
covering part must be the same size or larger than specific faces of the covered part
or cavity (Figure 4.4). While the simplest examples involve a single face covering
another single face, in general, cover relationships can involve a set of faces covering
another set of faces, based on a corresponding faces graph that indicates which subsets
of faces correspond. We say that the faces are in their covered configuration when all
corresponding faces lie in the same plane, the covered faces lie within the covering
faces, and there are no gaps or overlaps between the covering or covered faces.

We define a cover relationship as Cover(F4, FB, M, J, ©), where the set of faces
F4 cover the set of faces F'®, M is a corresponding faces graph linking each face in F'4
to the corresponding faces in F'? that it must (fully or partially) cover, and .J(©) are the
set of joints and parameters that put the faces into their covered configuration. Under

32 Chapter 4. Guidance by Function

I covering face I covered face

M
% O—@ /"

Box(7%) Box(7®)

(a) one face covering one face

M 2
gy |
| [

Box(7") Box(7®)

M
[e—@/7 [50—0/5

(b) two faces covering one face
j[B
| I I .

gf A
@ Box(7%) Box(7® Box(7*) Box(7®)

(c) two sets of corresponding faces

Figure 4.4: Example cover relationships. Each example shows the covering faces F A(B f;?)
and covered faces FP(> fB) in their base and covered configurations, corresponding faces
graph M, and the bounding boxes of the corresponding faces.

this definition, each connected component of M contains two sets of faces F AC A
and F2 C FP, and in the covered configuration, these corresponding faces lie in a
plane where F4 covers FZ. Thus, for the cover relationship to hold, these faces must

meet the following geometric constraints:

“4.1)

4.2. Defining Functional Relationships 33

f1

Figure 4.5: Example packing constraints. Packing constraints stipulate a tight packing between
neighbouring faces.

where Box(F) represents the 2D bounding box of the geometric union of the set of
faces F, and Box(F);, Box(F),, Box(F),, Box(F); represent the left, right, bottom
and top coordinates of the box. The bounding boxes are defined in 2D because F4
and F& are in the covered confi guration, which means that the faces all lie in the same
plane. To compute the bounding boxes, we define a coordinate system by taking the
largest surface f € FP, choosing one corner as the origin and using the two incident
edges as the x and y axes. Note that changing the inequalities to equalities in the
constraints above indicates that the faces in ' should be large enough to “just cover”
the corresponding faces in F'5.

To ensure that there are no gaps or overlaps between each group of covering or
covered faces, we impose additional packing constraints that require adjacent faces to

touch without overlapping:

Box(f{")y = Box(f3'),
Box(f{")s = Box(f;'): (4.2)
Box(f3'), = Box(f;')

as in the example in Figure [d.5]

4.2.2 Fit Inside

Another common functional relationship involves one or more parts fitting inside an-
other (Figure {.6). For example, drawers must fit inside the body of a dresser, and a
pocket door must fit inside its housing. Some designs include parts that fit partially
inside other parts without being completely contained. In some cases, the inside part is
designed to be just small enough to fit inside the container part in certain dimensions.
We say that the parts are in their fitting configuration when the appropriate part fits
inside the other.

We define a fit inside relationship as F' it(PA, pP, J,©), where the set of parts PA
fit inside part p®, and J(O) are the set of joints and parameters that put the parts into
their fitting configuration. In order for P4 to fit inside p?, the following geometric

34 Chapter 4. Guidance by Function

__—

\
Box(p* -

Box(p*)
(a) fit inside (sliding joint) (b) fit partially inside (hinge)

Figure 4.6: Example fit inside relationships. Each example shows the inner part p* and en-
closing part p® in their base and fitting configurations. Setting p™ to be a portion of a part
specifies a “fit partially inside” relationship (b).

constraints must hold:

Box(P*), > Box(p®); Boxz(P?*), < Box(p?),
Box(P*), > Box(p®), Box(P*), < Box(p®), 4.3)
Box(P*), > Box(p?), Box(P*); < Box(p®);

where Box(P4) is the 3D bounding box of the geometric union of parts P*, Box(p®)
is the 3D bounding box of p?, and Boz(p);, Box(p)., Box(p)y, Box(p)i, Box(p)n,
Box(p) ¢ are the left, right, bottom, top, near and far coordinates of a bounding box.
Both bounding boxes are defined with respect to the coordinate system of p” and with
all parts in their fitting configuration. To represent a relationship where a part p* € P4
“fits partially inside” p?, we set p” to be the specific portion of the part that should
fit inside p? (Figure). Note that changing any of the inequalities above into an
equality constraint indicates that P* should have enough room to “just fit inside” p? in
one or more dimensions.

Similar to the cover relationship, if there is more than one part in P, the parts

cannot intersect each other in the fitting configuration. Thus, we apply non-overlapping

4.2. Defining Functional Relationships 35

Figure 4.7: Example non-overlapping constraints. Non-overlapping constraints prevent neigh-
bouring parts from overlapping.

constraints to adjacent parts:

A
1
Box(p2); > Box(p2 n
Box(pi')y > Box(py): v 3A)f = Porlp j) (4.4)
A Box(ps)1 = Box(py),
1

as the example in Figure [4.7]

4.2.3 Support

In some objects, certain parts are designed to support other parts in specific configura-
tions. For example, in a folding table, the legs support the tabletop when the table is
opened. In the simplest case, the relationship stipulates that one of the top faces of a
supporting part must be in the same supporting plane and in contact with one of the
bottom faces of the supported part. However, as with cover relationships, the general
case involves a set of faces from multiple parts supporting a set of faces on another
collection of parts, based on a corresponding faces graph (Figure .8). We say that the
faces are in their supported configuration when all corresponding faces are in the same
plane and in contact. Note that our definition of support does not consider whether the
supported part maintains static equilibrium on top of the supporting parts.

We define a support relationship as Support(F A FB M, J, ©), where F 4 and
FB are the sets of supporting and supported faces, M is the corresponding faces graph,
and J(O) are the set of joints and parameters that put the faces into their supported
configuration. This relationship implies the following geometric constraints for each
pair of faces f4 C F4 and f? C FP connected by an edge in M:

A B A B
A L R

= 4.5
AR)

36 Chapter 4. Guidance by Function

M
P

F4 F3 FA
F:
FA F; @—@F;

i

Figure 4.8: Example support relationship. A set of supported faces (green) sit on top of their
corresponding supporting faces (orange).

where f, f., fp.f; are the left, right, bottom, top coordinates of each face with respect to
the supporting plane, 4, B are the parent cuboids of f A f B and ¢, ¢; are the bottom
and top coordinates of each cuboid. The four inequality constraints on the left ensure
that f4 and f? overlap in the supporting plane, and the equality constraint on the right
ensures that f4 and f? are at the same height. In addition, the support relationship
specifies that the bottom coordinates of all parts with one or more supporting faces but
no supported faces must be equal, which ensures that the entire set of supporting/sup-

ported parts can sit flat on the ground.

4.2.4 Flush

Finally, many designs include parts that fit together such that one or more of their
faces are flush (Figure .9). For example, folding access panels on the side of a printer
are usually flush with the printer body when closed. We say that faces are in their
flush configuration when they lie in the same plane, and we define the relationship as
Flush(f*, fB,J,0), where f* and f? are the two faces that are flush, and J(©) are
the set of joints and parameters that put the faces into their flush configuration. The
flush relationship constrains the coordinates of the parent cuboids of f“ and f? such

that the two faces are coplanar in the flush configuration.

f fo

Figure 4.9: Example flush relationship. Two faces (orange and green) should be coplanar:

4.3. Specifying Functional Relationships 37

4.3 Specifying Functional Relationships

To help users specify functional relationships for a given design, our system provides
interactive tools that automatically infer the appropriate low-level geometric constraints
given only a small amount of user interaction (Figure d.10). The following describes
how the users specify the relationships and the system infers the corresponding con-

straints.

4.3.1 Specifying Cover Relationships

Users specify a cover relationship by selecting the set of parts that contain the covering
faces F'4 and covered faces F'?, adjusting joint parameters to move the faces into their
covered configuration, and indicating whether they want a regular cover relationship or
a “just cover” relationship. The system infers the corresponding faces graph M with a
simple greedy approach that considers every candidate covering face f# and adds an
edge to any candidate covered face f? where fZ and f4 are parallel, separated by less
than a small threshold distance, and overlap by more than half the area of the smaller
face when both faces are projected onto f4. The algorithm processes the candidate
covering faces in order from largest to smallest and removes candidate covered faces
from consideration once they are added to M. If the system infers any incorrect edges
in M, the user can click on the appropriate corresponding faces.

Once M has been determined, our system generates the geometric constraints de-

Cover

Conar [Just)

Fit Inside

Fit Insids (Partially)
W Inside [Jusl

Bensrale Joinl Geomelry

Figure 4.10: Specifying functional relationships. The user selects appropriate parts and
chooses a relationship from the list (left). Then, the system optimises the part parameters to
satisfy the constraints for the relationship (right). The figure shows a fit inside (just) relation-
ship. The parts with the blue and red face are the enclosing and inner part respectively.

38 Chapter 4. Guidance by Function

scribed in Section 4.2 1] for each set of corresponding faces. To compute all the relevant
packing constraints (which eliminate gaps or overlaps between each set of covering
or covered faces), we start by determining a spatial ordering over the faces using a
plane-sweep approach [NP82]]. We sweep a vertical line from left to right and com-
pute intersections between the line and face bounding boxes. We keep track of boxes
that intersect overlapping segments of the line (ignoring overlaps that are less than a
small threshold) to determine a partial ordering of the boxes in the x dimension (Fig-
ure 4. 1Th). We then sweep a horizontal line from bottom to top to compute a partial
ordering in the y direction, ignoring any pair of faces that are already ordered in x (Fig-
ure 4.T1b). Finally, for any remaining pair of faces that are not ordered in z or y, we
sort them in one of the two dimensions based on their centroid coordinates. Given this
ordering, we generate packing constraints between consecutive faces in each dimen-
sion, and we also constrain the coordinates of the leftmost, rightmost, bottommost and
topmost bounding boxes to be equal, which results in a rectangular packing of all the
face bounding boxes (Figure #.11k).

Next, we compute the constraints on the 2D bounding boxes Boxz(F*) and
Box(FPB) defined in Equation Since we now have a spatial ordering for each
set of covering and covered faces, we can express Box(F#) and Box(F?) in terms of

A

(a) horizontal sweep (b) vertical sweep

Box(f %), = Box(f %), Box(f4), = Box(f),
' Box(f4), =Box(f%), Box(f%),=Box(f?),
Box(f %), = Box(f4), Box(f), = Box(f),

(c) constraints

Figure 4.11: Plane-sweep. We use a plane-sweep approach to order covering faces horizontally
(a) and vertically (b) and then generate constraints between consecutive faces (c).

4.3. Specifying Functional Relationships 39

their constituent faces as follows:

Box(F*), = Box(f{*); Box(F"), = Box(fF),
Box(F*), = Box(f"), Box(F?), = Box(f?),
Box(FY), = Box(f{}), Box(FB), = Box(f2),
Box(FY), = Box(f"); Box(F?), = Box(fP),

where f;, f., fp, f: represent the leftmost, rightmost, bottommost and topmost faces in
the set of faces . This formulation results in a set of equality and inequality constraints
that are linear with respect to the size and position of individual faces (and thus the size

and position of the cuboids to which those faces belong).

4.3.2 Specifying Fit Inside Relationships

To specify a fit inside relationship, users select the set of inner parts P and the single
enclosing part p?, adjust joint parameters so that the parts are in their fitting configura-
tion, and indicate whether they want a regular fit inside or “just fits inside” relationship.
Users can also specify a “fit partially inside” relationship by selecting just a portion of
an inner p* to fit inside p?.

Based on the specified parts and fitting configuration, our system generates the
constraints defined in Section m to ensure that the inner parts P4 fit inside p®. We
use a similar strategy as with the cover relationship constraints. In particular, we use
the same plane-sweep approach described earlier, but this time in three dimensions to
determine a spatial ordering over all the parts in z, y and z. We then generate non-
overlapping constraints between consecutive parts in each dimension and constrain the
coordinates of the leftmost, rightmost, bottommost, topmost, nearest and farthest part
bounding boxes to be equal. Finally, we rewrite the constraints from Equation 4.3|on
the sizes and positions of Box(P#) and Boz(p?) to obtain a set of linear constraints

on the sizes and positions of the individual part cuboids in P4 and p®.

4.3.3 Specifying Support Relationships

Users specify a support relationship by selecting the set of all parts that contain support-
ing faces ' and/or supported faces F'® and adjusting joint parameters so that the faces
are in their supported configuration. The system infers the corresponding faces graph
M using a similar algorithm as described above for the cover relationship. However,
in this case, we only consider horizontal faces, and we allow each pair of candidate
supporting/supported faces to be separated by a larger threshold distance and to not
overlap when projected onto the same plane. As with the cover relationship, the user
can manually fix any incorrect face correspondences.

Given M, our system automatically generates the geometric constraints described

in Section [4.2.3] for each pair of corresponding supporting/supported faces and their

40 Chapter 4. Guidance by Function

parent cuboids. The system also identifies all parts with supporting faces but no sup-

ported faces and constrains the bottom coordinates of those parts to be equal.

4.3.4 Specifying Flush Relationships

To specify a flush relationship, users select the two faces that must be coplanar and
adjust joint parameters to move the faces into their flush configuration. The system
automatically adds an equality constraint to the appropriate coordinates of the parent

cuboids of the selected faces.

4.3.5 Specifying Additional Geometric Constraints

Although the primary goal of works-like prototypes is to represent mechanical func-
tionality, there may be some aesthetic properties of a design (e.g., symmetry) that
the designer wants to enforce. To address such cases, we allow users to directly add
low-level geometric inequality and equality constraints between the dimensions of part
cuboids. For example, we constrain all the parts in the crate bed prototype (Figure[4.16)

to have the same thickness.

4.3.6 Double Pivot Joint Constraints

As described earlier, users add double pivot joints between parts by specifying the po-
sitions of the pivots on two coplanar faces. However, in most cases, these initial pivot
placements will either cause the parts to interfere as they move between the relevant
user-specified configurations and/or end up in the wrong positions/orientations (Fig-
ure #.12p—c). To address these problems, our system automatically generates additional
geometric constraints for each double pivot joint. In particular, for each double pivot
joint j with pivots u* and u” attached to faces f4 and f? of parts p** and p?, we con-

strain the two pivot positions to ensure that the parts can successfully move between

pA
l
(@) C (b) C

1 2

(c) incorrect pivots (d) pivot offsets

Figure 4.12: Double pivot joints. Given user-specified part configurations C1 (a) and Cs (b),
a naive placement of the pivots results in interference and an incorrect ending position for part
p? (c). We parameterise the pivot positions by pivot offsets a and b and impose constraints that
enforce good pivot placements.

4.3. Specifying Functional Relationships 41

Figure 4.13: Position constraint. Configurations C1 and Cs impose a geometric constraint on
the pivot offsets a and b.

all the relevant configurations. To simplify our formulation, we restrict the possible
position of each pivot to an offset vector that passes through the initial user-specified
position and is parallel to the cuboid axis that corresponds to the largest cuboid di-
mension. Thus, we can parameterise the positions of u** and u? with scalar offsets a
and b (Figure 4.12d). Here, we describe the constraints on the pivot offsets imposed
by a single pair of part configurations, C'; and Cs. If the user specifies additional part

configurations, we add the corresponding constraints.

4.3.6.1 Position Constraint

Given the positions and orientations of p* and p” in configurations C; and C5, we
can derive the following geometric constraint between the pivot offsets @ and b. As
illustrated in Figure any value of a defines two positions x¢' and 3 for pivot
u” that correspond to the two part configurations. Since the distance between u* and
u® (which corresponds to the rigid link of the pivot) must remain fixed, it follows that
u® has to lie on the perpendicular bisector of the line segment that connects z4' and
xQA. In addition, as explained above, we restrict u® to lie on its offset vector. Thus, the
position 27 of u? is defined by the intersection of its offset vector and the perpendicular

bisector. Based on this construction, we derive the following constraint:
(25 —at') - (xf, —2") =0

Since x¢, #3', 24 and 2P all depend linearly on @ and b, the constraint is quadratic with

respect to the pivot offsets.

4.3.6.2 Motion Constraint
While the position constraint ensures that the pivots can, in theory, move p* and p”
to the specified configurations, the distance between the pivots may not provide suf-

ficient clearance to allow the two parts to rotate into the appropriate configurations

42 Chapter 4. Guidance by Function

without interfering (Figure d.14]left). To enforce interference-free motion, we consider
the bounding boxes of the two parts projected onto the pivot plane (i.e., the plane that
contains f4 and f?). Based on how the parts move between the two configurations,
we determine what combination of bounding box corners the pivot link can poten-
tially pass over, which allows us to derive a conservative lower bound on the length
of the link (Figure .14 right). We formulate these minimum length requirements as
linear constraints over a and b by representing the distance from the pivot positions
to the bounding box corners (¢4 and d” in Figure [4.14b) with linear lower bounds.
For example, we write the pivot length constraint for the two examples in the figure as

follows:

(hP +b) e (W (W —a) + hP +b)
R R V3

Note that although the above constraints guarantee interference-free motion, they are

Leme > hA +

conservative (i.e., the joint may be longer than necessary). Furthermore, we do not test

for non-local interferences between parts.

Lone

(a) link length accounts for one corner

LtWO

(b) link length accounts for two corners

Figure 4.14: Motion constraint. We automatically generate a motion constraint that ensures
the pivot link is long enough to allow the parts to rotate into the appropriate configuration. We
determine which bounding box corners to take into account based on the motion of the parts
between the start and end configurations.

4.4. Computing Part and Joint Parameters 43

4.4 Computing Part and Joint Parameters

Once the user has specified all the necessary functional relationships, we solve the con-
straint system to update the model. The computation proceeds in two stages. First, we
consider the cuboid parameters, which we denote as B = {B;}, where B; represents
the left, right, bottom, top, near and far coordinates of the ¢-th cuboid in the model. We
solve for B under all the constraints related to part geometry (Sections to
determine the appropriate size and position of each part for all user-specified configu-
rations. Then, we fix the cuboid parameters and solve for the double pivot parameters,
which we denote as L = {L;}, where L; represents the two pivot positions of the i-th
double pivot joint. We solve for L under the constraints described in Section 4.3.6

Since each stage updates different sets of parameters, we do not need to iterate.

For most designs, the user-specified functional relationships do not fully constrain
the part and joint geometry. To find unique solutions for both cuboid and double pivot
parameters, we introduce an energy function that minimises deviations from the base

configuration in a least squares sense:
B(B,L) = |1B: = Bill* + Y ILs - L 4.6)
¢ J

where B and L are the values of the cuboid and double pivot parameters in the base
configuration. With this energy function, we can formulate both the cuboid and dou-
ble pivot parameter optimisations as quadratic programming problems, which we solve
using Matlab’s fmincon function. As the user keeps changing part/joint parameters
during a design session, the last solution from fmincon function is used for the new
initial guess for the function. Please note that the optimisation works well without
weights applied in Equation #.6] This is because all the variables have the same met-
ric. If there is no valid solution, the system tells the user that there are conflicting

constraints.

Given that most of our constraints are linear (except for the quadratic position
constraint on double pivot joints) and the fact that we typically have a relatively small
number of variables, our system solves for both part and joint parameters at interactive
rates. This allows users to explore design variations either by modifying the dimen-
sions of any part cuboid, changing the desired configurations of parts, or performing
discrete edits such as adding/removing parts or changing their joint types. Once the user
performs an edit, the system automatically updates the rest of the model based on the
geometric dependencies imposed by the specified functional relationships. Figure 4.15]

shows some design variations that we generated with our system.

44 Chapter 4. Guidance by Function

folded
unfolded

(a) sofa bunk 1 (b) sofa bunk 2
E %

(c) crate bed 1 (d) crate bed 2

Figure 4.15: Variations of sofa bunk and crate bed. Our system helps the user explore the
design space by modifying part dimensions or configurations.

4.5. Generating Fabricable Geometry 45

4.5 Generating Fabricable Geometry

Once we have determined all the cuboid and double pivot parameters, our system con-
verts the design into fabricable form. This involves three steps: adding cavities to
ensure that parts can move into their fitting configurations, generating working joint
geometry, and creating gaps where necessary to prevent interferences. We integrated
OpenSCAD, a modelling tool where the user writes scripts to generate 3D CAD mod-

els, into our system to perform those steps and generate fabricable 3D models.

4.5.1 Cavities

We assume that only parts with fit inside relationships may require cavities to be gener-
ated. We move each inner part p* from its base configuration to its fitting configuration
with respect to the outer part p” and sweep out a volume along this motion path. We

then use constructive solid geometry (CSG) to subtract the swept volume from p”.

4.5.2 Joint Geometry

We take a procedural approach to generate joint geometry that takes into account the
geometry of the connected parts. For a hinge attached to edge e, we attach a cylindrical
pin to one part and two yokes that surround the pin to the other part. We set the length of
the pin to the length of e and position the yokes symmetrically near the ends of the pin.
We set the radii of the pin and yoke loops to half the thickness of the thinnest attached
part. For a sliding joint, we check if the two connected parts fit together tightly (e.g.,
one part slides into a cavity). If so, we do not add any extra joint geometry. Otherwise,
we add mated rails that allow the parts to move along the sliding vector with respect to
one another. For a sliding hinge, we make the hinge pin slightly longer than the shared
edge e and then add rails that allow the entire pin to move along the sliding vector. For
double pivot joints, we generate a pin for each pivot that allows it to rotate and then
connect the pivots with a rigid link.

4.5.3 Gaps

Since our joints are designed to be 3D printed in fully assembled form, we add a small
gap around all touching faces to ensure that parts do not fuse together and that the
support material can be removed after printing. We also add gaps around cavities and
all the moving components of the synthesised joints. The size of gaps depends on the
precision of 3D printers used and should be calibrated accordingly. Otherwise, the joint
might wobble if the gap in the joint is too large. We export the final printable geometry
as an STL file that can be sent directly to the 3D printer for fabrication.

4.6 Results

We used our system to create works-like prototypes for 8 different designs (Fig-

ure 4.16). Creating each working model in our system took between 1-10 minutes of

46 Chapter 4. Guidance by Function

user interaction. Modelling the parts and adding joints took about three quarters of the
time, and the remaining time was spent specifying functional relationships. In addition
to cover, fit inside, support and flush relationships, we added 4 geometric constraints: 2
symmetry constraints for the top two cabinet doors and the two folding sections of the
crate bar; and 2 to make the folding parts of the tablet and crate bed the same thickness.

Table 4. 1] summarises various statistics for all the results.

While some of our prototypes may appear simple, mechanisms with even a small
number of moving parts often involve non-obvious geometric dependencies. Satisfy-
ing these geometric dependencies is the user’s responsibility in the existing modelling
tools, which is time-consuming and difficult. By automatically maintaining the spec-
ified functional relationships, our system helps users create an initial working design
from a rough input model and modify that design to generate variations interactively.
For example, the crate bed only has three parts, but creating variations of the design
with different arrangements of the head and footboards requires non-trivial adjustments
to the double pivot joint parameters (Figures [d.15c—d). The folding sofa also has inter-
esting dependencies due to the fact that the top bunk must be supported when the model
is unfolded into the bed configuration and then fit together with the headrest and base
when folded into the sofa configuration. Figures #.15p-b show two variations that we
created by changing the height of the headrest. The system automatically updated the
other part and joint parameters appropriately to maintain the functional relationships.
Our system also supports discrete edits. For example, the user can add or remove a part
and joint, which leads to changes in remaining parts in different ways depending on

which part or joint was manipulated.

While the most common use case for our system is to help designers generate
working models that can be 3D printed, the optimised part and joint parameters can
also be used as instructions for hand-built prototypes. For example, Figure shows

a variation of the crate bed design that we built out of paper using measurements com-

Models # Joints # Constraints | Int. Time (s)

Hinge | Slide | S-Hinge | D-Pivot | Fxn | Geom | Proxy | Fxn
Cabinet 1 1 3 0 7 1 150 90
Crate Bar 2 5 0 0 2 1 300 60
Crate Bed 0 0 0 4 3 1 60 40
Sofa Bunk 2 0 0 2 5 1 450 60
Printer 2 3 0 0 2 0 90 90
Cellphone 1 1 0 0 2 1 30 40
Tablet 1 1 0 0 2 1 40 30
Toolbox 1 1 0 0 2 0 40 40

Table 4.1: Statistics for fabricated prototypes. Users spent up to 10 minutes to design a working
model with various functional relationships in our system (Int. Time: user interaction time, S-
Hinge: sliding hinge, D-Pivot: double pivot, Fxn: functional constraints, Geom: geometric
constraints).

4.6. Results

(a) cabinet (b) crate bar (c) crate bed (d) sofa bunk

(e) printer (f) cellphone (g) tablet (h) toolbox

Figure 4.16: Various works-like prototypes created using our system.

47

48 Chapter 4. Guidance by Function

Figure 4.17: Hand-built prototype. Prototypes can be built by other methods than 3D printing
using the measurements from our system, by hand using paper in this case. There will be a new
set of challenges that are interesting to address in fabrication using the other methods.

puted by the system.
4.6.1 Designer Feedback

To get informal feedback on our approach, we showed our system to the three profes-
sional designers that we consulted as part of our formative work. We asked them to
comment on the general usefulness of the system, whether they could imagine using
it as part of their workflows, and what aspects of the system should be improved. All
of the designers felt that our system would be very useful during the early stages of
design when works-like prototypes provide important feedback on potential mechan-
ical architectures for a product. They said that our tool was better suited to this kind
of early prototyping than existing CAD software; one of the Anvil designers, who has
been using SolidWorks for over 15 years, said that our system significantly streamlines
the process of designing working mechanisms by abstracting away the low-level details
of joint and part geometry. There was also a positive reaction to our use of functional
relationships as the main authoring paradigm, which allows users to understand and

engage with moving parts in an intuitive way.

4.6.2 Limitations

The main limitation of our approach is the restricted set of part primitives and joint
types that we support in the system, i.e., cuboids for part primitives and only four types
of joint. Due to this, we cannot model a bicycle, which requires cylindrical moving
parts (wheels) and a new joint type (rotational axes). While compositions of cuboids are
sufficient representations for many works-like prototypes, where the functional aspects
of prototypes are more important than the appearance, designers sometimes want higher
fidelity geometry to understand the relationships between the form and function of a
design more precisely. Similarly, other joint types and part interactions could be useful

for prototyping certain classes of products, including ball joints, snapping features,

4.7. Conclusions and Future Work 49

threads, and simple gears. Our current system can certainly be extended to handle more
complex geometry and a wider range of joints, but this would require modifications to

the constraints imposed by our functional relationships.

4.7 Conclusions and Future Work

In this work, we present a new approach to authoring works-like prototypes with func-
tional mechanisms that can be fabricated with 3D printing. By providing a 3D mod-
elling interface where geometry is determined by high-level functional relationships
between parts in an object, we allow users to work in a top-down fashion and focus
on the functional goals of the design rather than working bottom-up from low-level
geometric details, which is unintuitive and difficult. This workflow can help the users
accelerate the design process and thus explore the design space more effectively. Our
fabricated results demonstrate that our system can generate functional models with
only a small amount of high-level user interaction, and the informal feedback from
professional designers suggests that our approach could significantly improve existing
prototyping workflows. Given the recent advances in 3D printing, we see a huge po-
tential for modelling tools which aim at the physical prototypes that product designers
create. Our work takes a small step in this direction, but we see many opportunities for
future work in this vein. We also hope that our effort can draw more attention to this
paradigm of modelling using high-level goals.

However, other computational fabrication methods such as laser cutting or CNC
milling can also pose a different set of important challenges. Especially, because laser
cutting and CNC milling are subtractive manufacturing methods, as opposed to 3D
printing which is an additive manufacturing method, there can be remaining materials
after fabrication. This is not a problem when these leftover materials can be reused for
another fabrication, but it is not always possible to do it depending on the shape of the
leftover materials. For instance, the remaining materials should probably be thrown
away if they take too small, narrow or very irregular shapes. These wasted materials
have an economically and environmentally negative impact. Therefore, reducing ma-
terial waste during fabrication is a problem that is worth exploring as more and more
hobbyists employ laser cutting and CNC milling for fabrication.

The next chapter concerns this problem of reducing material waste when fabri-
cating objects using laser cutters or CNC milling machines and our new approach to

address the problem will be proposed.

Chapter 5

Guidance by Material Usage

(a) input design (b) final design (c) fabricated design

Figure 5.1: Waste-minimising furniture design. We introduce waste-minimising furniture de-
sign to dynamically analyse an input design (a) based on its 2D material usage (see inset) and
design specifications to assist the user through (b) multiple design suggestions to reduce mate-
rial wastage (see inset). The final user design can directly be exported for laser cutting and be
assembled (c). In this case, wastage was reduced from 22% to 11%.

Design is an exercise in finding a solution to problems in terms of form, function
and fabricability (see Section [2.1)). Finding a design that solves these by satisfying the
constraints on the three elements is not trivial because the elements affect each other in
a sophisticated way. Also, there are few available tools that support the user to incorpo-
rate the function and fabricability of a design with the form seamlessly and effectively.
Typically, therefore, design variations are manually explored by a mixture of guess-
work, prior experience and domain knowledge. Without appropriate computational
support, such an exploration is often tedious and time-consuming. Especially, it can re-
sult in wasteful choices in terms of material usage when we fabricate using subtractive
manufacturing methods such as laser cutting or CNC milling (Section [I.1.2).

In furniture manufacturing, both for mass production and for customised designs,
material wastage plays a deterrent role. This not only leads to increased production cost
(typically 5-15% wastage due to off-cuts), but also hampers ongoing efforts towards
green manufacturing [DOQ9]. For an extensive report, please refer to the guideline

51

52 Chapter 5. Guidance by Material Usage

for wood waste recycling published by the British Furniture Manufacturers [BEMO3]].
Hence, there has been a growing interest in zero-waste furniture in an effort to reduce
material wastage. Computational support, i.e., modelling tools, for designing such

waste-reducing furniture, however, is largely lacking.

Material considerations are typically appraised only affer a shape has been de-
signed. While this simplifies the design process, it leads to unnecessary wastage: at
design time, the user can at best guess to account for how the shape will be physi-
cally realised, and can easily fail to effectively adjust the design to improve material

utilisation.

In recent years, algorithms have been developed to economically 3D print
given designs. For example, approaches have been proposed to cleverly break
up a given shape into parts that better pack together in print volumes [LBRM12,
VGB™ 14, ICZL 715, [YCL™15]], adaptively hollow shape interiors to save print mate-
rials [SVB™12, PWLSHI13, WWY 13| [DHLI14], explore parameter space variations
for manufacturable forms [SSM135], or design connector geometry to remove the need
for any secondary connector parts [ESY " 15]. However, improving material utilisation

by explicitly allowing design changes has been less studied.

In this chapter, we introduce the problem of waste-minimising furniture design,
and investigate it in the context of flatpack furniture design (cf., [GIMBO6]]) using laser
cut wooden parts (Figure [5.1). Specifically, we study the interplay between furniture
design exploration and cost-effective material usage. Note that by cost-effective we
refer to reducing material wastage during the fabrication process. By directly coupling
the design exploration and material wastage minimisation, we empower the users to
make more informed design decisions, which leads to economically and environmen-
tally better designs. Note that this is fundamentally different from locking a designed
shape, and then trying to best fabricate it.

Figure [5.2] shows the pipeline of our proposed system. The user starts with an ini-
tial design. Design constraints such as symmetry, desired height, etc. can be specified
by the user. Our system analyses material usage by computing a dynamic 2D layout of
the parts and proposes design modifications to improve material usage without violat-
ing specified design constraints, i.e., the user’s design intent. Also, design effectiveness
that determines if the object is usable (e.g., fits in a given region, can hold objects of
certain size, etc.) is considered at the same time. Note that such adaptations are often
in the form of synchronous movement and shape change of multiple parts affected by
both design and material layout considerations, which are difficult to mentally imag-
ine. The user can select any of the suggestions, either in its entirety or in part. She can
further update the set of design constraints by locking parts of the current design, and

the process continues. Thus, the user scopes out a design space via constraints, and our

53

material usage f o dynamicconstraintsl
/ analysis
\ design effectiveness / i
verification design
modifications | ™]

l design specifications I <

cut pattern
generation

Figure 5.2: System pipeline. We present an interactive guided-design framework to provide
suggestions to the user to adapt her design based on material usage and design effectiveness
(i.e., inner volume and outer volume constraints). The cutting code for the final design is then

used for the fabrication. Insets show initial and final material space usage with black areas
denoting wasted material.

algorithm refines the design to reduce material wastage while restricting changes to the
indicated design space.

Technically, we achieve the above by using the current material layout to dynam-
ically discover a set of relevant layout constraints. The algorithm has a discrete aspect
involving which part to change based on the current 2D layout, and a continuous aspect
involving how to adapt the part attributes based on the current material space layout
without violating user-specified design constraints. Further, we analyse the current
design in 3D to judge its effectiveness. Specifically, we support two constraints: (i) ob-
jects should fit inside target volumes (outer volume); (ii) shelves should be sufficiently
large to hold target objects (inner volume). We enforce the dynamically generated
constraints by limiting deformations based on a (local) deformation basis extracted by
analysing the material layout constraints and design effectiveness. Even for a fixed de-
sign, exploring the space of all possible packings is a combinatorial NP-hard problem.
Instead, we locally analyse a set of candidate packings to determine which parts to
modify and how to change them to optimise material utilisation. We demonstrate that
by dynamically analysing a set of current packings, we can efficiently and effectively
couple the 2D layouts and the constrained 3D designs. The user is then presented with

different waste-reducing design variations.

54 Chapter 5. Guidance by Material Usage

We evaluated the system to create a variety of simple and complex designs, and
fabricated a selection of them. We also performed a user study with both designers
and novices to evaluate the effectiveness of the system. The performance benefits were
particularly obvious in case of complex designs involving different design constraints.

In summary, we:
e introduce the problem of material waste minimising furniture design; and

e propose an algorithm that dynamically analyses 2D material usage and 3D design
effectiveness to suggest design modifications to improve material usage without

violating user-specified constraints.

5.1 Design Workflow

Our goal is to propose design variations that minimise material wastage without vio-
lating original design intent. In this section, we present the proposed system as experi-
enced by the user, and describe the main algorithmic details in the subsequent sections.
Here we particularly focus on how the user encodes her design intent.

Figure|5.3|shows the system interface. We call a sheet of material which is used for
cutting a master board. The user starts by choosing the desired material (i.e., thickness
of wooden parts) and the number and dimensions of the master board(s). The thickness
of materials matters because materials that we buy from resellers have only a selection
of different thicknesses and the gaps in the joint for assembly of furniture generated by
our system depend on the thickness of materials. Multiple master boards can be used
for a design that cannot be laid out on a single master board (Figure [S.17d). Or, they
are useful when we would like to fabricate multiple copies of the same design, which
do not fit in a single master board (Figure [5.4).

Our system considers rectangular master boards — in practice these can represent
new boards or leftover rectangular spaces in already used boards. This is because we
usually buy materials of rectangular shape and the shape of the remaining material
produced by our system is rectangular as well. The user starts by loading an initial
part-based 3D object design, either created in a modelling system or as a parametric
model. Each part of the object is a plane whose thickness is the same as defined by
the user. The parts can be rectangular or have curved boundaries. Alternatively, the
user can create the design directly in the system but the shape is limited to rectangular
ones in this case. The user designs in object space. She can add/delete parts and
connect them with other parts using edge- or face-contacts. The user also indicates a
set of design constraints among the parts, applied to pairs or larger sets of parts. In
our implementation, we support: equal edge length (e.g., [; = [;), sum of edge lengths

(e.g.,li+1lij4---=1+...), fixed edge length (e.g., [; = c), equal position, symmetric

5.1. Design Workflow 55

3D object space

2D material space

shape space slider
®

w

suggestions

Figure 5.3: System interface. The user can freely design in the ‘object space’ pane by
adding/deleting parts, or directly editing part dimensions. The user design is dynamically anal-
ysed by laying it out in the ‘material space’ and design adaptations are proposed to improve
material usage (i.e., layout-based suggestions), or design effectiveness (i.e., inner/outer volume
constraints). The user can select a suggestion, and use the shape space slider to navigate along
the proposed edit path. The user can accept a suggestion (or part of it) and continue to edit.
Once she is happy with a design, she can directly ask for cutting pattern to be generated along
with necessary finger/cross joint specifications.

parts, ground touching, edge snapping and coplanarity among indicated parts. The
user can additionally specify the following usage specifications that are analysed for
design effectiveness (see Section[5.3.5.1)): (i) internal space in the form of inner volume
indicating minimal shelf dimensions; (ii) environmental specification in the form of
outer volume where the design should fit. At all times, current usage of the master
board(s) is continuously updated using a packing algorithm and shown on the material

space, and violations of design effectiveness are flagged directly on the object.

The user can update the design by dragging any part directly in the 3D object
space. Then, the system suggests multiple design variations that all satisfy the design
specifications but achieve different material usages. We measure material usage based
on the fraction of the master board(s) utilised. More precisely, the area of parts divided
by that of bounding rectangle of the layout. The top three suggestions are presented as
thumbnails. If the user mouse-overs any thumbnail, the system animates the proposed

design modifications. The user can preview the object- and material-space views, and

56 Chapter 5. Guidance by Material Usage

R | TR “F-ﬂ

Figure 5.4: Multiple copies of a design. Multiple master boards are useful when multiple
copies of a design cannot fit in one master board.

select her preferred design suggestion. Note that each thumbnail effectively represents
a design exploration path pursued by the algorithm. We provide a slider to move along
this path, which is particularly useful for making incremental updates to the design (see
Figure[5.5and Section [5.2).

The user either selects a suggested design variation or picks part configurations
from a suggested shape as additional design constraints (e.g., user can lock the proposed
sizes of certain parts). Thus, effectively the user appends or updates the current set of
specified design. Note that the new constraints are trivially satisfied by the current
design, which is critical for subsequent design space exploration (e.g., M5 is in both
shape spaces &7 and Ss). Then, the user can change the current design again and/or
specify additional constraints, and this process repeats.

Once satisfied with a design, she requests for the cutting patterns. She can investi-
gate the design, the material space usage and the cutting patterns, and send the patterns

directly for laser cutting.

5.2 Algorithm Overview

Our goal is to analyse design aspects arising from material considerations, and inves-
tigate how changes in design affect such considerations. Specifically, we ask how to

adapt a furniture design so that it makes better utilisation of material in the resultant

5.2. Algorithm Overview 57

Figure 5.5: Design variations in shape space. Our algorithm discovers design variations in
shape space. The user starts from a design M along with indicated design constraints, and
the algorithm seeks for wastage minimising variations by interleaving between topologically
different material layouts (indicated by changes in curved paths) or continuous changes to the
layouts (indicated by same coloured curves). For example, paths (M;, M) denote continuous
design changes, while points M; denotes designs where new layouts are explored (i.e., branch
points). The user can switch to another shape space by picking an updated set of design con-
straints (shape Ms here). Note that by construction Mg belongs to both shape spaces S1 and
So. See Algorithm'Zl

design layout. Note that this is the inverse of the design rationalisation problem, i.e.,
instead of taking a design as fixed and best fabricating it, we adapt the design so that
the resultant rationalisation makes better utilisation of available material. First, we

introduce some notations.

5.2.1 Parameterised Designs

The design is considered as a function D(X) that produces the geometry of a fixed
number of parts, given a configuration vector X. The parts can be assembled into a
final furniture design.

We make no assumption as to how D is implemented — we demonstrate in Sec-
tion [5.5] applications using both constrained based furniture design and parametric de-

signs modelled by CSG. We however expect a continuous behaviour from D(X), i.e.,

58 Chapter 5. Guidance by Material Usage

@il (Q)I]I] O\j

Figure 5.6: Shape variations. Evolution of shape variations across a run of our algorithm
(shown in a clockwise order for each model) on the coffee table (top) and low chair (bottom)
models.

small changes in X result in small changes in the part shapes. Parametric modellers
generally offer such continuity to smoothly navigate the space shape.

During wastage optimisation, our algorithm will change the value of X so as to
explore whether changes in part shapes reduce wastage. Since we focus on laser cut
furniture construction, we assume the parts to have the same thickness 7. The parts are
thus represented as planar polygonal contours extruded orthogonally.

The geometry of a part p; lies within a bounding box which we represent by a six
dimensional vector encoding the box center p; and the lengths of its three sides (¥, 1Y, T

17 7,7

— the Z axis being aligned with part thickness by convention.

5.2.2 Material Space

Since we focus on laser cut furniture, any 3D design given by a configuration vector
X is realised as a layout (i.e., cutting plan) in the material space. Material space is
characterised by the largest master board that the machine can possibly cut, a rectangle
of size W x H. In this space, each part i is associated with a position (u;, v;) and an
orientation o; € {0, 7/2,w, —7w/2}.

We use w;, h; as extent of a part bounding box in the material space along the x-

5.3. Interactive Design Layout Optimisation 59

and y-axis, respectively. The part box lengths in material space are given by the two
part dimensions other than thickness. For a part 7, of orientation o;, we get one of the
two cases:

0, =0,0, = = w, =17 h;=1]

0;=—7/2,0, =72 = wi=1l] hi=1If

The material space positions and orientations are variables in the layout optimisa-
tion algorithm, alongside the design parameters X (see Section[5.4).

When wastage is not a concern and a design easily fits within material space, the
variables (u;, v;, 0;) are independent of the design, i.e., they simply adapt to changes
in part sizes. However, as we seek to maximise utilisation of the material space, the
material space variables become tightly coupled with the design parameters. Our layout
optimiser therefore jointly optimises for material space variables and design parameters

to minimise wastage (see Section

We next discuss what makes a desirable layout from the point of view of furniture

fabrication.

5.2.3 Properties of a Good Design Layout

Rectangular master boards can be sourced in a large choice of sizes and thicknesses
from resellers. Therefore, our goal is to achieve a full utilisation of rectangular spaces,
so that the user can use boards of exactly the right size and minimise wastage. The

machine dimensions determine the maximum extent of a single board.

We measure wastage as the fraction of the space not utilised by the design in its
material space bounding rectangle. Ideally, we want to achieve full utilisation, i.e., null

wastage.

An ideal packing is one that tightly packs all the parts to perfectly fill up one or
more rectangular master boards (like a puzzle). Our system helps the user achieve this

by automatically exploring changes improving material space usage (see Figure [5.7).

5.3 Interactive Design Layout Optimisation

This section describes an interactive method where the user can actively explore the
design space by changing the design parameters X and getting immediate feedback
from the system while Section[5.4]introduces a more automatic approach. Our approach
has evolved over time from the former to the latter. The interactive method allows the
user to have the suggestions/feedback from the system immediately as she changes the
design. The more automatic method is slower in terms of giving feedback to the user
but it can deal with parametric models and more complex shapes with curves (c.f. the

interactive method can only deal with rectangles or composites of rectangles).

60 Chapter 5. Guidance by Material Usage

bad layout mediocre layout good layout

Figure 5.7: Layout refinement. Examples of stages of layout refinement, from bad to mediocre
to good. A good layout is characterised by less area of material wasted (shown in green).

5.3.1 Initial Design Layout

We initialise a material space packing by using a classic bin packing algorithm with
a Bottom-Left heuristic [Cha83]. Rectangular parts are simply inserted in order of
decreasing largest extent, which allows smaller parts to fill gaps between previously
inserted larger parts. In case of multiple master boards, we randomly assign parts to
the different master boards with probability proportional to the remaining board area
(among those with sufficient area left). Note that we assume that the initial design fits
the master board(s). We run the bin packing algorithm separately for each master board.
While a variety of other heuristics exists (see a survey [Jyl10]), we found this approach
to work well in conjunction with the rest of our pipeline. Note that our algorithm
does not depend on the choice of heuristic, but a poor initial packing will of course

complicate the task of the user.

5.3.2 Dynamic Material Usage Constraints

The limited extent of the material space leads to cases where the design no longer
fits, especially in the case of complex designs with multiple parts. Our system assists
the user in recovering a valid design. Instead of simply reverting and cancelling user
edits, we take this situation as an opportunity to improve the packing by saturating the
material space dimension that has been exceeded.

The complete algorithm for dynamic packing is given in Algorithm(I] In the initial
design stage, the user creates the parts while specifying their connector relations. We
encode these part dimensions and the spatial arrangement of the parts as a system of

m linear constraints. We call these the user-defined design constraints and represent

5.3. Interactive Design Layout Optimisation 61

Algorithm 1: DYNAMIC PACKER
Input: Set of parts X, previous successful packing Q, constraints C, s
Output: Packing variables for all parts:P = {..., (u;, v;, 0;), ...}

1 P = BINPACKER(X);

2 if IsValid(P) then
L// No need to adjust.

return P;

active_axis = X;

P=Q;

while not IsValid(P) and less than K iterations do

N <+ EXPAND(SWEEP(X,P active_axis));

(C,s) = ADDSNAPPINGCONSTRAINTS(C,s, N ,active_axis);
X = SOLVE(C,s);

10 (C,s) = REMOVESNAPPINGCONSTRAINTS(C,s);

11 P = SLIDE(P, N ,active_axis);

D-IE- RN B 7 B N

2| active_axis = (active_axis ==Xx) 7y : X;
13 if not IsValid(P) then
// Revert.
u | P=Q;
15 return P;

them as a matrix C of size m X n, and a vector s of m entries. A design satisfies the
constraints if and only if CX = s. We expect m < n so that the system is under-
constrained, otherwise there is a single solution and no design freedom. The dynamic
packing algorithm starts by calling the standard BINPACKER (line[I). If this succeeds,
there is no need to further adjust the packing (line [3). If the packing is invalid, we
start by detecting the sets of parts which need adjustment. Then, the system makes the
parts fit in the material space by adding constraints to the system CX = s and solving
it. This is performed along each axis in sequence in three steps: dimension violation

detection, snapping and sliding. We now detail each of these steps.

5.3.2.1 Dimension Violation Detection

We determine how the parts contribute to the size of the material space layout in Algo-
rithm (T} line[7] This is performed by two sub-algorithms, SWEEP and EXPAND, which
detect which parts have to fit side by side (see Figure [5.8). This information is used
to identify the parts whose sum of lengths now exceeds the material space dimension

along the considered axis.

SWEEP (Algorithm [2) detects the parts which appear on a same line swept in
the direction orthogonal to the current axis. Note that this set may appear through
transitive neighbouring relationships as illustrated in Figure [5.8] The set is therefore

expanded to obtain all combinations of parts that add up along the considered axis.

62 Chapter 5. Guidance by Material Usage

1<3

1<3<4 0<1<3<4

1<2<4

0<1<2<4

0<1<2<4

ExpaND

Figure 5.8: Transitive neighbouring relationships. Given a material space layout, we perform
SWEEP to extract a set of constraints, and then unwind them to make explicit the transitive
relations using the EXPAND step. In this example, we only show SWEEP and EXPAND along
the x-axis. Note that at the end of this stage, we get a set of dynamically generated layout
constraints to ensure that the parts remain inside the master board.

This is performed by EXPAND (Algorithm[3)), which unfolds the dependencies between
parts to obtain a new set of part lists.

In line [7} we utilise the previous successful packing to detect neighbouring rela-
tionships between parts. Note that we ensure that each newly added part can be fit in

the material space to guarantee the existence of an initial packing.

5.3.2.2 Snapping

We use the neighbouring relationships computed by SWEEP and EXPAND to verify
whether the sum of part lengths exceeds the material space dimensions. For each part
combination for which it is the case we add a snapping constraint making the sum of
their lengths equal to the material space extent in order to make the parts fit in the

material space again.

Snapping is performed in lines [§ to [I0]in Algorithm[I} A snapping constraint is
added between all parts whose combined sum exceeds the material space dimensions
along active_axis axis being considered by ADDSNAPPINGCONSTRAINTS. The
design is then solved for, using the algorithm SOLVE described in Section [5.3.5] The

constraints are subsequently removed after the part lengths have been recomputed.

ADDSNAPPINGCONSTRAINTS and REMOVESNAPPINGCONSTRAINTS are
adding/removing the snapping constraints for all part lists whose sum exceeds the
material space dimensions along the axis being considered, i.e., active_axis.
Snapping provides us with a new set of part lengths that fits the material space along

the axis.

5.3. Interactive Design Layout Optimisation 63

Algorithm 2: SWEEP

Input: Set of parts X, packing P, active axis a

Output: Set £ of lists of parts appearing on a same line along a
1 B« 0
2 foreach part p do
3 m,, = min coordinate of p along a in P;
4 M, = max coordinate of p along a in P;
5
6

E <+ (my,in,p);
E < (M,,out,p);
7 if £ = () then
8 L return (;

9 sort £ by increasing lexicographic order (in < out);
10 L+ 0

1 A0

12 (z,t,p) < pop first from F;

13 while true do

14 repeat

15 if £ = in then

16 L A — AU {p};
17 else

18 L A— A\ {p};
19 if £ = () then

20 L return £;

21 prevx = x;

2 (z,t,p) < pop first from F;
23 until preve # x;

u | L+ LU{A}

5.3.2.3 Sliding

We recover positions by sliding each part to the leftmost position that does not overlap
with a part located before, as given by the neighbouring relationships. This is done
line [[T]in Algorithm [T} by calling SLIDE (Algorithm [). The process is illustrated in
Figure

This simple approach guarantees that no overlap exists along the x-axis, and that
the dimensions no longer exceed the material space. However, after sliding, parts might
still overlap along the y-axis. We therefore iterate the process, this time along the y-

axis.

5.3.2.4 Termination
The dynamic packing algorithm typically terminates in one iteration as material space
violations are quickly identified as we continuously check from them in the back-

ground. There are two failure cases: First, if decreasing the dimensions of some parts

64 Chapter 5. Guidance by Material Usage

Algorithm 3: EXPAND
Input: Set of parts X, packing P, active axis a, set Z of lists of parts appearing
on a same line along a
Output: Expanded set O of lists of parts appearing on a same line along a

1 foreach A € 7 do

2 prev < (;

3 foreach partp € A // In order along a.
4 do

5 if prev # () then

6 |_ Succ[prev] < Succ[prev] U {p};

7 Pred[p] < prev;

8 prev < p;

9 O«

10 foreach part p such that Pred[p] = () do

11 push(Stack, (p,0));

12 while Stack not empty do

13 (q,B) < pop(Stack);

14 if Succ[q] = () then

15 |_ O+ O0uU{B};

16 else

17 foreach s € Succ[q] do

18 L | push(Stack, (s, BU {s}));

19 return O;

slide along x

Figure 5.9: Sliding. The dynamic layout constraints (shown with dashed brown lines) detected
using the SWEEP and EXPAND steps are used to solve for new part parameters. (Left) These
updated parts can overlap in the material space. (Middle-right) We use SLIDE routine to repo-
sition them first along x-direction, and then along y-direction to arrive at a non-overlapping
layout.

5.3. Interactive Design Layout Optimisation 65

Algorithm 4: SLIDE
Input: Set of parts X, packing P, active axis a, set L of lists of parts
appearing on a same line along a
Output: Modified packing so that parts do not overlap along a
1 foreach A € £ do

2 pos = 0;

3 foreach partp € A // 1In order along a.

4 do

5 var < variable for position of p along a in P;
6 if value(var) < pos then

7 | value(var) - pos;

8 sz = dimension of p along a in P;

9 pOSs = pos + sz;

increases the dimensions of others in the design, the algorithm may result in a race con-
dition. This is, however, discouraged as the constraint solver (Section [5.3.5)) prioritises
changes to positions before changes to part lengths. Second, in extreme cases, the parts
may reach their minimal sizes, preventing any further snapping. In such a scenario, the
algorithm is terminated after a fixed number of iterations (four in our tests), and revert

to the previous successful packing to cancel user changes.

5.3.3 Suggestions Based on Design Layout

While the user edits the design, our system constantly searches for possible improve-
ments to the design layout in material space. This is done by exploring the design space
in multiple parallel threads (maximum of 8 threads). Each thread traverses the part list
in a different, random order. For each part, it attempts to reduce and enlarge the part
length in all dimensions while Algorithm (I]is called at each change in part sizes.

Whenever an improving move is found the algorithm continues modifying this
same variable until the design layout stops improving or a constraint is violated. This
has two purposes: First, focusing the change on a few parts makes it easier for the user
to understand the changes made by the algorithm. Second, this increases the differences
between the designs obtained by random exploration of different threads.

To ensure that the suggestions are sufficiently different from one another, we
launch multiple random explorations and select only three to expose to the user. We
use farthest point based picking to select diverse options to the user. Note that we only

compare part lengths in this selection process.

5.3.4 Handling Coplanar Parts

Up to this point we only considered parts as independent rectangles. However, many

designs require combinations of rectangular coplanar parts, as illustrated in Figure[5.10]

66 Chapter 5. Guidance by Material Usage

designed shape laser cutting plan

[]

initial design layout final design layout

Figure 5.10: Coplanar parts. We support designs (top-left) involving coplanar (in 3D) parts
with shared edges. In this example, the T-shape is formed by the green and blue part. In the
material space, we maintain the relative configuration among such coplanar pieces, while still
allowing other parts to interleave and fill in the in-between spaces. Bottom row shows the
material space configuration before and after guided-design, while top-right shows the final
cutting plan. Note that the T-shape is cut as a whole.

For the sake of clarity we simply refer to each such configuration as coplanar
parts, a set of parts that are in the same plane and in contact so that they form a single
connected component. For each such set we will consider the bounding rectangle of the

configuration, which is the bounding rectangle of the union of all the coplanar parts.

The support of coplanar parts requires an adaptation of two of our algorithms:
BINPACKER and SLIDE. The packer is modified to proceed in two steps. In the first
step the coplanar parts are packed using the bounding rectangle of their configuration.
In the second step, all the remaining (simple) rectangles are added to the material space
layout. They are free to fill in voids within the coplanar part configurations. This
process is illustrated Figure

The sliding algorithm is changed so that whenever a part slides, all the parts in
the same coplanar configuration are moved accordingly. A slight complication to this
algorithm is that it requires several iterations to ensure all the dependencies are properly

taken into account. It is otherwise very similar to Algorithm 4]

5.3. Interactive Design Layout Optimisation 67

outer volume

volume violation

y 4

inner volume

Figure 5.11: Design effectiveness constraints. We show effects of designing with (middle col-
umn) or without (right column) the respective constraints activated. First row: the cuboid in
black line stipulates the upper bound volume of the design if the constraint is enabled. Without
the constraint, a suggested design can be larger than intended (right column). Second row: the
black boxes stipulate the lower bound volume between parts in the design if the constraint is
enabled. It is useful when we need certain space between parts in the design.

5.3.5 Furniture Design with Constraints'

During interaction with the system, either by the user or an algorithm optimising the
design, new design points X + u that violate the constraints are produced, with u a
vector of changes imposed. Typically, u has only few non-zero entries, e.g., the user or
the optimiser increases a single part length. We define a boolean function F(X) with
a value of false denoting that design effectiveness constraints have been violated. Note
that X + u might violate either the design effectiveness constraints (i.e., £(X + u) =
false), or the design constraints (i.e., C(X + u) # s), or both. We seek a correction
vector d such that X + u + d is a valid design point which preserves the changes
applied by the system, i.e., d; = 0 for all ¢ such that u; # 0.

Our approach is based on two nested algorithms. The outer one solves for design
effectiveness constraints (see Section @ while the inner one solves for design
constraints (see Section [5.3.3.2).

5.3.5.1 Design Effectiveness Constraints Enforcement

Our system supports two types of design effectiveness constraints: inner volume and
outer volume constraints (Figure [5.11). The inner volume constraint preserves space

between parts while the outer volume constraint prevents the bounding volume of the

'The work in this section is done by Jean Hergel (INRIA Nancy - Grand-Est).

68 Chapter 5. Guidance by Material Usage

Figure 5.12: Specifying design effectiveness constraints. Left: For inner volume constraints,
the user selects parts (marked by arrows in the figure) and puts the boxes on them. Using the
keyboard, she can change the size of the boxes, which corresponds to the inner volume to be
preserved. Right: For outer volume constraints, using the keyboard the user can change the
size of the bounding box (marked by an arrow in the figure), which the design must not exceed.

design from growing larger than specified by the user. The user can set the inner volume
constraints by placing boxes and changing their dimensions which reflect the required
inner volumes (Figure [5.12] left). She can also specify the outer volume constraint
by adjusting the size of bounding box of the design which stipulates the upper bound
volume of the design (Figure [5.12]right).

We observe that all the effectiveness constraints can be enforced by dynamically
adding or removing equality constraints. For instance, when a part is about to enter an
inner volume, a constraint can be inserted to maintain the part at the correct distance. A
key difficulty is when and in which order to insert the constraints. Note that a straight-
forward approach can quickly over-constrain the problem, preventing to find a feasible
solution.

Our scheme is inspired by collision detection in physics simulations, where all
contacts within a potentially large time step have to be found. The intuition is to detect
the first time a constraint violation occurs, while progressively applying the change
vector u. That is, we parameterise the problem with a variable « € [0, 1] and find the
smallest value vy such that F(X + aju) = false. We then add appropriate equality
constraint to C, s so that F evaluates to true again. The algorithm then recurses until
reaching o = 1, or encountering contradictory constraints (see Section[5.3.5.3)). During
this entire process we take care of enforcing design constraints while exploring along
u. All constraints added during the process are discarded upon termination. The full
algorithm is given in Algorithm [5]

The function CorrectForDesignConstraint produces a correction vector

recovering from design constraint violations, and is described in Section [5.3.5.2] The

5.3. Interactive Design Layout Optimisation 69

Algorithm 5: DYNAMICEFFECTIVENESSCONSTRAINTS

Input: Valid design X, vector of changes u, position o < 1

Output: A correction vector d such that C(X + u+d) = s and d; = 0 where

u; #0and E(X +u+d) = true
1 d «CorrectForConstraint(C, s, X, u);
2 if £(X +u+d) then
// Found a solution, return.

L return d;

// Search for first violation, bisection on «.

41+ a;

s+ 1.0;

6 while |l —r| > edo

7 | m« (85w

8 d «CorrectForDesignConstraint(C, s, X, m);
9 | if E(X +m+d) then

10 L [+ ”TT;

11 else

12 L r+ B

13 D, t +~AddDynamicConstraints(X + /- u, X + 7 -u,C,s);
14 if D, t = C, s then
// No new constraint could be added: return best found so
far.
15 return !/ - u;

// recurse.
16 return DynamicEffectivenessConstraints(X, u, /)

function AddDynamicConstraints considers the points just before and just after
constraint violation, and adds the equality constraints required to resolve the case. For
instance, if a part collides an inner volume of height H, it adds a constraint to keep the
colliding part at a distance of H of the part supporting the inner volume. This is a very

flexible approach allowing for a variety of design effectiveness constraints.

5.3.5.2 Design Constraints Enforcement

We now describe how to recover a valid point while attempting to preserve the lat-
est changes made by the system. Let us consider a design point X + u that violates
some design constraints, i.e., C(X + u) # s. We seek a correction vector d such that
C(X + u + d) = s while preserving the changes applied by the system, that is d; = 0
for all 7 such that u; # 0. Note that we can ignore design effectiveness constraints
(E(X)) as they are taken care of by the parent algorithm presented in Section
In general, there are many possible solutions as the system is under-constrained.
This ambiguity amounts to valid design choices. In addition to preserving the value

of the variables being manipulated, it is also desirable to limit the number of variables

70 Chapter 5. Guidance by Material Usage

being adjusted by d, so that variables seemingly not involved in the current user edits
remain unchanged. In other words, we seek a sparse correction vector d. This con-
centrates the changes on a few parts in the design, which results in a more predictable

interaction.

Our approach is inspired by the works of Bokeloh et al. [BWSK12] and Habbecke
and Kobbelt [HK12]. The key idea is to solve for d using only a subset of the variables
in X. Let us denote canonical basis vectors By = (0,...,1,...0) with & — 1 leading

zeros, and A a set of variable indices that are allowed to change. Then, we can express

Algorithm 6: CORRECTFORDESIGNCONSTRAINT
Input: Linear system of constraints C, s, a valid design point X, a vector of

changes u
Output: A correction vector d such that C(X + u +d) = s and d; = 0 where

1 A0
2d=0;
3r=C(X+u+d)-s;
4 while frue do
5 N < {variables from non-satisfied constraints (r; # 0)};
6 | T+ N\(AU{ilu; #0});
7 if 7 = () then

// Cannot solve: revert.
8 Fail;
9 foreach v; € T do

// Estimate how variable will move.

// Variable wv; corresponds to column ¢ in C.
10 m = —clr/clc;;
11 score(v;) = 0;
12 if v; € {I*,1Y,1*} and m violates min length on v; then

// Preserve min edge length constraint.
13 score(v;) = —o0;
14 else if v; € {I*,1,(*} then
// Penalise change in length.

15 score(v;) = —|ml;
16 if score(v;) > score(b) then
17 L b+ v;

18 A=AU{b};

19 d = SolvePartialCorrectionVector(A,C,s,X + u);
20 r=C(X+u+d)—s;

21 | if ||r]| < e then

2 L return d;

5.3. Interactive Design Layout Optimisation 71

the correction vectord as: dy =), ca diBx. Hence, the system takes the form:

forallk € A
dy, = > AiCik
dek'cik =85 —P-C

The system is often under-determined after removing variables. We solve it by QR
decomposition and computing the pseudoinverse of the system matrix. Given a set A,
solving for d, results in a residual e(dy) = |[|[C(X + dj) — s||. We accept solutions
when ||e(dy)|| < € with € a small constant (10~ mm in our implementation). We use
the Eigen library for solving all linear systems.

Our approach is inspired by Orthogonal Basis Pursuit [CDS98]], which greedily
selects the next variable based on the residual, until it becomes small enough. We

follow a similar greedy strategy using the following criteria to prioritise:
1. Change as few variables as possible, which is minimising |A|.

2. Avoid changes that would violate the minimal part lengths, which is where [{ +
d; < Mla .

3. Avoid changes to the part lengths, and favour changes in part positions instead.
Indeed, length variables are generally more important than the positional vari-
ables: most furniture designs are fully connected, and hence part lengths are

enough to describe the full design up to a translational degree of freedom.

The algorithm for variable selection is given in Algorithm [6| Function
SolvePartialCorrectionVector implements the projection using a subset
of the variables. We initialise A with the indices of the variables of newly added parts,
so that they are changed first and do not impact the current design. Thus, A will never

contain indices such that u; # 0, and thereby protect the changes made by u.

5.3.5.3 Failure Cases

The system can fail to solve (see Algorithm [6] line 8 and Algorithm [5] line 15). This
typically happens if the user makes contradictory changes (e.g., attempting to modify
the length of a part having a fixed length constraint), or when the inner/outer volume
constraints cascade into a similar contradiction.

In such cases, the user can choose to violate the constraints. The system then
provides a visual feedback of the constraints in error. Alternatively, the user may also
choose to accept the partial solution proposed by the system. When the system is calling
the solver, as is the case for the suggestion system described in Section[5.3.3] the latter

option is always used.

72 Chapter 5. Guidance by Material Usage

5.4 Automatic Design Layout Optimisation?

The wastage of a layout depends essentially on two factors. The first factor is the quality
of the packing that can be achieved, given a fixed set of design parts. The second factor

is the set of parts itself, which can be changed through the design parameters X.

In our approach, we pack the parts using a deterministic docking algorithm that
always produces the same result for a same ordering of the design parts. Therefore, a
first optimisation variable is the order in which the parts are sent to the docking algo-
rithm. The second optimisation variable is the vector of design parameters X. These
two variables have different natures: finding an ordering is a combinatorial problem

while the design parameters can be continuously explored.

We therefore proceed in two main steps, first determining a set of good order-
ings that then serve as starting points for continuously evolving the design, reduc-
ing wastage. The overall approach is described in Algorithm [/l The subroutine IM-
PROVEDESIGN is described in Section[5.4.2] while EXPLOREORDERINGS is described
in Section[5.4.3] The process restarts for a number of iterations (we use G = 3) to jump
out of local minima reached by the continuous design exploration. This results in the
shape space exploration illustrated in Figure[5.5] The process returns the K best found
layouts and designs and presents them to the user in thumbnails. She can then select
her favourite design, and if desired update the constraints and restart the exploration
from this point — which simply calls MINWASTAGE again.

The work in this section is done by Jean Hergel (INRIA Nancy - Grand-Est).

Algorithm 7: MINWASTAGE
Input: Design function D, starting design parameters X
Output: Set of best layouts found £
1 O < identity ordering ; // 1,2,3, ...
X {(X&Os)};
for G iterations do
foreach (X,0) € X do
O < EXPLOREORDERINGS(X, O);
foreach O € O do
| X < XU {(IMPROVEDESIGN(X, 0),0)};

N A B AW

8 | X + KEEPBESTS(K,X);

9 L« 0
10 foreach (X,0) € X do
u | £+ LUDOCKING(D(X),0);

12 return (£);

5.4. Automatic Design Layout Optimisation 73

Algorithm 8: IMPROVEDESIGN
Input: Starting design parameters X and ordering O
Output: Modified design parameters X; with reduced wastage

1 L <+ DOCKING(D(X),0);

2 Xy X, Ly <+ L;

3 X« X, L.+ L;

4 for N iterations do

5 Xy, Ly <~ GROWPARTS(Xy, Ly, X, L., O);

X, < SHRINKPARTS(X, Ly);

L. < SLIDE(Ly,D(X.,));

// Check for improvement over current.

if W(L.) < W(Ly) then

9 LXb:XcaLb:Lc;

6
7

=)

10 return (X,);

5.4.1 Bitmaps

During optimisation, we regularly call the parameterised design function D(X) to ob-
tain a new set of parts after changing parameters. The layout optimisation represents
parts internally as bitmaps: each part contour is rasterised at a resolution 7, typically
0.5 mm per pixel. This enables fast manipulation of the parts within the layout. Each
part thus becomes a bitmap having either 1 (inside) or 0 (outside) in each pixel. The
size of the bitmap matches the part extents in material space w; and h;. Every time the
design is refreshed a new set of bitmaps is computed for the parts. The master board is

similarly discretised into a regular grid of resolution 7.

5.4.2 Design Optimisation for Wastage Minimisation

The design optimisation improves the design parameters X to minimise wastage in
the layout, keeping the docking ordering fixed. It appears as the subroutine IM-
PROVEDESIGN in Algorithm 7] The pseudocode for this step is given in Algorithm [§]
Our objective is to suggest design changes that reduce wastage, progressively improv-
ing the initial layout. The algorithm performs a guided local search by changing the

parts — through the design parameters — to reduce wastage.

Prior to considering which parts to modify, we have to answer two questions: First,
how to drive the design parameters X to change only a given part (Section[5.4.2.2). This
is achieved by relying on the gradients of the part size with respect to X. Second, we
have to decide on how to evolve the layout when parts are changed (Section [5.4.2.3).
We rely on a sliding algorithm that avoids jumps in the layout configuration, thus pro-
ducing only small changes in the wastage function when small changes are applied to

the part sizes.

74 Chapter 5. Guidance by Material Usage

5.4.2.1 Overall Strategy

Our approach changes the size of parts iteratively with two different steps in each iter-
ation: grow (line [3) and shrink (line [6). These steps progressively modify the design
and keep track of the design of smallest wastage encountered so far.

The grow step (Section[5.4.2.4) attempts to enlarge the part lengths so as to reduce
wastage. Each part is considered and its size is increased for as long as the growth
further reduces wastage. When no further improvement can be obtained, we create
further opportunities by shrinking a set of parts (Section [5.4.2.5)). However, randomly
shrinking parts would be inefficient, as most parts would grow back immediately to
their original sizes. Other parts are tightly coupled to many others in the design D, and
shrinking these would impact the entire design. Therefore, we analyse the layout to

determine which parts have a higher probability to result in wastage reduction.

5.4.2.2 Changing Part Sizes

During design space exploration, the algorithm attempts to vary the part sizes w; and
h; individually. These dimensions vary as a function of design parameters X. In the
remainder, we use s(X) to designate the vector of all part sizes assembled such that
So; = w; and Sg;1 = h;.

Let us denote A the change of size desired on s;. Our objective is to compute a
design change A such that 5;(X + A) = s;(X) + A\. We denote the vector of changes
as A = s(X + A) — s(X). In this process, only the size s; should change while others
remain unchanged whenever possible, i.e., Asj j#i = 0and Ay, = A

Parts are not independent in the design and therefore there is no trivial link between
X and s;(X). We therefore analyse the relationship through the gradlents () These
are computed by local finite differencing (depending on the design, analytlcal expres-
sions may be available). Each non-null gradient indicates that parameter x; influences
s;. Multiple parameters may influence s; and parameters typically also influence other
variables: there exists k # ¢ such that 88’“ 7& 0.

To compute A, we formulate the followmg problem. Let us consider the compo-
nents of A = (o, ..., 0x|—1). The change in part sizes due to A can be approximated
in the first order through the gradients as A =). 6; - 8S(X) . We solve for A such that
Ag, = Xand Ay, 2 = 0.

If there are less parameters than part sizes, the problem is over-constrained and

solved in the least-squares sense, minimising ||A — (0, ..., A, ..., 0)||?. If there are more
parameters than part sizes, the problem is under-constrained and solved in the least-
norm sense, minimising ||A||. We rely on a QR decomposition of the system matrix
to solve for both cases, accounting for possible rank deficiencies due to overlapping
parameters in X.

We implement this process as a subroutine CHANGEPARTSIZE(X,s;,\), with

5.4. Automatic Design Layout Optimisation 75

Figure 5.13: Sliding. Sliding a layout after a change of part sizes. Top: From left to right, initial
layout, same after change revealing overlaps, layout after sliding. Bottom: Moves performed
on the three first parts during sliding.

X the current design parameters, s; the part size to change and A\ the change
to apply. It returns the new design parameters X + A. A second subroutine
CHANGEPARTSIZES(X,A) allows to change the size of multiple parts at once.

5.4.2.3 Updating Layouts by Sliding
As the shapes and sizes of the parts change, the layout has to be updated. One option

would be to restart the docking process after each change. However, for a small change
the docking process can produce large discontinuities in the wastage function. This
makes a local search difficult. Instead, we propose to rely on a sliding operation that
attempts to continuously update the position of the parts after each change. Note that
performing such an update while optimising for a given objective (i.e. wastage) is a
very challenging combinatorial problem, as each part can move in four directions (left-
/right/top/bottom) and multiple cascading overlaps have to be resolved. We propose a
heuristic approach that works well for small changes in the part shapes.

The algorithm is based on the following principle. After changing the part shapes,
we reintroduce them in an empty layout in order of docking. However, each time a part
is reintroduced it may now have empty space to its left/bottom or it may overlap with
previously placed parts. Both cases can be resolved by a single horizontal or vertical
move. However, a single move is generally not desirable as empty space may remain
along the other direction. We therefore perform a limited sequence of horizontal/ver-
tical moves. At each iteration we select between vertical or horizontal by favouring
moves that result in the smallest layout bounding box. In case of a tie, we favour
moves to the left/bottom versus displacements to the top/right. This is illustrated in
Figure[5.13]

The pseudocode is given in Algorithm [0} In the algorithm, we denote by L the
layout and denote by L <1,,,5 p; the layout obtained when adding part p; at position pos
in the master board grid of L. A(.) measures the area, boz (L) is the bounding rectangle

76 Chapter 5. Guidance by Material Usage

Algorithm 9: SLIDE

Input: current layout C' = (ug, vy, ...) and set of changed parts parts
Output: updated layout L

1 L+ 0
2 foreach part p; € parts in docking order do
3 for N iterations do
4 A, < —smallestLe ftFreelnterval(L,p;);
5 if A, = () then
6 L A, < smallestRight Decollision(L, p;);
7 POSy <— (uz + Amy Ui) ;
8 A, « —smallest BottomFreelnterval(L, p;) ;
9 if A, = () then
10 L A, + smallestTopDecollision(L, p;) ;
1 posy — (u;,v; +Ay) ;
12 if pos, = () and pos,, = () then
y// cannot fit in the master board.
13 return 5 // W(0) =1
14 if pos, = pos and pos, = pos then
15 L break;
16 if A(box(L <pos, pi) < A(box(L <pos, p;i)) then
17 L (s, v;) < POS,
18 else if A(box(L <pos, pi) > A(box(L <pos, pi) then
19 | (ui, ;) < pos,
20 else
21 if A, <Ay and|A,| > 0 then
2 L (u;, v;) = POSy
23 else
24 L (ui, v;) <= pos,
25 | L+ L L(u; ;) Pi

26 return (L);

of the layout. The algorithm iterates over all parts in docking order (line [2)). It then
performs a fixed number of sliding operations on each part (line [3) — we use N = 4
in our implementation. Lines compute a horizontal move, favouring moves to the
left that collapse newly created empty spaces. Lines [B{I1] similarly compute a vertical
move. Lines [[6]24] decide whether to select a horizontal move pos, or vertical move
POSy,.

The process may fail if parts can no longer fit in the master board. This can happen
either because there is not enough remaining area, or because sliding cascades in large
moves that prevent further insertion of parts. In such cases we return an empty layout

which by convention has a wastage of 1 (worst possible), line [I3]

5.4. Automatic Design Layout Optimisation 77

5.4.2.4 Grow Step
The grow step is described in Algorithm The algorithm iterates over all parts in

random order (line [4)) and progressively increases the size of a part in a loop (line [7).
Note that the first iteration of the loop determines the starting wastage for growing this
part (lines [5]and [I2HI3). The process continues until the growth results in an increased
wastage (line [I3).

After each change of parameters the design parts are recomputed (line @, D(X,))
and sliding is called to adapt the current layout to the change. The result is checked. If
wastage decreases the process continues (line [I3)). If not, we first attempt to dock the
parts again (line[TT]). This can help continuing the growth in cases where sliding fails
to resolve overlaps by continuous changes. If wastage still does not improve, we stop
the growth of this part size (line [I3).

5.4.2.5 Shrink Step

The goal of the shrink step is to create further opportunities for design changes when no
parts can further grow. The typical situation is that a subset of parts are forming locking
chains between respectively the left/right and top/bottom borders. The parts belonging
to these chains prevent any further growth. We therefore detect locking chains and
select the parts to shrink among these. This often results in a change of aspect ratio of
the master board, and new opportunities for other parts to grow.

The overall approach is described in Algorithm I1] It first determines which parts
to shrink by calling SELECTPARTSIZESTOSHRINK and then computes a change of
parameters using the approach described in Section [5.4.2.2]

The core component is the SELECTPARTSIZESTOSHRINK subroutine, described
in Algorithm The selection starts by gathering all contacts between parts in the
layout — this is done efficiently in the discretised layout grid. We first draw the part im-
ages into the grid and then check pairs of neighbours belonging to different parts. This
produces the set of left/right and top/bottom contacts between part sizes (the involved
part size is deduced from the part orientation and the considered axis). The contacts are
oriented from right to left (respectively top to bottom). We similarly detect which parts
touch the borders. The contact detection is implemented in the GATHERCONTACTSA -
LONGAXIS subroutine.

Once the contacts are obtained, we start from the right (respectively top) border
and form locking chains. Starting from the border, we produce the set of chains iter-
atively. Each chain c is a sequence (left, Sirst, ..., Siast)- At each iteration, the chain
spawns new chains for each contact pair (Sjas:, Snert) Obtained by augmenting c as
(left, Sfirst, ---, Siasts Snext). Potential cycles are easily detected as repetition of a same
part in the chain and are ignored. The locking chain computation is implemented in the
FORMCONTACTCHAINS subroutine.

78 Chapter 5. Guidance by Material Usage

We next randomly select part sizes to shrink until all locking chains are removed.

The selection probability of each part is designed to avoid too large a jump in the design

Algorithm 10: GROWPARTS
Input: Best design parameters X; and layout L, so far, current design
parameters X, and current layout L. being explored, ordering O.
Output: New best design and packing.

1 improvement <— true;
2 while improvement do
3 improvement < false,
4 foreach part size s; in random order do
5 W, <+ 1;// max wastage.
6 X, X, Lo+ L.;
// Grow at first time and then continue as long as it
improves.
7 while frue do
8 X, < CHANGEPARTSIZE(X,s;,1) ; // +1 pixel.
9 L. < SLIDE(L,D(X,));
10 if W(L.) > W, then
11 | Le < DOCKING(D(X.),0);
12 if W(L.) < W, then
13 L W, =W(L,);
14 else
15 L break;
// Check for improvement over current.
16 if W, < W(L,) then
17 X.=X,, L. = L,;
18 L improvement <— true;

// Check for improvement over global best.
1 if W(L.) < W(Ly) then
20 L Xy = X, Ly = L;

21 return (X, Ly);

Algorithm 11: SHRINKPARTS

Input: Best design parameters X, and layout L, so far.
Output: Shrunk design parameters.

1 X, « X,
2 § + SELECTPARTSIZESTOSHRINK(Ly);
3 A+ (0,...,0);

4 foreach s; € S do
5 L Aj+ —1;// -1 pixel.

6 X, < CHANGEPARTSIZES(X,A) ; // -1 pixel.
7 return (X,);

5.4. Automatic Design Layout Optimisation 79

Algorithm 12: SELECTPARTSIZESTOSHRINK
Input: A layout L.
Output: Set of part sizes to shrink.

1 K« 0;

2 foreach axis a € {X,Y} do

3 L C <+~ GATHERCONTACTSALONGAXIS(a) ;

4 K < K U FORMCONTACTCHAINS(C) ;

S+ 0;

while C # () do
s; + DRAWPARTSIZEWITHPROBABILITY(K);
K < K\ KILLEDCHAINS(K,s,);

10 return S;

e X N &

space. To achieve this, we consider two factors. First, we compute the number of
occurrences of each part in the locking chains, occ(p;). A part with many occurrences
is a good candidate as shrinking it will resolve multiple locking chains at once. Second,
we seek to avoid shrinking part sizes that are tightly coupled with others in the design
D. We compute the dependence of a part size by counting the number of non-zero
entries in the A vector computed internally by CHANGEPARTSIZE(X,,s;,—1).

We select part sizes with the following random process. First, we select a num-
ZpivOCC(m):o oce(o)

ber of occurrences o with probability P(o) = . Then, among the parts

5, occ(r)
such that occ(p;) = o we select a part size s; with probability P(s;|occ(s;) = o) =
1 - dep(s:) . This process is implemented by the DRAWPARTSIZEWITH-

Zpi ,oce(p;)=o0 dep(p'i)
PROBABILITY subroutine.

After each part size selection, we update the set of locking chain by removing all

chains where the part size appears.

5.4.3 Exploring Orderings

The subroutine EXPLOREORDERINGS in Algorithm [7] performs a stochastic search of
orderings resulting in low wastage layouts. The process starts from a random order and
iteratively considers possible improvements by swapping two parts. At each iteration,
we perform a swap and recompute a layout using the docking algorithm. If wastage
is reduced, the swap is accepted. Otherwise, it is rejected. We apply the process for
a number of iterations and keep the best ordering found as the starting point. We use
| D(X)|? iterations, where | D(X)]| is the number of parts. For each ordering, we use a

fast docking algorithm to compute a layout with low wastage.

5.4.3.1 Docking Algorithm
The docking algorithm places each part in order by ’dropping’ the next part on the

current layout either from the right, or from the top. It locally searches for the best

80 Chapter 5. Guidance by Material Usage

ie e

Figure 5.14: Height-fields. Layout height-fields used to position the next part. Left: Height-
field for dropping parts from the right (red curve). Right: Height-field for dropping parts from
above (green curve). These height-fields are maintained every time a new part is added to
the layout, and used for fast computation of the docking positions. Similar height-fields are
pre-computed for the left/bottom of the parts.

placement of each part, according to a criterion that minimises wastage. The result is a
layout L including all parts.

Given the layout so far, our algorithm searches for the best orientation and best
position for the next part. We denote by L;_; the layout obtained for the : — 1 first
parts, and by L; <— L;_; <1, p; the layout obtained by adding the next part at position
pos. The docking position pos is computed from a drop location (s, z,0), with s €
{top, right}, x a position along the corresponding axis and o € {0, 7/2, 7, —7/2} an
orientation.

The pseudocode for the docking algorithm is given in Algorithm [I3] The drop
locations are ranked according to a docking criterion that we denote D(L;_1, p;, pos),
explained next. The docking positions are computed from the drop locations by the
ComputeDockingPosition subroutine. It is efficiently implemented by main-
taining the right/top height-fields of the current layout as illustrated in Figure [5.14]
Whenever evaluating a drop location, we use the height-fields to quickly compute the

docking positions that bring the part in close contact with the current layout.

5.4.3.2 Docking Criterion

The docking criterion considers wastage as the primary objective, where wastage is
defined by the ratio of occupied area divided by the bounding rectangle area of the
layout. We denote W (L;) the wastage of a layout including up to part 4. It is obtained
asW(L;) = % where A(.) measures area and box (L) is the bounding rectangle
of the layout. W is therefore the ratio between the area of the parts and the area of the
bounding rectangle.

However, as the algorithm heuristically docks parts in sequence, it cannot foresee
that some spaces will be definitely enclosed. In particular, for newly inserted concave
parts, there are often multiple orientations of the part resulting in the same wastage: if

the concavity remains empty, there is no preferred choice. However, some choices are

5.5. Results 81

Algorithm 13: DOCKING
Input: Set of parts P, order O, master board dimensions W x H
Output: A layout L
1 foreach part p; € P following order in O do
best + () ;
bestscore < 1 ;
foreach drop location (s, z,0) do
pos < ComputeDockingPosition(p, (s,x,0));
score < D(L;_1,p;, pos) ;
if score < bestscore then
best < pos ;
bestscore <+ score ;

e e N AN Bt A WN

0 | Li < Li—1 <pos i ;

11 return L,;

indeed better than others. If the concavity faces an already placed object, then further
docking within the concavity will never be possible. This is illustrated in Figure
left.

We therefore propose a second criterion that discourages these bad choices. The
idea is to estimate the space that will be definitely enclosed when a part is added to
the current layout. This is done efficiently by considering the enclosed space between
the height-field of the current layout and the height-field of the added part, along both
horizontal and vertical directions.

Let H" (L) (respectively H") be the right (respectively top) height-field of layout
L and A(H"(L)) the area below it. The enclosed area is then defined as:

E(Li—l,Pi,POS) =
> max (0, A(H*(Li—1 <pos pi)) — A(H*(Li—1)) — A(pi))

se{rt}
with A(p;) the area of part p;. Note the max that clamps negative values: this is due to
cases where the part nests in a concavity below the height-field of the other direction.
The enclosed space is used as a tie-breaker when docking positions produce

the same wastage values; therefore D(L;_1,p;, pos) returns the vector (W (L;_; <pos
pi), E(L;_1, pi, pos)). The effect of the enclosed area criterion is shown in Figure

5.5 Results

We used our system for various design exploration tasks. As the complexity of the
designs grows beyond 4-6 parts, the utility of the system quickly becomes apparent. It
is very difficult for novices, and even for professional designers, to predict the effect of

82 Chapter 5. Guidance by Material Usage

Figure 5.15: Docking. Two layouts obtained with the same docking order. Left: Without
taking enclosed area into account, the first part is placed with the concavity against the bottom
packing border. This prevents the second part to nest within and cascades into a series of poor
placements. Right: Taking into account enclosed areas results in a placement of the first part
that allows nesting of the second part and produces a layout with lower wastage.

changing a part size when there are many parts which have constraints on each other.
A size change in one part may result in changes in multiple parts in the layout, which
will lead to a change in the material usage of the layout. Therefore, it is very challeng-
ing and time-consuming to change the design while maintaining low material wastage
without computational supports. Technically, the design constraints (see Figure [5.T1)),
by coupling different object parts, make the optimisation challenging by preventing in-
dependent adaptation of part sizes. By offloading material usage considerations to the
system, the user can focus on the design. Note that even when changes to the design

are visually subtle, material utilisation often increases significantly.

5.5.1 Design Examples

We used our system to design and fabricate a range of examples comprising rectangular
and/or curved parts. We fabricated full-scale and miniature models of designed furni-
ture. Models were made from MDF of 3 mm thickness and MDF of 30 mm thickness.
MDF refers to medium-density fibreboard. It is made from wood and is often used for
laser cutting. The designs are easy to manufacture in batches since they typically fit
master boards completely after design layout optimisation: there is no need to attempt
to reuse leftover pieces of wood, and switching boards requires little clean-up.

Our system directly outputs the cutting plan for the laser cutter or CNC milling
machine from the design layout. It also adds connectors for parts sharing an edge, if
needed, for assembly. These are conveniently detected since parts exactly overlap on
edges in the 3D design. The connectors are either finger joints, which are both strong
after gluing and easy to assemble; cross connectors for interleaved parts, or dowel-
jointed for thicker materials (20 mm and 30 mm thickness).

Figures [5.16] and [5.17] show various results. Also, Figure [5.19] shows a shelf in
use, which was designed using our system. Please note that designs with curved parts

5.5. Results 83

input design input layout

(a) parrot shelf

(b) low chair

%

i raw
' i‘ ““““““ L?

(
(d) chest

Figure 5.16: Curved designs. Designs created using our system. Each design is shown with
initial shape, starting layout, optimised layout and final design. (a) is a constrained model
while (b)-(d) are parametric models. The fourth row shows the fabricated models of the chest
(left) and yin chair (right).

84 Chapter 5. Guidance by Material Usage

(Figures [5.1] and [5.16) are generated by the interactive method (Section [5.3) while
those with rectangular parts (Figures[5.17)and [5.19) are by the automatic method (Sec-
tion[5.4)). Table [5.1] gives an overview of the complexity of each model, and the gains
obtained by the layout optimiser. The system performs at interactive rates on a laptop
taking from a few seconds to 3-4 minutes for the larger examples. Note that the speed

depends on how many exploration threads are pursued.

Figures [5.1and [5.16] show results for objects with curved parts. Figure 5.6 shows
some intermediate shapes as the design evolves for the coffee table (Figure [5.1)) and
the low chair (Figures [5.16| top) examples. Figure [5.18]shows alternative designs dis-
covered by the algorithm for the parrot shelf. While they have slightly lower material

usage, they offer interesting variations that the user might prefer.

"1l

Figure 5.17: Fabricated examples. Various material-driven design and fabrication examples.
In each row, we show initial design (with material space layout inset), optimised design result
(with material space layout inset), along with final cut-out assembled model. In (d), two master
boards are used for the large design. Note that the design changes are often subtle, but still
lead to significant improvement in material usage.

5.5. Results 85

Figure 5.18: Multiple designs. Two different design suggestions (green has ratio 0.86, blue
has ratio 0.85) for the parrot shelf. Original design with another design suggestion is shown in

Figure[5.16]

Table 5.1: Statistics for cut designs. Statistics for cut design showing the number of parts, num-
ber of constraints, material usage ratio before and after the design suggestions/optimisation.

f#parts | #constraints | ratio before | ratio after
Figure|5.1 4 21 0.78 0.89
Figure|5.16a 7 33 0.66 0.92
Figure|5.16b 9 N/A 0.66 0.80
Figure|5.16¢ 8 N/A 0.76 0.83
Figure[5.16d | 16 N/A 0.79 0.86
Figure|5.17a 6 22 0.85 0.96
Figure/5.17p | 11 41 0.85 0.97
Figure|5.17¢ 8 13 0.74 0.97
Figure[5.17d | 16 29 0.89 0.98

The example in Figure [5.1] was fabricated using a CNC milling machine. The
optimised design achieved nearly 90% material usage, although one can achieve null
wastage by deciding to pick a rectangular top (by editing the shape in the system) — a
decision that can be made after layout optimisation as this opportunity is revealed. An

86 Chapter 5. Guidance by Material Usage

Figure 5.19: Fabricated furniture in use. Optimised (top) and fabricated (bottom) shelf. Note
that although the improvement in this case was 10%-, this is an easy example as large number
of parts provide extra design freedom for the algorithm to explore.

allowable range was specified for the height and the bases were marked symmetric as
input design constraints. In the case of the parrot shelf (Figure[S.16p), the user indicated
minimum and maximum range for the horizontal shelves along with desired range for
the shelf heights.

As described, parametric designs are easily supported and optimised for in our
framework. Figures [5.16p-d show three such examples. In each case, additional con-
straints were provided to keep the objects within a given volume. The parts of the

objects are all tightly coupled making these challenging examples to optimise for.

Figure shows a L-shaped worktable. The user specified a target height for

5.5. Results 87

(a) comparison of packing strategies o init (b) steps in an exploration run
0.9

I ours
[baseline

o grow

08F o shrink

07k final

0.6

usage
usage

05

04f

0.3

0.55 0.2

| |
0 100 200 300 400 0 5 10 15
different runs exploration steps

(c) usage improvements over different runs (coffee table) (d) usage improvement over different runs (parrot shelf)

@ @ @ @ @ @ @ @ 090

0.85 @ @ @ (&) 4]) @ @
0.85 [6)
@ (6] (6] @
% 0.80 :.j.) (9} (9} (0} o (9] (9]
@ @ @ o 080
=} =}
(0]
0.75
(&) 0.75
(6]
I ours ? I ours
°7°!f [baseline °7°T [baseline
T

8 8

. 4 .
* different runs different runs

Figure 5.20: Comparison. Comparison of our algorithm against baseline alternatives. Higher
is better. Please refer to the text for details.

the design and a maximum work volume. Note that the legs of the table were also
constrained not to change more than 25% of original dimensions to prevent unwanted
design changes. Figure [5.17p shows a coupled shelf and table design where the height
of shelves and tabletop were similarly constrained. Figure[5.17k shows a stylised chair,
where both the chair seat height and chair width were constrained not to change beyond
a margin. Figure shows multiple designs covering 2 master boards. The second
master board is used as an overflow when docking can no longer fit a part in the first.
The layouts are slid independently.

5.5.2 Comparison

We now evaluate the relative importance of the key algorithm steps. Figure[5.20a shows
the importance of the docking criteria introduced in Section[5.4.3] We ran 500 random
runs of our proposed packing algorithm with (‘ours’) and without (‘baseline’) the dock-
ing criteria on the coffee table example. We sort the runs based on resultant usage (no
shape optimisation is performed here) and plot the two conditions. The docking criteria
consistently resulted in 10-15% better usage.

Figure [5.20b shows usage improvement over one exploration run on the coffee

table sequence. The legend explains which step (grow, shrink, etc.) is being performed.

88 Chapter 5. Guidance by Material Usage

(b) material-guided design

(a) input design (c) fabricated design

Figure 5.21: Example by an art student. From the concept sketch and initial 3D model created
out of the sketch (a), the art student generated a design with less material usage (b), which was
fabricated later.

While this is the result from a single thread, many similar threads are simultaneously
explored. The few best results are then presented to the user as suggestions.

Figures [5.20c-d compare the importance of analysing the material space layout
to decide which part to change and how. As a baseline, we selected parts at random
and perform either a grow or shrink sequence with equal probability. Note that our
method consistently outperforms the alternative approach and we only show the usage
improvements up to 8 runs because the usages for our method and baseline do not

change much with more runs.

5.5.3 Design Sessions

We asked second year art students (6 subjects) from a design college to try our system.
Figures [5.17p-d show a selection of their designs. These particular students had per-
formed a very similar task as part of their first year assignment — ‘design furniture of
your choice making best use of the provided piece of MDF board.” Hence, they were
very aware of the implicit link between design and material usage. Previously, they
had used commercial 3D modelling tools (Rhinoceros, SolidWorks, SketchUp) for de-
signing and mainly Illustrator for manually laying out the designs. They recalled the
frustration of having to switch between the different 2D-3D design representations and
tools. First, the students sketched design concepts before using our system. Then, they
used the exploration interface on their designs to reduce wastage. Note that visually the
initial sketch and final design can look similar despite the increase in material utilisa-
tion, which is desirable because it means that the original design, i.e., design intent, is
preserved (see Figure[5.21]).

Overall, the feedback from the students was positive. They appreciated being able
to easily move between 2D and 3D in one unified tool, and not having to explicitly
worry about material utilisation. They appreciated the design suggestions as well, in-

stead of previous attempts using trial-and-error iterations between various softwares to

5.6. Conclusions and Future Work 89

reduce material wastage while trying to retain the original design intent.

5.5.4 Limitations

Currently, the algorithm can only make topological changes only for parametric mod-
els. It will be an interesting future direction to allow topological changes for con-
strained models. Also, our docking approach cannot nest parts into holes in other parts
because parts can only slide but cannot jump over other parts. An advanced algorithm
would be required to achieve this task. A more material-induced restriction arises when
the starting layout does not leave much space to optimise over. This effectively means
that the degree of freedom for the design is low. Adding more parts does reduce this
problem as it provides additional freedom to the system. However, beyond 25-30 parts,
the exploration of the shape space becomes slow because there are too many paths to
explore. One option is to limit the exploration to only a subset of parts at a time, but

then again, very desirable design configurations may be missed.

5.6 Conclusions and Future Work

In this chapter, we investigated how design constraints and material usage can be linked
together towards form finding. Our system dynamically discovers and adapts to con-
straints arising due to current material usage, and computationally generates design
variations to reduce material wastage. By dynamically analysing 2D material space
layouts, we determine which and how to modify object parts, while using design con-
straints to determine how the proposed changes can be realised. This interplay results
in a tight coupling between 3D design and 2D material usage and reveals information
that usually remains largely invisible to the designers in the currently available tools,
and hence difficult to account for. We used our system to generate a variety of shapes
and demonstrated wastage reduction by 10% to 15%.

Currently, the stability of the fabricated furniture nor the durability of the joints are
not accounted for in the system. It will make the system more useful for the fabrication
of full-scale furniture if these are integrated into the system as design constraints. A
support for other materials that can bend such as plastics will help the user design and

fabricate other types of interesting designs.

Chapter 6

Conclusions

We have been investigating the main challenges in computational fabrication and how
to address them in this thesis. The design process for making products or fabricating
customised objects is typically a set of iterations of analysis, ideation, prototyping and
evaluation until the design converges to an optimal one, which solves the problems we
would like to address with the objects. Though prototyping has become easier, cheaper
and faster thanks to the recent developments in the technologies such as 3D printing
and laser cutting, a main difficulty remains: creating a design. Creating a design which
satisfies high-level goals, e.g., functional relationships between parts in the object or
minimal material wastage, is not trivial even for professional designers. This is because
low-level geometric features such as vertices, edges or faces, should be manipulated for
achieving those high-level goals in the currently available modelling tools. The lack of
the user guidance with respect to the relationship between function/material usage and
the design in the current tools results in the trial-and-error approach in form finding,

which requires much time and resources.

In this thesis, we try to address this problem by creating computational tools that
the function and material usage are well integrated into the design process loop so that
the numerous iterations can be reduced. This will help the user explore the design
space more effectively, which will result in better designs. We verify this hypothe-
sis by creating computational tools for this purpose. We developed an interactive tool
that allows the user to design and fabricate mechanical prototypes by specifying high-
level functional relationship between parts (Chapter [d)). Various designs were created
using the system and fabricated using 3D printers. Our system is able to reduce the
effort of manipulating part dimensions and joint parameters laboriously, which leads to
faster iterations of design process. We also introduced a tool which suggests designs
and layouts that achieve minimal material wastage (Chapter [5]). Leftover materials af-
ter fabrication using subtractive manufacturing methods such as laser cutting or CNC
milling, have a negative effect economically and environmentally alike. Our system ef-

fectively optimises layouts and part shapes of a design while respecting design intent,

91

92 Chapter 6. Conclusions

specified as design constraints, so that the amount of remaining materials after cutting
out necessary pieces can be minimised. Provided that the relationship between a design
and its effectiveness of material usage is hard to assess before the actual fabrication of
the design, our tool helps the user create a design with minimal material waste with-
out taking the trial-and-error approach, i.e., a number of repetitions of designing and
fabricating.

Throughout the thesis, we sometimes made assumptions to simplify the very chal-
lenging problems. Our systems cannot deal with some useful cases occurring in the
real world. However, being the first effort trying to address the problems in these new

approaches, we hope that our research can attract more efforts into this domain.

6.1 Contributions

The contributions of this thesis are:

e (learly defined sets of constraints regarding function and material usage in the

design and fabrication process.
e Novel algorithms for generating designs subject to the constraints.

e Computational tools which guide the users to design objects that satisfy the con-

straints.

6.2 Limitations and Future Work

As the design paradigms guided by function and material usage proposed in this thesis
are rather new, there is much room for improvement and many new research directions.

Regarding the system guiding the user by function introduced in Chapter {4} the
system supports only cuboid shapes though this abstract representation is often suffi-
cient when the user would like to explore the design space focusing on the mechanisms
of the moving parts. Supports for arbitrary shapes, however, will help the user under-
stand the relationship between the function and design better because now the shape
of the prototype is more accurate and closer to the final product. Also, the types of
functions and types of corresponding joints supported in the system can be extended
to include more complex mechanisms. This will greatly increase the usefulness of the
system.

For the system guiding the user by material usage proposed in Chapter[5| we do not
consider the stability of the fabricated furniture nor the durability of the joints, which
is a critical factor for the furniture to function in the real world use. This could be in-
tegrated as dynamic constraints following previous work on furniture design [UIM12],
structural reinforcement [SVB™12]] and shape balancing [PWLSH13|]. Another impor-
tant future direction is to generalise the framework to handle other types of laser cut

6.2. Limitations and Future Work 93

materials than wood, e.g., plastic plates that can be easily cut and more interestingly
bend to have free-form shapes. Note that the packing problem will still be in 2D for
such developable pieces. This can help produce interesting free-form shapes, while still
making efficient use of materials.

For the general future research directions regarding computational fabrication,
data-driven modelling methods could facilitate designing new shapes as the collec-
tions of fabricable models, either manually designed or 3D scanned from real objects,
become larger. With this approach, a user of the system will be able to explore the
design space of fabricable shapes more easily. Also, other design modalities, such as
using natural language, are worth exploring. For instance, a system could generate a
fabricable design of bookcase from a verbal description from the user. Furthermore,
as the capability of 3D printers becomes greater, we can envision more interesting ap-
plications. If 3D printers are able to fabricate mechanical and/or electronic devices,
for instance, cars or robots, as already assembled entities, i.e., all the mechanisms and
circuits are printed with the appearance, or geometry, of the device, we can think of
a system that generates optimal designs that satisfy user-specified constraints. For ex-
ample, the user could ask the system to produce robot designs that can run as fast as
possible. It will be interesting to see how the system optimise the layouts of the circuits,
locations/shapes of joints and the appearance of a robot altogether to achieve the goal.
Moreover, as some buildings can be 3D printed already, we can imagine 3D printing
a whole building including lifts, water pipes, electricity lines, etc. Then, we could de-
velop a system that optimises the blueprint of the building with respect to the user’s
constraints, e.g., the purpose of the building (office, accommodation) or capacity (the
number of people who use the building per day). Similarly, we could expand this to
building a whole city, or a colony on Mars.

Appendix A

Publications

The work in this thesis appears in the following publications:

e Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh Agrawala, and Niloy J. Mitra.
Creating Works-like Prototypes of Mechanical Objects. ACM Trans. Graph.,
33(6):217:1-217:9, November 2014.

e Bongjin Koo, Jean Hergel, Sylvain Lefebvre, and Niloy J. Mitra. Towards Zero-

Waste Furniture Design. This work has been submitted to a journal.

95

Bibliography

[BBJP12]

[BBSO8]

[BFMO3]

[BRO8]

[BWSK12]

[CCAT12]

[CDS98]

[Cha83]

Moritz Bicher, Bernd Bickel, Doug L. James, and Hanspeter Pfister.
Fabricating Articulated Characters from Skinned Meshes. ACM Trans.
Graph., 31(4):47:1-47:9, July 2012. [17] 23]

Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. ILoveSketch:
As-natural-as-possible Sketching System for Creating 3d Curve Models.
In Proceedings of the 21st Annual ACM Symposium on User Interface
Software and Technology, UIST ’08, pages 151-160, New York, NY,
USA, 2008. ACM. [19]

BFM Ltd. Wood waste recycling in furniture manufacturing — a good

practice guide. Technical report, British Furniture Manufacturers, 2003.

Bl 52

Beat Briiderlin and Dieter Roller, editors. Geometric Constraint Solving

and Applications, volume VIIL. Springer, 1998. [21]

Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun.
An Algebraic Model for Parameterized Shape Editing. ACM Trans.
Graph., 31(4):78:1-78:10, July 2012. 21}

Jacques Cali, Dan A. Calian, Cristina Amati, Rebecca Kleinberger, An-
thony Steed, Jan Kautz, and Tim Weyrich. 3d-printing of Non-assembly,
Articulated Models. ACM Trans. Graph., 31(6):130:1-130:8, November

2012.

Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders.
Atomic Decomposition by Basis Pursuit. SIAM Journal on Scientific
Computing, 20(1):33-61, January 1998.

Bernard Chazelle. The Bottom-Left Bin-Packing Heuristic: An Efficient
Implementation. /EEE Trans. Comput., 32(8):697-707, August 1983. [60]

97

98

[CLM*13]

[CPMS14]

[CTN'13]

[CZL*15]

[DHL14]

[DL97]

[DO09]

[ESO9]

[FSY*15]

[GIMBO06]

Bibliography

Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark
Pauly. Designing and Fabricating Mechanical Automata from Mocap
Sequences. ACM Trans. Graph., 32(6):186:1-186:11, November 2013.

17, 23]

Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno.
Field-aligned Mesh Joinery. ACM Trans. Graph., 33(1):11:1-11:12,

February 2014.

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro
Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd
Bickel. Computational Design of Mechanical Characters. ACM Trans.
Graph., 32(4):83:1-83:12, July 2013. [T} [T7} 23]

Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qixing
Huang, Bedrich Benes, Daniel Cohen-Or, and Baoquan Chen. Dapper:
Decompose-and-pack for 3d Printing. ACM Trans. Graph., 34(6):213:1-
213:12, October 2015. 23] [52]

Jérémie Dumas, Jean Hergel, and Sylvain Lefebvre. Bridging the Gap:
Automated Steady Scaffoldings for 3d Printing. ACM Trans. Graph.,

33(4):98:1-98:10, July 2014. [T7} 24, 52

M. Daniel and M. Lucas. Towards Declarative Geometric Modelling
in Mechanics. In P. Chedmail, J.-C. Bocquet, and D. Dornfeld, editors,
Integrated Design and Manufacturing in Mechanical Engineering, pages
427-436. Springer Netherlands, 1997. 21]

G. Daian and B. Ozarska. Wood waste management practices and strate-
gies to increase sustainability standards in the Australian wooden furni-
ture manufacturing sector. Journal of Cleaner Production, 17(17):1594—
1602, November 2009. [51]

Koos Eissen and Roselien Steur. Sketching: Drawing Techniques for
Product Designers. BIS Publishers, Amsterdam, April 2009.

Chi-Wing Fu, Peng Song, Xiaoqi Yan, Lee Wei Yang, Pradeep Kumar
Jayaraman, and Daniel Cohen-Or. Computational Interlocking Furniture
Assembly. ACM Trans. Graph., 34(4):91:1-91:11, July 2015.

Gordon Brennan, John Brown, Mike Docherty, and Barrie Tullett. Flat-
Pack/PlaskaPaczka. The Caseroom Press, 2006. [52]

[GSMCO09]

[Hall2]

[HBA12]

[HIW15]

[HK12]

[Jy110]

[KB74]

[KLPO1]

[KLY*14]

[LBRM12]

[LJGHI1]

Bibliography 99

Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. iWIRES:
An Analyze-and-edit Approach to Shape Manipulation. In ACM SIG-
GRAPH 2009 Papers, SIGGRAPH ’09, pages 33:1-33:10, New York,
NY, USA, 2009. ACM. [2]]

Bjarki Hallgrimsson. Prototyping and Modelmaking for Product Design.
Laurence King, London, September 2012. 27| [2§]

Kristian Hildebrand, Bernd Bickel, and Marc Alexa. Crdbrd: Shape Fab-
rication by Sliding Planar Slices. Comp. Graph. Forum, 31(2pt3):583—

592, May 2012. [T7} 22

Kailun Hu, Shuo Jin, and Charlie C. L. Wang. Support slimming for
single material based additive manufacturing. Computer-Aided Design,
65:1-10, August 2015.

Martin Habbecke and Leif Kobbelt. Linear Analysis of Nonlinear Con-
straints for Interactive Geometric Modeling. Computer Graphics Forum,
31(2pt3):641-650, 2012.

Jukka Jyldnki. A Thousand Ways to Pack the Bin - A Practical Ap-
proach to Two-Dimensional Rectangle Bin Packing. Retrieved from
http://clb.demon.fi/files/RectangleBinPack.pdf, 2010. [18] [25] [60]

Don Koberg and Jim Bagnall. The Universal Traveler: A Soft-Systems
Guide to: Creativity, Problem-Solving, and the Process of Reaching
Goals. W. Kaufmann, Los Altos, Calif, revised edition edition, 1974.
10}

Tom Kelley, Jonathan Littman, and Tom Peters. The Art of Innova-
tion: Lessons in Creativity from IDEO, America’s Leading Design Firm.
Crown Business, New York, st edition, January 2001. [27]

Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh Agrawala, and Niloy J.
Mitra. Creating Works-like Prototypes of Mechanical Objects. ACM
Trans. Graph., 33(6):217:1-217:9, November 2014.

Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik.
Chopper: Partitioning Models into 3d-printable Parts. ACM Trans.
Graph., 31(6):129:1-129:9, November 2012. 25| [52]

Xian-Ying Li, Tao Ju, Yan Gu, and Shi-Min Hu. A Geometric Study of
V-style Pop-ups: Theories and Algorithms. In ACM SIGGRAPH 2011

100

[LSHT10]

[LSZ*14]

[MLBI12]

[MSM11]

[NPS2]

[Osb79]

[PGO8]

[PWLSH13]

[SBSS12]

Bibliography

Papers, SIGGRAPH ’11, pages 98:1-98:10, New York, NY, USA, 2011.
ACM. 23]

Xian-Ying Li, Chao-Hui Shen, Shi-Sheng Huang, Tao Ju, and Shi-Min
Hu. Popup: Automatic Paper Architectures from 3d Models. In ACM
SIGGRAPH 2010 Papers, SIGGRAPH °10, pages 111:1-111:9, New
York, NY, USA, 2010. ACM. [23]

Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin
Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen.
Build-to-last: Strength to Weight 3d Printed Objects. ACM Trans.
Graph., 33(4):97:1-97:10, July 2014.

Stefanie Mueller, Pedro Lopes, and Patrick Baudisch. Interactive Con-
struction: Interactive Fabrication of Functional Mechanical Devices. In
Proceedings of the 25th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST *12, pages 599-606, New York, NY, USA,
2012. ACM. 23]

James McCrae, Karan Singh, and Niloy J. Mitra. Slices: A Shape-proxy
Based on Planar Sections. In Proceedings of the 2011 SIGGRAPH Asia
Conference, SA 11, pages 168:1-168:12, New York, NY, USA, 2011.

ACM. T 22

J. Nievergelt and F. P. Preparata. Plane-sweep Algorithms for Intersect-
ing Geometric Figures. Commun. ACM, 25(10):739-7477, October 1982.
B8

Alex F. Osborn. Applied Imagination. Scribner, New York, June 1979.
(1]

D. T Pham and R. S Gault. A comparison of rapid prototyping tech-
nologies. International Journal of Machine Tools and Manufacture,
38(10-11):1257-1287, October 1998. [14]

Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-
Hornung. Make It Stand: Balancing Shapes for 3d Fabrication. ACM

Trans. Graph., 32(4):81:1-81:10, July 2013. [T7, 24 [52] 02]

Cloud Shao, Adrien Bousseau, Alla Sheffer, and Karan Singh.
CrossShade: Shading Concept Sketches Using Cross-section Curves.
ACM Trans. Graph., 31(4):45:1-45:11, July 2012. @

[SCMI13]

[SKSKO09]

[SLZ"13]

[SP13]

[SSL*14]

[SSM15]

[SVBT12]

[TGY09]

[UEO7]

[UIM12]

Bibliography 101

Daniel Saakes, Thomas Cambazard, Jun Mitani, and Takeo Igarashi.
PacCAM: Material Capture and Interactive 2d Packing for Efficient Ma-
terial Usage on CNC Cutting Machines. In Proceedings of the 26th An-
nual ACM Symposium on User Interface Software and Technology, UIST
’13, pages 441-446, New York, NY, USA, 2013. ACM. [I§] 23]

Ryan Schmidt, Azam Khan, Karan Singh, and Gord Kurtenbach. Ana-
lytic Drawing of 3d Scaffolds. In ACM SIGGRAPH Asia 2009 Papers,
SIGGRAPH Asia ’09, pages 149:1-149:10, New York, NY, USA, 2009.
ACM.

Tianjia Shao, Wilmot Li, Kun Zhou, Weiwei Xu, Baining Guo, and
Niloy J. Mitra. Interpreting Concept Sketches. ACM Trans. Graph.,

32(4):56:1-56:10, July 2013. [19] [20} [30]

Yuliy Schwartzburg and Mark Pauly. Fabrication-aware Design with In-

tersecting Planar Pieces. Computer Graphics Forum, 32(2pt3):317-326,
2013. 17, 22]

Adriana Schulz, Ariel Shamir, David 1. W. Levin, Pitchaya Sitthi-amorn,

and Wojciech Matusik. Design and Fabrication by Example. ACM Trans.
Graph., 33(4):62:1-62:11, July 2014. 23]

Maria Shugrina, Ariel Shamir, and Wojciech Matusik. Fab Forms: Cus-
tomizable Objects for Fabrication with Validity and Geometry Caching.
ACM Trans. Graph., 34(4):100:1-100:12, July 2015. 20} [52]

Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomir
Meéch. Stress Relief: Improving Structural Strength of 3d Printable Ob-
jects. ACM Trans. Graph., 31(4):48:1-48:11, July 2012. 24] 52

Jerry O. Talton, Daniel Gibson, Lingfeng Yang, Pat Hanrahan, and
Vladlen Koltun. Exploratory Modeling with Collaborative Design
Spaces. In ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia *09,
pages 167:1-167:10, New York, NY, USA, 2009. ACM. [215]

Karl T. Ulrich and Steven D. Eppinger. Product Design and Develop-
ment. McGraw-Hill, Boston, 4th edition, July 2007. [2§]

Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. Guided Explo-

ration of Physically Valid Shapes for Furniture Design. ACM Trans.
Graph., 31(4):86:1-86:11, July 2012. [T} 20 2]

102

[VGB*14]

[WWY*13]

[XCST14]

[XWY'09]

[XZCOC12]

[YCL*15]

[YvaO8]

[ZCCT12]

[ZFCO*11]

Bibliography

J. Vanek, J. A. Garcia Galicia, B. Benes, R. Méch, N. Carr, O. Stava,
and G. S. Miller. PackMerger: A 3d Print Volume Optimizer. Computer
Graphics Forum, 33(6):322-332, September 2014.

Weiming Wang, Tuanfeng Y. Wang, Zhouwang Yang, Ligang Liu, Xin
Tong, Weihua Tong, Jiansong Deng, Falai Chen, and Xiuping Liu. Cost-
effective Printing of 3d Objects with Skin-frame Structures. ACM Trans.
Graph., 32(6):177:1-177:10, November 2013. [I7] 24] [52]

Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James
McCrae, and Karan Singh. True2form: 3d Curve Networks from 2d
Sketches via Selective Regularization. ACM Trans. Graph., 33(4):131:1—
131:13, July 2014. [T9]

Weiwei Xu, Jun Wang, KangKang Yin, Kun Zhou, Michiel van de Panne,
Falai Chen, and Baining Guo. Joint-aware Manipulation of Deformable
Models. In ACM SIGGRAPH 2009 Papers, SIGGRAPH 09, pages
35:1-35:9, New York, NY, USA, 2009. ACM. [21]

Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. Fit and
Diverse: Set Evolution for Inspiring 3d Shape Galleries. ACM Trans.
Graph., 31(4):57:1-57:10, July 2012.

Miaojun Yao, Zhili Chen, Linjie Luo, Rui Wang, and Huamin Wang.
Level-set-based Partitioning and Packing Optimization of a Printable
Model. ACM Trans. Graph., 34(6):214:1-214:11, October 2015. [25]
52

Pierre-Alain Yvars. Using constraint satisfaction for designing mechan-
ical systems. International Journal on Interactive Design and Manufac-
turing (IJIDeM), 2(3):161-167, August 2008. 21]

Youyi Zheng, Xiang Chen, Ming-Ming Cheng, Kun Zhou, Shi-Min Hu,
and Niloy J. Mitra. Interactive Images: Cuboid Proxies for Smart Image
Manipulation. ACM Trans. Graph., 31(4):99:1-99:11, July 2012. 2]

Youyi Zheng, Hongbo Fu, Daniel Cohen-Or, Oscar Kin-Chung Au, and
Chiew-Lan Tai. Component-wise Controllers for Structure-Preserving
Shape Manipulation. Computer Graphics Forum, 30(2):563-572, 2011.
211

Bibliography 103

[ZXS*12] Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and
Baining Guo. Motion-guided Mechanical Toy Modeling. ACM Trans.
Graph., 31(6):127:1-127:10, November 2012.

